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Information and Statistics

Topics in the abstract from which I make a selection
Information Theory and Inference:

Flexible high-dimensional function estimation
Neural nets: sigmoidal and sinusoidal activation functions
Approximation and estimation bounds
Minimum description length principle
Penalized likelihood risk bounds and minimax rates
Computational strategies

Achieving Shannon Capacity:
Communication by regression
Sparse superposition coding
Adaptive successive decoding
Rate, reliability, and computational complexity

Information Theory and Probability:
General entropy power inequalities
Entropic central limit theorem and its monotonicity
Monotonicity of relative entropy in Markov chains
Monotonicity of relative entropy in statistical mechanics
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Information and Statistics

Information Theory and Inference:
Flexible high-dimensional function estimation
Neural nets: sigmoidal and sinusoidal activation functions
Approximation and estimation bounds
Minimum description length principle
Penalized likelihood risk bounds and minimax rates
Computational strategies
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Plan for Information and Inference

Setting
Univariate & muntivariate polynomials, sinusoids, sigmoids
Fit to training data
statistical risk is the error of generalization to new data

The challenge of high-dimensional function estimation
Estimation failure of rigid approximation models in high dim
Computation difficulities of flexible models in high dim

Flexible approximation
by stepwise subset selection
by optimization of parameterized basis functions

Approximation bounds
Relate error to number of terms

Information-theoretic risk bounds
Relate error to number of terms and sample size

Computational challenge
Constructing an optimization path
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The Problem

From observational or experimental data, relate a response
variableY to several explanatory variablesX1,X2, . . . ,Xd

Common task throughout science and engineering

Central to the "Scientific Method"

Aspects of this problem are variously called:
Statistical regression, prediction, response surface estimation,
analysis of variance, function fitting, function approximation,
nonparametric estimation, high-dimensional statistics, data
mining, machine learning, computational learning, pattern
recognition, artificial intelligence, cybernetics, artificial neural
networks, deep learning
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Dimensionality

The blessing and the curse of dimensionality

With increasing number of variables d there is an
exponential growth in the number of distinct terms that can
be combined in modeling the function

Larger number of relevant variables d allows in principle for
better approximation to the response

Large d might lead to a need for exponentially large
number of observations n or to a need for exponentially
large computation time

Under what conditions can we take advantage of the
blessing and overcome the curse.
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Example papers for some of what is to follow

Papers illustrating my background addressing these questions
of high dimensionality (available from www.stat.yale.edu)

A. R. Barron, R. L. Barron (1988). Statistical learning
networks: a unifying view. Computing Science & Statistics:
Proc. 20th Symp on the Interface, ASA, p.192-203.
A. R. Barron (1993). Universal approximation bounds for
superpositions of a sigmoidal function. IEEE Transactions
on Information Theory, Vol.39, p.930-944.
A. R. Barron, A. Cohen, W. Dahmen, R. DeVore (2008).
Approximation and learning by greedy algorithms. Annals
of Statistics, Vol.36, p.64-94.
A.R. Barron, C. Huang, J. Q. Li and Xi Luo (2008). MDL
principle, penalized Likelihood, and statistical risk. Proc.
IEEE Information Theory Workshop, Porto, Portugal,
p.247-257. Also Feschrift for Jorma Rissanen. Tampere
Univ. Press, Finland.
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Data Setting

Data: (X i ,Yi), i = 1,2, . . . ,n

Inputs: explanatory variable vectors

X i = (Xi,1,Xi,2, . . . ,Xi,d )

Domain: Either a unit cube in Rd or all of Rd

Random design: independent X i ∼ P

Output: response variable Yi in R
Moment conditions, with Bernstein constant c

Relationship: E [Yi |X i ] = f (X i) as in:
Perfect observation: Yi = f (X i )

Noisy observation: Yi = f (Xi ) + εi with εi indep N(0, σ2)

Classification: Y ∈ {0,1} with f (X ) = P[Y = 1|X ]

Function: f (x) unknown
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Univariate function approximation: d = 1

Basis functions for series expansion

φ0(x), φ1(x), . . . , φK (x), . . .

Polynomial basis (with degree K )

1, x , x2, . . . , xK

Sinusoidal basis (with period L, and with K = 2k ),

1, cos(2π(1/L)x), sin(2π(1/L)x), . . . , cos(2π(k/L)x), sin(2π(k/L)x)

Piecewise constant on [0,1]

1{x≥0},1{x≥1/K},1{x≥2/K}, . . . ,1{x≥1}

Other spline bases and wavelet bases
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Univariate function approximation: d = 1

Standard 1-dim approximation models

Project to the linear span of the basis

Rigid form (not flexible), with coefficients ck adjusted to fit
the response,

fK (x) =
K∑

k=0

ck φk (x).

Flexible form, with a subset k1 . . . km chosen to best fit the
response, for a given number of terms m

m∑
j=1

cj φkj (x).

Fit by all-subset regression (if m and K are not too large) or
by forward stepwise regression, selecting from the
dictionary Φ = {φ0, φ1, . . . , φK}
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Multivariate function approximation: d > 1

Multivariate product bases:

φk (x) = φk1,k2,...,kd (x1, x2, . . . , xd )

= φk1(x1)φk2(x2) · · ·φkd (xd )

Rigid approximation model

K∑
k1=0

K∑
k2=0

· · ·
K∑

kd =0

ck φk (x)

Exponential size: (K + 1)d terms in the sum
Requires exponentially large sample size n >> (K + 1)d

for accurate estimation
Statistically and computationally problematic
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Flexible multivariate function approximation: d > 1

BY SUBSET SELECTION:
A subset k1 . . . km is chosen to fit the response, with a
given number of terms m

m∑
j=1

cj φk j
(x)

Full forward stepwise selection:
computationally infeasible for large d because the
dictionary is exponentially large, of size (K + 1)d .

Adhoc stepwise selection:
SAS stepwise polynomials.
Friedman MARS, Barron-Xiao MAPS, Ann. Statist. 1991.
Each step search only incremental modification of terms.
Manageable number of choices mKd each step.
Computationally fast, not known if it approximates well.
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Flexible multivariate function approximation: d > 1

By internally parameterized models & nonlinear least squares
Fit functions fm(x) =

∑m
j=1 cjφ(x , θ) in the span of a

parameterized dictionary Φ = {φ(·, θ) : θ ∈ Θ}
Product bases:

using continuous powers, frequencies or thresholds

φ(x , θ) = φ1(x1, θ1)φ1(x2, θ2) · · ·φ1(xd , θd )

Ridge bases: as in projection pursuit regression models,
sinusoidal models, and single-hidden-layer neural nets:

φ(x , θ) = φ1(θ0 + θ1x1 + θ2x2 + . . .+ θdxd )

Internal parameter vector θ of dimension d +1.
Univariate function φ(z) = φ1(z) is the activation function
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Building Non-linear Dictionaries

Examples of activation functions φ(z)

Perceptron networks: 1{z>0} or sgn(z)

Sigmoidal networks: ez/(1+ez) or tanh(z)

Sinusoidal models: cos(z)

Hinging hyperplanes: (z)+

Quadratic splines: 1, z, (z)2
+

Cubic splines: 1, z, z2, (z)3
+

Polynomials: (z)q
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Notation

Response vector: Y = (Yi)
n
i=1 in Rn

Dictionary vectors: Φ(n) =
{

(φ(X i , θ))n
i=1 : θ ∈ Θ

}
⊂ Rn

Sample squared norm: ‖f‖2(n) = 1
n
∑n

i=1 f 2(X i)

Population squared norm: ‖f‖2 =
∫

f 2(x)P(dx)

Normalized dictionary condition: ‖φ‖ ≤ 1 for φ ∈ Φ
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Flexible m−term nonlinear optimization

Impractical one-shot optimization

Sample version

f̂m achieves min
(θj ,cj )

m
j=1

‖Y −
m∑

j=1

cj φθj
‖2(n)

Population version

fm achieves min
(θj ,cj )

m
j=1

‖f −
m∑

j=1

cj φθj
‖2

Optimization of (θj , cj)
m
j=1 in R(d+2)m.
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Flexible m−term nonlinear optimization

GREEDY OPTIMIZATIONS

Step 1: Choose c1, θ1 to achieve min ‖Y − cφθ‖2(n)

Step m > 1: Arrange

f̂m = α f̂m−1 + c φ(x , θm)

with αm, cm, θm chosen to achieve

min
α,c,θ
‖Y − α f̂m−1 − c φθ‖2(n).

Also acceptable, with resi = Yi − f̂m−1(X i),

Choose θm to achieve maxθ
∑n

i=1 resi φ(X i , θ)

Reduced dimension of the search space (still problematic?)

Foward stepwise selection of Sm = {φθ1
, . . . , φθm

}. Given
Sm−1, combine the terms to achieve

min
θ

d(Y , span{φθ1
, . . . , φθm−1

, φθ})
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Basic m−term approximation and computation bounds

For either one-shot or greedy approximation
(B. IT 1993, Lee et al IT 1995)

Population version:

‖f − fm‖ ≤
‖f‖Φ√

m

and moreover

‖f − fm‖2 ≤ inf
g

{
‖f − g‖2 +

2‖g‖2Φ
m

}
Sample version:

‖Y − f̂m‖2(n) ≤ ‖Y − f‖2(n) +
2‖f‖2Φ

m

where ‖f‖Φ is the variation of f with respect to Φ
(as will be defined on the next slide).
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`1 norm on coefficients in representation of f

Consider the range of a neural net, expressed via the
bound,∣∣∑

j

cj sgn(θ0,j + θ1,jx1 + . . .+ θd ,jxd )
∣∣ ≤∑

j

|cj |

equality if x is in polygon where sgn(θj · x) = sgn(cj) for all j

Motivates the norm

‖f‖Φ = lim
ε→0

inf
{∑

j

|cj | : ‖
∑

j

cjφθj
− f‖ ≤ ε

}
called the variation of f with respect to Φ (B. 1991)

‖f‖Φ = VΦ(f ) = inf{V : f/V ∈ closure(conv(±Φ))}

It appears in the bound ‖f − fm‖ ≤ ‖f‖Φ√
m
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`1 norm on coefficients in representation of f

Finite sum representations, f (x) =
∑

j cjφ(x , θj). Variation
‖f‖Φ =

∑
j |cj |, which is the `1 norm of the coefficients in

representation of f in the span of Φ

Infinite integral representation f (x) =
∫

ei θ·x f̃ (θ) dθ
(Fourier representation), for x in a unit cube. The variation
‖f‖Φ is bounded by an L1 spectral norm:

‖f‖cos =

∫
Rd
|̃f (θ)|dθ

‖f‖step ≤
∫
|̃f (θ)| ‖θ‖1 dθ

‖f‖q−spline ≤
∫
|̃f (θ)| ‖θ‖q+1

1 dθ

As we said, this ‖f‖Φ appears in the numerator of the
approximation bound.
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Statistical Risk

The population accuracy of function estimated from sample

Statistical risk E‖f̂m − f‖2 = E(f̂m(X )− f (X ))2

Expected squared generalization error on new X ∼ P
of the estimator trained on the data (X i ,Yi)

n
i=1

Minimax optimal risk bound, via information theory

E‖f̂m − f‖2 ≤ ‖fm − f‖2 + c
m
n

log N(Φ, δn).

Here log N(Φ, δn) is the metric entropy of Φ at δn = 1/n ;
with Φ of metric dimension d , it is of order d log(1/δn), so

E‖f̂m − f‖2 ≤
‖f‖2Φ

m
+

cmd
n

log n

Need only n >> md rather than n >> (K + 1)d .

Best bound is 2‖f‖Φ

√
cd
n log n at m∗ = ‖f‖Φ

√
n/cd log n
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Adaptation

Adapt network size m and choice of internal parameters

Minimum Description Length Principle leads to
Complexity penalized least squares criterion.
Let m̂ achieve

min
m

{
‖Y − f̂m‖2(n) + 2c

m
n

log N(Φ, δn)
}

Information-theoretic risk bound

E‖f̂m̂ − f‖2 ≤ min
m

{
‖fm − f‖2 + 2c

m
n

log N(Φ, δn)
}

Performs as well as if the best m∗ were known in advance.
‖f‖2

Φ/m replaces ‖fm − f‖2 in the greedy case.

`1 penalized least squares
Achieves the same risk bound
Retains the MDL interpretation (B, Huang,Li,Luo,2008)
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Confronting the computational challenge

Greedy search
Reduces dimensionality of optimization from md to just d
Obtain a current θm achieving within a constant factor of the
maximum of

Jn(θ) =
1
n

n∑
i=1

resi φ(X i , θ).

This surface can still have many maxima.
We might get stuck at an undesirably low local maximum.

New computational strategies:
1 A special case in which the set of maxima can be identified.

2 Optimization path via solution to a pde for ridge bases.
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A special case in which the maxima can be identified

Insight from a special case:
Sinusoidal dictionary: φ(x , θ) = e−iθ·x

Gaussian design: X i ∼ Normal(0, τ I )
Target function: f (x) =

∑mo
j=1 cj eiαj ·x

For step 1, with large n, the objective function becomes
near its population counterpart

J(θ) = E
[
f (X )e−iθ·X ] =

mo∑
j=1

cj E
[
eiαj ·X e−iθ·X ]

which simplifies to
mo∑
j=1

cj e−(τ/2)‖αj−θ‖2
.

For large τ it has precisely mo maxima, one at each of the
αj in the target function.
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Optimization path for bounded ridge bases

More general approach to seek approximation optimization of

J(θ) =
n∑

i=1

ri φ(θT X i)

Adaptive Annealing:
recent & current work with Luo, Chatterjee, Klusowski
Sample θt from the evolving density

pt (θ) = e t J(θ)−ct p0(θ)

along a sequence of values of t from 0 to tfinal

use tfinal of order (d log d)/n
Initialize with θ0 drawn from a product prior p0(θ), such as
normal(0, I ) or a product of standard Cauchy
Starting from the random θ0 define the optimization path θt
such that its distribution tracks the target density pt
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Optimization path

Adaptive Annealing: Arrange θt from the evolving density

pt (θ) = etJ(θ)−ct p0(θ)

with θ0 drawn from p0(θ)

State evolution with vector-valued change function Gt (θ):

θt+h = θt − h Gt (θt )

or better: θt+h is the solution to

θt = θt+h + h Gt (θt+h),

with small step-size h, such that θ + h Gt (θ) is invertible
with a positive definite Jacobian, and solves equations for
the evolution of pt (θ).
As we will see there are many such change functions
Gt (θ), though not all are nice.
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Nice change functions Gt

A function on Rd is said to be nice if the logarithm of its
magnitute is bounded by an expression of order
logarithmic in d and in 1 + ‖θ‖2 .

A vector-valued function is said to be nice if its norm is
nice.

For computationally feasibility and distributional validity,
seek a nice change function Gt satifying the upcoming
density evolution rule.
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Solve for the change Gt to track the density pt

Density evolution: by the Jacobian rule

pt+h(θ) = pt
(
θ + h Gt (θ)

)
det
(
I + h∇GT

t (θ)
)

Up to terms of order h

pt+h(θ) = pt (θ) + h
[
(Gt (θ))T ∇pt (θ) + pt (θ)∇T Gt (θ)

]
In agreement for small h with the partial diff equation

∂

∂t
pt (θ) = ∇T [Gt (θ)pt (θ)

]
The right side is GT

t (θ)∇pt (θ) + pt (θ)∇T Gt (θ). Dividing by
pt (θ) it is expressed in the log density form

∂

∂t
log pt (θ) = ∇T Gt (θ) + GT

t (θ)∇ log pt (θ)
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Candidate solutions

Solution of smallest L2 norm of Gt (θ)pt (θ) at a specific t .

Let Gt (θ)pt (θ) = ∇b(θ), gradient of a function b(θ)

Let f (θ) = ∂
∂t pt (θ)

Set green(θ) proportional to 1/‖θ‖d−2, harmonic for θ 6= 0.

The partial diff equation becomes the Poisson equation:

∇T∇b(θ) = f (θ)

Solution
b(θ) = (f ∗ green)(θ)
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Candidate solutions

Solution of smallest L2 norm of Gt (θ)pt (θ) at a specific t

Let Gt (θ)pt (θ) = ∇b(θ), gradient of a function b(θ)

Let f (θ) = ∂
∂t pt (θ)

Set green(θ) proportional to 1/‖θ‖d−2, harmonic for θ 6= 0.

The partial diff equation becomes the Poisson equation:

∇T∇b(θ) = f (θ)

Solution, using ∇green(θ) = cd θ/‖θ‖d

∇b(θ) = (f ∗ ∇green)(θ)
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Candidate solutions

Solution of smallest L2 norm of Gt (θ)pt (θ) at a specific t

Let Gt (θ)pt (θ) = ∇b(θ), gradient of a function b(θ)

Let f (θ) = ∂
∂t pt (θ)

Set green(θ) proportional to 1/‖θ‖d−2, harmonic for θ 6= 0.

The partial diff equation becomes the Poisson equation:

∇T [Gt (θ)pt (θ)] = f (θ)

Solution, using ∇green(θ) = cd θ/‖θ‖d

Gt (θ)pt (θ) = (f ∗ ∇green)(θ)
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Candidate solutions

Solution of smallest L2 norm of Gt (θ)pt (θ) at a specific t

Let Gt (θ)pt (θ) = ∇b(θ), gradient of a function b(θ)

Let f (θ) = ∂
∂t pt (θ)

Set green(θ) proportional to 1/‖θ‖d−2, harmonic for θ 6= 0.

The partial diff equation becomes the Poisson equation:

∇T [Gt (θ)pt (θ)] = f (θ)

Solution, using ∇green(θ) = cd θ/‖θ‖d

Gt (θ) =
(f ∗ ∇green)(θ)

pt (θ)

Not nice !
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Candidate solutions

Perhaps the ideal solution is one of smallest L2 norm of Gt (θ)

It has Gt (θ) = ∇bt (θ) equal to the gradient of a function

The pde in log density form

∇T Gt (θ) + GT
t (θ)∇ log pt (θ) =

∂

∂t
log pt (θ)

then becomes an elliptic pde in bt (θ) for fixed t.
With ∇ log pt (θ) and ∂

∂t log pt (θ) arranged to be bounded,
the solution may exist and be nice.
But explicit solution to this elliptic pde is not available
(except perhaps numerically in low dim cases).
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Candidate solutions

Ideal solution of smallest L2 norm of Gt (θ)

It has Gt (θ) = ∇bt (θ) equal to the gradient of a function

The pde in log density form

∇T Gt (θ) + GT
t (θ)∇ log pt (θ) =

∂

∂t
log pt (θ)

then becomes an elliptic pde in bt (θ) for fixed t.
With ∇ log pt (θ) and ∂

∂t log pt (θ) arranged to be bounded,
the solution may exist and be nice.
But explicit solution to this elliptic pde is not available
(except perhaps numerically in low dim cases)
To achieve explicit solution give up Gt (θ) being a gradient
For ridge bases, we decompose into a system of first order
differential equations and integrate
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Candidate solution by decomposition of ridge sum

Optimize J(θ) =
∑n

i=1 ri φ(X T
i θ)

Target density pt (θ) = e tJ(θ)−ct p0(θ) with c′t = Ept [J]

The time score is ∂
∂t log pt (θ) = J(θ)− Ept [J]

Specialize the pde in log density form

∇T Gt (θ) + GT
t (θ)∇ log pt (θ) = J(θ)− Ept [J]

The right side takes the form of a sum∑
ri [φ(X T

i θ)− ai ].

Likewise ∇ log pt (θ) = t ∇J(θ) +∇ log p0(θ) is a sum

t
∑

ri Xi φ
′(X T

i θ).

Here we surpress the role of the prior. It can be accounted by
appending d prior observations with columns of the identity as
extra input vectors along with a multiple of the score of the
marginal of the prior in place of φ′.
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Approximate solution for ridge sums

Seek approximate solution of the form

Gt (θ) =
∑ xi

‖xi‖2
gi(u)

with u = (u1, . . . ,un) evaluated at ui = X T
i θ, for which

∇T Gt (θ) =
∑

i

∂

∂ui
gi(u) +

∑
i,j:i 6=j

xT
i xj

‖xi‖2
∂

∂uj
gi(u)

Can we ignore the coupling in the derivative terms?
xT

j xi/‖xi‖2 are small for uncorrelated designs, large d .
Match the remaining terms in the sums to solve for gi(u)

Arrange gi(u) to solve the differential equations

∂

∂ui
gi(u) + t gi(u)

[
riφ
′(ui) + resti

]
= ri

[
φ(ui)−ai

]
where resti =

∑
j 6=i rj φ

′(uj)xT
j xi/‖xi‖2.
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Integral form of solution

Differential equation for gi(ui), suppressing dependence on
the coordinates other than i

∂

∂ui
gi(ui) + t gi(ui)

[
riφ
′(ui) + resti

]
= ri

[
φ(ui)−ai

]
Define the density factor

mi(ui) = et ri φ(ui )+t ui resti

Allows the above diff equation to be put back in the form

∂

∂ui
[gi(ui) mi(ui)] = ri

[
φ(ui)−ai

]
mi(ui)

An explicit solution, evaluated at ui = xT
i θ, is

gi(ui) = ri

∫ ui
ci

mi(ũi)
[
φ(ũi)−ai

]
dũi

mi(ui)

where ci is such that φ(ci) = ai .
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The derived change function Gt for evolution of θt

Iinclude the uj for j 6= i upon which resti depends. Our
solution is

gi,t (u) = ri

∫ ui

ci

et ri (φ(ũi )−φ(ui ))+t(ũi−ui )resti (u)
[
φ(ũi)−ai

]
dũi

Evaluating at u = Xθ we have the change function

Gt (θ) =
∑ xi

‖xi‖2
gi,t (Xθ)

for which θt evolves according to

θt+h = θt + h Gt (θt )

For showing gi,t , Gt and ∇Gt are nice, assume the
activation function φ and its derivative is bounded (e.g. a
logistic sigmoid or a sinusoid).
Run several optimization paths in parallel, starting from
independent choices of θ0. Allows access to empirical
computation of ai,t = Ept [φ(xT

i θt )]
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Conjectured conclusion

Derived the desired optimization procedure and the following.

Conjecture: With step size h of order 1/n2 and a number of
steps of order n d log d and X1,X2, . . . ,Xn i.i.d. Normal(0, I) in
Rd , and a product of independent standard Cauchy prior p0(θ).
With high probability on the design X, the above procedure
produces optimization paths θt whose distribution closely tracks
the target

pt (θ) = et J(θ)−ct p0(θ)

such that, with high probability, the solutions paths have
instances of J(θt ) which are at least 1/2 the maximum.

Consequently, the relaxed greedy procedure is computationally
feasible and achieves the indicated bounds for sparse linear
combinations from the dictionary Φ = {φ(θT x) : θ ∈ Rd}
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summary

Flexible approximation models
Subset selection
Nonlinearly parameterized bases as with neural nets
`1 control on coefficients of combination

Accurate approximation with moderate number of terms
Proof analogous to random coding

Information theoretic risk bounds
Based on the minimum description length principle
Shows accurate estimation with a moderate sample size

Computational challenges are being addressed
Adaptive annealing strategy appears to be promising
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Information and Statistics

Information and Statistics:

Nonparametric Rates of Estimation

Minimum Description Length Principle

Penalized Likelihood (one-sided concentration)

Implications for Greedy Term Selection
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Shannon Capacity

Capacity
A Channel θ → Y is a family of distributions {PY |θ : θ ∈ Θ}

Information Capacity: C = maxPθ
I(θ; Y )

Communications Capacity
Thm: Ccom = C (Shannon 1948)

Data Compression Capacity
Minimax Redundancy: Red = minQY maxθ∈Θ D(PY |θ‖QY )

Data Compression Capacity Theorem: Red = C
(Gallager, Davisson & Leon-Garcia, Ryabko)
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Setting for Statistical Capacity

Statistical Risk Setting

Loss function
`(θ, θ′)

Kullback loss
`(θ, θ′) = D(PY |θ‖PY |θ′)

Squared metric loss, e.g. squared Hellinger loss:

`(θ, θ′) = d2(θ, θ′)

Statistical risk equals expected loss

Risk = E [`(θ, θ̂)]
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Statistical Capacity

Statistical Capacity

Estimators: θ̂n

Based on sample Y of size n

Minimax Risk (Wald):

rn = min
θ̂n

max
θ

E`(θ, θ̂n)
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Metric Entropy

Ingredients in Determining Minimax Rates of Statistical Risk

Kolmogorov Metric Entropy of S ⊂ Θ:

H(ε) = max{log Card(Θε) : d(θ, θ′) > ε for θ, θ′ ∈ Θε ⊂ S}

Loss Assumption, for θ, θ′ ∈ S:

`(θ, θ′) ∼ D(PY |θ‖PY |θ′) ∼ d2(θ, θ′)
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Statistical Capacity

Information-theoretic Determination of Minimax Rates

For infinite-dimensional Θ

With metric entropy evaluated a critical separation εn
Statistical Capacity Theorem
Minimax Risk ∼ Info Capacity Rate ∼ Metric Entropy rate

rn ∼ Cn

n
∼ H(εn)

n
∼ ε2n

(Yang 1997, Yang and B. 1999, Haussler and Opper 1997)
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Information Thy Formulation of Statistical Principle

Minimum Description-Length (Rissanen78,83,B.85, B.&Cover
91...)

Statistical measure of complexity of Y

L(Y ) = min
q

[
log 1/q(Y ) + L(q)

]
bits for Y given q + bits for q

It is an information-theoretically valid codelength for Y for any
L(q) satisfying Kraft summability

∑
q 2−L(q) ≤ 1.

The minimization is for q in a family indexed by parameters{
pθ(Y ) : θ ∈ Θ

}
or by functions

{
pf (Y ) : f ∈ F

}
The estimator p̂ is then pθ̂ or p f̂ .
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Statistical Aim

From training data x ⇒ estimator p̂

Generalize to subsequent data x ′

Want log 1/p̂(x ′) to compare favorably to log 1/p(x ′)

For targets p close to or in the families

With X ′ expectation, loss becomes Kullback divergence

Bhattacharyya, Hellinger, Rényi loss also relevant
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Loss

Kullback Information-divergence:

D(PX ′‖QX ′) = E
[

log p(X ′)/q(X ′)
]

Bhattacharyya, Hellinger, Rényi divergence:

d2(PX ′ ,QX ′) = 2 log 1/E [q(X ′)/p(X ′)]1/2

Product model case: D(PX ′‖QX ′) = n D(P‖Q)

d2(PX ′ ,QX ′) = n d2(P,Q)

Relationship:

d2 ≤ D ≤ (2 + b) d2 if the log density ratio ≤ b.
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MDL Analysis

Redundancy of Two-stage Code:

Redn =
1
n

E
{

min
q

[
log

1
q(Y )

+ L(q)
]
− log

1
p(Y )

}
bounded by Index of Resolvability:

Resn(p) = min
q

{
D(p||q) +

L(q)

n

}
Statistical Risk Analysis in i.i.d. case with L(q) = 2L(q):

E d2(p, p̂) ≤ min
q

{
D(p‖q) +

L(q)

n

}
B.85, B.&Cover 91, B., Rissanen, Yu 98, Li 99, Grunwald 07
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MDL Analysis: Key to risk consideration

Discrepancy between training sample and future

Disc(p) = log
p(Y )

q(Y )
− log

p(Y ′)
q(Y ′)

Future term may be replaced by population counterpart
Discrepancy control: If L(q) satisfies the Kraft sum then

E
[

inf
q
{Disc(p,q) + 2L(q)}

]
≥ 0

From which the risk bound follows:
Risk ≤ Redundancy ≤ Resolvability

E d2(p, p̂) ≤ Redn ≤ Resn(p)
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Statistically valid penalized likelihood

Likelihood penalties arise via
number parameters: pen(pθ) = λdim(θ)

roughness penalties: pen(pf ) = λ ‖f s‖2

coefficient penalties: pen(θ) = λ‖θ‖1

Bayes estimators: pen(θ) = log 1/w(θ)

Maximum likelihood: pen(θ) = constant
MDL:

Penalized likelihood:

p̂ = arg min
q
{log 1/q(Y ) + pen(q)}

Under what condition on the penalty will it be true that
the sample based estimate p̂ has risk controlled by the
population counterpart?

Ed2(p, p̂) ≤ inf
q

{
D(p‖q) +

pen(q)

n
}
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Statistically valid penalized likelihood

Result with J. Li, C. Huang, X. Luo (Festschrift for J.
Rissanen 2008)
Penalized Likelihood:

p̂ = arg min
q

{
1
n

log
1

q(Y )
+ penn(q)

}
Penalty condition:

penn(q) ≥ 1
n

min
q̃
{2L(q̃) + ∆n(p, q̃)}

where the distortion ∆n(q, q̃) is the difference in
discrepancies at q and a representer q̃
Risk conclusion:

Ed2(p, q̂) ≤ inf
q
{D(p‖q) + penn(q)}
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Information-theoretic valid penalties

Penalized likelihood

min
θ∈Θ

{
log

1
pθ(x)

+ Pen(θ)

}
Possibly uncountable Θ

Valid codelength interpretation if there exists a countable Θ̃
and L satisfying Kraft such that the above is not less than

min
θ̃∈Θ̃

{
log

1
pθ̃(x)

+ L(θ̃)

}
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A variable complexity, variable distortion cover

Equivalently:
Penalized likelihood with a penalty Pen(θ) is
information-theoretically valid with uncountable Θ, if there
is a countable Θ̃ and Kraft summable L(θ̃), such that, for
every θ in Θ, there is a representor θ̃ in Θ̃ such that

Pen(θ) ≥ L(θ̃) + log
pθ(x)

pθ̃(x)

This is the link between uncountable and countable cases
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Statistical-Risk Valid Penalty

For an uncountable Θ and a penalty Pen(θ), θ ∈ Θ,
suppose there is a countable Θ̃ and L(θ̃) = 2L(θ̃)
where L(θ̃) satisfies Kraft, such that, for all x , θ∗,

min
θ∈Θ

{[
log

pθ∗(x)

pθ(x)
− d2

n (θ∗, θ)
]

+ Pen(θ)

}

≥ min
θ̃∈Θ̃

{[
log

pθ∗(x)

pθ̃(x)
− d2

n (θ∗, θ̃)
]

+ L(θ̃)

}
Proof of the risk conclusion:
The second expression has expectation ≥ 0,
so the first expression does too.

B., Li,& Luo (Rissanen Festschrift 2008, Proc. Porto Info Theory
Workshop 2008)
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`1 Penalties are codelength and risk valid

Regression Setting: Linear Span of a Dictionary
G is a dictionary of candidate basis functions
E.g. wavelets, splines, polynomials, trigonometric terms,
sigmoids, explanatory variables and their interactions

Candidate functions in the linear span
fθ(x) =

∑
g∈G θg g(x)

weighted `1 norm of coefficients ‖θ‖1 =
∑

g ag |θg |

weights ag = ‖g‖n where ‖g‖2n = 1
n
∑n

i=1 g2(xi)

Regression pθ(y |x) = Normal(fθ(x), σ2)

`1 Penalty (Lasso, Basis Pursuit)

pen(θ) = λ‖θ‖1
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Regression with `1 penalty

`1 penalized log-density estimation, i.i.d. case

θ̂ = argminθ

{
1
n

log
1

pfθ(x)
+ λn‖θ‖1

}
Regression with Gaussian model

min
θ

{
1

2σ2
1
n

n∑
i=1

(Yi − fθ(xi))2 +
1
2

log 2πσ2 +
λn

σ
‖θ‖1

}

Codelength Valid and Risk Valid for

λn ≥
√

2 log(2p)

n
with p = Card(G)
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Adaptive risk bound specialized to regression

Again for fixed design and λn =
√

2 log 2p
n , multiplying

through by 4σ2,

E‖f ∗ − fθ̂‖
2
n ≤ inf

θ

{
2‖f ∗ − fθ‖2n + 4σλn‖θ‖1

}
In particular for all targets f ∗ = fθ∗ with finite ‖θ∗‖ the risk

bound 4σλn‖θ∗‖ is of order
√

log M
n

Details in Barron, Luo (proceedings Workshop on Information Theory Methods in Science & Eng. 2008),
Tampere, Finland
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Comment on proof

The variable complexity cover property is demonstrated by
choosing the representer f̃ of fθ of the form

f̃ (x) =
v
m

m∑
k=1

gk (x)

g1, . . .gm picked at random from G, independently, where g
arises with probability proportional to |θg |
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Practical Communication by Regression

Achieving Shannon Capacity: (with A. Joseph, S. Cho)

Gaussian Channel with Power Constraints

History of Methods

Communication by Regression

Sparse Superposition Coding

Adaptive Successive Decoding

Rate, Reliability, and Computational Complexity
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Shannon Formulation

Input bits: u = (u1,u2, . . . . . . , uK )

↓
Encoded: x = (x1, x2, . . . , xn)

↓
Channel: p(y |x)

↓
Received: y = (y1, y2, . . . , yn)

↓
Decoded: û = (û1, û2, . . . . . . , ûK )

Rate: R = K
n Capacity C = max I(X ; Y )

Reliability: Want small Prob{û 6= u}
and small Prob{Fraction mistakes ≥ α}
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Gaussian Noise Channel

Input bits: u = (u1,u2, . . . . . . , uK )

↓
Encoded: x = (x1, x2, . . . , xn) ave 1

n
∑n

i=1 x2
i ≤ P

↓
Channel: p(y |x) y = x + ε ε ∼ N(0, σ2I)

↓
Received: y = (y1, y2, . . . , yn)

↓
Decoded: û = (û1, û2, . . . . . . , ûK )

Rate: R = K
n Capacity C = 1

2 log(1 + P/σ2)

Reliability: Want small Prob{û 6= u}
and small Prob{Fraction mistakes ≥ α}

Andrew Barron Information Theory & Statistics of High-Dim Function Estimation



Shannon Theory meets Coding Practice

The Gaussian noise channel is the basic model for
wireless communication
radio, cell phones, television, satellite, space
wired communication
internet, telephone, cable

Forney and Ungerboeck 1998 review
modulation, coding, and shaping for the Gaussian channel

Richardson and Urbanke 2008 cover much of the state of
the art in the analysis of coding

There are fast encoding and decoding algorithms, with
empirically good performance for LDPC and turbo codes
Some tools for their theoretical analysis, but obstacles
remain for mathematical proof of these schemes achieving
rates up to capacity for the Gaussian channel

Arikan 2009, Arikan and Teletar 2009 polar codes
Adapting polar codes to Gaussian channel (Abbe and B.
2011)

Method here is different. Prior knowledge of the above is
not necessary to follow what we present.
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Sparse Superposition Code

Input bits: u = (u1 . . . . . . . . . . . .uK )

Coefficients: β = (00 ∗ 0000000000 ∗ 00 . . . 0 ∗ 000000)T

Sparsity: L entries non-zero out of N
Matrix: X , n by N, all entries indep Normal(0,1)

Codeword: Xβ, superposition of a subset of columns
Receive: y = Xβ + ε, a statistical linear model
Decode: β̂ and û from X ,y
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Sparse Superposition Code

Input bits: u = (u1 . . . . . . . . . . . .uK )

Coefficients: β = (00 ∗ 0000000000 ∗ 00 . . . 0 ∗ 000000)T

Sparsity: L entries non-zero out of N
Matrix: X , n by N, all entries indep Normal(0,1)

Codeword: Xβ
Receive: y = Xβ + ε

Decode: β̂ and û from X ,y
Rate: R = K

n from K = log
(N

L

)
, near L log

(N
L e
)
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Sparse Superposition Code

Input bits: u = (u1 . . . . . . . . . . . .uK )

Coefficients: β = (00 ∗ 0000000000 ∗ 00 . . . 0 ∗ 000000)T

Sparsity: L entries non-zero out of N
Matrix: X , n by N, all entries indep Normal(0,1)

Codeword: Xβ
Receive: y = Xβ + ε

Decode: β̂ and û from X ,y
Rate: R = K

n from K = log
(N

L

)
Reliability: small Prob{Fraction β̂mistakes ≥ α}, small α
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Sparse Superposition Code

Input bits: u = (u1 . . . . . . . . . . . .uK )

Coefficients: β = (00 ∗ 0000000000 ∗ 00 . . . 0 ∗ 000000)T

Sparsity: L entries non-zero out of N
Matrix: X , n by N, all entries indep Normal(0,1)

Codeword: Xβ
Receive: y = Xβ + ε

Decode: β̂ and û from X ,y
Rate: R = K

n from K = log
(N

L

)
Reliability: small Prob{Fraction β̂mistakes ≥ α}, small α
Outer RS code: rate 1−2α, corrects remaining mistakes
Overall rate: Rtot = (1−2α)R
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Sparse Superposition Code

Input bits: u = (u1 . . . . . . . . . . . .uK )

Coefficients: β = (00 ∗ 0000000000 ∗ 00 . . . 0 ∗ 000000)T

Sparsity: L entries non-zero out of N
Matrix: X , n by N, all entries indep Normal(0,1)

Codeword: Xβ
Receive: y = Xβ + ε

Decode: β̂ and û from X ,y
Rate: R = K

n from K = log
(N

L

)
Reliability: small Prob{Fraction β̂mistakes ≥ α}, small α
Outer RS code: rate 1−2α, corrects remaining mistakes
Overall rate: Rtot = (1−2α)R.

Is it reliable with rate up to capacity?
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Partitioned Superposition Code
Input bits: u = (u1 . . . , . . . , . . . , . . .uK )

Coefficients: β=(00 ∗ 00000, 00000 ∗ 00, . . . , 0 ∗ 000000)

Sparsity: L sections, each of size B =N/L, a power of 2.
1 non-zero entry in each section

Indices of nonzeros: (j1, j2, . . . , jL) directly specified by u
Matrix: X , n by N, splits into L sections
Codeword: Xβ
Receive: y = Xβ + ε

Decode: β̂ and û
Rate: R = K

n from K = L log N
L = L log B

may set B = n and L = nR/ log n
Reliability: small Prob{Fraction β̂mistakes ≥ α}
Outer RS code: Corrects remaining mistakes
Overall rate: up to capacity?
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Power Allocation

Coefficients: β=(00∗00000, 00000∗00, . . . ,0∗000000)

Indices of nonzeros: sent = (j1, j2, . . . , jL)

Coeff. values: βj` =
√

P` for ` = 1,2, . . . ,L

Power control:
∑L

`=1 P` = P

Codewords: Xβ, have average power P

Power Allocations

Constant power: P` = P/L

Variable power: P` proportional to u` = e−2C `/L

Variable with leveling: P` proportional to max{u`, cut}
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Power Allocation
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Contrast Two Decoders

Decoders using received y = Xβ + ε

Optimal: Least Squares Decoder

β̂ = argmin‖Y − Xβ‖2

minimizes probability of error with uniform input distribution
reliable for all R < C, with best form of error exponent

Practical: Adaptive Successive Decoder

fast decoder
reliable using variable power allocation for all R < C
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Adaptive Successive Decoder

Decoding Steps

Start: [Step 1]
Compute the inner product of Y with each column of X
See which are above a threshold
Form initial fit as weighted sum of columns above threshold

Iterate: [Step k ≥ 2]
Compute the inner product of residuals Y − Fitk−1 with
each remaining column of X
See which are above threshold
Add these columns to the fit

Stop:
At Step k = log B, or
if there are no inner products above threshold
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Decoding Progression
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Figure : Plot of likely progression of weighted fraction of correct
detections q̂1,k , for snr = 15.
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Decoding Progression
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Rate and Reliability

Optimal: Least squares decoder of sparse superposition code
Prob error exponentially small in n for small ∆=C−R>0

Prob{Error} ≤ e−n(C−R)2/2V

In agreement with the Shannon-Gallager optimal exponent,
though with possibly suboptimal V depending on the snr

Practical: Adaptive Successive Decoder, with outer RS code.
achieves rates up to CB approaching capacity

CB =
C

1 + c1/ log B
Probability exponentially small in L for R ≤ CB

Prob
{

Error
}
≤ e−L(CB−R)2c2

Improves to e−c3L(CB−R)2(log B)0.5
using a Bernstein bound.

Nearly optimal when CB−R is of the same order as C−CB.
Our c1 is near (2.5 + 1/snr) log log B + 4C
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Summary

Sparse superposition coding is fast and reliable at rates up
to channel capacity

Formulation and analysis blends modern statistical
regression and information theory
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Outline

Information and Probability:
Monotonicity of Information
Markov Chains
Martingales
Large Deviation Exponents
Information Stability (AEP)
Central Limit Theorem
Monotonicity of Information
Entropy Power Inequalities
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Monotonicity of Information Divergence

Information Inequality X → X ′

D(PX ′‖P∗X ′) ≤ D(PX‖P∗X )

Chain Rule

D(PX ,X ′‖P∗X ,X ′) = D(PX ′‖P∗X ′) + E D(PX |X ′‖P∗X |X ′)

= D(PX‖P∗X ) + E D(PX ′|X‖P∗X ′|X )

Markov Chain {Xn} with P∗ invariant

D(PXn‖P∗) ≤ D(PXm‖P∗) for n > m

Convergence

log pn(Xn)/p∗(Xn) is a Cauchy sequence in L1(P)
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Monotonicity of Information Divergence
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Monotonicity of Information Divergence

Information Inequality X → X ′
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Monotonicity of Information Divergence

Information Inequality X → X ′

D(PX ′‖P∗X ′) ≤ D(PX‖P∗X )

Chain Rule

D(PX ,X ′‖P∗X ,X ′) = D(PX ′‖P∗X ′) + E D(PX |X ′‖P∗X |X ′)

= D(PX‖P∗X ) + 0

Markov Chain {Xn} with P∗ invariant

D(PXn‖P∗) ≤ D(PXm‖P∗) for n > m

Convergence

log pn(Xn)/p∗(Xn) is a Cauchy sequence in L1(P)
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Convergence
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Monotonicity of Information Divergence

Information Inequality X → X ′

D(PX ′‖P∗X ′) ≤ D(PX‖P∗X )

Chain Rule

D(PX ,X ′‖P∗X ,X ′) = D(PX ′‖P∗X ′) + E D(PX |X ′‖P∗X |X ′)

= D(PX‖P∗X )

Markov Chain {Xn} with P∗ invariant

D(PXn‖P∗) ≤ D(PXm‖P∗) for n > m

Convergence

log pn(Xn)/p∗(Xn) is a Cauchy sequence in L1(P)
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Monotonicity of Information Divergence

Information Inequality X → X ′

D(PX ′‖P∗X ′) ≤ D(PX ′‖P∗X ′)

Chain Rule

D(PX ,X ′‖P∗X ,X ′) = D(PX ′‖P∗X ′) + E D(PX |X ′‖P∗X |X ′)

= D(PX‖P∗X )

Markov Chain {Xn} with P∗ invariant

D(PXn‖P∗) ≤ D(PXm‖P∗) for n > m

Convergence

log pn(Xn)/p∗(Xn) is a Cauchy sequence in L1(P)

Pinsker-Kullback-Csiszar inequalities

A ≤ D +
√

2D V ≤
√

2D
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Martingale Convergence and Limits of Information

Nonnegative Martingales ρn correspond to the density of a
measure Qn given by Qn(A) = E [ρn1A].
Limits can be established in the same way by the chain
rule for n > m

D(Qn‖P) = D(Qm‖P) +

∫ (
ρn log

ρn

ρm

)
dP

Thus Dn = D(Qn‖P) is an increasing sequence. Suppose
it is bounded.
Then ρn is a Cauchy sequences in L1(P) with limit ρ
defining a measure Q
Also, log ρn is a Cauchy sequence in L1(Q) and

D(Qn‖P)↗ D(Q‖P)
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Monotonicity of Information Divergence: CLT

Central Limit Theorem Setting:

{Xi} i.i.d. mean zero, finite variance

Pn = PYn is distribution of Yn = X1+X2+...+Xn√
n

P∗ is the corresponding normal distribution

For n > m
D(Pn‖P∗) < D(Pm‖P∗)
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Monotonicity of Information Divergence: CLT

Central Limit Theorem Setting:

{Xi} i.i.d. mean zero, finite variance

Pn = PYn is distribution of Yn = X1+X2+...+Xn√
n

P∗ is the corresponding normal distribution

For n > m
D(Pn‖P∗) < D(Pm‖P∗)

Chain Rule for n > m: not clear how to use in this case

D(PYm,Yn‖P∗Ym,Yn
) = D(PYn‖P∗) + ED(PYm|Yn‖P

∗
Ym|Yn

)

= D(PYm‖P∗) + ED(PYn|Ym‖P
∗
Yn|Ym

)
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Monotonicity of Information Divergence: CLT

Central Limit Theorem Setting:

{Xi} i.i.d. mean zero, finite variance

Pn = PYn is distribution of Yn = X1+X2+...+Xn√
n

P∗ is the corresponding normal distribution

For n > m
D(Pn‖P∗) < D(Pm‖P∗)

Chain Rule for n > m: not clear how to use in this case

D(PYm,Yn‖P∗Ym,Yn
) = D(Pn‖P∗) + ED(PYm|Yn‖P

∗
Ym|Yn

)

= D(Pm‖P∗) + ED(PYn|Ym‖P
∗
Yn|Ym

)

= D(Pm‖P∗) + D(Pn−m‖P∗)
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Monotonicity of Information Divergence: CLT

Entropy Power Inequality

e2H(X+X ′) ≥ e2H(X) + e2H(X ′)

yields
D(P2n‖P∗) ≤ D(Pn‖P∗)

Information Theoretic proof of CLT (B. 1986):

D(Pn‖P∗)→ 0 iff finite
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Monotonicity of Information Divergence: CLT

Entropy Power Inequality

e2H(X+X ′) ≥ e2H(X) + e2H(X ′)

yields
D(P2n‖P∗) ≤ D(Pn‖P∗)

Information Theoretic proof of CLT (B. 1986):

D(Pn‖P∗)→ 0 iff finite

(Johnson and B. 2004) with Poincare constant R

D(Pn‖P∗) ≤
2R

n−1+2R
D(P1‖P∗)
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Monotonicity of Information Divergence: CLT

Entropy Power Inequality

e2H(X+X ′) ≥ e2H(X) + e2H(X ′)

yields
D(P2n‖P∗) ≤ D(Pn‖P∗)

Information Theoretic proof of CLT (B. 1986):

D(Pn‖P∗)→ 0 iff finite

(Johnson and B. 2004) with Poincare constant R

D(Pn‖P∗) ≤
2R

n−1+2R
D(P1‖P∗)

(Bobkov, Chirstyakov, Gotze 2013) Moment conditions and
finite D(P1‖|P∗) suffice for this 1/n rate
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Monotonicity of Information Divergence: CLT

Entropy Power Inequality

e2H(X+X ′) ≥ e2H(X) + e2H(X ′)

Generalized Entropy Power Inequality (Madiman&B.2006)

eH(X1+...+Xn) ≥ 1
r

∑
s∈S

e2H(
∑

i∈s Xi )

where r is max number of sets in S in which an index appears
Proof:

simple L2 projection property of entropy derivative
concentration inequality for sums of functions of subsets of
independent variables

VAR(
∑
s∈S

gs(Xs)) ≤ r
∑
s∈S

VAR(gs(Xs))
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Monotonicity of Information Divergence: CLT

Entropy Power Inequality

e2H(X+X ′) ≥ e2H(X) + e2H(X ′)

Generalized Entropy Power Inequality (Madiman&B.2006)

eH(X1+...+Xn) ≥ 1
r

∑
s∈S

e2H(
∑

i∈s Xi )

where r is max number of sets in S in which an index appears

Consequence, for all n > m,

D(Pn‖P∗) ≤ D(Pm‖P∗)

[Madiman and B. 2006, Tolino and Verdú 2006.
Earlier elaborate proof by Artstein, Ball, Barthe, Naor 2004]
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Information-Stability and Error Probability of Tests

Stability of log-likelihood ratios (AEP)
(B. 1985, Orey 1985, Cover and Algoet 1986)

1
n

log
p(Y1,Y2, . . .Yn)

q(Y1,Y2, . . . ,Yn)
→ D(P‖Q) with P prob 1

where D(P‖Q) is the relative entropy rate.

Optimal statistical test: critical region An has asymptotic P
power 1 (at most finitely many mistakes P(Ac

n i .o.) = 0)
and has optimal Q-prob of error

Q(An) = exp{−n[D + o(1)]}

General form of the Chernoff-Stein Lemma.

Relative entropy rate

D(P‖Q) = lim
1
n

D(PY n‖QY n )
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Information-Stability and Error Probability of Tests

Stability of log-likelihood ratios (AEP)
(B. 1985, Orey 1985, Cover and Algoet 1986)

1
n

log
p(Y1,Y2, . . .Yn)

q(Y1,Y2, . . . ,Yn)
→ D(P‖Q) with P prob 1

where D(P‖Q) is the relative entropy rate.

Optimal statistical test: critical region An has asymptotic P
power 1 (at most finitely many mistakes P(Ac

n i .o.) = 0)
and has optimal Q-prob of error

Q(An) = exp
{
− n [D+o(1)]

}
General form of the Chernoff-Stein Lemma.

Relative entropy rate

D = lim
1
n

D(PY n‖QY n )
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Optimality of the Relative Entropy Exponent

Information Inequality, for any set An,

D(PY n‖QY n ) ≥ P(An) log
P(An)

Q(An)
+ P(Ac

n) log
P(Ac

n)

Q(Ac
n)

Consequence

D(PY n‖QY n ) ≥ P(An) log
1

Q(An)
− H2(P(An))

Equivalently

Q(An) ≥ exp
{
−

D(PY n‖QY n )− H2(P(An))

P(An)

}

For any sequence of pairs of joint distributions, no
sequence of tests with P(An) approaching 1 can have
better Q(An) exponent than D(PY n‖QY n ).
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Large Deviations, I-Projection, and Conditional Limit

P∗: Information projection of Q onto convex C
Pythagorean identity (Csiszar 75, Topsoe 79): For P in C

D(P‖Q) ≥ D(C‖Q) + D(P‖P∗)

where
D(C‖Q) = inf

P∈C
D(P‖Q)

Empirical distribution Pn, from i.i.d. sample.
(Csiszar 1985)

Q{Pn ∈ C} ≤ exp
{
− n D(C‖Q)

}
Information-theoretic representation of Chernoff bound
(when C is a half-space)
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Large Deviations, I-Projection, and Conditional Limit

P∗: Information projection of Q onto convex C
Pythagorean identity (Csiszar 75, Topsoe 79): For P in C

D(P‖Q) ≥ D(C‖Q) + D(P‖P∗)

where
D(C‖Q) = inf

P∈C
D(P‖Q)

Empirical distribution Pn, from i.i.d. sample
If D(interiorC‖Q) = D(C‖Q) then

Q{Pn ∈ C} = exp
{
− n [D(C‖Q) + o(1)]

}
and the conditional distribution PY1,Y2,...,Yn|{Pn∈C} converges
to P∗Y1,Y2,...,Yn

in the I-divergence rate sense (Csiszar 1985)
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