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Data

Data: (Xi , Yi), i = 1, 2, . . . , n

Inputs: explanatory variables Xi in a unit cube in Rd

Random design: independent Xi ∼ P

Output: response variable Yi in R

Relationship: Yi = f (Xi) + εi

Noise: εi independent N(0, σ2)

Function: f unknown
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Non-linear Dictionaries

Build functions fm(x) =
∑m

j=1 cjφd(θj , x) in the span of a
dictionary Φ = {φd(θ, ·) : θ ∈ Θ}
Product Bases

φd(θ, x) = φ1(θ1, x1) φ1(θ2, x2) · · ·φ1(θd , xd)

Ridge Bases (as in projection pursuit regression)

φd(θ, x) = φ1(θ0 + θ1x1 + θ2x2 + . . . + θdθ1)

Examples of activation functions φ(z) = φ1(z) for
Perceptron networks: φ(z) = 1{z>0}
Sigmoidal networks: ez/(1 + ez)
Sinusoidal models: cos(z)
Hinging hyperplanes: (z)+
Quadratic splines: 1, z, (z)2

+

Cubic splines: 1, z, z2, (z)3
+

Polynomials: (z)q
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Notation

Response vector: Y = (Yi)
n
i=1 in Rn

Dictionary vectors: Φ(n) =
{
(φd(θ, Xi))

n
i=1 : θ ∈ Θ

}
Sample squared norm: ‖f‖2

(n) = 1
n

∑n
i=1 f 2(Xi)

Population squared norm: ‖f‖2 =
∫

f 2(x)P(dx)

Normalized dictionary condition: ‖φ‖ ≤ 1 for φ ∈ Φ
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Functions represented in span of non-linear dictionary

Variation of f w.r.t. Φ

VΦ(f ) = ‖f‖Φ = inf{V : f/V ∈ conv(±Φ)}

E.g. f (x) =
∑

j cjφ(θj , x) has ‖f‖Φ =
∑

j |cj |, the `1 norm of
the coefficients in representation of f in the span of Φ

E.g. f (x) =
∫

ei θT x f̃ (θ) dθ (Fourier representation)
Then ‖f‖Φ is given by an L1 spectral norm:

Vcos(f ) =

∫
Rd
|̃f (θ)|dθ

Vstep(f ) =

∫
|̃f (θ)| ‖θ‖1 dθ

Vq−spline(f ) =

∫
|̃f (θ)| ‖θ‖q+1

1 dθ
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Penalized Likelihood, Minimum Description Length

Description Length divided by sample size:
1
n

[
log 1/likelihood + Model Complexity Penalty

]
Control of number of terms:

‖Y − fm‖2
(n)

2σ2 +
m
n

log NΦ,1/n

where the penalty is typically of order md
n log n

Control of the `l norm of coefficients:

‖Y − f‖2
(n)

2σ2 + λn‖f‖Φ

λn =

√
2 log NΦ,1/n

n

Optimize the above criteria to yield estimators f̂ and f̂m̂
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Statistical Risk Bounds

Bounds on the population accuracy of function estimates when
the true function is f ∗

E‖f̂m − f ∗‖2 ≤ ‖fm − f ∗‖2 +
cmd

n
log n

E‖f̂m̂ − f ∗‖2 ≤ min
m
{‖fm − f ∗‖2 +

cmd
n

log n}

E‖f̂ − f ∗‖2 ≤ min
f
{‖f − f ∗‖2 + λn‖f‖Φ}

E‖f̂ − f ∗‖2 ≤ ‖f ∗‖Φ

√
2d log n

n
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Relaxed Greedy Algorithm and LASSO

Initialize f̂0 = 0. For step k , have the previous fit f̂k−1.
Optimize the new term: Maximize the inner product with
the residuals resi = Yi − f̂k−1(Xi) to obtain the new φ and
its parameter vector θ̂k

argmaxθ

1
n

n∑
i=1

resi φ(θ, Xi)

Update the fit:
f̂k = αf̂k−1 + βφ

Obtain the coefficients α, β by either least squares or by `1
penalized least squares:

min ‖Y − αf̂k−1 − βφk‖2 for the relaxed greedy algorithm
min ‖Y − αf̂k−1 − βφk‖2 + λn

(
|α|Vk−1 + |β|

)
for `1 pen

pursuit (LASSO)
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Alternative: Forward Stepwise Regression or
Orthogonal Matching Pursuit

Initialize f̂0 = 0. For step k , have the previous fit f̂k−1.
Optimize the new term: Maximize the inner product with
the residuals resi = Yi − f̂k−1(Xi) to obtain the new φ and
its parameter vector θ̂k

argmaxθ

1
n

n∑
i=1

resi φ(θ, Xi)

Alternative fit update: f̂k in span{φ1, . . . , φk−1, φk}
with coefficients achieving

min
c1,c2,...,ck

‖Y −
k∑

j=1

cjφj‖2
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Stopping Criteria

Choice of final k :
k = m fixed, e.g. m equal a const multiple of

√
n/(d log n)

k = m̂ chosen by MDL with the relaxed greedy algorithm or
forward stepwise regression

May choose a larger final number of steps m between m̂
and n, for implementation of LASSO with control on
closeness to the solution
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Computation Bound

Bound the accuracy of greedy computation at step m

For relaxed greedy and forward stepwise regression

‖Y − f̂m‖2
(n) ≤ inf

f
{‖Y − f‖2

(n) +
4‖f‖2

Φ

m
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Computation Bound (`1 penalized case)

Bound on accuracy of `1 penalized optimization at step m

For `1 penalized greedy pursuit (implementation of LASSO)

[
‖Y−f̂m‖2

(n)+λ‖f̂m‖Φ

]
≤ inf

f

{[
‖Y − f‖2

(n) + λ‖f‖Φ

]
+

4‖f‖2
Φ

m

}
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Computation bound with rough choices of φ)

Accuracy of computation with rough choice of φ each step

Choose φ to achieve 1
n

∑n
i=1 resiφ(Xi) at least (1/C)Jmax

For relaxed greedy and forward stepwise regression

‖Y − f̂m‖2
(n) ≤ inf

f
{‖Y − f‖2

(n) +
4C2‖f‖2

Φ

m

C > 1 is the approximate optimization factor (e.g. C = 2)
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Non-linear Optimization Step

maximize

J(θ) =
1
n

n∑
i=1

ri φ(θ, Xi)

There may be exponentially many peaks for θ in Rd+1

Exact optimization is NP hard for certain dictionaries Φ
(e.g. the neural net case with the step activation function)

Seek Choices of flexible non-linear dictionaries
Φ = {φ(θ, x)} for which optimization to within a constant
factor is possible by stochastic search strategies
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Non-linear Optimization Step

maximize

J(θ) =
1
n

n∑
i=1

ri φ(θ, Xi)

Seek Choices of flexible non-linear dictionaries
Φ = {φ(θ, x)} for which optimization to within a constant
factor is possible by stochastic search strategies
Try running a Markov Chain, initialized with θ ∼ p0(θ) or
pε(θ), targeting having long-run distribution

pγ(θ) =
1
cγ

exp{γ J(θ)}

Gain γ of order d log d would be sufficient for outcomes
with J(θ) ≥ (1/2)Jmax with high probability
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Markov Chain Optimization

FAILURE in high-dimensions of methods that rely on
transitions designed for invariance

Metropolis-Hastings
Simulated Annealing
Diffusion with gradient drift

dθ(t) = Driftt(θ(t))dt + dB(t)

θ(t + δ) = θ(t) + Driftt(θ(t)δ + Z (t)
√

δ

Gradient drift

Driftt(θ) =
1
2
∇ log pγ(θ) =

γ

2
∇J(θ)

Time until distribution is near pγ(θ) is exponential in
γ × depthJ
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Optimization by Adaptive Annealing

SUCCESS for certain Φ of Adaptive Annealing
Modify the Markov Chain so that the distribution tracks
pγt (θ) with increasing γt

A stochastic diffusion with modified drift accomplishes the
desired evolution

dθ(t) = Driftt(θ(t))dt + dB(t)

θ(t + δ) = θ(t) + Driftt(θ(t)δ + Z (t)
√

δ

The modified drift is a local gradient plus a simple global
change function

Driftt(θ) =
γ

2
∇J(θ) + changet(θ),

where we may set changet(θ) = at θ

Starting from γ0 = ε, it tracks

pγt (θ) = (1/cγt ) exp{γt J(θ)}
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Optimization by Adaptive Annealing

Adaptive Annealing tracks pγt (θ) with increasing γt

Stochastic diffusion using drift of the form

Driftt(θ) =
γ

2
∇J(θ) + changet(θ)

solves the Kolmogorov, Fokker-Planck PDE governing the
relationship between the drift and the desired evolution of
the marginal density of the state θ,

∂

∂t
pγt (θ) = −∇T (

Driftt(θ)pγt (θ)
)

+
1
2
∇T∇pγt (θ)

when φ(θ, x) is a ridge polynomial or ridge spline

φ(θ, x) = φ(θ0 + θ1x1 + . . . θdxd)

with φ(z) equal to (z)q or (z)q
+ with q ≥ 2.

May set changet(θ) = atθ with at = (log γt)
′/q.

Andrew Barron Flexible High-Dimensional Non-Linear Function Estimation



Optimization by Adaptive Annealing

Clarification:
For normalizeability, e.g. with q = 2, may use

pγ(θ) =
1
cγ

exp
{

γ

[
1
n

∑
ri (θ

T Xi)
2
+ − λ‖θ‖2

]}
Both (θT Xi)

2
+ and ‖θ‖2 have the property that they are

recovered by taking the inner product of θ with their
gradient. Likewise

θT∇J(θ) = q J(θ)

for

J(θ) =
1
n

n∑
i=1

ri (θ
T Xi)

q
+ − λ‖θ‖q

These identities determine the suitability of a multiple of θ
as an ingredient in the drift to solve the PDE.
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Optimization by Adaptive Annealing

Refinement:
More general change functions of the form

changet(θ) = atθ + Gt(θ)/pγt (θ)

where
∇Gt(θ) = ct pγt (θ)

also solve the PDE.
For instance the following is an acceptable choice

Gt(θ) =

∫ θ0

0
pγt (θ̃0, θ1, . . . , θd)dθ0

expressible as a sum of one-dimensional Gaussian
integrals.
These more general solutions provide more freedom in
setting γt with favorable growth properties.
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Summary

Ridge splines with adaptive annealing

Plus an information-theoretic criterion based on `1
penalized greedy pursuit

Provides flexible high-dimensional function estimation that
is fast and accurate
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