
Communication by Regression

Andrew Barron
Department of Statistics, Yale University

Coauthors: Antony Joseph and Sanghee Cho

March 12, 2012, Rice University

Andrew Barron Sparse Superposition Codes: Fast, Reliable, Capacity-Achieving 1/24

Channel Communication Set-up

Input bits: U = (U1, U2, , UK) indep Bern(1/2)

↓
Encoded: x = (x1, x2, . . . , xn)

↓
Channel: p(y |x)

↓
Received: Y = (Y1, Y2, . . . , Yn)

↓
Decoded: Û = (Û1, Û2, , ÛK)

Rate: R = K
n Capacity C

Reliability: Want small Prob{Û 6= U}
and small Prob{Fraction mistakes ≥ α}

Andrew Barron Sparse Superposition Codes: Fast, Reliable, Capacity-Achieving 2/24

Gaussian Noise Channel

Input bits: U = (U1, U2, , UK)

↓
Encoded: x = (x1, x2, . . . , xn)

1
n

∑n
i=1 x2

i
∼= P

↓
Channel: p(y |x) y = x + ε , ε ∼ N(0, σ2I)

↓ snr = P/σ2

Received: Y = (Y1, Y2, . . . , Yn)

↓
Decoded: Û = (Û1, Û2, , ÛK)

Rate: R = K
n Capacity C = 1

2 log(1 + snr)

Reliability: Want small Prob{Û 6= U}
and small Prob{Fraction mistakes ≥ α}

Andrew Barron Sparse Superposition Codes: Fast, Reliable, Capacity-Achieving 3/24

Sparse Superposition Code

Input bits: U = (U1 UK)

Coefficients: β = (00 ∗ 0000000000 ∗ 00 . . . 0 ∗ 000000)T

Sparsity: L entries non-zero out of N
Matrix: X , n by N, all entries indep Normal(0, 1)

Codeword: Xβ, superposition of a subset of columns
Receive: Y = Xβ + ε, a statistical linear model
Decode: β̂ and Û from X ,Y

Andrew Barron Sparse Superposition Codes: Fast, Reliable, Capacity-Achieving 4/24

Sparse Superposition Code

Input bits: U = (U1 UK)

Coefficients: β = (00 ∗ 0000000000 ∗ 00 . . . 0 ∗ 000000)T

Sparsity: L entries non-zero out of N
Matrix: X , n by N, all entries indep Normal(0, 1)

Codeword: Xβ, superposition of a subset of columns
Receive: Y = Xβ + ε, a statistical linear model
Decode: β̂ and Û from X ,Y
Rate: R = K

n from K = log
(N

L

)
, near L log

(N
L e

)

Andrew Barron Sparse Superposition Codes: Fast, Reliable, Capacity-Achieving 5/24

Partitioned Superposition Code
Input bits: U = (U1 . . . , . . . , . . . , . . . UK)

L sections, each of size log2 M
Coefficients: β=(00 ∗ 00000, 00000 ∗ 00, . . . , 0 ∗ 000000)

L sections, each of size M =N/L, a power of 2
Sparsity: 1 non-zero entry in each section
Indices of nonzeros: (j1, j2, . . . , jL) specified by U segments
Matrix: X , n by N, splits into L sections
Codeword: Xβ, superposition of columns, one from each
Receive: Y = Xβ + ε

Decode: β̂ and Û
Rate: R = K

n from K = L log N
L = L log M

Andrew Barron Sparse Superposition Codes: Fast, Reliable, Capacity-Achieving 6/24

Partitioned Superposition Code
Input bits: U = (U1 . . . , . . . , . . . , . . . UK)

L sections, each of size log2 M
Coefficients: β=(00 ∗ 00000, 00000 ∗ 00, . . . , 0 ∗ 000000)

L sections, each of size M =N/L, a power of 2
Sparsity: 1 non-zero entry in each section
Indices of nonzeros: (j1, j2, . . . , jL) specified by U segments
Matrix: X , n by N, splits into L sections
Codeword: Xβ, superposition of columns, one from each
Receive: Y = Xβ + ε

Decode: β̂ and Û
Rate: R = K

n from K = L log N
L = L log M

Ultra-sparse case: Impractical M = 2nR/L with L constant
(reliable at all R < C: Cover 1972,1980)

Moderately-sparse: Practical M = n with L = nR/ log n
(still reliable at all R < C)

Andrew Barron Sparse Superposition Codes: Fast, Reliable, Capacity-Achieving 7/24

Partitioned Superposition Code
Input bits: U = (U1 . . . , . . . , . . . , . . . UK)

L sections, each of size log2 M
Coefficients: β=(00 ∗ 00000, 00000 ∗ 00, . . . , 0 ∗ 000000)

L sections, each of size M =N/L, a power of 2
Sparsity: 1 non-zero entry in each section
Indices of nonzeros: (j1, j2, . . . , jL) specified by U segments
Matrix: X , n by N, splits into L sections
Codeword: Xβ, superposition of columns, one from each
Receive: Y = Xβ + ε

Decode: β̂ and Û
Rate: R = K

n from K = L log N
L = L log M

Reliability: small Prob{Fraction mistakes ≥ α} small α

Outer RS code: rate 1−2α, corrects remaining mistakes
Overall rate: Rtot = (1−2α)R
Overall rate: up to capacity

Andrew Barron Sparse Superposition Codes: Fast, Reliable, Capacity-Achieving 8/24

Power Allocation

Coefficients: β=(00∗00000, 00000∗00, . . . , 0∗000000)

Indices of nonzeros: sent = (j1, j2, . . . , jL)

Coeff. values: βj` =
√

P` for ` = 1, 2, . . . , L

Power control:
∑L

`=1 P` = P

Codewords: Xβ, have average power P

Power Allocations

Constant power: P` = P/L

Variable power: P` proportional to e−2C `/L

Variable with leveling

Andrew Barron Sparse Superposition Codes: Fast, Reliable, Capacity-Achieving 9/24

Adaptive Successive Decoder

Decoding Steps (with thresholding)

Start: [Step 1]
Compute the inner product of Y with each column of X
See which are above a threshold
Form initial fit as weighted sum of columns above threshold

Iterate: [Step k ≥ 2]
Compute the inner product of residuals Y − Fitk−1 with
each remaining column of X
See which are above threshold
Add these columns to the fit

Stop:
At Step k = 1 + snr log M, or
if there are no additional inner products above threshold

Andrew Barron Sparse Superposition Codes: Fast, Reliable, Capacity-Achieving 10/24

Complexity of Adaptive Successive Decoder

Complexity in parallel pipelined implementation

Space: (use k = snr log M copies of the n by N dictionary)

knN = snr CnM memory positions
kN multiplier/accumulators and comparators

Time: O(1) per received Y symbol

Andrew Barron Sparse Superposition Codes: Fast, Reliable, Capacity-Achieving 11/24

Adaptive Successive Decoder

Decoding Steps (with iteratively optimal statistics)

Start: [Step 1]
Compute the inner product of Y with each column of X
Form initial fit

Iterate: [Step k ≥ 2]
Compute inner product of residuals Y − Fitk−1 with each Xj .
Adjusted form: Zk,j equals (Y − X β̂k−1,−j)

T Xj

Standardize by dividing it by ‖Y − X β̂k−1‖.
Form the new fit

β̂k,j =
√

P` wj(b) =
√

P`
ebZk,j∑

j∈sec`
ebZk,j

Stop:
At Step k = O(log M) if R < C.
At Step k = Mα, with 0 < α < 1, if R matches C to within
polynomially small amount.

Andrew Barron Sparse Superposition Codes: Fast, Reliable, Capacity-Achieving 12/24

Distributional Analysis

Approximate distribution of Zk ,j :

Zk ,j =

√
n βj√

σ2 + E‖β̂k−1 − β‖2
+ Zk ,j

with Zk ,j independent standard normal.

Zk ,j = b`,xk−11{j sent} + Zk ,j

where

b = b`,x =

√
nP`

σ2 + P(1− x)

Here
E‖β̂k−1 − β‖2 = P (1− xk−1)

Update rule xk = g(xk−1) where

g(x) =
L∑

`=1

(P`/P)E [wj`(b`,x)].

Andrew Barron Sparse Superposition Codes: Fast, Reliable, Capacity-Achieving 13/24

Decoding progression

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

M = 29 , L =M
snr=7
C=1.5 bits
R=1.2 bits(0.8C)

g(x)
x

Figure: Plot of g(x) and the sequence xk .

Andrew Barron Sparse Superposition Codes: Fast, Reliable, Capacity-Achieving 14/24

Update fuctions

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

M = 29 , L =M
snr=7
C=1.5 bits
R=1.2 bits(0.8C)

g(x)
Lower bound
a=0
a=0.5

Figure: Comparison of update functions. Blue and light blue lines
indicates {0, 1} decision using the threshold τ =

√
2logM + a with

respect to the value a as indicated.
Andrew Barron Sparse Superposition Codes: Fast, Reliable, Capacity-Achieving 15/24

Transition plots
0.
0

0.
4

0.
8

ul

ew
1

po
st

er
io

r p
ro

b
of

 th
e

te
rm

 s
en

t

x=0

soft decision
hard decision with a=1/2

ul

ew
1

x=0.2

ul

ew
1

x=0.4

0.0 0.2 0.4 0.6 0.8

0.
0

0.
4

0.
8

ul

ew
1

u(l)

x=0.6

0.0 0.2 0.4 0.6 0.8

ul

ew
1

u(l)

x=0.8

0.0 0.2 0.4 0.6 0.8

ul

ew
1

u(l)

x=1

Figure: Transition plots : M = 29, L = M, C = 1.5 bits and R = 0.8C.
We used Monte Carlo simulation with replicate size 10000. The
horizontal axis depicts u(`) = 1− e−2C`/L which is an increasing
function of `.

Andrew Barron Sparse Superposition Codes: Fast, Reliable, Capacity-Achieving 16/24

Rate and Reliability

Result for Optimal ML Decoder [Joseph and B. 2012],
with outer RS decoder, and with equal power allowed across
the sections

Prob error exponentially small in n for all R < C

Prob{Error} ≤ e−n (C−R)2/2V

In agreement with the Shannon-Gallager exponent of
optimal code, though with a suboptimal constant V
depending on the snr

Andrew Barron Sparse Superposition Codes: Fast, Reliable, Capacity-Achieving 17/24

Rate and Reliability of Fast Superposition Code

Practical: Adaptive Successive Decoder [B. and Joseph 2011]

prob error exponentially small in n/(log M)1/2 for R < C

Value CM approaching capacity

CM =
C

1 + c1/ log M

Probability error exponentially small in L for R < CM

Prob
{

Error
}
≤ e−L(CM−R)2c2

Improves to e−c3L(CM−R)2(log M)0.5
using a Bernstein bound.

Nearly optimal when CM−R is at least C−CM .

Our c1 is near (2.5 + 1/snr) log log M + 4C

Andrew Barron Sparse Superposition Codes: Fast, Reliable, Capacity-Achieving 18/24

Some Relationships to Other Work

Forney (1960): Concatenated codes
Barg,Zémor (2002,2004): Expander codes for the BSC:

exponential error bounds and linear complexity for R < C
LDPC and turbo codes:

some theoretical analysis (Richardson,Urbanke 2008), yet
obstacles remain for proof of rates up to capacity

Arikan polar codes for Gaussian channel (Abbe,Bar.2011):
q quantization levels
R < Cq with gap C − Cq ≤ snr/q
Error bound from Hassani, Urbanke (2011) in q = 2 case:

Prob
{

Error
}
≤ 2−n(1−α)/2(Cq−R)1/2α(1+o(1))

Tropp 08 codes from compressive sensing; related work:
Wainwright; Fletcher, Rangan, Goyal; Zhang; others
`1-constrained least squares practical, has positive rate
but not capacity achieving

Andrew Barron Sparse Superposition Codes: Fast, Reliable, Capacity-Achieving 19/24

Summary

Sparse superposition codes with adaptive successive decoding

Simplicity of the code permits:
distributional analysis of the decoding progression
low complexity decoder
exponentially small error probability for any fixed R < C

Asymptotics superior to polar code bounds for such rates

Currently studying rates Rn approaching C, at a polynomial
rate (slower than 1/

√
n)

Andrew Barron Sparse Superposition Codes: Fast, Reliable, Capacity-Achieving 20/24

Identities

wj(b) = P[j` = j | Zk] =
ebZk,j∑

j∈sec`
ebZk,j

The following quantities have the same expectation when j` = 1
was sent for each section `.
(i) 1− w1

(ii) (1− w1)
2 +

∑m
j=2 w2

j = ‖e1 − w‖2

(iii) 1−
∑

j∈sec`
w2

j

From these identities, we can estimate βT β̂k by ‖β̂k‖2.
Likewise, ‖β − β̂k‖2 and P − ‖β̂k‖2 have the same expectation.

Each of these is an average of L independent random variables
bounded by 1, so the error of these estimates is accordingly
small except in events of exponentially small probability.

Andrew Barron Sparse Superposition Codes: Fast, Reliable, Capacity-Achieving 21/24

Decoding progression

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

M = 29 , L =M
snr=7
C=1.5 bits
R=1.2 bits(0.8C)

g(x)
x

Figure: Plot of g(x) and the sequence xk .

Andrew Barron Sparse Superposition Codes: Fast, Reliable, Capacity-Achieving 22/24

Update fuctions

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

x

M = 29 , L =M
snr=7
C=1.5 bits
R=1.2 bits(0.8C)

g(x)
Lower bound
a=0
a=0.5

Figure: Comparison of update functions. Blue and light blue lines
indicates 0, 1 decision using the threshold Ã2 log M + a with respect
to the value a as indicated.

Andrew Barron Sparse Superposition Codes: Fast, Reliable, Capacity-Achieving 23/24

Transition plots
0.
0

0.
4

0.
8

ul

ew
1

po
st

er
io

r p
ro

b
of

 th
e

te
rm

 s
en

t

x=0

soft decision
hard decision with a=1/2

ul

ew
1

x=0.2

ul

ew
1

x=0.4

0.0 0.2 0.4 0.6 0.8

0.
0

0.
4

0.
8

ul

ew
1

u(l)

x=0.6

0.0 0.2 0.4 0.6 0.8

ul

ew
1

u(l)

x=0.8

0.0 0.2 0.4 0.6 0.8

ul

ew
1

u(l)

x=1

Figure: Transition plots : M = 29, L = M, C = 1.5 bits and R = 0.8C.
We used Monte Carlo simulation with replicate size 10000. The
horizontal axis depicts u(`) = 1− e−2C`/L which is an increasing
function of `.

Andrew Barron Sparse Superposition Codes: Fast, Reliable, Capacity-Achieving 24/24

