Communication by Regression

Andrew Barron
Department of Statistics, Yale University

Coauthors: Antony Joseph and Sanghee Cho

March 12,2012, Rice University

Andrew Barron Sparse Superposition Codes: Fast, Reliable, Capacity-Achieving

Channel Communication Set-up

@ Input bits: U = (Uy, U, ,Ug) indep Bern(1/2)
1
@ Encoded: x = (xq,X2,...,Xn)
!
@ Channel: p(y|x)
!
@ Received: Y =(Yq,Yo,..., Yn)
!
@ Decoded: U = (Uq,Us,...... , Uk)
@ Rate: R=X Capacity C
@ Reliability: Want small Prob{U # U}

and small Prob{ Fraction mistakes > «}

Andrew Barron Sparse Superposition Codes: Fast, Reliable, Capacity-Achieving

Gaussian Noise Channel

@ Input bits: U = (Uy, U, , Uk)
!
@ Encoded: x = (xq,Xz,...,Xn) IS x?2 =P
!
@ Channel: p(y|x) y=x+e, e~ N(0,02)
! snr = P/ao?
@ Received: Y =(Yy,Yo,..., Yn)
!
@ Decoded: U = (Uq, Us,...... , Uk)
e Rate: R=X Capacity C = } log(1 + snr)
@ Reliability: Want small Prob{U # U}

and small Prob{ Fraction mistakes > «}

Andrew Barron Sparse Superposition Codes: Fast, Reliable, Capacity-Achieving

Sparse Superposition Code

@ Inputbits: U= (Uy............ Uk)

@ Coefficients: 3 = (00 * 0000000000 * 00 ... 0 * 000000)”
@ Sparsity: L entries non-zero out of N

@ Matrix: X, nby N, all entries indep Normal(0, 1)

@ Codeword: X3, superposition of a subset of columns
@ Receive: Y = X0 + ¢, a statistical linear model

@ Decode: Aand U from X,Y

Andrew Barron Sparse Superposition Codes: Fast, Reliable, Capacity-Achieving

Sparse Superposition Code

@ Inputbits: U=(Uj............ Uk)

@ Coefficients: 3 = (00 * 0000000000 * 00 ... 0 * 000000)"
@ Sparsity: L entries non-zero out of N

@ Matrix: X, nby N, all entries indep Normal(0, 1)

@ Codeword: Xg3, superposition of a subset of columns
@ Receive: Y = X3 + ¢, astatistical linear model

@ Decode: Aand U from X,Y

@ Rate: R=K from K =log (), near Llog (Ne)

Andrew Barron Sparse Superposition Codes: Fast, Reliable, Capacity-Achieving

Partitioned Superposition Code

@ Inputbits: U= (Uy..., ..., ..., ...Uk)
L sections, each of size log, M
@ Coefficients: 5=(00 x 00000, 00000 00, ..., 0x000000)

L sections, each of size M=N/L, a power of 2
@ Sparsity: 1 non-zero entry in each section
@ Indices of nonzeros: (ji, jo, . . ., ji) specified by U segments
@ Matrix: X, nby N, splits into L sections
@ Codeword: X3, superposition of columns, one from each
@ Receive: Y=X0+¢
@ Decode: fBand U
@ Rate: R=XfromK = Llog = LlogM

Andrew Barron Sparse Superposition Codes: Fast, Reliable, Capacity-Achieving

Partitioned Superposition Code

@ Inputbits: U= (Uy..., ..., ..., ...Uk)
L sections, each of size log, M
@ Coefficients: 5=(00 % 00000, 00000 x 00, ..., 0+000000)

L sections, each of size M=N/L, a power of 2
@ Sparsity: 1 non-zero entry in each section
@ Indices of nonzeros: (ji, jo, . . ., ji) specified by U segments
@ Matrix: X, nby N, splits into L sections
@ Codeword: X[, superposition of columns, one from each
@ Receive: Y=X0+¢
@ Decode: fBand U
@ Rate: R=%X fromK = Llog¥ = LlogM
@ Ultra-sparse case: Impractical M = 277/ with L constant
(reliable at all R < C: Cover 1972,1980)
Moderately-sparse: Practical M = nwith L = nR/logn
(still reliable at all R < C)

Andrew Barron Sparse Superposition Codes: Fast, Reliable, Capacity-Achieving

Partitioned Superposition Code

@ Inputbits: U= (Uy..., ..., ..., ...Uk)
L sections, each of size log, M
@ Coefficients: 5=(00x 00000, 00000 * 00, ..., 0+000000)

L sections, each of size M=N/L, a power of 2
@ Sparsity: 1 non-zero entry in each section
@ Indices of nonzeros: (ji, jo, - . ., ji) specified by U segments
@ Matrix: X, nby N, splits into L sections
@ Codeword: X[, superposition of columns, one from each
@ Receive: Y=X0+¢
@ Decode: fBand U
@ Rate: R=%X fromK = Llog ¥ = LlogM
@ Reliability: small Prob{Fraction mistakes > a} small «
@ Outer RS code: rate 1—2a, corrects remaining mistakes
@ Overall rate: Ryt = (1-2a)R
@ Overall rate: up to capacity

Andrew Barron Sparse Superposition Codes: Fast, Reliable, Capacity-Achieving

Power Allocation

@ Coefficients: 5=(00+«00000, 00000+00, ..., 0+000000)
@ Indices of nonzeros: sent = (ji,jo, ... ,j)

o Coeff. values: 3, =P, fort=1,2,... L

@ Power control: Y7 Py = P
@ Codewords: X3, have average power P

@ Power Allocations

e Constant power: P, =P/L
e Variable power: P, proportional to e=2¢ ¢/t

e Variable with leveling

Andrew Barron Sparse Superposition Codes: Fast, Reliable, Capacity-Achieving

Adaptive Successive Decoder

Decoding Steps (with thresholding)

@ Start: [Step 1]
e Compute the inner product of Y with each column of X
e See which are above a threshold
e Form initial fit as weighted sum of columns above threshold

@ lterate: [Step k > 2]
e Compute the inner product of residuals Y — Fit,_¢ with
each remaining column of X
@ See which are above threshold
@ Add these columns to the fit

@ Stop:
o AtStep k =1+ snrlogM, or
e if there are no additional inner products above threshold

Andrew Barron Sparse Superposition Codes: Fast, Reliable, Capacity-Achieving

Complexity of Adaptive Successive Decoder

Complexity in parallel pipelined implementation

@ Space: (use k = snrlog M copies of the n by N dictionary)

e knN = snr CnM memory positions
o kN multiplier/accumulators and comparators

@ Time: O(1) per received Y symbol

Andrew Barron Sparse Superposition Codes: Fast, Reliable, Capacity-Achieving

Adaptive Successive Decoder

Decoding Steps (with iteratively optimal statistics)

@ Start: [Step 1]
e Compute the inner product of Y with each column of X
e Form initial fit

@ lterate: [Step k > 2]
e Compute inner product of residuals Y — Fitx_4 with each X;.
Adjusted form: 2 ; equals (Y — Xfk_1_,)"X
Standardize by dividing it by || Y — X3x_+]|.
Form the new fit

By = VPewi(b) = VP,

b 2k
b Zy
Zjeseck ev =k

@ Stop:
e At Step k = O(logM) if R < C.
o At Step k = M“, with 0 < o < 1, if R matches C to within
polynomially small amount.

Andrew Barron Sparse Superposition Codes: Fast, Reliable, Capacity-Achieving

Distributional Analysis

@ Approximate distribution of Z ;:

Vnp;
Zij = ’ + Zkj

Vo + EllBis — 112

with Zi ; independent standard normal.

Zkj = bex_1jsenty + Zk,j
where
nPy
0=bu=\ =
@ Here

ElBr—1—BI? =P (1 — xk_1)
@ Update rule xx = g(xx—1) where
L

9(x) =Y _(Pe/P)E[w; (bx)].

=1

Andrew Barron Sparse Superposition Codes: Fast, Reliable, Capacity-Achieving

Decoding progression

o _
© |
o
©
Q
= |
o
o M=2°, L=M
° e snr=7
P C=1.5 bits
o i R=1.2 bits(0.8C)
g -

I T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0

X

Figure: Plot of g(x) and the sequence x.

Andrew Barron Sparse Superposition Code: t, Reliable, Capaci

Update fuctions

Qe _

— 9(x)
o —— Lower bound
o | — a=0

a=0.5

©
Q
<
o
N M=2°,L=M
© e snr=7

C=1.5 bits
g A7 R=1.2 bits(0.8C)

[I I I I 1
0.0 0.2 0.4 0.6 0.8 1.0

X
Figure: Comparison of update functions. Blue and light blue lines
indicates {0, 1} decision using the threshold + = y/2logM + a with
respect to the value a as indicated.

Andrew Barron Sparse Superposition Codes: Fast, Reliable, Capacity-Achieving

Transition plots

— soft decision
—— hard decision with a=1/2 \ \

0.8
1

0.4
1

-

c

@

(2]

£

£

9]

e

o

£ ° x=0 x=0.2

B <

P

9 ©

8 3

.

o A

=

2 < |

w oS

o

8
o | x=0.6 \ x=0.8 x=1
< T T

T T T
0.0 0.2

0.6 0.8 0.0 0.2 0.6 0.8 0.0 0.2

0.4 0.4 04
uql) uqly ul)
Figure: Transition plots : M = 2% L =M, C = 1.5 bits and R = 0.8C.
We used Monte Carlo simulation with replicate size 10000. The
horizontal axis depicts u(¢) = 1 — e~2¢%/L which is an increasing

function of /.

Andrew Barron Sparse Superposition Codes: Fast, Reliable, Capacity-Achieving

Rate and Reliability

Result for Optimal ML Decoder [Joseph and B. 2012],
with outer RS decoder, and with equal power allowed across
the sections

@ Prob error exponentially small in nforall R < C
Prob{Error} < e "(C-R)*/2V
@ In agreement with the Shannon-Gallager exponent of

optimal code, though with a suboptimal constant V
depending on the snr

Andrew Barron Sparse Superposition Codes: Fast, Reliable, Capacity-Achieving

Rate and Reliability of Fast Superposition Code

Practical: Adaptive Successive Decoder [B. and Joseph 2011]

@ prob error exponentially small in n/(log M)'/?2 for R < C

@ Value Cy, approaching capacity

B C
~1+cy/logM
@ Probability error exponentially small in L for R < Cy

Cm

Prob{Error} < e~ L(Cu—R)c

@ Improves to e~ %L(Cu—R*(I0gM)** sing a Bernstein bound.
@ Nearly optimal when Cy—R is at least C— Cy.
@ Our ¢y isnear (254 1/snr)loglogM + 4C

Andrew Barron Sparse Superposition Codes: Fast, Reliable, Capacity-Achieving

Some Relationships to Other Work

@ Forney (1960): Concatenated codes
@ Barg,Zémor (2002,2004): Expander codes for the BSC:
e exponential error bounds and linear complexity for R < C
@ LDPC and turbo codes:
e some theoretical analysis (Richardson,Urbanke 2008), yet
obstacles remain for proof of rates up to capacity
@ Arikan polar codes for Gaussian channel (Abbe,Bar.2011):

e g quantization levels
e R< Cqwithgap C— Cq < snr/q
e Error bound from Hassani, Urbanke (2011) in g = 2 case:

Prob{Error} < 2= """ (Ca=R)/* (1+0(1))

@ Tropp 08 codes from compressive sensing; related work:

e Wainwright; Fletcher, Rangan, Goyal; Zhang; others
e /i-constrained least squares practical, has positive rate
e but not capacity achieving

Andrew Barron Sparse Superposition Codes: Fast, Reliable, Capacity-Achieving

Sparse superposition codes with adaptive successive decoding

@ Simplicity of the code permits:

e distributional analysis of the decoding progression
e low complexity decoder
e exponentially small error probability for any fixed R < C

@ Asymptotics superior to polar code bounds for such rates

@ Currently studying rates R, approaching C, at a polynomial
rate (slower than 1/4/n)

Andrew Barron Sparse Superposition Codes: Fast, Reliable, Capacity-Achieving

Identities

eb Zk’/

b Z i
Zjesec@e ol

The following quantities have the same expectation when j, = 1
was sent for each section /.

(1) 1—wy
(i) (1=w)2+, w? = ley — wlf?
(i) 1 — ZjESGCg W]-2
From these identities, we can estimate BT By by || Bk |2
Likewise, ||3 — (k||? and P — || 3«||? have the same expectation.

wj(b) = Plje=Jl 2] =

Each of these is an average of L independent random variables
bounded by 1, so the error of these estimates is accordingly
small except in events of exponentially small probability.

Andrew Barron Sparse Superposition Codes: Fast, Reliable, Capacity-Achieving

Decoding progression

o _
© |
o
©
Q
= |
o
o M=2°, L=M
° e snr=7
P C=1.5 bits
o i R=1.2 bits(0.8C)
g -

I T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0

X

Figure: Plot of g(x) and the sequence x.

Andrew Barron Sparse Superposition Code: t, Reliable, Capaci

Update fuctions

Qe _

— 9(x)
o —— Lower bound
c | — a0

a=0.5

©
Q
<
o
N M=2°,L=M
© e snr=7

C=1.5 bits
g A7 R=1.2 bits(0.8C)

[I I I I 1
0.0 0.2 0.4 0.6 0.8 1.0

X
Figure: Comparison of update functions. Blue and light blue lines
indicates 0, 1 decision using the threshold A2 log M + a with respect
to the value a as indicated.

Andrew Barron Sparse Superposition Codes: Fast, Reliable, Capacity:

Transition plots

— soft decision
—— hard decision with a=1/2 \ \

0.8
1

0.4
1

-

c

@

(2]

£

£

9]

e

o

£ ° x=0 x=0.2

B <

P

9 ©

8 3

.

o A

=

2 < |

w oS

o

8
o | x=0.6 \ x=0.8 x=1
< T T

T T T
0.0 0.2

0.6 0.8 0.0 0.2 0.6 0.8 0.0 0.2

0.4 0.4 04
uql) uqly ul)
Figure: Transition plots : M = 2% L =M, C = 1.5 bits and R = 0.8C.
We used Monte Carlo simulation with replicate size 10000. The
horizontal axis depicts u(¢) = 1 — e~2¢%/L which is an increasing

function of /.

Andrew Barron Sparse Superposition Codes: Fast, Reliable, Capacity-Achieving

