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Shannon, Kraft, McMillan

Characterization of uniquely decodeable codelengths

L(x), x ∈ X ,
∑

x

2−L(x) ≤ 1

L(x) = log 1/q(x) q(x) = 2−L(x)

Operational meaning of probability:

A distribution is given by a choice of code

Barron MDL with `1 Penalty and its Statistical Risk
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Codelength Comparison

Targets p are possible distributions

Compare codelength log 1/q(x) to targets log 1/p(x)

Redundancy or regret[
log 1/q(x)− log 1/p(x)

]

Expected redundancy

D(PX‖QX ) = EP

[
log

p(X )

q(X )

]
Barron MDL with `1 Penalty and its Statistical Risk
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Universal Codes

MODELS
Family of coding strategies ⇔ Family of prob. distributions{

Lθ(x) : θ ∈ Θ
}
⇔

{
pθ(x) : θ ∈ Θ

}
Universal codes ⇔ Universal probabilities q(x)

L(x) = log 1/q(x)

Redundancy:
[

log 1/q(x)− log 1/pθ(x)
]

Want it small either uniformly in x , θ or in expectation

Barron MDL with `1 Penalty and its Statistical Risk
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Statistical Aim

Training data x ⇒ estimator p̂ = pθ̂

Subsequent data x ′

Want log 1/p̂(x ′) to compare favorably to log 1/pθ(x ′)

Likewise for targets p close to but not in the families

Barron MDL with `1 Penalty and its Statistical Risk
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Loss

Kullback Information-divergence:

D(PX ′‖QX ′) = E
[

log p(X ′)/q(X ′)
]

Bhattacharyya, Hellinger, Chernoff, Rényi divergence:

d(PX ′ , QX ′) = 2 log 1/E [q(X ′)/p(X ′)]1/2

Product model case: p(x ′) =
∏n

i=1 p(x ′i )

D(PX ′‖QX ′) = n D(P‖Q)

Likewise d(PX ′ , QX ′) = n d(P, Q)

Barron MDL with `1 Penalty and its Statistical Risk
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Loss

Relationship:
d(P, Q) ≤ D(P‖Q)

and, if the log density ratio is not more than B, then

D(P‖Q) ≤ CB d(P, Q)

with CB ≤ 2 + B

Barron MDL with `1 Penalty and its Statistical Risk
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MDL

Universal coding brought into statistical play

Minimum Description Length Principle:

The shortest code for data gives the best statistical model

Barron MDL with `1 Penalty and its Statistical Risk
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MDL: Two-stage Version

Two-stage codelength:

L(x) = min
θ∈Θ

[
log 1/pθ(x) + L(θ)

]
bits for x given θ + bits for θ

The corresponding statistical estimator is p̂ = pθ̂

Typically in d-dimensional families L(θ) is of order

d
2

log n

Barron MDL with `1 Penalty and its Statistical Risk
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MDL: Mixture Versions

Codelength based on a mixture model

L(x) = log
1∫

p(x |θ)w(θ)dθ

average case optimal and pointwise optimal for a.e. θ

Codelength approximation (Barron 1985, Clarke and Barron 1990,1994)

log
1

p(x |θ̂)
+

d
2

log
n

2π
+ log

|̂I(θ̂)|1/2

w(θ̂)

where Î(θ̂) is the empirical Fisher Information at the MLE

Barron MDL with `1 Penalty and its Statistical Risk
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MDL: Two-stage Code Redundancy

Expected codelength minus target at pθ∗

Redundancy = E
[

min
θ∈Θ

{
log

1
pθ(x)

+ L(θ)

}
− log

1
pθ∗(x)

]
Redundancy approx in smooth families

d
2

log
n

2π
+ log

|I(θ∗)|1/2

w(θ∗)

Barron MDL with `1 Penalty and its Statistical Risk



Preliminaries
Some Foundations

Recent Results
Regression with `1 penalty

Summary

Minimum Description Length Principle for Statistics
Two-stage Code Redundancy and Resolvability
Statistical Risk of MDL Estimator

Redundancy and Resolvability

Redundancy = E minθ∈Θ

[
log pθ∗ (x)

pθ(x) + L(θ))
]

Resolvability = minθ∈Θ E
[

log pθ∗ (x)
pθ(x) + L(θ)

]
= minθ∈Θ

[
D(PX |θ∗‖PX |θ) + L(θ)

]
Ideal tradeoff of Kullback approximation error & complexity

Population analogue of the two-stage code MDL criterion

Divide by n to express as a rate. In the i.i.d. case

Rn(θ
∗) = min

θ∈Θ

[
D(θ∗‖θ) +

L(θ)

n

]

Barron MDL with `1 Penalty and its Statistical Risk
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Risk of Estimator based on Two-stage Code

Estimator θ̂ is the choice achieving the minimization

min
θ∈Θ

{
log

1
pθ(x)

+ L(θ)

}
Codelengths for θ are L(θ) = 2L(θ) with

∑
θ∈Θ 2−L(θ) ≤ 1.

Total loss dn(θ
∗, θ̂) with dn(θ

∗, θ) = d(PX ′|θ∗ , PX ′|θ)

Risk = E [dn(θ
∗, θ̂)]

Info-Thy bound on risk: ( Barron 1985, Barron and Cover 1991, Jonathan Li 1999)

Risk ≤ Redundancy ≤ Resolvability

Barron MDL with `1 Penalty and its Statistical Risk
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Risk of Estimator based on Two-stage Code

Estimator θ̂ achieves minθ∈Θ {log 1/pθ(x) + L(θ)}
Codelengths require

∑
θ∈F 2−L(θ) ≤ 1.

Risk ≤ Resolvability

Specialize to i.i.d. case:

Ed(θ∗, θ̂) ≤ min
θ∈Θ

[
D(θ∗‖θ) +

L(θ)

n

]
As n ↗, tolerate more complex PX |θ if needed to get near
PX |θ∗

Rate is 1/n, or close to that rate if the target is simple

Drawback: Code interpretation entails countable Θ

Barron MDL with `1 Penalty and its Statistical Risk
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Key to Risk Analysis

log likelihood-ratio discrepancy at training x and future x ′[
log

pθ∗(x)

pθ(x)
− dn(θ

∗, θ)
]

Proof shows, for L(θ) satisfying Kraft, that

min
θ∈Θ

{[
log

pθ∗(x)

pθ(x)
− dn(θ

∗, θ)
]

+ L(θ)

}
has expectation ≥ 0. From which the risk bound follows.

Barron MDL with `1 Penalty and its Statistical Risk
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Information-theoretically Valid Penalties

Penalized Likelihood

min
θ∈Θ

{
log

1
pθ(x)

+ Pen(θ)

}
Possibly uncountable Θ

Yields data compression interpretation if there exists a
countable Θ̃ and L satisfying Kraft such that the above is
not less than

min
θ̃∈Θ̃

{
log

1
pθ̃(x)

+ L(θ̃)

}

Barron MDL with `1 Penalty and its Statistical Risk
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Data-Compression Valid Penalties

Equivalently, Pen(θ) is valid for penalized likelihood with
uncountable Θ to have a data compression interpretation
if there is such a countable Θ̃ and Kraft summable L(θ̃),
such that, for every θ in Θ, there is a representor θ̃ in Θ̃
such that

Pen(θ) ≥ L(θ̃) + log
pθ(x)

pθ̃(x)

This is the link between uncountable and countable cases

Barron MDL with `1 Penalty and its Statistical Risk
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Statistical-Risk Valid Penalties

Penalized Likelihood

θ̂ = argminθ∈Θ̃

{
log

1
pθ(x)

+ Pen(θ)

}
Again: possibly uncountable Θ

Task: determine a condition on Pen(θ) such that the risk is
captured by the population analogue

Edn(θ
∗, θ̂) ≤ inf

θ∈Θ

{
E log

pθ∗(X )

pθ(X )
+ Pen(θ)

}

Barron MDL with `1 Penalty and its Statistical Risk



Preliminaries
Some Foundations

Recent Results
Regression with `1 penalty

Summary

Penalized Likelihood Analysis
`1 penalties are information-theoretically valid

Statistical-Risk Valid Penalty

For an uncountable Θ and a penalty Pen(θ), θ ∈ Θ,
suppose there is a countable Θ̃ and L(θ̃) = 2L(θ̃)
where L(θ̃) satisfies Kraft, such that, for all x , θ∗,

min
θ∈Θ

{[
log

pθ∗(x)

pθ(x)
− dn(θ

∗, θ)
]

+ Pen(θ)

}
≥ min

θ̃∈Θ̃

{[
log

pθ∗(x)

pθ̃(x)
− dn(θ

∗, θ̃)
]

+ L(θ̃)

}
Proof of the risk conclusion:
The second expression has expectation ≥ 0,
so the first expression does too.
This condition and result is obtained with J. Li and X. Luo
(in Rissanen Festschrift 2008)

Barron MDL with `1 Penalty and its Statistical Risk
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Variable Complexity, Variable Distortion Cover

Equivalent statement of the condition: Pen(θ) is a valid
penalty if for each θ in Θ there is a representor Θ̃ in Θ̃ with
complexity L(θ̃), distortion ∆n(θ̃, θ) and

Pen(θ) ≥ L(θ̃) + ∆n(θ̃, θ)

where the distortion ∆n(θ̃, θ) is the difference in the
discrepancies at θ̃ and θ

∆n(θ̃, θ) = log
pθ(x)

pθ̃(x)
+ dn(θ, θ

∗)− dn(θ̃, θ
∗)

Barron MDL with `1 Penalty and its Statistical Risk
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A Setting for Regression and log-density Estimation:
Linear Span of a Dictionary

G is a dictionary of candidate basis functions
E.g. wavelets, splines, polynomials, trigonometric terms,
sigmoids, explanatory variables and their interactions

Candidate functions in the linear span

fθ(x) =
∑
g∈G

θg g(x)

weighted `1 norm of coefficients

‖θ‖1 =
∑

g

ag |θg |

weights ag = ‖g‖n where ‖g‖2
n = 1

n
∑n

i=1 g2(xi)

Barron MDL with `1 Penalty and its Statistical Risk



Preliminaries
Some Foundations

Recent Results
Regression with `1 penalty

Summary

Penalized Likelihood Analysis
`1 penalties are information-theoretically valid

Example Models

Regression (focus of current presentation)

pθ(y |x) = Normal(fθ(x), σ2)

Logistic regression with y ∈ {0, 1}

pθ(y |x) = Logistic(fθ(x)) for y = 1

Log-density estimation (focus of Festschrift paper)

pθ(x) =
p0(x) exp{fθ(x)}

cf

Gaussian graphical models

Barron MDL with `1 Penalty and its Statistical Risk
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`1 Penalty

pen(θ) = λ‖θ‖1 where θ are coeff of fθ(x) =
∑

g∈G θg g(x)

Popular penalty: Chen & Donoho (96) Basis Pursuit;
Tibshirani (96) LASSO; Efron et al (04) LARS;
Precursors: Jones (92), B.(90,93,94) greedy algorithm and
analysis of combined `1 and `0 penalty
We want to avoid cross-validation in choice of λ

Data-compression: specify valid λ for coding interpretation
Risk analysis: specify valid λ for risk ≤ resolvability
Computation analysis: bounds accuracy of `1-penalized
greedy pursuit algorithm

Barron MDL with `1 Penalty and its Statistical Risk
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Regression with `1 penalty

`1 penalized log-density estimation, i.i.d. case

θ̂ = argminθ

{
1
n

log
1

pfθ(x)
+ λn‖θ‖1

}
Regression with Gaussian model, fixed σ2

min
θ

{
1

2σ2
1
n

n∑
i=1

(Yi − fθ(xi))
2 +

1
2

log 2πσ2 +
λn

σ
‖θ‖1

}

Valid for

λn ≥
√

2 log(2MG)

n
with MG = Card(G)

Barron MDL with `1 Penalty and its Statistical Risk
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Adaptive risk bound

For log density estimation with suitable λn

Ed(f ∗, fθ̂) ≤ inf
θ

{
D(f ∗||fθ) + λn‖θ‖1

}
For regression with fixed design points xi , fixed σ, and

λn =
√

2 log(2M)
n ,

E‖f ∗ − fθ̂‖
2
n

4σ2 ≤ inf
θ

{‖f ∗ − fθ‖2
n

2σ2 +
λn

σ
‖θ‖1

}

Barron MDL with `1 Penalty and its Statistical Risk
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Adaptive risk bound specialized to regression

Again for fixed design and λn =
√

2 log 2M
n , multiplying

through by 4σ2,

E‖f ∗ − fθ̂‖
2
n ≤ inf

θ

{
2‖f ∗ − fθ‖2

n + 4σλn‖θ‖1

}
In particular for all targets f ∗ = fθ∗ with finite ‖θ∗‖ the risk

bound 4σλn‖θ∗‖ is of order
√

log M
n

Details in Barron, Luo (proceedings Workshop on Information Theory Methods in Science & Eng. 2008),
Tampere, Finland: last week

Barron MDL with `1 Penalty and its Statistical Risk
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Comments on proof

Likelihood discrepancy plus complexity

1
2σ2

n∑
i=1

(Yi − fθ̃(xi))
2 − 1

2σ2

n∑
i=1

(Yi − fθ(xi))
2 + K log(2M)

Representor fθ̃ of fθ of following form, with v near ‖θ‖1

fθ̃(x) =
v
K

K∑
k=1

gk (x)/‖gk‖

g1, . . . gK picked at random from G, independently, where g
arises with probability proportional to |θg |ag
Shows exists representor with like. discrep. + complexity

nv2

2K
+ K log(2M)

Barron MDL with `1 Penalty and its Statistical Risk
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Comments on proof

Optimizing it yields penalty proportional to `1 norm
Penalty λ‖θ‖1 is valid for both data compression and
statistical risk requirements for λ ≥ λn where

λn =

√
2 log(2M)

n

Especially useful for very large dictionaries
Improvement for small dictionaries gets rid of log factor:
log(2M) may be replaced by log(2e max{ M√

n , 1})

Barron MDL with `1 Penalty and its Statistical Risk
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Comments on proof

Existence of respresentor shown by random draw is a
Shannon-like demonstration of the variable cover (code)
Similar approximation in analysis of greedy computation of
`1 penalized least squares

Barron MDL with `1 Penalty and its Statistical Risk
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Aside: Random design case

May allow Xi random with distribution PX

Presuming functions in the library G are uniformly bounded
Analogous risk bounds hold (in submitted paper by Huang,
Cheang, and Barron)

E‖f ∗ − fθ̂‖
2 ≤ inf

θ

{
2‖f ∗ − fθ‖2 + cλn‖θ‖1

}
Allows for libraries G of infinite cardinality, replacing the
log MG with a metric entropy of G
If the linear span of G is dense in L2 then for all L2
functions f ∗ the approximation error ‖f ∗ − fθ‖2 can be
arranged to go to zero as the size of v = ‖θ∗‖1 increases.

Barron MDL with `1 Penalty and its Statistical Risk
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Aside: Simultaneous Minimax Rate Optimality

The resolvability bound tends to zero as λn =
√

2 log MG
n

gets small

E‖f ∗ − fθ̂‖
2 ≤ inf

θ

{
2‖f ∗ − fθ‖2 + cλn‖θ‖1

}
Current work with Cong Huang shows for a broad class of
approximate rates, the risk rate obtained from this
resolvability bound is minimax optimal for the class of
target functions {f ∗ : infθ:‖θ‖1=v‖f ∗ − fθ‖2 ≤ Av},
simultaneously for all such classes

Barron MDL with `1 Penalty and its Statistical Risk
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Fixed σ versus unknown σ

MDL with `1 penalty for each possible σ. Recall

min
θ

{
1

2σ2
1
n

n∑
i=1

(Yi − fθ(xi))
2 +

1
2

log 2πσ2 +
λn

σ
‖θ‖1

}
Provides a family of fits indexed by σ.
For unknown σ suggest optimization over σ as well as θ

min
θ,σ

{
1

2σ2
1
n

n∑
i=1

(Yi − fθ(xi))
2 +

1
2

log 2πσ2 +
λn

σ
‖θ‖1

}
Slight modification of this does indeed satisfy our condition
for an information-theoretically valid penalty and risk bound
(details in the WITMSE 2008 proceedings)

Barron MDL with `1 Penalty and its Statistical Risk
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Best σ

Best σ for each θ solves the quadratic equation

σ2 = σ λn‖θ‖1 +
1
n

n∑
i=1

(
Yi − fθ(xi)

)2

By the quadratic formula the solution is

σ =
1
2
λn‖θ‖1 +

√√√√[1
2
λn‖θ‖1

]2
+

1
n

n∑
i=1

(
Yi − fθ(xi)

)2

Barron MDL with `1 Penalty and its Statistical Risk
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Handle penalized likelihoods with continuous domains for θ

Information-theoretically valid penalties: Penalty exceed
complexity plus distortion of optimized representor of θ

Yields MDL interpretation and statistical risk controlled by
resolvability

`0 penalty dim
2 log n classically analyzed

`1 penalty σλn ‖θ‖1 analyzed here: valid in regression for

λn ≥
√

2(log2M)/n

Can handle fixed or unknown σ

Barron MDL with `1 Penalty and its Statistical Risk
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