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@ Data, Model

@ Combining Non-linearly Parameterized Terms

@ Penalized Likelihood Criteria, Minimum Description Length
@ Statistical Risk Determination

@ Computation

@ Adaptive Annealing

@ Summary
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Data: (X;, Yi),i=1,2,...,n

Inputs: explanatory variables X; in a unit cube in RY
Random design: independent X; ~ P

Output: response variable Y;in R

Relationship: Y; = f(X}) + €;

Noise: ¢; independent N(0, o2)

Function: f unknown
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Non-linear Dictionaries

@ Build functions fy(x) = Zj”;1 Cjod(0;, x) in the span of a
dictionary ® = {¢4(0,-) : 0 € ©}
@ Product Bases

Ga(0, x) = ¢1(61, X1) p1(02, x2) - - - $1(0q, Xq)
@ Ridge Bases (as in projection pursuit regression)

b0, X) = ¢1(0p + O1X1 + 02X + ... + 0g01)

@ Examples of activation functions ¢(z) = ¢1(z) for
e Perceptron networks: ¢(z) = 1;z-0)

Sigmoidal networks: e7/(1 + €7)

Sinusoidal models: cos(z)

Hinging hyperplanes: (z)

Quadratic splines: 1, z, (z)2

Cubic splines: 1, z, 22, (2)3

Polynomials: (z)9
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Response vector: Y = (Y;)7, in R"
Dictionary vectors: &, = {(¢q(6, X;))7_; : 6 € ©}

Sample squared norm: [|f[|2) = £ >, f2(X))

Population squared norm: HfHZ [ f2(x)P(dx)

Normalized dictionary condition: ||¢|| < 1 for ¢ € ¢
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Functions represented in span of non-linear dictionary

@ Variation of fw.r.t. ¢
Vo(f) = ||flle =inf{V : f/V € conv(+®)}

® E.g. f(x) =>_;¢é(0;, x) has | flle = >_;|cj, the ¢4 norm of
the coefficients in representation of f in the span of ¢

e E.g. f(x fe’9 Xf (0) dé (Fourier representation)
Then ||qu> is given by an L; spectral norm:

Veos(1) = [ [7(0) 00

Verepl) = / #6)] (6] do

quspline(f) = / |?(9)\ ||9H?+1 do
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Penalized Likelihood, Minimum Description Length

@ Description Length divided by sample size:
1T log 1/likelihood + Model Complexity Penalty |
@ Control of number of terms:
H Y - me%n)

m
5,2 T log N 1/n

where the penalty is typically of order de log n
@ Control of the ¢, norm of coefficients:

2
” Y — f”(n)
202

/2109 N 1/n
)\n = T

@ Optimize the above criteria to yield estimators f and ?m

Anllflle
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Statistical Risk Bounds

Bounds on the population accuracy of function estimates when
the true function is f*

~ “ . cmd
Ellfm — 1% < llfm = £*[° + ==logn

E

o I < minflln — 112 + “7 og n}

E[F =2 < min{|[f = |2+ Anl o}

2 . 2dlogn
ENF = P2 < [1Ffloy =50
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Relaxed Greedy Algorithm and LASSO

e Initialize f, = 0. For step k, have the previous fit f,_1.

@ Optimize the new term: Maximize the inner product with
the residuals res; = Y; — fx_1(X;) to obtain the new ¢ and
its parameter vector 6y

n
argmax, 15 Z res; ¢(0, Xj)

i=1

@ Update the fit: A .
fk = afk_1 + B¢
@ Obtain the coefficients «, (3 by either least squares or by ¢4
penalized least squares:
e min|Y — af_i — B¢k|? for the relaxed greedy algorithm
o min||Y — afi_1 — Bkl + An(|ar| Vs + |3]) for ¢4 pen
pursuit (LASSO)
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Alternative: Forward Stepwise Regression or

Orthogonal Matching Pursuit

@ Initialize f, = 0. For step k, have the previous fit f,_1.

@ Optimize the new term: Maximize the inner product with
the residuals res; = Y; — ?;H (X;) to obtain the new ¢ and
its parameter vector 4

1 n
argmax, — Z res; ¢(6, X;)
i=1

e Alternative fit update: % in span{¢1, ..., dx_1, bk}
@ with coefficients achieving

C1,C2;.--,

k
; 2
min o |Y — Z oo
j=1
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Stopping Criteria

Choice of final k:
@ k = mfixed, e.g. m equal a const multiple of /n/(dlog n)
@ k = mchosen by MDL with the relaxed greedy algorithm or
forward stepwise regression
@ May choose a larger final number of steps m between m

and n, for implementation of LASSO with control on
closeness to the solution
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Computation Bound

@ Bound the accuracy of greedy computation at step m

For relaxed greedy and forward stepwise regression

; j 4|13
1Y = FallZy < inf{llY — Iy + =
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Computation Bound (¢4 penalized case)

@ Bound on accuracy of /1 penalized optimization at step m

For ¢4 penalized greedy pursuit (implementation of LASSO)

) ) | allilF
(1Y =Fl[Ea)+Allfmllo] < '?f{[HY— flitsy + Alflle] + =2

Andrew Barron Flexible High-Dimensional Non-Linear Function Estimation



Computation bound with rough choices of ¢)

@ Accuracy of computation with rough choice of ¢ each step
@ Choose ¢ to achieve %27:1 resio(X;) at least (1/C)Jmax
@ For relaxed greedy and forward stepwise regression

4C| |13

T2 : 2
1Y = FallZy < inf{llY — Ay +

@ C > 1 is the approximate optimization factor (e.g. C = 2)
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Non-linear Optimization Step

@ maximize

IO = 1371600
i=1

@ There may be exponentially many peaks for § in R9*"

@ Exact optimization is NP hard for certain dictionaries ¢
(e.g. the neural net case with the step activation function)

@ Seek Choices of flexible non-linear dictionaries
o = {¢(0, x)} for which optimization to within a constant
factor is possible by stochastic search strategies
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Non-linear Optimization Step

@ maximize

JO) = -3 10(0.X)
i=1

@ Seek Choices of flexible non-linear dictionaries
o = {¢(0, x)} for which optimization to within a constant
factor is possible by stochastic search strategies

@ Try running a Markov Chain, initialized with 6 ~ py(6) or
p.(9), targeting having long-run distribution

pi(0) = - el 0)}

@ Gain v of order dlog d would be sufficient for outcomes
with J(6) > (1/2)Jmax With high probability
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Markov Chain Optimization

@ FAILURE in high-dimensions of methods that rely on
transitions designed for invariance

e Metropolis-Hastings
e Simulated Annealing
o Diffusion with gradient drift

do(t) = Drift,(6(t))dt + dB(t)

O(t + 6) = 6(t) + Drift(8(t)6 + Z(t)Vs
e Gradient drift

Drift,(0) = %v log p-,(0) = %VJ(@)

@ Time until distribution is near p,(¢) is exponential in
~ x depthy
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Optimization by Adaptive Annealing

@ SUCCESS for certain ¢ of Adaptive Annealing
@ Modify the Markov Chain so that the distribution tracks
p~,(0) with increasing ~;
e A stochastic diffusion with modified drift accomplishes the
desired evolution

do(t) = Drift(6(t))dt + dB(t)

O(t + 8) = 6(t) + Drift,(6(t)6 + Z(t)Vd

e The modified drift is a local gradient plus a simple global
change function

Drift;(0) = %VJ(H) + change;(0),

where we may set change:(0) = a; 0
@ Starting from o = e, it tracks

p"/t(a) =(1 /CW) exp{~tJ(0)}
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Optimization by Adaptive Annealing

@ Adaptive Annealing tracks p.,(#) with increasing ~;
@ Stochastic diffusion using drift of the form

Drifty(0) = %VJ(@) + changeq(6)

solves the Kolmogorov, Fokker-Planck PDE governing the
relationship between the drift and the desired evolution of
the marginal density of the state 6,

0 . 1
ap%(e) = —VT(DI’Iﬂ}(Q)p%(Q)) + EVTVID%(Q)

when ¢(0, x) is a ridge polynomial or ridge spline
¢(0,x) = ¢(0o + 01x1 + ... 0gXq)
with ¢(z) equal to (2)9 or (z) with g > 2.
@ May set changei(0) = a:f with a; = (log~:)'/q.
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Optimization by Adaptive Annealing

Clarification:
@ For normalizeability, e.g. with g = 2, may use

p.0) = 5o {1 S n 07X Al |

@ Both (7 X))2 and 0|2 have the property that they are
recovered by taking the inner product of § with their
gradient. Likewise

07vJ(0) = qJ(0)

for
n

1 T
S0 =5 07X = Al
1=
@ These identities determine the suitability of a multiple of 6
as an ingredient in the drift to solve the PDE.
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Optimization by Adaptive Annealing

Refinement:
@ More general change functions of the form

change(9) = aif) + G(0)/p,(0)
where
VGi(0) = ¢ty (9)
also solve the PDE.
@ For instance the following is an acceptable choice

0o N
GI(Q): 0 p’Yt(607617"‘79d)d00

expressible as a sum of one-dimensional Gaussian
integrals.

@ These more general solutions provide more freedom in
setting ~+ with favorable growth properties.
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@ Ridge splines with adaptive annealing

@ Plus an information-theoretic criterion based on /4
penalized greedy pursuit

@ Provides flexible high-dimensional function estimation that
is fast and accurate
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