Preamble: Aggregating Least Squares Regressions

- Full Model: Data $Y \sim \text{Normal}(\mu, \sigma^2 I)$ with μ in \mathbb{R}^n
- Linear Models: μ is in the span of a design matrix
- *M* models indexed by *m*, dimensions *d_m*
- Let $\hat{\mu}_m$ be the least squares projection of Y for model m
- Individual risk function $r_m = \mathbb{E} \|\hat{\mu}_m \mu\|^2$.
- Stein's unbiased estimate of risk

$$\hat{r}_m = \|\mathbf{Y} - \hat{\mu}_m\|^2 + \sigma^2 (2d_m - n)$$

◎ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ の Q ()

- Model Selection: $\hat{m} = \operatorname{argmin}_{m} \hat{r}_{m}$
- Model Aggregation: $\hat{\mu} = \sum_{m} w_{m} \hat{\mu}_{m}$
- Advocate weights w_m proportional to $\exp[-(\beta/\sigma^2)\hat{r}_m]$

Stein Estimate of Risk of Aggregated Least Squares

- Model Selection: $\hat{m} = \operatorname{argmin}_{m} \hat{r}_{m}$
- Model Aggregation: $\hat{\mu} = \sum_{m} w_{m} \hat{\mu}_{m}$
- Risk $r = \mathbb{E} \|\hat{\mu} \mu\|^2$
- What is the Stein unbiased estimate of this risk?
- Studied in Leung and Barron (2006)
- Advocate weights w_m proportional to $\exp[-(\beta/\sigma^2)\hat{r}_m]$
- $\beta = 1/2$ for posterior weights; $\beta = 1/4$ for risk simplification
- The Stein estimate of risk of $\hat{\mu}$ simplifies to $\hat{r} = \sum_{m} w_{m} \hat{r}_{m}$ which may be expressed as

$$\hat{r} = \hat{r}_{\hat{m}} + 4\sigma^2 [H(w) + \log w_{\hat{m}}]$$

so that

$$\hat{r} \leq \min_{m} \hat{r}_{\hat{m}} + 4\sigma^2 \log M$$

Accordingly the risk of the aggregated $\hat{\mu}$ satisfies

$$r \leq \min_{m} \mathbb{E} \|\hat{\mu}_{m} - \mu\|^{2} + 4\sigma^{2} \log M$$

Information Theory and Statistical Learning: Foundations and a Modern Perspective

ANDREW R BARRON

Department of Statistics and Data Science Yale University

Robert Bohrer Workshop in Statistics

University of Illinois at Urbana Champaign, April 22, 2023

< ロト < 同ト < ヨト < ヨト

Models and Likelihood

- Likelihood: Early statistical foundations
 Bayes, Laplace, Gauss shared a Bayesian perspective.
 R. A. Fisher championed likelihood.
- Model: Input X, output Y with center f(X, θ), parameters θ.
 For instance, a linear model or a modern deep network.
- Probability Model: for finite precision X, Y.
 Design distribution p(x), output condit. distrib. p(y|x, θ).
- Data: For training and for future evaluation

data = $(X_i, Y_i)_{i=1}^n$ data' = $(X'_i, Y'_i)_{i=1}^n$

- LIKELIHOOD: $p(\text{data}|\theta)$ Independent observations case: $\prod_i p(x_i)p(y_i|x_i,\theta)$.
- Likelihood Criterion: Prefer θ with small

$\log 1/p(\text{data}|\theta)$

 Information Theory Viewpoint: Shannon, Cover, Rissanen Prefer shorter codelength.

Maximum Likelihood Estimation

What's good about the maximum likelihood estimate $\hat{\theta}_n$?

- Short codelength interpretation provides motivation.
- **Consistency:** Wald(1948) iid case. Target θ^* is limit of $\hat{\theta}$. *Proof idea*: Maximizing likelihood is same as minimizing

 $\frac{1}{n}\sum_{i=1}^{n}\log p(\text{data}_{i}|\theta^{*})/p(\text{data}_{i}|\theta),$

which (akin to the AEP) is asymptotically close to its expectation $\mathbb{E} \Big[\log p(\text{data}_1 | \theta^*) / p(\text{data}_1 | \theta) \Big],$

uniformly so with Wald's finite expected infimum condition, so the empirical minimizer approaches the minimizer of the expectation.

• Expected Favorability: Wald(1948), credited to Doob, showed that this expectation, later called Kullback divergence, is indeed positive (also known as the Gibbs, Shannon inequality).

• Empirical Risk Min: Gauss, Vapnik least squares, other settings

• Accuracy: The finite sample risk is controlled by the best trade-off of Kullback approximation error and metric entropy relative to sample size, as discussed later here.

∃ <2 <</p>

What can go wrong with likelihood maximization?

- Lack of Parsimony: For nested models, it prefers larger, more complex, models.
- **Non-adaptive:** Accuracy (or lack thereof) dictated by the largest size, in metric entropy, of the models considered.
- **Over-fit:** Suppose the family includes the target, then $\log 1/p(\operatorname{data}|\hat{\theta})$ will be smaller than $\log 1/p(\operatorname{data}|\theta^*)$.

Such over-fit is traditionally regarded as problematic. We will come back to that.

・ 同 ト ・ ヨ ト ・ ヨ ト

æ

Penalized Log Likelihood

 $\log 1/p(\text{data}|\theta) + \text{pen}_n(\theta)$

Aims of Penalized Log Likelihood

- Overcome limitations of maximum likelihood
- Allow adaptivity
- Overcome problematic over-fit

通 とくほ とくほ とう

э.

Penalized Likelihood

Forms of penalized log-likelihood:

• **Bayes**: Prior provides a penalty. Posterior favors smallest

 $\log 1/p(\text{data}|\theta) + \log 1/\text{prior}(\theta)$

• Minimum Description Length (MDL): Codelength $L_n(\theta)$ for θ , plus codelength for data given θ $\log 1/p(\text{data}|\theta) + L_n(\theta)$

• Parameter Dimension Penalty:

 $\frac{\dim}{2}\log n$ Schwartz BIC, Rissanen MDL.

• Fisher Information Penalty:

 $\frac{\dim 2}{2}\log \frac{n}{2\pi} + \log(|I(\theta)|^{1/2}/w(\theta))$ Barron, Clarke, Rissanen.

- ℓ_1 Norm Penalty: prop. to $|\theta|_1 = \sum_{k=1}^{\dim} |\theta_j|$ in linear models.
- *l*₁ Norm of Path Weights: In deep ReLU networks.
 (e.g. Klusowski, Barron 2020).
- Roughness Penalty: e.g. Tapia, Thompson (1978).
- Structural Minimization: Vapnik.

8/20

Information-Theoretic Unification of Pen Likelihood

Information-Theoretically Valid Penalty: Codelength valid if the Shannon, Kraft inequality $\sum 2^{-L(\cdot)} \le 1$ holds for the criterion

 $L(data) = \min_{\theta \in \Theta} \{ \log 1/p(data|\theta) + pen_n(\theta) \}$

Description length interpretation that remains valid for continuous θ .

Mechanisms to Establish Information-Theoretic Validity

• Compare *L*(data) to the Bayes Mixture Codelength:

 $\log 1 / \int p(\text{data}|\theta) w(\theta) d\theta$

Laplace approx. shows Fisher Info penalty is codelength valid

• Compare *L*(data) to a Discrete Two-Stage MDL:

 $\min_{\tilde{\theta} \in \tilde{\Theta}} \left\{ \log 1/p(\text{data}|\tilde{\theta}) + L_n(\tilde{\theta}) \right\}$

where $\tilde{\Theta}$ is a discrete set and $L_n(\tilde{\theta})$ satisfies the Kraft inequality.

• The ℓ_1 norm penalty pen_n(θ) = $\lambda_n |\theta|_1$ is codelength valid for $\lambda_n \ge \sqrt{n \log \dim}$ (Barron, Huang, Li, Liu 2008)

Information-Theoretic Unification of Pen Likelihood

Penalty doubling produces statistical generalization benefits. Information-Theoretically Valid Penalty: Codelength valid if the Shannon, Kraft inequality $\sum 2^{-L(\cdot)} \le 1$ holds for the criterion

 $L(data) = \min_{\theta \in \Theta} \left\{ \log 1/p(data|\theta) + \operatorname{pen}_n(\theta) \right\}$

Description length interpretation that remains valid for continuous θ .

Mechanisms to Establish Information-Theoretic Validity

• Compare *L*(data) to the Bayes Mixture Codelength:

 $\log 1 / \int p(\text{data}|\theta) w(\theta) d\theta$

Laplace approx. shows Fisher Info penalty is codelength valid

• Compare *L*(data) to a Discrete Two-Stage MDL:

 $\min_{\tilde{\theta}\in\tilde{\Theta}}\left\{\log 1/p(\text{data}|\tilde{\theta}) + \frac{1}{2L_n(\tilde{\theta})}\right\}$

where $\tilde{\Theta}$ is a discrete set and $L_n(\tilde{\theta})$ satisfies the Kraft inequality.

• The ℓ_1 norm penalty pen_n(θ) = $\lambda_n |\theta|_1$ is codelength valid for $\lambda_n \ge 2\sqrt{n \log \dim}$ (Barron, Huang, Li, Liu 2008)

- From training data $\underline{X}, \underline{Y}$ obtain an estimator $\hat{p} = p_{\hat{\theta}}$
- Generalize to subsequent data' = $\underline{X}', \underline{Y}'$
- Want log $1/\hat{p}(\text{data}')$ to compare favorably to log 1/p(data')
- For targets p which are close to or even inside the families
- With data' expectation, loss becomes Kullback divergence
- Bhattacharyya, Hellinger loss also relevant

・ 同 ト ・ ヨ ト ・ ヨ ト

∃ <2 <</p>

• Kullback Information-divergence:

 $D_n(\theta^*||\theta) = \mathbb{E}\big[\log p(\mathrm{data}|\theta^*)/p(\mathrm{data}|\theta)\big]$

Bhattacharyya, Hellinger divergence:

 $d_n(\theta^*||\theta) = 2\log 1/\mathbb{E}[p(\text{data}|\theta)/p(\text{data}|\theta^*)]^{1/2}$

• Indep. ident. distrib. case: data = (data₁,..., data_n) $D_n(\theta^* || \theta) = n D(\theta^* || \theta)$ $d_n(\theta^*, \theta) = n d(\theta^*, \theta)$

• Relationship: $d \le D \le (2+B) d$ if the log density ratio $\le B$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Index of Resolvability

The empirical criterion $\min_{\substack{\theta \in \Theta}} \{ \log [1/p(data|\theta)] + pen_n(\theta) \}$ equivalently $\min_{\substack{\theta \in \Theta}} \{ \log [p(data|\theta^*)/p(data|\theta)] + pen_n(\theta) \}$ has the population counterpart

 $\min_{\theta \in \Theta} \left\{ D_n(\theta^* || \theta) + \operatorname{pen}_n(\theta) \right\}$

The minimizing parameter θ_n^* best resolves the target.

Dividing by n yields a statistical rate, the index of resolvability

$$\boldsymbol{R}_{n}(\boldsymbol{\theta}^{*}) = \frac{1}{n} \min_{\boldsymbol{\theta} \in \Theta} \left\{ \boldsymbol{D}_{n}(\boldsymbol{\theta}^{*} || \boldsymbol{\theta}) + \operatorname{pen}_{n}(\boldsymbol{\theta}) \right\}$$

For instance, in the i.i.d. case

$$\boldsymbol{R}_{n}(\boldsymbol{\theta}^{*}) = \min_{\boldsymbol{\theta} \in \Theta} \left\{ \boldsymbol{D}(\boldsymbol{\theta}^{*}||\boldsymbol{\theta}) + \frac{\mathrm{pen}_{n}(\boldsymbol{\theta})}{n} \right\}$$

 $R_n(\theta^*) \leq \frac{\operatorname{pen}_n(\theta^*)}{n}$

Conservative bound

.

One-sided empirical analysis reveals generalization

Idea: empirical process error may be complexity dependent

• log likelihood-ratio discrepancy for training and future data

$$\left[\log rac{p(ext{data}| heta^*)}{p(ext{data}| heta)} - d_n(heta^*, heta)
ight]$$

• Instead, we examine the penalized discrepancy

$$\min_{\theta \in \Theta} \left\{ \left[\log \frac{p(\mathsf{data}|\theta^*)}{p(\mathsf{data}|\theta)} - d_n(\theta^*, \theta) \right] + pen_n(\theta) \right\}$$

• Risk validity condition: Penalized discrepancy is at least

$$\min_{\tilde{\theta} \in \tilde{\Theta}} \left\{ \left[\log \frac{p(\mathsf{data}|\theta^*)}{p(\mathsf{data}|\tilde{\theta})} - d_n(\theta^*, \tilde{\theta}) \right] + 2L_n(\tilde{\theta}) \right\}$$

where $\tilde{\Theta}$ is a discrete set and $L_n(\tilde{\theta})$ satisfies the Kraft inequality.

- Key to statistical analysis: With risk valid penalty, the *penalized discrepancy*
 - has expectation greater than or equal to zero and
 - is stochastically greater than minus an exponential(1) r.v.
 - Li, Barron 1998; extended in Barron, Huang, Li, Luo 2008.

Risk Bounds and Confidence Bounds

For any risk valid $pen_n(\theta)$, the *penalized discrepancy*

$$\min_{\theta \in \Theta} \left\{ \left[\log \frac{p(\text{data}|\theta^*)}{p(\text{data}|\theta)} - \textit{d}_{\textit{n}}(\theta^*,\theta) \right] + pen_{\textit{n}}(\theta) \right\}$$

has expectation greater than or equal to zero and

• is stochastically greater than minus an exponential(1) r.v.

Risk bound: Apply the expectation inequality at the penalized log likelihood optimizer $\hat{\theta}$ to get the risk bound (from Li, Barron 1998, Grunwald 2007, with extension in Barron, Huang, Li, Liu 2008)

$$\mathbb{E}[d(\theta^*, \hat{\theta})] \leq \frac{1}{n} \mathbb{E} \min_{\theta \in \Theta} \bigg\{ \log \frac{p(\mathsf{data}|\theta^*)}{p(\mathsf{data}|\theta)} + pen_n(\theta) \bigg\}.$$

Hence, since the expected min is less than the min of expectations,

$$\mathbb{E}[\boldsymbol{d}(\theta^*,\hat{\theta})] \leq \boldsymbol{R}_{\boldsymbol{n}}(\theta^*).$$

Thus the population resolvability controls the estimation risk. Analogous conclusion holds for general (non-iid) models, $_{\pm}$,

Risk Bounds and Confidence Bounds

For any risk valid $pen_n(\theta)$, the penalized discrepancy

$$\min_{\theta \in \Theta} \left\{ \left[\log \frac{p(\text{data}|\theta^*)}{p(\text{data}|\theta)} - d_n(\theta^*, \theta) \right] + pen_n(\theta) \right\}$$

- has expectation greater than or equal to zero and
- is stochastically greater than minus an exponential(1) r.v.

Confidence region: Apply the stochastic inequality to any estimate $\hat{\theta}$ to get the following confidence statement. In an event of probability at least $1 - \delta$

$$d(\theta^*, \hat{\theta}) \leq \frac{1}{n} \log \frac{p(\text{data}|\theta^*)}{p(\text{data}|\hat{\theta})} + \frac{pen_n(\hat{\theta})}{n} + \frac{\log 1/\delta}{n}$$

In particular, for any over-fit estimate $\hat{\theta}$, with the same prob,

$$d(\theta^*, \hat{\theta}) \leq \frac{pen_n(\hat{\theta})}{n} + \frac{\log 1/\delta}{n}$$

Risk Bounds and Confidence Bounds

• Confidence region: In an event of probability at least $1 - \delta$

$$d(\theta^*, \hat{ heta}) \leq rac{1}{n} \log rac{p(ext{data}| heta^*)}{p(ext{data}|\hat{ heta})} + rac{pen_n(\hat{ heta})}{n} + rac{\log 1/\delta}{n}$$

In particular, for any over-fit estimate $\hat{\theta}$, with the same prob,

$$d(\theta^*, \hat{ heta}) \leq rac{pen_n(\hat{ heta})}{n} + rac{\log 1/\delta}{n}$$

• Implication for linear models and for deep ReLU nets: for any over-fit estimate $\hat{\theta}$, with prob at least $1-\delta$,

$$d(\theta^*, \hat{\theta}) \leq 2|\hat{\theta}|_1 \sqrt{\frac{\log \dim}{n}} + \frac{Const}{n} + \frac{\log 1/\delta}{n}$$

- A fitted over-parameterized deep net with small ℓ_1 path norm compared to $\sqrt{n/\log \dim}$ yields appropriately confident in the indicated accuracy of generalization.
- Provides understanding of sometimes benign over-fitting.

Statistics and information theory are fundamentally intertwined. General one-sided penalized empirical proc. analysis provides:

- Risk bound by the index of resolvability.
- Confidence bound from observed penalty, log-likelihood
- Fundamental connection between empirically valid penalties and information -theoretically valid penalties.
- Surprisingly valid penalties.
- Explanation for benign over-fitting.

・ 同 ト ・ ヨ ト ・ ヨ ト

э.

Extra: Better Risk Bounds for Bayes Estimation

- From prior $\pi(\theta)$ and data get posterior $\pi(\theta|\text{data}^n)$
- Suppose (data₁,..., data_N, data') are i.i.d. $p_{\theta^*}(\cdot) = p(\cdot|\theta^*)$
- Bayes predictive distribution provides a density estimate

$$\hat{p}_n(\text{data}') = p(\text{data}'|\text{data}^n) = \int p(\text{data}'|\theta)\pi(\theta|\text{data}^n)d\theta$$

- Time average Kullback risk $\bar{r}_N(\theta^*) = \frac{1}{N+1} \sum_{n=0}^N \mathbb{E} D(p_{\theta^*} \| \hat{p}_n)$
- Resolvability bound (Barron 1986,1998)

$$ar{r}_{N}(heta^{*}) \leq \min_{B} \left\{ \max_{ heta \in B} D(p_{ heta^{*}} \| p_{ heta}) + rac{1}{N+1} \log rac{1}{\pi(B)}
ight\}$$

• Example: Discrete parameter and singleton sets $B = \{\theta\}$

$$ar{r}_{N}(heta^{*}) \leq \min_{ heta} \left\{ D(oldsymbol{
ho}_{ heta^{*}} \| oldsymbol{
ho}_{ heta}) + rac{1}{N+1} \log rac{1}{\pi(heta)}
ight\}$$

and in particular

$$ar{r}_{N}(heta^{*}) \leq rac{1}{N+1}\lograc{1}{\pi(heta^{*})}$$

▲□ ▶ ▲ 三 ▶ ▲ 三 ▶ ● 三 ● ● ● ●

19/20

Extra: Better Risk Bounds for Bayes Estimation

- Consequence using convexity of Kullback divergence
- Time average estimate

$$\hat{\hat{p}}(data') = \frac{1}{N+1} \sum_{n=0}^{N} p(data'|data^n)$$

where data^{*n*} may use the *n* most recent observations.

Kullback risk

 $\mathbb{E} D(p_{\theta^*} \| \hat{\hat{p}}) \leq \bar{r}_N$

- Thus have estimator with risk at least as good as the time average risk of Bayes predictive estimators
- As we saw, this risk is controlled by the resolvability