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Probability Limits and Monotonicity

Information and Probability:

Monotonicity of Information

Markov chains, martingales

Central Limit Theorem

Entropy and Fisher Information Inequalities

Information Stability (asymptotic equipartition property)

Large Deviation Exponents (law of large numbers)
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Monotonicity of Information Divergence

Information Inequality X → X ′

D(PX ′‖P∗X ′) ≤ D(PX‖P∗X )

Chain Rule

D(PX ,X ′‖P∗X ,X ′) = D(PX ′‖P∗X ′) + E D(PX |X ′‖P∗X |X ′)

= D(PX‖P∗X ) + E D(PX ′|X‖P∗X ′|X )

Markov Chain {Xn} with P∗ invariant

D(PXn‖P∗) ≤ D(PXm‖P∗) for n > m

Convergence

log pn(Xn)/p∗(Xn) is a Cauchy sequence in L1(P)
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Monotonicity of Information Divergence

Information Inequality X → X ′

D(PX ′‖P∗X ′) ≤ D(PX ′‖P∗X ′)

Chain Rule

D(PX ,X ′‖P∗X ,X ′) = D(PX ′‖P∗X ′) + E D(PX |X ′‖P∗X |X ′)

= D(PX‖P∗X )

Markov Chain {Xn} with P∗ invariant

D(PXn‖P∗) ≤ D(PXm‖P∗) for n > m

Convergence

log pn(Xn)/p∗(Xn) is a Cauchy sequence in L1(P)

Pinsker-Kullback-Csiszar inequalities

A ≤ D +
√

2D V ≤
√

2D
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Martingale Convergence and Limits of Information

Nonnegative Martingales ρn correspond to the density of a
measure Qn given by Qn(A) = E [ρn1A].
Limits can be established in the same way by the chain
rule for n > m

D(Qn‖P) = D(Qm‖P) +

∫ (
ρn log

ρn

ρm

)
dP

Thus Dn = D(Qn‖P) is an increasing sequence. Suppose
it is bounded.
Then ρn is a Cauchy sequences in L1(P) with limit ρ
defining a measure Q
Also, log ρn is a Cauchy sequence in L1(Q) and

D(Qn‖P)↗ D(Q‖P)
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Monotonicity of Information Divergence: CLT

Central Limit Theorem Setting:

{Xi} i.i.d. mean zero, finite variance

Pn = PYn is distribution of Yn = X1+X2+...+Xn√
n

P∗ is the corresponding normal distribution

For n > m
D(Pn‖P∗) < D(Pm‖P∗)
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Pn = PYn is distribution of Yn = X1+X2+...+Xn√
n

P∗ is the corresponding normal distribution

For n > m
D(Pn‖P∗) < D(Pm‖P∗)

Chain Rule for n > m: not clear how to use in this case

D(PYm,Yn‖P∗Ym,Yn
) = D(PYn‖P∗) + ED(PYm|Yn‖P

∗
Ym|Yn

)

= D(PYm‖P∗) + ED(PYn|Ym‖P
∗
Yn|Ym

)
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Monotonicity of Information Divergence: CLT

Central Limit Theorem Setting:

{Xi} i.i.d. mean zero, finite variance

Pn = PYn is distribution of Yn = X1+X2+...+Xn√
n

P∗ is the corresponding normal distribution

For n > m
D(Pn‖P∗) < D(Pm‖P∗)

Chain Rule for n > m: not clear how to use in this case

D(PYm,Yn‖P∗Ym,Yn
) = D(Pn‖P∗) + ED(PYm|Yn‖P

∗
Ym|Yn

)

= D(Pm‖P∗) + ED(PYn|Ym‖P
∗
Yn|Ym

)

= D(Pm‖P∗) + D(Pn−m‖P∗)
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Monotonicity of Information Divergence: CLT

Entropy Power Inequality

e2H(X+X ′) ≥ e2H(X) + e2H(X ′)

yields
D(P2n‖P∗) ≤ D(Pn‖P∗)

Information Theoretic proof of CLT (B. 1986):

D(Pn‖P∗)→ 0 iff finite
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e2H(X+X ′) ≥ e2H(X) + e2H(X ′)

yields
D(P2n‖P∗) ≤ D(Pn‖P∗)

Information Theoretic proof of CLT (B. 1986):

D(Pn‖P∗)→ 0 iff finite

(Johnson and B. 2004) with Poincare constant R

D(Pn‖P∗) ≤
2R

n−1+2R
D(P1‖P∗)
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Monotonicity of Information Divergence: CLT

Entropy Power Inequality

e2H(X+X ′) ≥ e2H(X) + e2H(X ′)

yields
D(P2n‖P∗) ≤ D(Pn‖P∗)

Information Theoretic proof of CLT (B. 1986):

D(Pn‖P∗)→ 0 iff finite

(Johnson and B. 2004) with Poincare constant R

D(Pn‖P∗) ≤
2R

n−1+2R
D(P1‖P∗)

(Bobkov, Chirstyakov, Gotze 2013) Moment conditions and
finite D(P1‖|P∗) suffice for this 1/n rate
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Monotonicity of Information Divergence: CLT

Entropy Power Inequality

e2H(X+X ′) ≥ e2H(X) + e2H(X ′)

Generalized Entropy Power Inequality (Madiman&B.2006)

eH(X1+...+Xn) ≥ 1
r

∑
s∈S

e2H(
∑

i∈s Xi )

where r is max number of sets in S in which an index appears
Proof:

simple L2 projection property of entropy derivative
concentration inequality for sums of functions of subsets of
independent variables

VAR(
∑
s∈S

gs(Xs)) ≤ r
∑
s∈S

VAR(gs(Xs))

Barron Information and Statistics 19/64



Monotonicity of Information Divergence: CLT

Entropy Power Inequality

e2H(X+X ′) ≥ e2H(X) + e2H(X ′)

Generalized Entropy Power Inequality (Madiman&B.2006)

eH(X1+...+Xn) ≥ 1
r

∑
s∈S

e2H(
∑

i∈s Xi )

where r is max number of sets in S in which an index appears

Consequence, for all n > m,

D(Pn‖P∗) ≤ D(Pm‖P∗)

[Madiman and B. 2006, Tolino and Verdú 2006.
Earlier elaborate proof by Artstein, Ball, Barthe, Naor 2004]
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Information-Stability and Error Probability of Tests

Stability of log-likelihood ratios (AEP)
(B. 1985, Orey 1985, Cover and Algoet 1986)

1
n

log
p(Y1,Y2, . . .Yn)

q(Y1,Y2, . . . ,Yn)
→ D(P‖Q) with P prob 1

where D(P‖Q) is the relative entropy rate.

Optimal statistical test: critical region An has asymptotic P
power 1 (at most finitely many mistakes P(Ac

n i .o.) = 0)
and has optimal Q-prob of error

Q(An) = exp{−n[D + o(1)]}

General form of the Chernoff-Stein Lemma.

Relative entropy rate

D(P‖Q) = lim
1
n

D(PY n‖QY n )
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Optimality of the Relative Entropy Exponent

Information Inequality, for any set An,

D(PY n‖QY n ) ≥ P(An) log
P(An)

Q(An)
+ P(Ac

n) log
P(Ac

n)

Q(Ac
n)

Consequence

D(PY n‖QY n ) ≥ P(An) log
1

Q(An)
− H2(P(An))

Equivalently

Q(An) ≥ exp
{
−

D(PY n‖QY n )− H2(P(An))

P(An)

}

For any sequence of pairs of joint distributions, no
sequence of tests with P(An) approaching 1 can have
better Q(An) exponent than D(PY n‖QY n ).
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Large Deviations, I-Projection, and Conditional Limit

P∗: Information projection of Q onto convex C
Pythagorean identity (Csiszar 75, Topsoe 79): For P in C

D(P‖Q) ≥ D(C‖Q) + D(P‖P∗)

where
D(C‖Q) = inf

P∈C
D(P‖Q)

Empirical distribution Pn, from i.i.d. sample.
(Csiszar 1985)

Q{Pn ∈ C} ≤ exp
{
− n D(C‖Q)

}
Information-theoretic representation of Chernoff bound
(when C is a half-space)
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Large Deviations, I-Projection, and Conditional Limit

P∗: Information projection of Q onto convex C
Pythagorean identity (Csiszar 75, Topsoe 79): For P in C

D(P‖Q) ≥ D(C‖Q) + D(P‖P∗)

where
D(C‖Q) = inf

P∈C
D(P‖Q)

Empirical distribution Pn, from i.i.d. sample
If D(interiorC‖Q) = D(C‖Q) then

Q{Pn ∈ C} = exp
{
− n [D(C‖Q) + o(1)]

}
and the conditional distribution PY1,Y2,...,Yn|{Pn∈C} converges
to P∗Y1,Y2,...,Yn

in the I-divergence rate sense (Csiszar 1985)
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Information and Statistics

Information and Statistics:

Nonparametric Rates of Estimation

Minimum Description Length Principle

Penalized Likelihood (one-sided concentration)

Implications for Greedy Term Selection

Barron Information and Statistics 27/64



Shannon Capacity

Capacity
A Channel θ → Y is a family of distributions {PY |θ : θ ∈ Θ}

Information Capacity: C = maxPθ
I(θ; Y )

Communications Capacity
Thm: Ccom = C (Shannon 1948)

Data Compression Capacity
Minimax Redundancy: Red = minQY maxθ∈Θ D(PY |θ‖QY )

Data Compression Capacity Theorem: Red = C
(Gallager, Davisson & Leon-Garcia, Ryabko)
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Setting for Statistical Capacity

Statistical Risk Setting

Loss function
`(θ, θ′)

Kullback loss
`(θ, θ′) = D(PY |θ‖PY |θ′)

Squared metric loss, e.g. squared Hellinger loss:

`(θ, θ′) = d2(θ, θ′)

Statistical risk equals expected loss

Risk = E [`(θ, θ̂)]
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Statistical Capacity

Statistical Capacity

Estimators: θ̂n

Based on sample Y of size n

Minimax Risk (Wald):

rn = min
θ̂n

max
θ

E`(θ, θ̂n)
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Metric Entropy

Ingredients in Determining Minimax Rates of Statistical Risk

Kolmogorov Metric Entropy of S ⊂ Θ:

H(ε) = max{log Card(Θε) : d(θ, θ′) > ε for θ, θ′ ∈ Θε ⊂ S}

Loss Assumption, for θ, θ′ ∈ S:

`(θ, θ′) ∼ D(PY |θ‖PY |θ′) ∼ d2(θ, θ′)
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Statistical Capacity

Information-theoretic Determination of Minimax Rates

For infinite-dimensional Θ

With metric entropy evaluated a critical separation εn
Statistical Capacity Theorem
Minimax Risk ∼ Info Capacity Rate ∼ Metric Entropy rate

rn ∼ Cn

n
∼ H(εn)

n
∼ ε2n

(Yang 1997, Yang and B. 1999, Haussler and Opper 1997)
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Information Thy Formulation of Statistical Principle

Minimum Description-Length (Rissanen78,83,B.85, B.&Cover
91...)

Statistical measure of complexity of Y

L(Y ) = min
q

[
log 1/q(Y ) + L(q)

]
bits for Y given q + bits for q

It is an information-theoretically valid codelength for Y for any
L(q) satisfying Kraft summability

∑
q 2−L(q) ≤ 1.

The minimization is for q in a family indexed by parameters{
pθ(Y ) : θ ∈ Θ

}
or by functions

{
pf (Y ) : f ∈ F

}
The estimator p̂ is then pθ̂ or p f̂ .
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Statistical Aim

From training data x ⇒ estimator p̂

Generalize to subsequent data x ′

Want log 1/p̂(x ′) to compare favorably to log 1/p(x ′)

For targets p close to or in the families

With X ′ expectation, loss becomes Kullback divergence

Bhattacharyya, Hellinger, Rényi loss also relevant
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Loss

Kullback Information-divergence:

D(PX ′‖QX ′) = E
[

log p(X ′)/q(X ′)
]

Bhattacharyya, Hellinger, Rényi divergence:

d2(PX ′ ,QX ′) = 2 log 1/E [q(X ′)/p(X ′)]1/2

Product model case: D(PX ′‖QX ′) = n D(P‖Q)

d2(PX ′ ,QX ′) = n d2(P,Q)

Relationship:

d2 ≤ D ≤ (2 + b) d2 if the log density ratio ≤ b.
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MDL Analysis

Redundancy of Two-stage Code:

Redn =
1
n

E
{

min
q

[
log

1
q(Y )

+ L(q)
]
− log

1
p(Y )

}
bounded by Index of Resolvability:

Resn(p) = min
q

{
D(p||q) +

L(q)

n

}
Statistical Risk Analysis in i.i.d. case with L(q) = 2L(q):

E d2(p, p̂) ≤ min
q

{
D(p‖q) +

L(q)

n

}
B.85, B.&Cover 91, B., Rissanen, Yu 98, Li 99, Grunwald 07
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MDL Analysis: Key to risk consideration

Discrepancy between training sample and future

Disc(p) = log
p(Y )

q(Y )
− log

p(Y ′)
q(Y ′)

Future term may be replaced by population counterpart
Discrepancy control: If L(q) satisfies the Kraft sum then

E
[

inf
q
{Disc(p,q) + 2L(q)}

]
≥ 0

From which the risk bound follows:
Risk ≤ Redundancy ≤ Resolvability

E d2(p, p̂) ≤ Redn ≤ Resn(p)
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Statistically valid penalized likelihood

Likelihood penalties arise via
number parameters: pen(pθ) = λdim(θ)

roughness penalties: pen(pf ) = λ ‖f s‖2

coefficient penalties: pen(θ) = λ‖θ‖1

Bayes estimators: pen(θ) = log 1/w(θ)

Maximum likelihood: pen(θ) = constant
MDL:

Penalized likelihood:

p̂ = arg min
q
{log 1/q(Y ) + pen(q)}

Under what condition on the penalty will it be true that
the sample based estimate p̂ has risk controlled by the
population counterpart?

Ed2(p, p̂) ≤ inf
q

{
D(p‖q) +

pen(q)

n
}
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Statistically valid penalized likelihood

Result with J. Li, C. Huang, X. Luo (Festschrift for J.
Rissanen 2008)
Penalized Likelihood:

p̂ = arg min
q

{
1
n

log
1

q(Y )
+ penn(q)

}
Penalty condition:

penn(q) ≥ 1
n

min
q̃
{2L(q̃) + ∆n(p, q̃)}

where the distortion ∆n(q, q̃) is the difference in
discrepancies at q and a representer q̃
Risk conclusion:

Ed2(p, q̂) ≤ inf
q
{D(p‖q) + penn(q)}

Barron Information and Statistics 39/64



Information-theoretic valid penalties

Penalized likelihood

min
θ∈Θ

{
log

1
pθ(x)

+ Pen(θ)

}
Possibly uncountable Θ

Valid codelength interpretation if there exists a countable Θ̃
and L satisfying Kraft such that the above is not less than

min
θ̃∈Θ̃

{
log

1
pθ̃(x)

+ L(θ̃)

}
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A variable complexity, variable distortion cover

Equivalently:
Penalized likelihood with a penalty Pen(θ) is
information-theoretically valid with uncountable Θ, if there
is a countable Θ̃ and Kraft summable L(θ̃), such that, for
every θ in Θ, there is a representor θ̃ in Θ̃ such that

Pen(θ) ≥ L(θ̃) + log
pθ(x)

pθ̃(x)

This is the link between uncountable and countable cases
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Statistical-Risk Valid Penalty

For an uncountable Θ and a penalty Pen(θ), θ ∈ Θ,
suppose there is a countable Θ̃ and L(θ̃) = 2L(θ̃)
where L(θ̃) satisfies Kraft, such that, for all x , θ∗,

min
θ∈Θ

{[
log

pθ∗(x)

pθ(x)
− d2

n (θ∗, θ)
]

+ Pen(θ)

}

≥ min
θ̃∈Θ̃

{[
log

pθ∗(x)

pθ̃(x)
− d2

n (θ∗, θ̃)
]

+ L(θ̃)

}
Proof of the risk conclusion:
The second expression has expectation ≥ 0,
so the first expression does too.

B., Li,& Luo (Rissanen Festschrift 2008, Proc. Porto Info Theory
Workshop 2008)
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`1 Penalties are codelength and risk valid

Regression Setting: Linear Span of a Dictionary
G is a dictionary of candidate basis functions
E.g. wavelets, splines, polynomials, trigonometric terms,
sigmoids, explanatory variables and their interactions

Candidate functions in the linear span
fθ(x) =

∑
g∈G θg g(x)

weighted `1 norm of coefficients ‖θ‖1 =
∑

g ag |θg |

weights ag = ‖g‖n where ‖g‖2n = 1
n
∑n

i=1 g2(xi)

Regression pθ(y |x) = Normal(fθ(x), σ2)

`1 Penalty (Lasso, Basis Pursuit)

pen(θ) = λ‖θ‖1
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Regression with `1 penalty

`1 penalized log-density estimation, i.i.d. case

θ̂ = argminθ

{
1
n

log
1

pfθ(x)
+ λn‖θ‖1

}
Regression with Gaussian model

min
θ

{
1

2σ2
1
n

n∑
i=1

(Yi − fθ(xi))2 +
1
2

log 2πσ2 +
λn

σ
‖θ‖1

}

Codelength Valid and Risk Valid for

λn ≥
√

2 log(2p)

n
with p = Card(G)
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Adaptive risk bound specialized to regression

Again for fixed design and λn =
√

2 log 2p
n , multiplying

through by 4σ2,

E‖f ∗ − fθ̂‖
2
n ≤ inf

θ

{
2‖f ∗ − fθ‖2n + 4σλn‖θ‖1

}
In particular for all targets f ∗ = fθ∗ with finite ‖θ∗‖ the risk

bound 4σλn‖θ∗‖ is of order
√

log M
n

Details in Barron, Luo (proceedings Workshop on Information Theory Methods in Science & Eng. 2008),
Tampere, Finland
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Comment on proof

The variable complexity cover property is demonstrated by
choosing the representer f̃ of fθ of the form

f̃ (x) =
v
m

m∑
k=1

gk (x)

g1, . . .gm picked at random from G, independently, where g
arises with probability proportional to |θg |
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Practical Communication by Regression

Achieving Shannon Capacity: (with A. Joseph, S. Cho)

Gaussian Channel with Power Constraints

History of Methods

Communication by Regression

Sparse Superposition Coding

Adaptive Successive Decoding

Rate, Reliability, and Computational Complexity
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Shannon Formulation

Input bits: u = (u1,u2, . . . . . . , uK )

↓
Encoded: x = (x1, x2, . . . , xn)

↓
Channel: p(y |x)

↓
Received: y = (y1, y2, . . . , yn)

↓
Decoded: û = (û1, û2, . . . . . . , ûK )

Rate: R = K
n Capacity C = max I(X ; Y )

Reliability: Want small Prob{û 6= u}
and small Prob{Fraction mistakes ≥ α}
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Gaussian Noise Channel

Input bits: u = (u1,u2, . . . . . . , uK )

↓
Encoded: x = (x1, x2, . . . , xn) ave 1

n
∑n

i=1 x2
i ≤ P

↓
Channel: p(y |x) y = x + ε ε ∼ N(0, σ2I)

↓
Received: y = (y1, y2, . . . , yn)

↓
Decoded: û = (û1, û2, . . . . . . , ûK )

Rate: R = K
n Capacity C = 1

2 log(1 + P/σ2)

Reliability: Want small Prob{û 6= u}
and small Prob{Fraction mistakes ≥ α}

Barron Information and Statistics 49/64



Shannon Theory meets Coding Practice

The Gaussian noise channel is the basic model for
wireless communication
radio, cell phones, television, satellite, space
wired communication
internet, telephone, cable

Forney and Ungerboeck 1998 review
modulation, coding, and shaping for the Gaussian channel

Richardson and Urbanke 2008 cover much of the state of
the art in the analysis of coding

There are fast encoding and decoding algorithms, with
empirically good performance for LDPC and turbo codes
Some tools for their theoretical analysis, but obstacles
remain for mathematical proof of these schemes achieving
rates up to capacity for the Gaussian channel

Arikan 2009, Arikan and Teletar 2009 polar codes
Adapting polar codes to Gaussian channel (Abbe and B.
2011)

Method here is different. Prior knowledge of the above is
not necessary to follow what we present.
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Sparse Superposition Code

Input bits: u = (u1 . . . . . . . . . . . .uK )

Coefficients: β = (00 ∗ 0000000000 ∗ 00 . . . 0 ∗ 000000)T

Sparsity: L entries non-zero out of N
Matrix: X , n by N, all entries indep Normal(0,1)

Codeword: Xβ, superposition of a subset of columns
Receive: y = Xβ + ε, a statistical linear model
Decode: β̂ and û from X ,y

Barron Information and Statistics 51/64



Sparse Superposition Code

Input bits: u = (u1 . . . . . . . . . . . .uK )

Coefficients: β = (00 ∗ 0000000000 ∗ 00 . . . 0 ∗ 000000)T

Sparsity: L entries non-zero out of N
Matrix: X , n by N, all entries indep Normal(0,1)

Codeword: Xβ
Receive: y = Xβ + ε

Decode: β̂ and û from X ,y
Rate: R = K

n from K = log
(N

L

)
, near L log

(N
L e
)
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Sparse Superposition Code

Input bits: u = (u1 . . . . . . . . . . . .uK )

Coefficients: β = (00 ∗ 0000000000 ∗ 00 . . . 0 ∗ 000000)T

Sparsity: L entries non-zero out of N
Matrix: X , n by N, all entries indep Normal(0,1)

Codeword: Xβ
Receive: y = Xβ + ε

Decode: β̂ and û from X ,y
Rate: R = K

n from K = log
(N

L

)
Reliability: small Prob{Fraction β̂mistakes ≥ α}, small α
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Sparse Superposition Code

Input bits: u = (u1 . . . . . . . . . . . .uK )

Coefficients: β = (00 ∗ 0000000000 ∗ 00 . . . 0 ∗ 000000)T

Sparsity: L entries non-zero out of N
Matrix: X , n by N, all entries indep Normal(0,1)

Codeword: Xβ
Receive: y = Xβ + ε

Decode: β̂ and û from X ,y
Rate: R = K

n from K = log
(N

L

)
Reliability: small Prob{Fraction β̂mistakes ≥ α}, small α
Outer RS code: rate 1−2α, corrects remaining mistakes
Overall rate: Rtot = (1−2α)R
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Sparse Superposition Code

Input bits: u = (u1 . . . . . . . . . . . .uK )

Coefficients: β = (00 ∗ 0000000000 ∗ 00 . . . 0 ∗ 000000)T

Sparsity: L entries non-zero out of N
Matrix: X , n by N, all entries indep Normal(0,1)

Codeword: Xβ
Receive: y = Xβ + ε

Decode: β̂ and û from X ,y
Rate: R = K

n from K = log
(N

L

)
Reliability: small Prob{Fraction β̂mistakes ≥ α}, small α
Outer RS code: rate 1−2α, corrects remaining mistakes
Overall rate: Rtot = (1−2α)R.

Is it reliable with rate up to capacity?
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Partitioned Superposition Code
Input bits: u = (u1 . . . , . . . , . . . , . . .uK )

Coefficients: β=(00 ∗ 00000, 00000 ∗ 00, . . . , 0 ∗ 000000)

Sparsity: L sections, each of size B =N/L, a power of 2.
1 non-zero entry in each section

Indices of nonzeros: (j1, j2, . . . , jL) directly specified by u
Matrix: X , n by N, splits into L sections
Codeword: Xβ
Receive: y = Xβ + ε

Decode: β̂ and û
Rate: R = K

n from K = L log N
L = L log B

may set B = n and L = nR/ log n
Reliability: small Prob{Fraction β̂mistakes ≥ α}
Outer RS code: Corrects remaining mistakes
Overall rate: up to capacity?
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Power Allocation

Coefficients: β=(00∗00000, 00000∗00, . . . ,0∗000000)

Indices of nonzeros: sent = (j1, j2, . . . , jL)

Coeff. values: βj` =
√

P` for ` = 1,2, . . . ,L

Power control:
∑L

`=1 P` = P

Codewords: Xβ, have average power P

Power Allocations

Constant power: P` = P/L

Variable power: P` proportional to u` = e−2C `/L

Variable with leveling: P` proportional to max{u`, cut}
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Power Allocation
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Contrast Two Decoders

Decoders using received y = Xβ + ε

Optimal: Least Squares Decoder

β̂ = argmin‖Y − Xβ‖2

minimizes probability of error with uniform input distribution
reliable for all R < C, with best form of error exponent

Practical: Adaptive Successive Decoder

fast decoder
reliable using variable power allocation for all R < C
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Adaptive Successive Decoder

Decoding Steps

Start: [Step 1]
Compute the inner product of Y with each column of X
See which are above a threshold
Form initial fit as weighted sum of columns above threshold

Iterate: [Step k ≥ 2]
Compute the inner product of residuals Y − Fitk−1 with
each remaining column of X
See which are above threshold
Add these columns to the fit

Stop:
At Step k = log B, or
if there are no inner products above threshold
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Decoding Progression
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B  = 216, L == B
snr == 15
C  = 2 bits
R  = 1.04 bits (0.52C )
No. of steps =  18

Figure : Plot of likely progression of weighted fraction of correct
detections q̂1,k , for snr = 15.
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Decoding Progression
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Figure : Plot of of likely progression of weighted fraction of correct
detections q̂1,k , for snr = 1.
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Rate and Reliability

Optimal: Least squares decoder of sparse superposition code
Prob error exponentially small in n for small ∆=C−R>0

Prob{Error} ≤ e−n(C−R)2/2V

In agreement with the Shannon-Gallager optimal exponent,
though with possibly suboptimal V depending on the snr

Practical: Adaptive Successive Decoder, with outer RS code.
achieves rates up to CB approaching capacity

CB =
C

1 + c1/ log B
Probability exponentially small in L for R ≤ CB

Prob
{

Error
}
≤ e−L(CB−R)2c2

Improves to e−c3L(CB−R)2(log B)0.5
using a Bernstein bound.

Nearly optimal when CB−R is of the same order as C−CB.
Our c1 is near (2.5 + 1/snr) log log B + 4C
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Summary

Sparse superposition coding is fast and reliable at rates up
to channel capacity

Formulation and analysis blends modern statistical
regression and information theory
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