
COMUNICATION BY REGRESSION:
Sparse Superposition Codes

Andrew Barron
Department of Statistics

Yale University

Joint work with Sanghee Cho, Antony Joseph

Statistics Department Seminar
Cambridge University
November 14, 2013

Quest for Provably Practical and Reliable
High Rate Communication

• The Channel Communication Problem

• Gaussian Channel

• History of Methods

• Communication by Regression

• Sparse Superposition Coding

• Adaptive Successive Decoding

• Rate, Reliability, and Computational Complexity

• Distributional Analysis

• Simulations

Shannon Formulation
• Input bits: U = (U1,U2, ,UK) indep Bern(1/2)

↓
• Encoded: x = (x1, x2, . . . , xn)

↓
• Channel: p(y |x)

↓
• Received: Y = (Y1,Y2, . . . ,Yn)

↓
• Decoded: Û = (Û1, Û2, , ÛK)

• Rate: R = K
n Capacity C = maxPX I(X ; Y)

• Reliability: Want small Prob{Û 6= U}
or reliably small fraction of errors

Gaussian Noise Channel
• Input bits: U = (U1,U2, ,UK)

↓
• Encoded: x = (x1, x2, . . . , xn) 1

n
∑n

i=1 x2
i
∼= P

↓
• Channel: p(y |x) Y = x(U) + ε , ε ∼ N(0, σ2I)

↓ snr = P/σ2

• Received: Y = (Y1,Y2, . . . ,Yn)

↓
• Decoded: Û = (Û1, Û2, , ÛK)

• Rate: R = K
n Capacity C = 1

2 log(1 + snr)

• Reliability: Want small Prob{Û 6= U}
or reliably small fraction of errors

Shannon Theory

• Channel Capacity:
Supremum of rates R such that reliable communication is
possible, with arbitrarily small error probability

• Information Capacity: C = maxPX I(X ; Y)

Where I(X ; Y) is the Shannon information, also known as
the Kullback divergence between PX ,Y and PX × PY

• Shannon Channel Capacity Theorem:
The supremum of achievable communication rates R
equals the information capacity C

• Books:
Shannon (49), Gallager (68), Cover & Thomas (06)

The Gaussian Noise Model

The Gaussian noise channel is the basic model for

• wireless communication
radio, cell phones, television, satellite, space

• wired communication
internet, telephone, cable

Shannon Theory meets Coding Practice
• Forney and Ungerboeck 1998 review:

• modulation, shaping and coding for the Gaussian channel
• Richardson & Urbanke 2008, state of the art:

• Empirically good LDPC and turbo codes with fast encoding
and decoding based on Bayesian belief networks

• New spatial coupling techniques, Urbanke 2013
• Proof of rates up to capacity in some cases

• Arikan 2009, Arikan and Teletar 2009 polar codes:
• Adapted to Gaussian channel (Abbe and Barron 2011)

• Tropp 2006,2008 codes from compressed sensing and
related sparse signal recovery work:

• Wainwright; Fletcher, Rangan, Goyal; Zhang; others
• Donoho,Montenari, et al 2012, role of spatial coupling
• `1-constrained least squares practical, has positive rate
• but not capacity achieving

• Knowledge of above not necessary to follow presentation

Sparse Superposition Code

• Input bits: U = (U1UK)

• Coefficients: β = (00 ∗ 0000000000 ∗ 00 . . . 0 ∗ 000000)T

• Sparsity: L entries non-zero out of N
• Matrix: X , n by N, all entries indep Normal(0,1)

• Codeword: Xβ, superposition of a subset of columns
• Receive: Y = Xβ + ε, a statistical linear model
• Decode: β̂ and Û from X ,Y

Sparse Superposition Code

• Input bits: U = (U1UK)

• Coefficients: β = (00 ∗ 0000000000 ∗ 00 . . . 0 ∗ 000000)T

• Sparsity: L entries non-zero out of N
• Matrix: X , n by N, all entries indep Normal(0,1)

• Codeword: Xβ, superposition of a subset of columns
• Receive: Y = Xβ + ε, a statistical linear model
• Decode: β̂ and Û from X ,Y

Sparse Superposition Code

• Input bits: U = (U1UK)

• Coefficients: β = (00 ∗ 0000000000 ∗ 00 . . . 0 ∗ 000000)T

• Sparsity: L entries non-zero out of N
• Matrix: X , n by N, all entries indep Normal(0,1)

• Codeword: Xβ, superposition of a subset of columns
• Receive: Y = Xβ + ε

• Decode: β̂ and Û from X ,Y
• Rate: R = K

n from K = log
(N

L

)
, near L log

(N
L e
)

Sparse Superposition Code

• Input bits: U = (U1UK)

• Coefficients: β = (00 ∗ 0000000000 ∗ 00 . . . 0 ∗ 000000)T

• Sparsity: L entries non-zero out of N
• Matrix: X , n by N, all entries indep Normal(0,1)

• Codeword: Xβ, superposition of a subset of columns
• Receive: Y = Xβ + ε

• Decode: β̂ and Û from X ,Y
• Rate: R = K

n from K = log
(N

L

)
• Reliability: exponentially small probability of error

Want reliability with rate up to capacity

Partitioned Superposition Code
• Input bits: U = (U1 . . . , . . . , . . . , . . .UK)

• Coefficients: β=(00 ∗ 00000, 00000 ∗ 00, . . . , 0 ∗ 000000)

• Sparsity: L sections, each of size M =N/L, a power of 2
1 non-zero entry in each section

• Indices of nonzeros: (j1, j2, . . . , jL) specified by U segments
• Matrix: X , n by N, splits into L sections
• Codeword: Xβ, superposition of columns, one from each
• Receive: Y = Xβ + ε

• Decode: β̂ and Û
• Rate: R = K

n from K = L log N
L = L log M

Partitioned Superposition Code
• Input bits: U = (U1 . . . , . . . , . . . , . . .UK)

• Coefficients: β=(00 ∗ 00000, 00000 ∗ 00, . . . , 0 ∗ 000000)

• Sparsity: L sections, each of size M =N/L, a power of 2
1 non-zero entry in each section

• Indices of nonzeros: (j1, j2, . . . , jL) specified by U segments
• Matrix: X , n by N, splits into L sections
• Codeword: Xβ, superposition of columns, one from each
• Receive: Y = Xβ + ε

• Decode: β̂ and Û
• Rate: R = K

n from K = L log N
L = L log M

• Reliability: small Prob{Fraction β̂mistakes ≥ α}, small α

Is it reliable with rate up to capacity?

Partitioned Superposition Code
• Input bits: U = (U1 . . . , . . . , . . . , . . .UK)

• Coefficients: β=(00 ∗ 00000, 00000 ∗ 00, . . . , 0 ∗ 000000)

• Sparsity: L sections, each of size M =N/L, a power of 2
1 non-zero entry in each section

• Indices of nonzeros: (j1, j2, . . . , jL) specified by U segments
• Matrix: X , n by N, splits into L sections
• Codeword: Xβ, superposition of columns, one from each
• Receive: Y = Xβ + ε

• Decode: β̂ and Û
• Rate: R = K

n from K = L log N
L = L log M

• Ultra-sparse case: Impractical M = 2nR/L with L constant
(reliable at all rates R < C: Cover 1972,1980)

• Moderately-sparse: Practical M = n with L = nR/ log n
(Still reliable at all R < C)

Partitioned Superposition Code
• Input bits: U = (U1 . . . , . . . , . . . , . . .UK)

• Coefficients: β=(00 ∗ 00000, 00000 ∗ 00, . . . , 0 ∗ 000000)

• Sparsity: L sections, each of size M =N/L, a power of 2
1 non-zero entry in each section

• Indices of nonzeros: (j1, j2, . . . , jL) specified by U segments
• Matrix: X , n by N, splits into L sections
• Codeword: Xβ, superposition of columns, one from each
• Receive: Y = Xβ + ε

• Decode: β̂ and Û
• Rate: R = K

n from K = L log N
L = L log M

• Reliability: small Prob{Fraction mistakes ≥ α} small α
• Outer RS code: rate 1−α, corrects remaining mistakes
• Overall rate: Rtot = (1−α)R
• Overall rate: up to capacity

Power Allocation

• Coefficients: β=(00∗00000, 00000∗00, . . . ,0∗000000)

• Indices of nonzeros: sent = (j1, j2, . . . , jL)

• Coeff. values: βj` =
√

P` for ` = 1,2, . . . ,L

• Power control:
∑L

`=1 P` = P

• Codewords: Xβ, have average power P

• Power Allocations

• Constant power: P` = P/L

• Variable power: P` proportional to e−2C `/L

Variable Power Allocation

• Power control:
∑L

`=1 P` = P ‖β‖2 = P

• Variable power: P` proportional to e−2C`/L for ` = 1, . . . ,L

0 100 200 300 400 500

0.
00
0

0.
01
0

0.
02
0

0.
03
0

Power allocation with snr=7, L=512

section index

P
ow

er
 A

llo
ca

tio
n

Variable Power Allocation

• Power control:
∑L

`=1 P` = P ‖β‖2 = P

• Variable power: P` proportional to e−2C`/L for ` = 1, . . . ,L

• Successive decoding motivation
• Incremental capacity

1
2

log
(

1 +
P`

σ2 + P`+1 + · · ·+ PL

)
=

C
L

matching the section rate

R
L

=
log M

n

Adaptive Successive Decoder

Decoding Steps (with thresholding)

• Start: [Step 1]
• Compute the inner product of Y with each column of X
• See which are above a threshold
• Form initial fit as weighted sum of columns above threshold

• Iterate: [Step k ≥ 2]
• Compute the inner product of residuals Y − Fitk−1 with

each remaining column of X
• Standardize by dividing by ‖Y − Fitk−1‖
• See which are above the threshold

√
2 log M + a

• Add these columns to the fit

• Stop:
• At Step k = 1 + snr log M, or
• if there are no additional inner products above threshold

Complexity of Adaptive Successive Decoder

Complexity in parallel pipelined implementation

• Space: (use k = snr log M copies of the n by N dictionary)

• knN = snr C M n2 memory positions
• kN multiplier/accumulators and comparators

• Time: O(1) per received Y symbol

Adaptive Successive Decoder
Decoding Steps (with iteratively optimal statistics)

• Start: [Step 1]
• Compute the inner product of Y with each column of X
• Form initial fit

• Iterate: [Step k ≥ 2]
• Compute inner product of residuals Y − Fitk−1 with each Xj .
• Adjusted form: statk,j equals (Y − X β̂k−1,−j)

T Xj

• Standardize by dividing it by ‖Y − X β̂k−1‖.
• Form the new fit

β̂k,j =
√

P` ŵj (α) =
√

P`
eα statk,j∑

j∈sec` eα statk,j

• Stop:
• When estimated success stops increasing
• At Step k = O(log M)

Iteratively Bayes optimal β̂k
With prior j`∼Unif on sec`, the Bayes estimate based on statk

β̂k = E[β|statk]

has representation β̂k ,j =
√

P` ŵk ,j with

ŵk ,j = Prob{j` = j |statk}.

Here, when the statk ,j are independent N(α`,k1{j=j`},1), we
have the logit representation ŵk ,j = ŵ(α`,k) where

ŵk ,j(α) =
eα statk,j∑

j∈sec` eα statk,j
.

Iteratively Bayes optimal β̂k
With prior j`∼Unif on sec`, the Bayes estimate based on statk

β̂k = E[β|statk]

has representation β̂k ,j =
√

P` ŵk ,j with

ŵk ,j = Prob{j` = j |statk}.

Here, when the statk ,j are independent N(α`,k1{j=j`},1), we
have the logit representation ŵk ,j = ŵ(α`,k) where

ŵk ,j(α) =
eα statk,j∑

j∈sec` eα statk,j
.

Iteratively Bayes optimal β̂k
With prior j`∼Unif on sec`, the Bayes estimate based on statk

β̂k = E[β|statk]

has representation β̂k ,j =
√

P` ŵk ,j with

ŵk ,j = Prob{j` = j |statk}.

Here, when the statk ,j are independent N(α`,k1{j=j`},1), we
have the logit representation ŵk ,j = ŵ(α`,k) where

ŵk ,j(α) =
eα statk,j∑

j∈sec` eα statk,j
.

Recall statk ,j is standardized inner product of residuals with Xj

statk ,j =
(Y − X β̂k−1,−j)

T Xj

‖Y − X β̂k−1‖

Distributional Analysis

• Approximate distribution of these statistics:
independent standard normal, shifted for terms sent

statk ,j = α`,xk−11{j sent} + Zk ,j

where

α = α`,x =

√
nP`

σ2 + P(1− x)

• Here
E‖β̂k−1 − β‖2 = P (1− xk−1)

• Update rule xk = g(xk−1) where

g(x) =
L∑
`=1

(P`/P)E [wj`(α`,x)].

Distributional Analysis

• Approximate distribution of these statistics:
independent standard normal, shifted for terms sent

statk ,j = α`,xk−11{j sent} + Zk ,j

where

α = α`,x =

√
nP`

σ2 + P(1− x)

• Here
E‖β̂k−1 − β‖2 = P (1− xk−1)

• Update rule xk = g(xk−1) where

g(x) =
L∑
`=1

(P`/P)E [wj`(α`,x)].

Success Rate Update Rule
• Update rule xk = g(xk−1) where

g(x) =
L∑
`=1

(P`/P)E [wj`(α`,x)]

• this is the success rate update function expressed as a
weighted sum of the posterior prob of the term sent

Success Rate Update Rule
• Update rule xk = g(xk−1) where

g(x) =
L∑
`=1

(P`/P)E [wj`(α`,x)]

• this is the success rate update function expressed as a
weighted sum of the posterior prob of the term sent

• Empirical success rate

x∗k =
L∑
`=1

(P`/P)wj`(α`,xk)

Success Rate Update Rule
• Update rule xk = g(xk−1) where

g(x) =
L∑
`=1

(P`/P)E [wj`(α`,x)]

• this is the success rate update function expressed as a
weighted sum of the posterior prob of the term sent

• Empirical success rate

x∗k =
L∑
`=1

(P`/P)wj`(α`,xk)

• Empirical estimated success rate

x̂k =
L∑
`=1

(P`/P)
∑

j∈sec`

[wj(α`,xk)]2

Decoding progression

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

M = 29 , L =M
snr=7
C=1.5 bits
R=1.2 bits(0.8C)

g(x)
x

Figure : Plot of g(x) and the sequence xk .

Update fuctions

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

M = 29 , L =M
snr=7
C=1.5 bits
R=1.2 bits(0.8C)

g(x)
Lower bound
a=0
a=0.5

Figure : Comparison of update functions. Blue and light blue lines
indicates {0,1} decision using the threshold τ =

√
2logM + a with

respect to the value a as indicated.

Success Progression plots
0.
0

0.
4

0.
8

x

E
xp

ec
te

d
w

ei
gh

t o
f t

he
 te

rm
s

se
nt

x=0

soft decision
hard decision with a=1/2

x

x=0.2

x

x=0.4

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

x
u(l)

x=0.6

0.0 0.2 0.4 0.6 0.8 1.0

x
u(l)

x=0.8

0.0 0.2 0.4 0.6 0.8 1.0

x
u(l)

x=1

Figure : Progression plots : M = 29, L = M, C = 1.5 bits and
R = 0.8C. We used Monte Carlo simulation with replicate size 10000.
The horizontal axis depicts u(`) = 1− e−2C`/L which is an increasing
function of `. Area under curve equals g(x).

Rate and Reliability

Result for Optimal ML Decoder [Joseph and B. 2012],
with outer RS decoder, and with equal power allowed across
the sections

• Prob error exponentially small in n for all R < C

Prob{Error} ≤ e−n (C−R)2/2V

• In agreement with the Shannon-Gallager exponent of
optimal code, though with a suboptimal constant V
depending on the snr

Rate and Reliability of Fast Superposition Decoder

Practical: Adaptive Successive Decoder, with outer RS code.

• prob error exponentially small in n/(log M) for R < C

• Value CM approaching capacity

CM =
C

1 + c1/ log M

• Probability error exponentially small in L for R < CM

Prob
{

Error
}
≤ e−L(CM−R)2c2

• Improves to e−c3L(CM−R)2(log M)0.5
using a Bernstein bound.

Simulation

Figure : L = 512, M = 64, snr = 15, C = 2 bits, R = 1 bits,
n = 3072. Ran 20 trials for each method. Green lines for hard
thresholding; blue and red for soft decision decoder.

Framework of Iterative Statistics

For k ≥ 1

• Codeword fits: Fk = X β̂k

• Vector of statistics: statk = function of (X ,Y ,F1, . . . ,Fk)

• e.g. statk ,j proportional to X T
j (Y − Fk)

• Update β̂k+1 as a function of statk

• Thresholding: Adaptive Successive Decoder
β̂k+1,j =

√
P` 1{statk,j>thres}

• Soft decision:
β̂k+1,j = E[βj |statk] =

√
P` ŵk,j

with thresholding on the last step

Framework of Iterative Statistics

For k ≥ 1

• Codeword fits: Fk = X β̂k

• Vector of statistics: statk = function of (X ,Y ,F1, . . . ,Fk)

• e.g. statk ,j proportional to X T
j (Y − Fk)

• Update β̂k+1 as a function of statk

• Thresholding: Adaptive Successive Decoder
β̂k+1,j =

√
P` 1{statk,j>thres}

• Soft decision:
β̂k+1,j = E[βj |statk] =

√
P` ŵk,j

with thresholding on the last step

Orthogonal Components

• Codeword fits: Fk = X β̂k

• Orthogonalization : Let G0 = Y and for k ≥ 1

Gk = part of Fk orthogonal to G0,G1, . . . ,Gk−1

• Components of statistics

Zk ,j =
X T

j Gk

‖Gk‖

• Statistics such as statk built from X T
j (Y − Fk ,−j) are linear

combinations of these Zk ,j

Distribution Evolution
Lemma 1: shifted normal conditional distribution
Given Fk−1 = (‖G0‖, . . . , ‖Gk−1‖,Z0,Z1, . . . ,Zk−1), the Zk has
the distributional representation

Zk =
‖Gk‖
σk

bk + Zk

• ‖Gk‖2/σ2
k ∼ Chi-square(n − k)

• b0,b1, . . . ,bk the successive orthonormal components of[
β
σ

]
,

[
β̂1
0

]
, . . . ,

[
β̂k
0

]
(∗)

• Zk ∼ N(0,Σk) indep of ‖Gk‖

• Σk = I − b0bT
0 − b1bT

1 − . . .− bkbT
k

= projection onto space orthogonal to (∗)

• σ2
k = β̂T

k Σk−1β̂k

Combining Components
Class of statistics statk formed by combining Z0, . . . ,Zk

statk ,j = Zcomb
k ,j +

√
n√
ck
β̂k ,j

with Zcomb
k = λ0,k Z0 + λ1,k Z1 + . . .+ λk ,k Zk ,

∑
k ′ λ

2
k ′,k = 1

Ideal Distribution of the combined statistics

stat ideal
k =

√
n√
ck
β + Z comb

k

for ck = σ2 + (1− xk)P

For the terms sent the shift α`,k has an effective snr
interpretation

α`,k =

√
n

P`
ck

=

√
n

P`
σ2 + Premaining,k

Combining Components
Class of statistics statk formed by combining Z0, . . . ,Zk

statk ,j = Zcomb
k ,j +

√
n√
ck
β̂k ,j

with Zcomb
k = λ0,k Z0 + λ1,k Z1 + . . .+ λk ,k Zk ,

∑
k ′ λ

2
k ′,k = 1

Ideal Distribution of the combined statistics

stat ideal
k =

√
n√
ck
β + Z comb

k

for ck = σ2 + (1− xk)P

For the terms sent the shift α`,k has an effective snr
interpretation

α`,k =

√
n

P`
ck

=

√
n

P`
σ2 + Premaining,k

Oracle statistics

Weights of combination: based on λk proportional to(
(σY − bT

0 β̂k), −(bT
1 β̂k), . . . , −(bT

k β̂k)
)

Combining Zk with these weights, replacing χn−k with
√

n, it
produces the desired distributional representation

statk =

√
n√

σ2 + ‖β − β̂k‖2
β + Z comb

k

with Z comb
k ∼ N(0, I) and σ2

Y = σ2 + P.

• Can’t calculate the weights not knowing β, e.g. b0 = β/σ

• ‖β − β̂k‖2 is close to its known expectation
• Provides the desired distribution of the statk ,j

Oracle statistics

Weights of combination: based on λk proportional to(
(σY − bT

0 β̂k), −(bT
1 β̂k), . . . , −(bT

k β̂k)
)

Combining Zk with these weights, replacing χn−k with
√

n, it
produces the desired distributional representation

statk =

√
n√

σ2 + ‖β − β̂k‖2
β + Z comb

k

with Z comb
k ∼ N(0, I) and σ2

Y = σ2 + P.
• Can’t calculate the weights not knowing β, e.g. b0 = β/σ

• ‖β − β̂k‖2 is close to its known expectation
• Provides the desired distribution of the statk ,j

The Ballpark Method of Nearby Measures

• A sequence PL of true distributions of the statistics
• A sequence QL of convenient approximate distributions
• Dγ(PL‖QL), the Renyi divergence between the distributions

Dγ(P‖Q) = (1/γ) logE[(p(stat)/q(stat))γ−1]

• A sequence AL of events of interest
• Lemma: If the Renyi divergence is bounded by a value D,

then any event of exponentially small probability using the
simplified measures QL also has exponentially small
probabity using the true measures PL

P(AL) ≤ e2D[Q(AL)]1/2

• With bounded D, allows treating statistics as Gaussian

Approximating distribution for Zk

We approximate the distribution for Zk given Fk−1 as

Zk =
√

nbk + Zk

where Zk ∼ N(0, I − Projk) where Projk is a projection matrix to
the space spanned by (β̂1, . . . , β̂k).
Lemma. For any event A that is determined by the random
variables,

‖Gk ′‖ and Zk ′ for k ′ = 0, . . . , k

we have
PA ≤ (QAek(2+k2/n+C))1/2

Statistics based on weights of combination
Oracle weights of combination: λk proportional to(

(σY − bT
0 β̂k), −(bT

1 β̂k), . . . , −(bT
k β̂k)

)
Estimated weights of combination: λk proportional to(

(‖Y‖ − ZT
0 β̂k), −(ZT

1 β̂k), . . . , −(ZT
k β̂k)

)
These estimated weights produce the residual based statistics
previously discussed

Orthogonalization Interpretation of Weights
Estimation of(

(σY − bT
0 β̂k), −(bT

1 β̂k), . . . , −(bT
k β̂k)

)
These bT

k ′ β̂k arise in
the QR-decomposition for B = [β, β̂1, . . . , β̂k]

Cholesky Decomposition for BT B

For given β̂1, . . . , β̂k and c0 > . . . > ck , ck = σ2 + (1− xk)P

these bT
k ′ β̂k arise in the Cholesky decomposition BT B =RT R,

Replace the left side with known deterministic quantities xkP.

Then the right side would be replaced by some deterministic
values where ωk = 1/ck − 1/ck−1 for k ≥ 1 and ω0 = 1/c0.

This motivates the deterministic weights of combinations

Cholesky Decomposition for BT B

For given β̂1, . . . , β̂k and c0 > . . . > ck , ck = σ2 + (1− xk)P

these bT
k ′ β̂k arise in the Cholesky decomposition BT B =RT R,

Replace the left side with known deterministic quantities xkP.
Then the right side would be replaced by some deterministic
values where ωk = 1/ck − 1/ck−1 for k ≥ 1 and ω0 = 1/c0.

This motivates the deterministic weights of combinations

Deterministic weights of combinations

For given β̂1, . . . , β̂k and c0 > . . . > ck , ck = σ2 + (1− xk)P
Combine Zk ′ =

√
n bk ′ + Zk ′ with

λ∗k =
√

ck (
√
ω0 ,−

√
ω1 , . . . ,−

√
ωk)

=
√

ck

(√
1
c0
,−

√
1
c1
− 1

c0
, . . . ,−

√
1
ck
− 1

ck−1

)
yielding approximately optimal statistics

statk =
k∑

k ′=0

λ∗k ′,kZk ′ +

√
n√
ck
β̂k

Reliability under Q

Lemma: For k = 1, . . . , k∗,

Ak = {|βT β̂k/P − xk | > ηk} ∪ {|‖β̂k‖2/P − xk)| > ηk}

with ηk ∼ (n/L)ηk−1. Then, we have

Q{∪k
k ′=1Ak ′} .

k∑
k ′=1

6(k + 1) exp{− L
4c2 η

2
k}

where c2 = L max`(P`/P).

Update Plots for Deterministic and Oracle Weights

Figure : L = 512, M = 64, snr = 15, C = 2 bits, R = 0.7C,
blocklength = 2194. Ran 10 experiment for each method. We see
that they follow the expected update function.

Cholesky Decomposition-based Estimated Weights

These bT
k ′ β̂k arise in the Cholesky decomposition BT B =RT R,

Under Q, we have
ZT

k β̂k/
√

n = bT
k β̂k

Then, we can recover the rest of the components which leads
us to the oracle weights under the approximating distribution
and we will denote it by λ̂k

Cholesky weights of combinations

If we combine Zk with weights λ̂k

ˆstat =
k∑

k ′=0

λ̂k ,k ′Zk +

√
n√
ĉk
β̂k

where ĉk = σ2 + ‖β − β̂k‖2, then it produces the desired
distributional representation under Q

ˆstatk =

√
n√
ĉk
β + Z comb

k

Reliability under the Q

Lemma. Suppose we have a Lipschitz condition on the update
function with cLip ≤ 1 so that

|g(x1)− g(x2)| ≤ cLip|x1 − x2|.

For k = 1, . . . , k∗,

Ak = {|βT β̂k/P − xk | > kη} ∪ {|‖β − β̂k‖2/P − (1− xk)| > kη}

Then, we have

Q{∪k
k ′=1Ak ′} . exp(− L

8c2 η
2)

where c2 = L max`(P`/P).

Update Plots for Cholesky-based Weights

Figure : L = 512, M = 64, snr = 7, C = 1.5 bits, R = 0.7C,
blocklength = 2926. Red (cholesky decomposition based weights);
green (oracle weights of combination) . Ran 10 experiment for each.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Update Function

x(k)

x(
k+
1)

Cholesky
Oracle

Improving the End Game
• Variable power: P` proportional to e−2C`/L for ` = 1, . . . ,L
• We use alternative power allocation: constant leveling the

power allocation for the last portion of the sections

Figure : L = 512, snr = 7, C = 1.5 bits

Progression Plot using Alternative Power Allocation

Figure : L = 512, M = 64, snr = 7, C = 1.5 bits, R = 0.7C,
blocklength = 2926. Progression plot of the final step. The area
under the curve might be the same, the expected weights for the last
sections are higher when we level the power at the end

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

L=512, M=64, n=2926, C=1.5 bits, rate=1.05 bits, snr.ref=7, snr=7

P_l P

w
ei

gh
ts

 fo
r t

he
 tr

ue
 te

rm
 in

 s
ec

tio
n

l

with leveling
without leveling

Bit Error Rate

Figure : L = 512, M = 64, R = 1.05 bits, blocklength n = 2926,
snr .ref = 7, snr = (4,5,7,10,15). Ran 10,000 trials. Average of error
count out of 512 sections.

Block Error Rate

Figure : L = 512, M = 64, R = 1.05 bits, blocklength n = 2926,
snr .ref = 7, snr = (4,5,7,10,15). Ran 10,000 trials.

Summary

Sparse superposition codes with adaptive successive decoding

• Simplicity of the code permits:
• distributional analysis of the decoding progression
• low complexity decoder
• exponentially small error probability for any fixed R < C

• Asymptotics superior to polar code bounds for such rates

Rate versus Section Size
For Adaptive Successive Decoding with Thresholding

0.
0

0.
5

1.
0

1.
5

2.
0

B

R
 (

bi
ts

/c
h.

 u
se

)

●

● ●
●

26 28 210 212 214 216

●

detailed envelope
curve when L == B
curve using simulation runs
capacity
snr == 15

Figure : Rate as function of M for snr =15 and error probability 10−3.

Rate versus Section Size
For Adaptive Successive Decoding with Thresholding

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

B

R
 (

bi
ts

/c
h.

 u
se

)

●

●

●

26 28 210 212 214 216

●

detailed envelope
curve when L == B
curve using simulation runs
capacity
snr == 1

Figure : Rate as function of M for snr = 1 and error probability 10−3.

