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Shannon, Kraft, McMillan

@ Characterization of uniquely decodeable codelengths

L(x), xe€ZX, > 27N <o
L(x) =log 1/q(x) q(x) =27t

@ Operational meaning of probability:
A distribution is given by a choice of code
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Codelength Comparison

@ Targets p are possible distributions
@ Compare codelength log 1/q(x) to targets log 1/p(x)
@ Redundancy or regret

log1/q(x) —log 1/p(x) |

@ Expected redundancy

pX)
D(Pxl|Qx) = Er| log 55 |
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Universal Codes

@ MODELS
Family of coding strategies < Family of prob. distributions

{Lo(x): 0 € ©} & {py(x): 6 € ©}
@ Universal codes < Universal probabilities q(x)
L(x) =log1/q(x)

@ Redundancy: [ log1/q(x) —log1/py(x) |

Want it small either uniformly in x, 8 or in expectation
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Statistical Aim

@ Training data x = estimator p = p;
@ Subsequent data x’
@ Want log 1/p(x’) to compare favorably to log 1/ps(x’)

@ Likewise for targets p close to but not in the families

Barron MDL with ¢4 Penalty and its Statistical Risk



Preliminaries

Universal Codes
Statistical Setting

@ Kullback Information-divergence:

D(Py/[|Qx) = E[ logp(X")/q(X) ]
@ Bhattacharyya, Hellinger, Chernoff, Rényi divergence:

d(Py, Qx) = 2log 1/E[q(X")/p(X")]'/?

@ Product model case: p(x’) = []7_ p(x)
D(Px|Qx) = nD(P| Q)
Likewise d(Py, Qx) = nd(P, Q)
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@ Relationship:
d(P,Q) < D(P||Q)
@ and, if the log density ratio is not more than B, then
D(P||Q) < Cgd(P, Q)

with Cg <2+ B
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@ Universal coding brought into statistical play

@ Minimum Description Length Principle:

The shortest code for data gives the best statistical model
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MDL: Two-stage Version

@ Two-stage codelength:
L(x) =min | log1/ps(x) + L(6)

bits for x given 6 + bits for 6

@ The corresponding statistical estimator is p = p
@ Typically in d-dimensional families L(#) is of order
g logn

5 g
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MDL: Mixture Versions

@ Codelength based on a mixture model

average case optimal and pointwise optimal for a.e. ¢

@ Codelength approximation (saron 1985, ciarke and Barron 1990,1994)

IogLJrglogiJrlog|7(A#|1/2
p(x|) 2 " 2w w(d)

where 1(f) is the empirical Fisher Information at the MLE
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MDL: Two-stage Code Redundancy

@ Expected codelength minus target at py-

Redundancy = Ebnig {Iog + L(G)} — log 1
S

Po(X) Po+(X)

@ Redundancy approx in smooth families

|1(6%)["/2
w(6*)
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Redundancy and Resolvability

@ Redundancy = E mingeeo [Iog ’;ﬁ’;(%) + L(e))}

o Resolvability = mingee £ [log Al — L(@)}

Pxip) + L(9)]

@ |deal tradeoff of Kullback approximation error & complexity

= mingeg [D(Px‘gx

@ Population analogue of the two-stage code MDL criterion
@ Divide by nto express as arate. In the i.i.d. case

L(6)
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Risk of Estimator based on Two-stage Code

@ Estimator 4 is the choice achieving the minimization

) 1
mip {108 5+ £0))

@ Codelengths for ¢ are £(0) = 2L(0) with }",.g 2710 < 1.

o Total loss djy(6*, ) with dj(6*,6) = d(Pyjg-, Px'js)
Risk = E[dn(6*,0)]
o |nf0'Thy bound on risk: ( Barron 1985, Barron and Cover 1991, Jonathan Li 1999)

Risk < Redundancy < Resolvability
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Risk of Estimator based on Two-stage Code

@ Estimator f achieves minyco {log 1/py(x) + £(0)}
@ Codelengths require 3, 2710 < 1.

@ Risk < Resolvability

@ Specialize to i.i.d. case:
. A . . L(0)
< —~ 7
Ed(67,0) min D(6*(|6) + - }

@ As n /, tolerate more complex Py, if needed to get near
PX‘@*
@ Rate is 1/n, or close to that rate if the target is simple

@ Drawback: Code interpretation entails countable ©
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Key to Risk Analysis

@ log likelihood-ratio discrepancy at training x and future x’

p@*(&) *
[log o~ o ,e)]

@ Proof shows, for L(¢) satisfying Kraft, that

min { [1og Po-(X) _ 4 . 0] + 5(9)}

S Po(X)

has expectation > 0. From which the risk bound follows.
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¢4 penalties are information-theoretically valid

Information-theoretically Valid Penalties

@ Penalized Likelihood

. 1
min {Iog (%) + Pen(@)}

@ Possibly uncountable ©

@ Yields data compression interpretation if there exists a
countable © and L satisfying Kraft such that the above is
not less than

. 1 ~
g;lg {Iog P (x) + L(Q)}
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Data-Compression Valid Penalties

@ Equivalently, Pen(0) is valid for penalized likelihood with
uncountable © to have a data compression interpretation
if there is such a countable © and Kraft summable L({ )
such that, for every ¢ in ©, there is a representor § in ©
such that

@ This is the link between uncountable and countable cases
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Statistical-Risk Valid Penalties

@ Penalized Likelihood

A 1
¢ = argmin,_g {Iog o) + Pen(@)}

@ Again: possibly uncountable ©

@ Task: determine a condition on Pen(6) such that the risk is
captured by the population analogue

N Po- (X)
Edy(07,0) < glg(fa{Elog 2o(X) + Pen(@)}
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Statistical-Risk Valid Penalty

@ For an uncountable © and a penalty Pen(0), 0 € ©,
suppose there is a countable © and £(¢) = 2L(0)

where L(0) satisfies Kraft, such that, for all x, 6*,

min { [Iog '[:)9;((;)) - dn(e*,e)} + Pen(@)}

. Po~ (K) * 0 0
> grgg{[log Pax) dn(6 ,0)] + 5(9)}
@ Proof of the risk conclusion:
The second expression has expectation > 0,
so the first expression does too.
@ This condition and result is obtained with J. Li and X. Luo
(in Rissanen Festschrift 2008)

Barron MDL with ¢4 Penalty and its Statistical Risk



Penalized Likelihood Analysis

Recent Results B " ]
¢4 penalties are information-theoretically valid

Variable Complexity, Variable Distortion Cover

@ Equivalent statement of the condition: Pen(¢) is a valid
penalty if for each 0 in © there is a representor © in © with
complexity L(6), distortion An(d,6) and

Pen(6) > L(0)+ An(d,6)

where the distortion An(0,0) is the difference in the
discrepancies at ¢ and ¢

An(6,60) = |ogZ"8+dn(e 0%) — dn(d, 6%
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Recent Results £4 penalties are information-theoretically valid

A Setting for Regression and log-density Estimation:
Linear Span of a Dictionary

@ G is a dictionary of candidate basis functions
E.g. wavelets, splines, polynomials, trigonometric terms,
sigmoids, explanatory variables and their interactions

@ Candidate functions in the linear span

fo(x) =0 9(x)

geg
@ weighted ¢4 norm of coefficients

1611 = aglbyl
9

® weights ag = [|g|l» where ||g||7 = 3 =1L g°(x))
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Recent Results £4 penalties are information-theoretically valid

Example Models

@ Regression (focus of current presentation)
po(y|x) = Normal(fy(x), o2)
@ Logistic regression with y € {0,1}
po(y|x) = Logistic(fy(x)) fory =1

@ Log-density estimation (focus of Festschrift paper)

) = Polx) expifs(x)}

Po(Xx o

@ Gaussian graphical models
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¢y Penalty

@ pen(f) = A[|6]|s where ¢ are coeff of fy(x) = > cg 09 9(X)

@ Popular penalty: Chen & Donoho (96) Basis Pursuit;
Tibshirani (96) LASSO; Efron et al (04) LARS;
Precursors: Jones (92), B.(90,93,94) greedy algorithm and
analysis of combined /1 and ¢y penalty

@ We want to avoid cross-validation in choice of A
@ Data-compression: specify valid A for coding interpretation
@ Risk analysis: specify valid A for risk < resolvability

@ Computation analysis: bounds accuracy of ¢1-penalized
greedy pursuit algorithm
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Fixed o2 case

. . known case
Regression with ¢4 penalty Unknown o

Regression with ¢4 penalty

@ /4 penalized log-density estimation, i.i.d. case

. (A
0 = argmin, = log r(x)
6 ey

@ Regression with Gaussian model, fixed o2

+An|re||1}

, 11
meln{MnZ(Y;fg(X,-)) |0927r0 + 9”1}
=1
@ Valid for

An >

2Iog(r72Mg) with Mg = Card(G)
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5

. . nknown o“ case
Regression with ¢4 penalty Ui e

Adaptive risk bound

@ For log density estimation with suitable A,
Ed(f*, 1) < inf { D(F[|f5) + Anl0]]+ }

@ For regression with fixed design points x;, fixed ¢, and
Ay = /2logr(72M),

Elf* =62 . (lIff—5KI2 A
7~ 0 N~ %6lln
402 —'Qf{ 202 1}
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Adaptive risk bound specialized to regression

@ Again for fixed design and A, = 1/2%2¥ ‘myltiplying
through by 402,

E|f*

I3 < inf {2 = ]2+ 407001 |

@ In particular for all targets f* = fp« with finite ||6*|| the risk
bound 40 \,||6%| is of order y/9¥

@ Details in Barron, Luo (proceedings Workshop on Information Theory Methods in Science & Eng. 2008),
Tampere, Finland: last week
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Comments on proof

@ Likelihood discrepancy plus complexity

202 Z X)) 202 Z ? + Klog(2M)

° Representor f5 of fy of foIIowmg form, with v near ||6||4

K
00 = ¢ > 900/ lgi
k=1

@ g1,...9k picked at random from G, independently, where g
arises with probability proportional to |64|ag
@ Shows exists representor with like. discrep. + complexity

v Kloa(2M
5 T Klog(2M)
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Comments on proof

@ Optimizing it yields penalty proportional to /1 norm
@ Penalty A||0||; is valid for both data compression and
statistical risk requirements for A > A, where

_/2log(2M)
A=\

@ Especially useful for very large dictionaries

@ Improvement for small dictionaries gets rid of log factor:
log(2M) may be replaced by log(2e max{%, 1})
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Comments on proof

@ Existence of respresentor shown by random draw is a
Shannon-like demonstration of the variable cover (code)

@ Similar approximation in analysis of greedy computation of
¢4 penalized least squares
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Aside: Random design case

@ May allow X; random with distribution Py
@ Presuming functions in the library G are uniformly bounded

@ Analogous risk bounds hold (in submitted paper by Huang,
Cheang, and Barron)

Elf 1

2 . * 2
< inf {2/1f* = 2 + cAnloll+}

@ Allows for libraries G of infinite cardinality, replacing the
log Mg with a metric entropy of G
@ If the linear span of G is dense in L, then for all L,

functions f* the approximation error ||f* — f||? can be
arranged to go to zero as the size of v = ||0*||; increases.
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Aside: Simultaneous Minimax Rate Optimality

@ The resolvability bound tends to zero as A, = /229
gets small

E|lf* — 1 < inf {2]1f = )2 + cAall0]11 }

@ Current work with Cong Huang shows for a broad class of
approximate rates, the risk rate obtained from this
resolvability bound is minimax optimal for the class of
target functions {f* : infy. g, = [|F* — f? < A/},
simultaneously for all such classes

Barron MDL with ¢4 Penalty and its Statistical Risk



Fixed o2 case
! I Unknown o2 case
Regression with ¢4 penalty

Fixed o versus unknown o

@ MDL with ¢; penalty for each possible o. Recall

11 > 1 > An
meln{%zn;()/,—fg(x,)) +§I0927ra +;H9H1

@ Provides a family of fits indexed by o.
@ For unknown o suggest optimization over o as well as 6

, 11 o 1 5 An
_ - . —log 2 -
mg’!jn {202 - ;1(\/, fo(Xi))” + 5 log2ma + . 1101]4
@ Slight modification of this does indeed satisfy our condition

for an information-theoretically valid penalty and risk bound
(details in the WITMSE 2008 proceedings)
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Regression with ¢4 penalty

@ Best o for each 6 solves the quadratic equation

n

1
B 1 nz;(\ﬁ-—fe(x;))2
j=

@ By the quadratic formula the solution is

1 1
o = Zhaloll + | [GAal6le]* + D (Vi — f(x))°
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Summary

@ Handle penalized likelihoods with continuous domains for 6

@ Information-theoretically valid penalties: Penalty exceed
complexity plus distortion of optimized representor of 6

@ Yields MDL interpretation and statistical risk controlled by
resolvability

@ /y penalty @ log n classically analyzed

@ /4 penalty o\p ||0]|1 analyzed here: valid in regression for

An > \/2(log2M)/n

@ Can handle fixed or unknown o
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