INFORMATION THEORY AND FLEXIBLE HIGH-DIMENSIONAL NON-LINEAR FUNCTION ESTIMATION

Andrew R. Barron

YALE UNIVERSITY DEPARTMENT OF STATISTICS

Presentation, November 12, 2011

at the Info-Metrics Institute, American University, Washington, DC

- Data, Model
- Combining Non-linearly Parameterized Terms
- Penalized Likelihood Criteria, Minimum Description Length
- Statistical Risk Determination
- Computation
- Adaptive Annealing
- Summary

くロト (過) (目) (日)

2

Data

- Data: $(X_i, Y_i), i = 1, 2, ..., n$
- Inputs: explanatory variables X_i in a unit cube in R^d
- Random design: independent $X_i \sim P$
- Output: response variable Y_i in R
- Relationship: $Y_i = f(X_i) + \epsilon_i$
- Noise: ϵ_i independent $N(0, \sigma^2)$
- Function: f unknown

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

Non-linear Dictionaries

- Build functions f_m(x) = Σ_{j=1}^m c_jφ_d(θ_j, x) in the span of a dictionary Φ = {φ_d(θ, ·) : θ ∈ Θ}
- Product Bases

$$\phi_d(\theta, \mathbf{x}) = \phi_1(\theta_1, \mathbf{x}_1) \phi_1(\theta_2, \mathbf{x}_2) \cdots \phi_1(\theta_d, \mathbf{x}_d)$$

Ridge Bases (as in projection pursuit regression)

$$\phi_d(\theta, \mathbf{x}) = \phi_1(\theta_0 + \theta_1 \mathbf{x}_1 + \theta_2 \mathbf{x}_2 + \ldots + \theta_d \theta_1)$$

• Examples of activation functions $\phi(z) = \phi_1(z)$ for

- Perceptron networks: φ(z) = 1_{z>0}
- Sigmoidal networks: $e^{z}/(1+e^{\hat{z}})$
- Sinusoidal models: cos(z)
- Hinging hyperplanes: (z)₊
- Quadratic splines: 1, z, $(z)^2_+$
- Cubic splines: 1, z, z^2 , $(z)^3_+$
- Polynomials: (z)^q

- Response vector: $Y = (Y_i)_{i=1}^n$ in \mathbb{R}^n
- Dictionary vectors: $\Phi_{(n)} = \left\{ (\phi_d(\theta, X_i))_{i=1}^n : \theta \in \Theta \right\}$
- Sample squared norm: $||f||_{(n)}^2 = \frac{1}{n} \sum_{i=1}^n f^2(X_i)$
- Population squared norm: $||f||^2 = \int f^2(x)P(dx)$
- Normalized dictionary condition: $\|\phi\| \leq 1$ for $\phi \in \Phi$

<ロ> <同> <同> < 回> < 回> < 回> < 回> < 回> < 回</p>

Functions represented in span of non-linear dictionary

Variation of f w.r.t. Φ

$$V_{\Phi}(f) = \|f\|_{\Phi} = \inf\{V : f/V \in conv(\pm \Phi)\}$$

E.g. f(x) = ∑_j c_jφ(θ_j, x) has ||f||_Φ = ∑_j |c_j|, the ℓ₁ norm of the coefficients in representation of *f* in the span of Φ
E.g. f(x) = ∫ e^{iθ^Tx} f(θ) dθ (Fourier representation) Then ||f||_Φ is given by an L₁ spectral norm:

$$egin{aligned} V_{cos}(f) &= \int_{R^d} | ilde{f}(heta)| \, d heta \ V_{step}(f) &= \int | ilde{f}(heta)| \, \| heta\|_1 \, d heta \ V_{q-spline}(f) &= \int | ilde{f}(heta)| \, \| heta\|_1^{q+1} \, d heta \end{aligned}$$

Penalized Likelihood, Minimum Description Length

- Description Length divided by sample size:
 - $\frac{1}{n}$ [log 1/likelihood + Model Complexity Penalty]
- Control of number of terms:

$$\frac{\|Y - f_m\|_{(n)}^2}{2\sigma^2} + \frac{m}{n} \log N_{\Phi, 1/n}$$

where the penalty is typically of order ^{md}/_n log n
 Control of the l₁ norm of coefficients:

$$\frac{\|Y - f\|_{(n)}^2}{2\sigma^2} + \lambda_n \|f\|_{\Phi}$$
$$\lambda_n = \sqrt{\frac{2\log N_{\Phi,1/n}}{n}}$$

• Optimize the above criteria to yield estimators \hat{f} and $\hat{f}_{\hat{m}}$

Bounds on the population accuracy of function estimates when the true function is f^*

$$E\|\hat{f}_m - f^*\|^2 \le \|f_m - f^*\|^2 + \frac{cmd}{n}\log n$$

$$E\|\hat{f}_m - f^*\|^2 \le \min_m \{\|f_m - f^*\|^2 + \frac{cmd}{n}\log n\}$$

$$E\|\hat{f} - f^*\|^2 \le \min_f \{\|f - f^*\|^2 + \lambda_n \|f\|_{\Phi}\}$$

$$E\|\hat{f} - f^*\|^2 \le \|f^*\|_{\Phi} \sqrt{\frac{2d\log n}{n}}$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Relaxed Greedy Algorithm and LASSO

- Initialize $\hat{f}_0 = 0$. For step *k*, have the previous fit \hat{f}_{k-1} .
- Optimize the new term: Maximize the inner product with the residuals $res_i = Y_i \hat{f}_{k-1}(X_i)$ to obtain the new ϕ and its parameter vector $\hat{\theta}_k$

$$\operatorname{argmax}_{\theta} \frac{1}{n} \sum_{i=1}^{n} \operatorname{res}_{i} \phi(\theta, X_{i})$$

• Update the fit:

$$\hat{f}_k = \alpha \hat{f}_{k-1} + \beta \phi$$

- Obtain the coefficients α, β by either least squares or by ℓ₁ penalized least squares:
 - min $\|\mathbf{Y} \alpha \hat{f}_{k-1} \beta \phi_k\|^2$ for the relaxed greedy algorithm
 - min $||Y \alpha \hat{f}_{k-1} \beta \phi_k||^2 + \lambda_n (|\alpha|V_{k-1} + |\beta|)$ for ℓ_1 pen pursuit (LASSO)

Alternative: Forward Stepwise Regression or Orthogonal Matching Pursuit

- Initialize $\hat{f}_0 = 0$. For step *k*, have the previous fit \hat{f}_{k-1} .
- Optimize the new term: Maximize the inner product with the residuals $res_i = Y_i \hat{f}_{k-1}(X_i)$ to obtain the new ϕ and its parameter vector $\hat{\theta}_k$

$$\operatorname{argmax}_{\theta} \frac{1}{n} \sum_{i=1}^{n} \operatorname{res}_{i} \phi(\theta, X_{i})$$

- Alternative fit update: \hat{f}_k in span $\{\phi_1, \ldots, \phi_{k-1}, \phi_k\}$
- with coefficients achieving

$$\min_{\boldsymbol{c}_1, \boldsymbol{c}_2, \dots, \boldsymbol{c}_k} \|\boldsymbol{Y} - \sum_{j=1}^k \boldsymbol{c}_j \phi_j \|^2$$

Choice of final k:

- k = m fixed, e.g. *m* equal a const multiple of $\sqrt{n/(d \log n)}$
- $k = \hat{m}$ chosen by MDL with the relaxed greedy algorithm or forward stepwise regression
- May choose a larger final number of steps *m* between *m̂* and *n*, for implementation of LASSO with control on closeness to the solution

く 同 と く ヨ と く ヨ と

Bound the accuracy of greedy computation at step *m* For relaxed greedy and forward stepwise regression

$$\|Y - \hat{f}_m\|_{(n)}^2 \le \inf_{f} \{\|Y - f\|_{(n)}^2 + \frac{4\|f\|_{\Phi}^2}{m}$$

伺き くほき くほう

• Bound on accuracy of ℓ_1 penalized optimization at step *m* For ℓ_1 penalized greedy pursuit (implementation of LASSO)

$$\left[\|Y - \hat{f}_m\|_{(n)}^2 + \lambda \|\hat{f}_m\|_{\Phi}\right] \le \inf_f \left\{ \left[\|Y - f\|_{(n)}^2 + \lambda \|f\|_{\Phi}\right] + \frac{4\|f\|_{\Phi}^2}{m} \right\}$$

個 とくき とくきと

Computation bound with rough choices of ϕ)

- Choose ϕ to achieve $\frac{1}{n} \sum_{i=1}^{n} res_i \phi(X_i)$ at least $(1/C) J_{max}$
- For relaxed greedy and forward stepwise regression

$$\|Y - \hat{f}_m\|_{(n)}^2 \leq \inf_f \{\|Y - f\|_{(n)}^2 + \frac{4C^2 \|f\|_{\Phi}^2}{m}$$

• C > 1 is the approximate optimization factor (e.g. C = 2)

▲ 同 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ─ 臣

• maximize

$$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} r_i \phi(\theta, X_i)$$

- There may be exponentially many peaks for θ in R^{d+1}
- Exact optimization is NP hard for certain dictionaries Φ (e.g. the neural net case with the step activation function)
- Seek Choices of flexible non-linear dictionaries
 Φ = {φ(θ, x)} for which optimization to within a constant factor is possible by stochastic search strategies

・ 同 ト ・ ヨ ト ・ ヨ ト

Non-linear Optimization Step

maximize

$$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} r_i \phi(\theta, X_i)$$

- Seek Choices of flexible non-linear dictionaries
 Φ = {φ(θ, x)} for which optimization to within a constant factor is possible by stochastic search strategies
- Try running a Markov Chain, initialized with $\theta \sim p_0(\theta)$ or $p_{\epsilon}(\theta)$, targeting having long-run distribution

$$p_{\gamma}(\theta) = rac{1}{c_{\gamma}} \exp\{\gamma J(\theta)\}$$

Gain γ of order *d* log *d* would be sufficient for outcomes with J(θ) ≥ (1/2)J_{max} with high probability

◎ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ● ○ ○ ○ ○

Markov Chain Optimization

• FAILURE in high-dimensions of methods that rely on transitions designed for invariance

- Metropolis-Hastings
- Simulated Annealing
- Diffusion with gradient drift

$$d\theta(t) = Drift_t(\theta(t))dt + dB(t)$$

$$\theta(t + \delta) = \theta(t) + Drift_t(\theta(t)\delta + Z(t)\sqrt{\delta})$$

Gradient drift

$$Drift_t(heta) = rac{1}{2}
abla \log p_\gamma(heta) = rac{\gamma}{2}
abla J(heta)$$

• Time until distribution is near $p_{\gamma}(\theta)$ is exponential in $\gamma \times depth_J$

ヘロト ヘ戸ト ヘヨト ヘヨト

- SUCCESS for certain Φ of Adaptive Annealing
- Modify the Markov Chain so that the distribution tracks $p_{\gamma_t}(\theta)$ with increasing γ_t
 - A stochastic diffusion with modified drift accomplishes the desired evolution

$$d\theta(t) = Drift_t(\theta(t))dt + dB(t)$$

$$\theta(t+\delta) = \theta(t) + Drift_t(\theta(t)\delta + Z(t)\sqrt{\delta})$$

• The modified drift is a local gradient plus a simple global change function

$$Drift_t(\theta) = \frac{\gamma}{2} \nabla J(\theta) + change_t(\theta),$$

where we may set $change_t(\theta) = a_t \theta$

• Starting from $\gamma_0 = \epsilon$, it tracks

$$p_{\gamma_t}(\theta) = (1/c_{\gamma_t}) \exp\{\gamma_t J(\theta)\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

- Adaptive Annealing tracks $p_{\gamma_t}(\theta)$ with increasing γ_t
- Stochastic diffusion using drift of the form

$$Drift_t(\theta) = \frac{\gamma}{2} \nabla J(\theta) + change_t(\theta)$$

solves the Kolmogorov, Fokker-Planck PDE governing the relationship between the drift and the desired evolution of the marginal density of the state θ ,

$$\frac{\partial}{\partial t}\boldsymbol{p}_{\gamma_t}(\theta) = -\nabla^{\mathsf{T}} \big(\mathsf{Drift}_t(\theta) \boldsymbol{p}_{\gamma_t}(\theta) \big) + \frac{1}{2} \nabla^{\mathsf{T}} \nabla \boldsymbol{p}_{\gamma_t}(\theta)$$

when $\phi(\theta, x)$ is a ridge polynomial or ridge spline

$$\phi(\theta, \mathbf{x}) = \phi(\theta_0 + \theta_1 \mathbf{x}_1 + \dots \theta_d \mathbf{x}_d)$$

with $\phi(z)$ equal to $(z)^q$ or $(z)^q_+$ with $q \ge 2$.

• May set $change_t(\theta) = a_t \theta$ with $a_t = (\log \gamma_t)'/q$.

Clarification:

• For normalizeability, e.g. with q = 2, may use

$$p_{\gamma}(\theta) = \frac{1}{c_{\gamma}} exp\left\{\gamma\left[\frac{1}{n}\sum r_{i}\left(\theta^{T}X_{i}\right)_{+}^{2} - \lambda\|\theta\|^{2}\right]\right\}$$

Both (θ^TX_i)²₊ and ||θ||² have the property that they are recovered by taking the inner product of θ with their gradient. Likewise

$$\theta^T
abla J(heta) = q J(heta)$$

for

$$J(\theta) = \frac{1}{n} \sum_{i=1}^{n} r_i \left(\theta^T X_i \right)_+^q - \lambda \|\theta\|^q$$

 These identities determine the suitability of a multiple of θ as an ingredient in the drift to solve the PDE.

Refinement:

• More general change functions of the form

$$change_t(\theta) = a_t \theta + G_t(\theta) / p_{\gamma_t}(\theta)$$

where

$$abla G_t(heta) = c_t \, p_{\gamma_t}(heta)$$

also solve the PDE.

For instance the following is an acceptable choice

$$G_t(heta) = \int_0^{ heta_0} p_{\gamma_t}(ilde{ heta}_0, heta_1, \dots, heta_d) d heta_0$$

expressible as a sum of one-dimensional Gaussian integrals.

• These more general solutions provide more freedom in setting γ_t with favorable growth properties.

- Ridge splines with adaptive annealing
- Plus an information-theoretic criterion based on ℓ_1 penalized greedy pursuit
- Provides flexible high-dimensional function estimation that is fast and accurate

・ 同 ト ・ ヨ ト ・ ヨ ト