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Information and Probability:
Monotonicity of Information
Large Deviation Exponents
Information Stability (AEP)
Central Limit Theorem
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Nonparametric Rates of Estimation
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Formulation and Performance of Statistical Procedures

Information and Statistics: (with Yang, Li, Luo, Huang)

Nonparametric Estimation
Information-theoretic determination of minimax rates

Minimum Description Length Principle

Penalized Likelihood
statistically valid and information valid penalties

Implications for Maximum Likelihood, Bayes, and MDL

Fast and Accurate Computation in Sparse Regression
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Practical Communication by Regression

Achieving Shannon Capacity: (with A. Joseph)

Gaussian Channel with Power Constraints

History of Methods

Communication by Regression

Sparse Superposition Coding

Adaptive Successive Decoding

Rate, Reliability, and Computational Complexity
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Probability Limits and Monotonicity

ACT I

Information and Probability:

Monotonicity of Information

Markov chains, martingales

Central Limit Theorem

Information Stability (asymptotic equipartition property)

Large Deviation Exponents (law of large numbers)
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Monotonicity of Information Divergence

Information Inequality X → X ′

D(PX ′‖P∗
X ′) ≤ D(PX‖P∗

X )

Chain Rule

D(PX ,X ′‖P∗
X ,X ′) = D(PX ′‖P∗

X ′) + E D(PX |X ′‖P∗
X |X ′)

= D(PX‖P∗
X ) + E D(PX ′|X‖P∗

X ′|X )

Markov Chain {Xn} with P∗ invariant

D(PXn‖P∗) ≤ D(PXm‖P∗) for n > m

Convergence

log pn(Xn)/p∗(Xn) is a Cauchy sequence in L1(P)
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Monotonicity of Information Divergence

Information Inequality X → X ′

D(PX ′‖P∗
X ′) ≤ D(PX ′‖P∗

X ′)

Chain Rule

D(PX ,X ′‖P∗
X ,X ′) = D(PX ′‖P∗

X ′) + E D(PX |X ′‖P∗
X |X ′)

= D(PX‖P∗
X )

Markov Chain {Xn} with P∗ invariant

D(PXn‖P∗) ≤ D(PXm‖P∗) for n > m

Convergence

log pn(Xn)/p∗(Xn) is a Cauchy sequence in L1(P)

Pinsker-Kullback-Csiszar inequalities

A ≤ D +
√

2D V ≤
√

2D
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Martingale Convergence and Limits of Information

Nonnegative Martingales ρn correspond to the density of a
measure Qn given by Qn(A) = E [ρn1A].
Limits can be established in the same way by the chain
rule for n > m

D(Qn‖P) = D(Qm‖P) +

∫ (
ρn log

ρn

ρm

)
dP

Thus Dn = D(Qn‖P) is an increasing sequence. When Dn
is bounded ρn is a Cauchy sequences in L1(P) with limit ρ
defining a measure Q, also, log ρn is a Cauchy sequence in
L1(Q) and

D(Qn‖P) ↗ D(Q‖P)
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Monotonicity of Information Divergence: CLT

Central Limit Theorem Setting:

{Xi} i.i.d. mean zero, finite variance

Pn = PYn is distribution of Yn = X1+X2+...+Xn√
n

P∗ is the corresponding normal distribution

For n > m
D(Pn‖P∗) < D(Pm‖P∗)
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)
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Monotonicity of Information Divergence: CLT

Central Limit Theorem Setting:

{Xi} i.i.d. mean zero, finite variance

Pn = PYn is distribution of Yn = X1+X2+...+Xn√
n

P∗ is the corresponding normal distribution

For n > m
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Chain Rule for n > m: more mysterious in this case

D(PYm,Yn‖P∗
Ym,Yn

) = D(Pn‖P∗) + ED(PYm|Yn‖P
∗
Ym|Yn

)

= D(Pm‖P∗) + ED(PYn|Ym‖P
∗
Yn|Ym

)

= D(Pm‖P∗) + D(Pn−m‖P∗)
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Monotonicity of Information Divergence: CLT

Entropy Power Inequality

e2H(X+X ′) ≥ e2H(X) + e2H(X ′)

yields
D(P2n‖P∗) ≤ D(Pn‖P∗)

Information Theoretic proof of CLT (B. 1986):

D(Pn‖P∗) → 0 iff finite
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Monotonicity of Information Divergence: CLT

Entropy Power Inequality

e2H(X+X ′) ≥ e2H(X) + e2H(X ′)

yields
D(P2n‖P∗) ≤ D(Pn‖P∗)

Information Theoretic proof of CLT (B. 1986):

D(Pn‖P∗) → 0 iff finite

(Johnson and B. 2004)

D(Pn‖P∗) ≤ 2R
n−1+2R

D(P1‖P∗)
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Monotonicity of Information Divergence: CLT

Entropy Power Inequality

e2H(X+X ′) ≥ e2H(X) + e2H(X ′)

Generalized Entropy Power Inequality (Madiman&B.2006)

eH(X1+...+Xn) ≥ 1
r(S)

∑
s∈S

e2H(
P

i∈s Xi )

Proof: simple L2 projection properties of entropy derivative.
Consequence, for all n > m,

D(Pn‖P∗) ≤ D(Pm‖P∗)

[Madiman and B. 2006, Tolino and Verdú 2006.
Earlier elaborate proof by Artstein, Ball, Barthe, Naor 2004]
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Information-Stability and Error Probability of Tests

Stability of log-likelihood ratios (AEP)
(B. 1985, Orey 1985, Cover and Algoet 1986)

1
n

log
p(Y1, Y2, . . . Yn)

q(Y1, Y2, . . . , Yn)
→ D(P‖Q) with P − prob 1

where D(P‖Q) is the relative entropy rate.

Optimal statistical test: region An has asymptotic P-power
1 (with at most finitely many mistakes P(Ac

n i .o.) = 0) and
has optimal Q-prob of error

Q(An) = exp{−n[D + o(1)]}

General form of the Chernoff-Stein Lemma.

Relative entropy rate

D(P‖Q) = lim
1
n

D(PY n‖QY n)
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Optimality of the Relative Entropy Exponent

Information Inequality

D(PY n‖QY n) ≥ P(An) log
P(An)

Q(An)
+ P(Ac

n) log
P(Ac

n)

Q(Ac
n)

Consequence

D(PY n‖QY n) ≥ P(An) log
1

Q(An)
− H2(P(An))

Equivalently

Q(An) ≥ exp
{
−

D(PY n‖QY n)− H2(P(An))

P(An)

}

For any sequence of pairs of joint distributions, no
sequence of tests with P(An) approaching 1 can have
better Q(An) exponent than D(PY n‖QY n).
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Large Deviations, I-Projection, and Conditional Limit

P∗: Information projection of Q onto convex C
Pythagorean identity (Csiszar 75, Topsoe 79): For P in C

D(P‖Q) ≥ D(C‖Q) + D(P‖P∗)

where
D(C‖Q) = inf

P∈C
D(P‖Q)

Empirical distribution Pn, from i.i.d. sample.
If D(interiorC‖Q) = D(C‖Q) then

Q{Pn ∈ C} = exp
{
− n [D(C‖Q) + o(1)]

}
and the conditional distribution PY1,Y2,...,Yn|{Pn∈C} converges
to P∗

Y1,Y2,...,Yn
in the I-divergence rate sense (Csiszar 1985)
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Large Deviations, I-Projection, and Conditional Limit

P∗: Information projection of Q onto convex C
Pythagorean identity (Csiszar 75, Topsoe 79): For P in C

D(P‖Q) ≥ D(C‖Q) + D(P‖P∗)

where
D(C‖Q) = inf

P∈C
D(P‖Q)

Empirical distribution Pn. Choose C =half-space.
Large deviations bound

Q{Pn ∈ C} ≤ exp
{
− n D(C‖Q)

}
Information-theoretic representation of Chernoff bound.
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The special case of Bernoulli Trials

Y1, . . . , Yn independent Bernoulli p. Let p∗ > p.

Let p̂ be the relative frequency of occurrences of 1.

Binomial Tail inequality

P{p̂ ≥ p∗} ≤ exp{−n DBer (p∗‖p)}

Lower bounds on DBer (p∗‖p)

DBer (p∗‖p) ≥ 2(p∗ − p)2 (yields Hoeffdings inequality)

DBer (p∗‖p) ≥ DPoi(p∗‖p) (yields binomial ≤ Poisson tails)

Here
DBer (p∗‖p) = p∗ log p∗/p + (1−p∗) log(1−p∗)/(1−p)

DPoi(p∗‖p) = p∗ log p∗/p + p − p∗
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Probability Limits and Monotonicity

ACT I (Summary)

Information inequality and chain rule provide:

Monotonicity of information and convergence for
Markov chain distributions
martingales
central limit theorem

Information stability
asymptotic equipartition property
best exponents of statistical tests

Large deviation exponents (law of large numbers)

Conditional limit theorem
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Information and Statistics

ACT II

Fundamental Limits of Statistical Estimation: (with Y. Yang)

Nonparametric Estimation
Information-theoretic determination of minimax rates
Shannon Capacity determines limits of statistical accuracy

Formulation of Adaptive Statistical Estimators:
(with J. Li, Xi Luo, C. Huang)

Minimum Description Length Principle

Penalized Likelihood
statistically valid and information valid penalties

Implications for Maximum Likelihood, Bayes, and MDL
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Roles of Shannon Capacity

Information Capacity

A Channel θ → Y is a family of probability distributions

{PY |θ : θ ∈ Θ}

Information Capacity

C = max
Pθ

I(θ; Y )
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Roles of Shannon Capacity

Communications Capacity

Ccom is maximum rate of reliable communication

The rate is the number of message bits divided by the
number of uses of a channel

Shannon Channel Capacity Theorem (Shannon 1948)

Ccom = C
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Roles of Shannon Capacity

Data Compression Capacity

Minimax Redundancy

Red = min
QY

max
θ∈Θ

D(PY |θ‖QY )

Data Compression Capacity Theorem

Red = C

(Gallager, Davisson & Leon-Garcia, Ryabko)
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Roles of Shannon Capacity

Statistical Risk Setting

Loss function
`(θ, θ′)

Kullback loss
`(θ, θ′) = D(PY |θ‖PY |θ′)

Squared metric loss, e.g. squared Hellinger loss:

`(θ, θ′) = d2(θ, θ′)

Statistical risk equals expected loss

Risk = E [`(θ, θ̂)]
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Roles of Shannon Capacity

Statistical Capacity

Estimators: θ̂n

Based on sample Y of size n

Minimax Risk (Wald):

rn = min
θ̂n

max
θ

E`(θ, θ̂n)
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Roles of Shannon Capacity

Ingredients in Determining Minimax Rates of Statistical Risk

Kolmogorov Metric Entropy of S ⊂ Θ:

H(ε) = max{log Card(Θε) : d(θ, θ′) > ε for θ, θ′ ∈ Θε ⊂ S}

Loss Assumption, for θ, θ′ ∈ S:

`(θ, θ′) ∼ D(PY |θ‖PY |θ′) ∼ d2(θ, θ′)
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Roles of Shannon Capacity

Information-theoretic Determination of Minimax Rates

For infinite-dimensional Θ

With metric entropy evaluated a critical separation εn

Statistical Capacity Theorem
Minimax Risk ∼ Info Capacity Rate ∼ Metric Entropy rate

rn ∼ Cn

n
∼ H(εn)

n
∼ ε2

n

(Yang 1997, Yang and B. 1999, Haussler and Opper 1997)

Barron Information, Statistics, and Achieving Shannon Capacity 37/82



Information Thy Formulation of Statistical Principles

Start with Data Compression: Shannon Codes
Kraft-McMillan characterization:
Uniquely decodeable codelengths

L(x), x ∈ X ,
∑

x

2−L(x) ≤ 1

L(x) = log 1/q(x) q(x) = 2−L(x)

Operational meaning of probability:

A probability distribution q is given by a choice of code

Barron Information, Statistics, and Achieving Shannon Capacity 38/82



Codelength Comparison

Targets p are possible distributions

Compare codelength log 1/q(x) to targets log 1/p(x)

Redundancy or regret[
log 1/q(x)− log 1/p(x)

]
Expected redundancy

D(PX‖QX ) = EP

[
log

p(X )

q(X )

]

Shannon idealized codelength (expectation optimal):

log 1/p(Y )

But true p is not generally known
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Information Thy Formulation of Statistical Principle

Minimum Description-Length (Rissanen 1978,1983,...,B. 1985,
B.&Cover 1991, ...)

Statistical measure of complexity of Y

L(Y ) = min
q

[
log 1/q(Y ) + L(q)

]
bits for x given q + bits for q

It is an information-theoretically valid codelength for Y for
any L(q) satisfying Kraft summability.
The minimization is for q in a family indexed by parameters{

pθ(Y ) : θ ∈ Θ
}

or by functions
{

pf (Y ) : f ∈ F
}

The estimator p̂ is pθ̂ or p f̂ .
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Statistical Aim

From training data x ⇒ estimator p̂

Generalize to subsequent data x ′

Want log 1/p̂(x ′) to compare favorably to log 1/p(x ′)

For targets p close to or in the families

With X ′ expectation, loss becomes Kullback divergence

Bhattacharyya, Hellinger, Rényi loss also relevant
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Loss

Kullback Information-divergence:

D(PX ′‖QX ′) = E
[

log p(X ′)/q(X ′)
]

Bhattacharyya, Hellinger, Rényi divergence:

d2(PX ′ , QX ′) = 2 log 1/E [q(X ′)/p(X ′)]1/2

Product model case: D(PX ′‖QX ′) = n D(P‖Q)

d2(PX ′ , QX ′) = n d2(P, Q)

Relationship: d2 ≤ D ≤ (2 + b) d2 if the log density ratio
≤ b.
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MDL Analysis

Redundancy of Two-stage Code:

Redn =
1
n

E
{

min
q

[
log

1
q(Y )

+ L(q)
]
− log

1
p(Y )

}
bounded by Index of Resolvability:

Resn(p) = min
q

{
D(p||q) +

L(q)

n

}
Statistical Risk Analysis in i.i.d. case with L(q) = 2L(q):

E d2(p, p̂) ≤ min
q

{
D(p‖q) +

L(q)

n

}
B. 1985, B.&Cover 1991, B., Rissanen, Yu 1998, Li 1999,
Grunwald 2007
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MDL Analysis

Risk bound reveals adaptation properties:

E d2(p, p̂) ≤ min
q

{
D(p‖q) + L(q)/n

}
Special Cases:
Traditional parametric: L(θ) = (dim/2) log n + C
Nonparametric: L(q) = Metric entropy

(log cardinality of optimal net)
Idealized: L(q) = Kolmogorov complexity
Adaptation:
Achieves minimax optimal rates simultaneously in every
computable subfamily of distributions
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MDL Analysis: Key to risk consideration

Discrepancy between training sample and future

Disc(p) = log
p(Y )

q(Y )
− log

p(Y ′)

q(Y ′)

Future term may be replaced by population counterpart
Discrepancy control: If L(q) satisfies the Kraft sum then

E
[

inf
q
{Disc(p, q) + 2L(q)}

]
≥ 0

From which the risk bound follows:
Risk ≤ Redundancy ≤ Resolvability

E d2(p, p̂) ≤ Redn ≤ Resn(p)
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Statistically valid penalized likelihood

Likelihood penalties arise via
number parameters: pen(pθ) = λ dim(θ)

roughness penalties: pen(pf ) = λ ‖f s‖2

coefficient penalties: pen(θ) = λ‖θ‖1

Bayes estimators: pen(θ) = log 1/w(θ)

Maximum likelihood: pen(θ) = constant
MDL:

Penalized likelihood:

p̂ = arg min
q
{log 1/q(Y ) + pen(q)}

Under what condition on the penalty will it be true that
the sample based estimate p̂ has risk controlled by the
population counterpart?

Ed2(p, p̂) ≤ inf
q

{
D(p‖q) +

pen(q)

n
}
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Statistically valid penalized likelihood

Result with J. Li, C. Huang, X. Luo (Festschrift for J.
Rissanen 2008)
Penalized Likelihood:

p̂ = arg min
q

{
1
n

log
1

q(Y )
+ penn(q)

}
Penalty condition:

penn(q) ≥ 1
n

min
q̃
{2L(q̃) + ∆n(p, q̃)}

where the distortion ∆n(q, q̃) is the difference in
discrepancies at q and a representer q̃
Risk conclusion:

Ed2(p, q̂) ≤ inf
q
{D(p‖q) + penn(q)}
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Information-theoretic valid penalties

Penalized likelihood

min
θ∈Θ

{
log

1
pθ(x)

+ Pen(θ)

}
Possibly uncountable Θ

Valid codelength interpretation if there exists a countable Θ̃
and L satisfying Kraft such that the above is not less than

min
θ̃∈Θ̃

{
log

1
pθ̃(x)

+ L(θ̃)

}
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A variable complexity, variable distortion cover

Equivalently:
Penalized likelihood with a penalty Pen(θ) is
information-theoretically valid with uncountable Θ, if there
is a countable Θ̃ and Kraft summable L(θ̃), such that, for
every θ in Θ, there is a representor θ̃ in Θ̃ such that

Pen(θ) ≥ L(θ̃) + log
pθ(x)

pθ̃(x)

This is the link between uncountable and countable cases
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Statistical-Risk Valid Penalty

For an uncountable Θ and a penalty Pen(θ), θ ∈ Θ,
suppose there is a countable Θ̃ and L(θ̃) = 2L(θ̃)
where L(θ̃) satisfies Kraft, such that, for all x , θ∗,

min
θ∈Θ

{[
log

pθ∗(x)

pθ(x)
− d2

n (θ∗, θ)
]

+ Pen(θ)

}

≥ min
θ̃∈Θ̃

{[
log

pθ∗(x)

pθ̃(x)
− d2

n (θ∗, θ̃)
]

+ L(θ̃)

}
Proof of the risk conclusion:
The second expression has expectation ≥ 0,
so the first expression does too.
This condition and result is obtained with J. Li and X. Luo
(in Rissanen Festschrift 2008)
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`1 Penalties are codelength and risk valid

Regression Setting: Linear Span of a Dictionary
G is a dictionary of candidate basis functions
E.g. wavelets, splines, polynomials, trigonometric terms,
sigmoids, explanatory variables and their interactions

Candidate functions in the linear span
fθ(x) =

∑
g∈G θg g(x)

weighted `1 norm of coefficients ‖θ‖1 =
∑

g ag |θg |

weights ag = ‖g‖n where ‖g‖2
n = 1

n
∑n

i=1 g2(xi)

Regression pθ(y |x) = Normal(fθ(x), σ2)

`1 Penalty (Lasso, Basis Pursuit)

pen(θ) = λ‖θ‖1
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Regression with `1 penalty

`1 penalized log-density estimation, i.i.d. case

θ̂ = argminθ

{
1
n

log
1

pfθ(x)
+ λn‖θ‖1

}
Regression with Gaussian model

min
θ

{
1

2σ2
1
n

n∑
i=1

(Yi − fθ(xi))
2 +

1
2

log 2πσ2 +
λn

σ
‖θ‖1

}

Codelength Valid and Risk Valid for

λn ≥
√

2 log(2p)

n
with p = Card(G)
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Adaptive risk bound specialized to regression

Again for fixed design and λn =
√

2 log 2p
n , multiplying

through by 4σ2,

E‖f ∗ − fθ̂‖
2
n ≤ inf

θ

{
2‖f ∗ − fθ‖2

n + 4σλn‖θ‖1

}
In particular for all targets f ∗ = fθ∗ with finite ‖θ∗‖ the risk

bound 4σλn‖θ∗‖ is of order
√

log M
n

Details in Barron, Luo (proceedings Workshop on Information Theory Methods in Science & Eng. 2008),
Tampere, Finland
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Comment on proof

The variable complexity cover property is demonstrated by
choosing the representer f̃ of fθ of the form

f̃ (x) =
v
m

m∑
k=1

gk (x)

g1, . . . gm picked at random from G, independently, where g
arises with probability proportional to |θg |
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Information and Statistics

ACT II (Summary)

Shannon Capacity determines limits of statistical accuracy

Adaptation by penalized likelihood

Information-theoretic variable complexity cover property

Determines risk valid and codelength valid penalties

Risk is controlled by the population counterpart of
penalized criterion

minq{D(p‖q) + pen(q)/n}
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Practical Communication by Regression

ACT III

Achieving Shannon Capacity: (with A. Joseph)

Gaussian Channel with Power Constraints

History of Methods

Communication by Regression

Sparse Superposition Coding

Adaptive Successive Decoding

Rate, Reliability, and Computational Complexity
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Shannon Formulation

Input bits: u = (u1, u2, . . . . . . , uK )

↓
Encoded: x = (x1, x2, . . . , xn)

↓
Channel: p(y |x)

↓
Received: y = (y1, y2, . . . , yn)

↓
Decoded: û = (û1, û2, . . . . . . , ûK )

Rate: R = K
n Capacity C = max I(X ; Y )

Reliability: Want small Prob{û 6= u}
and small Prob{Fraction mistakes ≥ α}
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Gaussian Noise Channel

Input bits: u = (u1, u2, . . . . . . , uK )

↓
Encoded: x = (x1, x2, . . . , xn) ave 1

n
∑n

i=1 x2
i ≤ P

↓
Channel: p(y |x) y = x + ε ε ∼ N(0, σ2I)

↓
Received: y = (y1, y2, . . . , yn)

↓
Decoded: û = (û1, û2, . . . . . . , ûK )

Rate: R = K
n Capacity C = 1

2 log(1 + P/σ2)

Reliability: Want small Prob{û 6= u}
and small Prob{Fraction mistakes ≥ α}
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Shannon Theory meets Coding Practice

The Gaussian noise channel is the basic model for
wireless communication
radio, cell phones, television, satellite, space
wired communication
internet, telephone, cable

Forney and Ungerboeck 1998 review
modulation, coding, and shaping for the Gaussian channel

Richardson and Urbanke 2008 cover much of the state of
the art in the analysis of coding

There are fast encoding and decoding algorithms, with
empirically good performance for LDPC and turbo codes
Some tools for their theoretical analysis, but obstacles
remain for mathematical proof of these schemes achieving
rates up to capacity for the Gaussian channel

Arikan 2009, Arikan and Teletar 2009 polar codes
Adapting polar codes to Gaussian channel (Abbe and B.
2011, in prog.)

Method here is different. Prior knowledge of the above is
not necessary to follow what we present.
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Sparse Superposition Code

Input bits: u = (u1 . . . . . . . . . . . . uK )

Coefficients: β = (00 ∗ 0000000000 ∗ 00 . . . 0 ∗ 000000)T

Sparsity: L entries non-zero out of N
Matrix: X , n by N, all entries indep Normal(0, 1)

Codeword: Xβ, superposition of a subset of columns
Receive: y = Xβ + ε, a statistical linear model
Decode: β̂ and û from X ,y
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Sparse Superposition Code

Input bits: u = (u1 . . . . . . . . . . . . uK )

Coefficients: β = (00 ∗ 0000000000 ∗ 00 . . . 0 ∗ 000000)T

Sparsity: L entries non-zero out of N
Matrix: X , n by N, all entries indep Normal(0, 1)

Codeword: Xβ

Receive: y = Xβ + ε

Decode: β̂ and û from X ,y
Rate: R = K

n from K = log
(N

L

)
, near L log

(N
L e

)
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Sparse Superposition Code

Input bits: u = (u1 . . . . . . . . . . . . uK )

Coefficients: β = (00 ∗ 0000000000 ∗ 00 . . . 0 ∗ 000000)T

Sparsity: L entries non-zero out of N
Matrix: X , n by N, all entries indep Normal(0, 1)

Codeword: Xβ

Receive: y = Xβ + ε

Decode: β̂ and û from X ,y
Rate: R = K

n from K = log
(N

L

)
Reliability: small Prob{Fraction β̂ mistakes ≥ α}, small α
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Sparse Superposition Code

Input bits: u = (u1 . . . . . . . . . . . . uK )

Coefficients: β = (00 ∗ 0000000000 ∗ 00 . . . 0 ∗ 000000)T

Sparsity: L entries non-zero out of N
Matrix: X , n by N, all entries indep Normal(0, 1)

Codeword: Xβ

Receive: y = Xβ + ε

Decode: β̂ and û from X ,y
Rate: R = K

n from K = log
(N

L

)
Reliability: small Prob{Fraction β̂ mistakes ≥ α}, small α

Outer RS code: rate 1−2α, corrects remaining mistakes
Overall rate: Rtot = (1−2α)R
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Sparse Superposition Code

Input bits: u = (u1 . . . . . . . . . . . . uK )

Coefficients: β = (00 ∗ 0000000000 ∗ 00 . . . 0 ∗ 000000)T

Sparsity: L entries non-zero out of N
Matrix: X , n by N, all entries indep Normal(0, 1)

Codeword: Xβ

Receive: y = Xβ + ε

Decode: β̂ and û from X ,y
Rate: R = K

n from K = log
(N

L

)
Reliability: small Prob{Fraction β̂ mistakes ≥ α}, small α

Outer RS code: rate 1−2α, corrects remaining mistakes
Overall rate: Rtot = (1−2α)R.

Is it reliable with rate up to capacity?
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Partitioned Superposition Code
Input bits: u = (u1 . . . , . . . , . . . , . . . uK )

Coefficients: β=(00 ∗ 00000, 00000 ∗ 00, . . . , 0 ∗ 000000)

Sparsity: L sections, each of size B =N/L, a power of 2.
1 non-zero entry in each section

Indices of nonzeros: (j1, j2, . . . , jL) directly specified by u
Matrix: X , n by N, splits into L sections
Codeword: Xβ

Receive: y = Xβ + ε

Decode: β̂ and û
Rate: R = K

n from K = L log N
L = L log B

may set B = n and L = nR/ log n
Reliability: small Prob{Fraction β̂ mistakes ≥ α}
Outer RS code: Corrects remaining mistakes
Overall rate: up to capacity?
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Power Allocation

Coefficients: β=(00∗00000, 00000∗00, . . . , 0∗000000)

Indices of nonzeros: sent = (j1, j2, . . . , jL)

Coeff. values: βj` =
√

P` for ` = 1, 2, . . . , L

Power control:
∑L

`=1 P` = P

Codewords: Xβ, have average power P

Power Allocations

Constant power: P` = P/L

Variable power: P` proportional to u` = e−2C `/L

Variable with leveling: P` proportional to max{u`, cut}
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Power Allocation
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Contrast Two Decoders

Decoders using received y = Xβ + ε

Optimal: Least Squares Decoder

β̂ = argmin‖Y − Xβ‖2

minimizes probability of error with uniform input distribution
reliable for all R < C, with best form of error exponent

Practical: Adaptive Successive Decoder

fast decoder
reliable using variable power allocation for all R < C
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Adaptive Successive Decoder

Decoding Steps

Start: [Step 1]
Compute the inner product of Y with each column of X
See which are above a threshold
Form initial fit as weighted sum of columns above threshold

Iterate: [Step k ≥ 2]
Compute the inner product of residuals Y − Fitk−1 with
each remaining column of X
See which are above threshold
Add these columns to the fit

Stop:
At Step k = log B, or
if there are no inner products above threshold
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Quantities in the Iterative Decoder

Intialization: res1 = Y and J1 = {1, 2, . . . , N}, with N = LB

Loop:
Residual: resk = Y − Fitk−1

Test Stat: Zk ,j = X T
j resk/‖resk‖

Threshold: τ =
√

2 log B + a

Detections: 1Hk,j = 1{Zk,j≥τ}

Fit Update: Fitk = Fitk−1 +
∑

j∈Jk

√
Pj Xj1Hk,j

Remaining: Jk+1 = { j ∈ Jk : Zk ,j < τ}
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Tracking Progress

Message
sent = (j1, j2, . . . , jL)

False Alarms

Increment: f̂k =
∑

j∈Jk∩(not sent) πj 1Hk,j

Total: f̂1,k = f̂1 + f̂2 + . . . + f̂k

Correct Detections
Increment: q̂k =

∑
j∈Jk∩sent πj 1Hk,j

Total: q̂1,k = q̂1 + q̂2 + . . . + q̂k

Weights
πj = Pj/P
where Pj is the power allocated to the section containing j

Barron Information, Statistics, and Achieving Shannon Capacity 71/82



Decoding Progression
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Figure: Plot of likely progression of weighted fraction of correct
detections q̂1,k , for snr = 15.
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Decoding Progression
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Figure: Plot of of likely progression of weighted fraction of correct
detections q̂1,k , for snr = 1.
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Rate and Reliability

Optimal: Least squares decoder of sparse superposition code
Prob error exponentially small in n for small ∆=C−R >0

Prob{Error} ≤ e−n(C−R)2/2V

In agreement with the Shannon-Gallager optimal exponent,
though with possibly suboptimal V depending on the snr

Practical: Adaptive Successive Decoder, with outer RS code.
achieves rates up to CB approaching capacity

CB =
C

1 + c1/ log B
Probability exponentially small in L for R ≤ CB

Prob
{

Error
}
≤ e−L(CB−R)2c2

Improves to e−c3L(CB−R)2(log B)0.5
using a Bernstein bound.

Nearly optimal when CB−R is of the same order as C−CB.
Our c1 is near (2.5 + 1/snr) log log B + 4C
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Upper Bounding False Alarms

False Alarms

Increment: f̂k =
∑

j∈Jk∩(not sent) πj 1Hk,j

Upper bound:
∑

j not sent πj 1Hk,j

Expectation: f ∗

Target level: f ∗ less than const/(log B)2

Total: f̂1,k = f̂1 + f̂2 + . . . + f̂k

UB expectation: kf ∗

Reliability: f̂1,k less than kf with high prob for f > f ∗

Total bound: const/ log B with #steps k of order log B
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Lower Bounding Correct Detections

Correct Detections
Increment: q̂k =

∑
j∈Jk∩sent πj 1Hk,j

Total: q̂1,k = q̂1 + q̂2 + . . . + q̂k

Equivalent:
∑

j∈sent πj 1H1,j∪H2,j∪...∪Hk,j

Lower Bound:
∑

j∈sent πj 1Hk,j

LB Expectation: q∗1,k

Reliability: q̂1,k > q1,k with high prob for q1,k < q∗1,k
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Lower Bounding Correct Detections

Correct Detections
Increment: q̂k =

∑
j∈Jk∩sent πj 1Hk,j

Total: q̂1,k = q̂1 + q̂2 + . . . + q̂k

Equivalent:
∑

j∈sent πj 1H1,j∪H2,j∪...∪Hk,j

Lower Bound:
∑

j∈sent πj 1Hk,j

LB Expectation: q∗1,k

Reliability: q̂1,k > q1,k with high prob for q1,k < q∗1,k

Recursive: q∗1,k = g
(
q1,k−1 − f1,k−1

)
f1,k = kf bound on likely false alarms, from preceding slide
g(x) shown to exceed x by at least const/ log B for R ≤ RB
g(x) evaluated at xk−1 = q1,k−1 − f1,k−1 yields xk
likely lower bound on correct detections
reaches xk ≥ 1− const/ log B in order log B steps
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Decoding progression, example bounds
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Figure: Plot of g(x) and the sequence xk for snr = 15, with variable
power allocation. The threshold uses a = 0.86. The final false alarm
and failed detection rates are less than 0.026 and 0.013 respectively,
with probability of at least that fraction of mistakes less than 0.002.
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Decoding Progression
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Figure: Plot of g(x) and the sequence xk for snr = 1, with constant
power allocation. The threshold uses a = 0.56. The final false alarm
and failed detection rates are 0.026 and 0.053 respectively, with
probability bound 0.0007.
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Summary

Sparse superposition coding is fast and reliable at rates up
to channel capacity

Formulation and analysis blends modern statistical
regression and information theory
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Rate versus Section Size
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Figure: Rate as a function of B for snr =15 and error probability 10−3.
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Rate versus Section Size
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Figure: Rate as a function of B for snr = 1 and error probability 10−3.
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