
Preamble: Aggregating Least Squares Regressions

Full Model: Data Y ∼ Normal(µ, σ2I) with µ in Rn

Linear Models: µ is in the span of a design matrix

M models indexed by m, dimensions dm

Let µ̂m be the least squares projection of Y for model m

Individual risk function rm = E‖µ̂m − µ‖2.

Stein’s unbiased estimate of risk

r̂m = ‖Y − µ̂m‖2 + σ2(2dm − n)

Model Selection: m̂ = argminm r̂m

Model Aggregation: µ̂ =
∑

m wm µ̂m

Advocate weights wm proportional to exp[−(β/σ2)r̂m]



Stein Estimate of Risk of Aggregated Least Squares

Model Selection: m̂ = argminm r̂m

Model Aggregation: µ̂ =
∑

m wm µ̂m

Risk r = E‖µ̂− µ‖2

What is the Stein unbiased estimate of this risk?
Studied in Leung and Barron (2006)
Advocate weights wm proportional to exp[−(β/σ2)r̂m]

β = 1/2 for posterior weights; β = 1/4 for risk simplification
The Stein estimate of risk of µ̂ simplifies to r̂ =

∑
m wm r̂m

which may be expressed as

r̂ = r̂m̂ + 4σ2[H(w) + log wm̂]

so that
r̂ ≤ min

m
r̂m̂ + 4σ2 log M

Accordingly the risk of the aggregated µ̂ satisfies

r ≤ min
m

E‖µ̂m − µ‖2 + 4σ2 log M
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Models and Likelihood

Likelihood: Early statistical foundations
Bayes, Laplace, Gauss shared a Bayesian perspective.
R. A. Fisher championed likelihood.
Model: Input X , output Y with center f (X , θ), parameters θ.
For instance, a linear model or a modern deep network.
Probability Model: for finite precision X ,Y .
Design distribution p(x), output condit. distrib. p(y |x , θ).

Data: For training and for future evaluation
data = (Xi ,Yi)

n
i=1 data′ = (X ′i ,Y

′
i )n

i=1
LIKELIHOOD: p(data|θ)
Independent observations case:

∏
i p(xi)p(yi

∣∣xi , θ).

Likelihood Criterion: Prefer θ with small
log 1/p(data|θ)

Information Theory Viewpoint: Shannon, Cover, Rissanen
Prefer shorter codelength.
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Maximum Likelihood Estimation

What’s good about the maximum likelihood estimate θ̂n?
Short codelength interpretation provides motivation.

Consistency: Wald(1948) iid case. Target θ∗ is limit of θ̂.
Proof idea: Maximizing likelihood is same as minimizing

1
n

∑n
i=1 log p(datai |θ∗)/p(datai |θ),

which (akin to the AEP) is asymptotically close to its expectation

E
[

log p(data1|θ∗)/p(data1|θ)
]
,

uniformly so with Wald’s finite expected infimum condition, so the
empirical minimizer approaches the minimizer of the expectation.
Expected Favorability: Wald(1948), credited to Doob, showed
that this expectation, later called Kullback divergence, is indeed
positive (also known as the Gibbs, Shannon inequality).

Empirical Risk Min: Gauss, Vapnik least squares, other settings

Accuracy: The finite sample risk is controlled by the best
trade-off of Kullback approximation error and metric entropy
relative to sample size, as discussed later here.
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Maximum Likelihood Estimation

What can go wrong with likelihood maximization?

Lack of Parsimony: For nested models, it prefers larger,
more complex, models.

Non-adaptive: Accuracy (or lack thereof) dictated by the
largest size, in metric entropy, of the models considered.

Over-fit: Suppose the family includes the target, then
log 1/p(data|θ̂) will be smaller than log 1/p(data|θ∗).

Such over-fit is traditionally regarded as problematic.
We will come back to that.
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Penalized Likelihood

Penalized Log Likelihood

log 1/p(data|θ) + penn(θ)

Aims of Penalized Log Likelihood

Overcome limitations of maximum likelihood

Allow adaptivity

Overcome problematic over-fit
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Penalized Likelihood

Forms of penalized log-likelihood:
Bayes: Prior provides a penalty. Posterior favors smallest

log 1/p(data|θ) + log 1/prior(θ)

Minimum Description Length (MDL):
Codelength Ln(θ) for θ, plus codelength for data given θ

log 1/p(data|θ) + Ln(θ)

Parameter Dimension Penalty:
dim
2 log n Schwartz BIC, Rissanen MDL.

Fisher Information Penalty:
dim
2 log n

2π + log
(
|I(θ)|1/2/w(θ)

)
Barron, Clarke, Rissanen.

`1 Norm Penalty: prop. to |θ|1 =
∑dim

k=1 |θj | in linear models.
`1 Norm of Path Weights: In deep ReLU networks.
(e.g. Klusowski, Barron 2020).

Roughness Penalty: e.g. Tapia, Thompson (1978).

Structural Minimization: Vapnik.
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Information-Theoretic Unification of Pen Likelihood

Information-Theoretically Valid Penalty: Codelength valid if the
Shannon, Kraft inequality

∑
· 2
−L(·) ≤ 1 holds for the criterion

L(data) = min
θ∈Θ

{
log 1/p(data|θ) + penn(θ)

}
Description length interpretation that remains valid for continuous θ.

Mechanisms to Establish Information-Theoretic Validity
Compare L(data) to the Bayes Mixture Codelength:

log 1/
∫

p(data|θ)w(θ)dθ
Laplace approx. shows Fisher Info penalty is codelength valid

Compare L(data) to a Discrete Two-Stage MDL:

min
θ̃∈Θ̃

{
log 1/p(data|θ̃) + Ln(θ̃)

}
where Θ̃ is a discrete set and Ln(θ̃) satisfies the Kraft inequality.

The `1 norm penalty penn(θ) = λn|θ|1 is codelength valid
for λn ≥

√
n log dim (Barron, Huang, Li, Liu 2008)
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Information-Theoretic Unification of Pen Likelihood

Penalty doubling produces statistical generalization benefits.
Information-Theoretically Valid Penalty: Codelength valid if the
Shannon, Kraft inequality

∑
· 2
−L(·) ≤ 1 holds for the criterion

L(data) = min
θ∈Θ

{
log 1/p(data|θ) + penn(θ)

}
Description length interpretation that remains valid for continuous θ.

Mechanisms to Establish Information-Theoretic Validity
Compare L(data) to the Bayes Mixture Codelength:

log 1/
∫

p(data|θ)w(θ)dθ
Laplace approx. shows Fisher Info penalty is codelength valid

Compare L(data) to a Discrete Two-Stage MDL:

min
θ̃∈Θ̃

{
log 1/p(data|θ̃) + 2Ln(θ̃)

}
where Θ̃ is a discrete set and Ln(θ̃) satisfies the Kraft inequality.
The `1 norm penalty penn(θ) = λn|θ|1 is codelength valid
for λn ≥ 2

√
n log dim (Barron, Huang, Li, Liu 2008)
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Statistical Aim

From training data X ,Y obtain an estimator p̂ = pθ̂

Generalize to subsequent data′ = X ′,Y ′

Want log 1/p̂(data′) to compare favorably to log 1/p(data′)

For targets p which are close to or even inside the families

With data′ expectation, loss becomes Kullback divergence

Bhattacharyya, Hellinger loss also relevant
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Loss

Kullback Information-divergence:

Dn(θ∗||θ) = E
[

log p(data|θ∗)/p(data|θ)
]

Bhattacharyya, Hellinger divergence:

dn(θ∗||θ) = 2 log 1/E[p(data|θ)/p(data|θ∗)]1/2

Indep. ident. distrib. case: data = (data1, . . . ,datan)

Dn(θ∗‖θ) = n D(θ∗‖θ)

dn(θ∗, θ) = n d(θ∗, θ)

Relationship: d ≤ D ≤ (2 + B) d if the log density ratio ≤ B.
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Index of Resolvability

The empirical criterion
min
θ∈Θ

{
log [1/p(data|θ)] + penn(θ)

}
equivalently

min
θ∈Θ

{
log [p(data|θ∗)/p(data|θ)] + penn(θ)

}
has the population counterpart

min
θ∈Θ

{
Dn(θ∗||θ) + penn(θ)

}
The minimizing parameter θ∗n best resolves the target.

Dividing by n yields a statistical rate, the index of resolvability

Rn(θ∗) = 1
n min
θ∈Θ

{
Dn(θ∗||θ) + penn(θ)

}
For instance, in the i.i.d. case

Rn(θ∗) = min
θ∈Θ

{
D(θ∗||θ) +

penn(θ)

n
}

Conservative bound
Rn(θ∗) ≤ penn(θ∗)

n
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One-sided empirical analysis reveals generalization

Idea: empirical process error may be complexity dependent

log likelihood-ratio discrepancy for training and future data[
log

p(data|θ∗)
p(data|θ)

− dn(θ∗, θ)
]

Instead, we examine the penalized discrepancy

min
θ∈Θ

{[
log

p(data|θ∗)
p(data|θ)

− dn(θ∗, θ)
]

+ penn(θ)

}
Risk validity condition: Penalized discrepancy is at least

min
θ̃∈Θ̃

{[
log

p(data|θ∗)
p(data|θ̃)

− dn(θ∗, θ̃)
]

+ 2Ln(θ̃)

}
where Θ̃ is a discrete set and Ln(θ̃) satisfies the Kraft inequality.
Key to statistical analysis:
With risk valid penalty, the penalized discrepancy

has expectation greater than or equal to zero and
is stochastically greater than minus an exponential(1) r.v.

Li, Barron 1998; extended in Barron, Huang, Li, Luo 2008.
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Risk Bounds and Confidence Bounds

For any risk valid penn(θ), the penalized discrepancy

min
θ∈Θ

{[
log

p(data|θ∗)
p(data|θ)

− dn(θ∗, θ)
]

+ penn(θ)

}
has expectation greater than or equal to zero and
is stochastically greater than minus an exponential(1) r.v.

Risk bound: Apply the expectation inequality at the penalized log
likelihood optimizer θ̂ to get the risk bound (from Li, Barron 1998,
Grunwald 2007, with extension in Barron, Huang, Li, Liu 2008 )

E[d(θ∗, θ̂)] ≤ 1
n
Emin
θ∈Θ

{
log

p(data|θ∗)
p(data|θ)

+ penn(θ)

}
.

Hence, since the expected min is less than the min of expectations,

E[d(θ∗, θ̂)] ≤ Rn(θ∗).

Thus the population resolvability controls the estimation risk.
Analogous conclusion holds for general (non-iid) models.
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Risk Bounds and Confidence Bounds

For any risk valid penn(θ), the penalized discrepancy

min
θ∈Θ

{[
log

p(data|θ∗)
p(data|θ)

− dn(θ∗, θ)
]

+ penn(θ)

}
has expectation greater than or equal to zero and
is stochastically greater than minus an exponential(1) r.v.

Confidence region: Apply the stochastic inequality to any
estimate θ̂ to get the following confidence statement. In an event
of probability at least 1− δ

d(θ∗, θ̂) ≤ 1
n

log
p(data|θ∗)
p(data|θ̂)

+
penn(θ̂)

n
+

log 1/δ
n

In particular, for any over-fit estimate θ̂, with the same prob,

d(θ∗, θ̂) ≤ penn(θ̂)

n
+

log 1/δ
n
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Risk Bounds and Confidence Bounds

Confidence region: In an event of probability at least 1− δ

d(θ∗, θ̂) ≤ 1
n

log
p(data|θ∗)
p(data|θ̂)

+
penn(θ̂)

n
+

log 1/δ
n

.

In particular, for any over-fit estimate θ̂, with the same prob,

d(θ∗, θ̂) ≤ penn(θ̂)

n
+

log 1/δ
n

Implication for linear models and for deep ReLU nets:
for any over-fit estimate θ̂, with prob at least 1−δ,

d(θ∗, θ̂) ≤ 2|θ̂|1

√
log dim

n
+

Const
n

+
log 1/δ

n
A fitted over-parameterized deep net with small `1 path
norm compared to

√
n/ log dim yields appropriately

confident in the indicated accuracy of generalization.
Provides understanding of sometimes benign over-fitting.
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Summary

Statistics and information theory are fundamentally intertwined.

General one-sided penalized empirical proc. analysis provides:

Risk bound by the index of resolvability.

Confidence bound from observed penalty, log-likelihood

Fundamental connection between empirically valid
penalties and information -theoretically valid penalties.

Surprisingly valid penalties.

Explanation for benign over-fitting.
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Extra: Better Risk Bounds for Bayes Estimation

From prior π(θ) and data get posterior π(θ|datan)

Suppose (data1, . . . ,dataN ,data′) are i.i.d. pθ∗(·) = p(·|θ∗)
Bayes predictive distribution provides a density estimate

p̂n(data′) = p(data′|datan) =

∫
p(data′|θ)π(θ|datan)dθ

Time average Kullback risk r̄N(θ∗) = 1
N+1

∑N
n=0 ED(pθ∗‖p̂n)

Resolvability bound (Barron 1986,1998)

r̄N(θ∗) ≤ min
B

{
max
θ∈B

D(pθ∗‖pθ) +
1

N + 1
log

1
π(B)

}
Example: Discrete parameter and singleton sets B = {θ}

r̄N(θ∗) ≤ min
θ

{
D(pθ∗‖pθ) +

1
N + 1

log
1

π(θ)

}
and in particular

r̄N(θ∗) ≤ 1
N + 1

log
1

π(θ∗)
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Extra: Better Risk Bounds for Bayes Estimation

Consequence using convexity of Kullback divergence

Time average estimate

ˆ̂p(data′) =
1

N + 1

N∑
n=0

p(data′|datan)

where datan may use the n most recent observations.

Kullback risk
ED(pθ∗‖ˆ̂p) ≤ r̄N

Thus have estimator with risk at least as good as the time
average risk of Bayes predictive estimators

As we saw, this risk is controlled by the resolvability

Andrew Barron Information Theory and Statistical Learning 20/20


