Communication by Regression: Sparse Superposition Codes

Andrew Barron
Department of Statistics, Yale University

Coauthors: Antony Joseph and Sanghee Cho

March 20, 2013, Brown University
Channel Communication Set-up

- **Input bits:** $U = (U_1, U_2, \ldots, U_K)$ indep Bern(1/2)

 \downarrow

- **Encoded:** $x = (x_1, x_2, \ldots, x_n)$

 \downarrow

- **Channel:** $p(y|x)$

 \downarrow

- **Received:** $Y = (Y_1, Y_2, \ldots, Y_n)$

 \downarrow

- **Decoded:** $\hat{U} = (\hat{U}_1, \hat{U}_2, \ldots, \hat{U}_K)$

- **Rate:** $R = \frac{K}{n}$

 Capacity C

- **Reliability:** Want small Prob $\{\hat{U} \neq U\}$ and small Prob $\{\text{Fraction mistakes} \geq \alpha\}$
Gaussian Noise Channel

- Input bits: \(U = (U_1, U_2, \ldots, U_K) \)
- Encoded: \(x = (x_1, x_2, \ldots, x_n) \)
 \[\frac{1}{n} \sum_{i=1}^{n} x_i^2 \approx P \]
- Channel: \(p(y|x) \)
 \[y = x + \varepsilon, \varepsilon \sim N(0, \sigma^2 I) \]
 \[snr = \frac{P}{\sigma^2} \]
- Received: \(Y = (Y_1, Y_2, \ldots, Y_n) \)
- Decoded: \(\hat{U} = (\hat{U}_1, \hat{U}_2, \ldots, \hat{U}_K) \)
- Rate: \(R = \frac{K}{n} \)
 Capacity \(C = \frac{1}{2} \log(1 + snr) \)
- Reliability: Want small \(\text{Prob}\{\hat{U} \neq U\} \)
 and small \(\text{Prob}\{\text{Fraction mistakes} \geq \alpha\} \)
Sparse Superposition Code

- **Input bits:** $U = (U_1 \ldots U_K)$
- **Coefficients:** $\beta = (00 \times 0000000000 \times 00 \ldots 0 \times 00000)^T$
- **Sparsity:** L entries non-zero out of N
- **Matrix:** X, n by N, all entries indep Normal(0, 1)
- **Codeword:** $X\beta$, superposition of a subset of columns
- **Receive:** $Y = X\beta + \varepsilon$, a statistical linear model
- **Decode:** $\hat{\beta}$ and \hat{U} from X, Y
Sparse Superposition Code

- **Input bits:** \(U = (U_1 \ldots U_K) \)
- **Coefficients:** \(\beta = (00 \ast 0000000000 \ast 00 \ldots 0 \ast 000000)^T \)
- **Sparsity:** \(L \) entries non-zero out of \(N \)
- **Matrix:** \(X, \ n \text{ by } N, \) all entries indep Normal(0, 1)
- **Codeword:** \(X\beta, \) superposition of a subset of columns
- **Receive:** \(Y = X\beta + \varepsilon, \) a statistical linear model
- **Decode:** \(\hat{\beta} \) and \(\hat{U} \) from \(X, Y \)
- **Rate:** \(R = \frac{K}{n} \) from \(K = \log \left(\frac{N}{L} \right), \) near \(L \log \left(\frac{N}{L} e \right) \)
Partitioned Superposition Code

- **Input bits**: \(U = (U_1 \ldots, \ldots, \ldots, \ldots U_K) \)

 \(L \) sections, each of size \(\log_2 M \)

- **Coefficients**: \(\beta = (00 \times 00000, 00000 \times 00, \ldots, 0 \times 000000) \)

 \(L \) sections, each of size \(M = N/L \), a power of 2

- **Sparsity**: 1 non-zero entry in each section

- **Indices of nonzeros**: \((j_1, j_2, \ldots, j_L)\) specified by \(U \) segments

- **Matrix**: \(X \), \(n \) by \(N \), splits into \(L \) sections

- **Codeword**: \(X\beta \), superposition of columns, one from each

- **Receive**: \(Y = X\beta + \varepsilon \)

- **Decode**: \(\hat{\beta} \) and \(\hat{U} \)

- **Rate**: \(R = \frac{K}{n} \) from \(K = L \log \frac{N}{L} = L \log M \)
Partitioned Superposition Code

- **Input bits:** \(U = (U_1 \ldots, \ldots, \ldots, \ldots, U_K) \)

 \(L \) sections, each of size \(\log_2 M \)

- **Coefficients:** \(\beta = (00 * 00000, 00000 * 00, \ldots, 0 * 000000) \)

 \(L \) sections, each of size \(M = N/L \), a power of 2

- **Sparsity:** 1 non-zero entry in each section

- **Indices of nonzeros:** \((j_1, j_2, \ldots, j_L)\) specified by \(U \) segments

- **Matrix:** \(X \), \(n \) by \(N \), splits into \(L \) sections

- **Codeword:** \(X\beta \), superposition of columns, one from each

- **Receive:** \(Y = X\beta + \varepsilon \)

- **Decode:** \(\hat{\beta} \) and \(\hat{U} \)

- **Rate:** \(R = \frac{K}{n} \) from \(K = L \log \frac{N}{L} = L \log M \)

- **Ultra-sparse case:** Impractical \(M = 2^{nR/L} \) with \(L \) constant

 (reliable at all \(R < C \): Cover 1972, 1980)

- **Moderately-sparse:** Practical \(M = n \) with \(L = nR/\log n \)

 (still reliable at all \(R < C \))
Partitioned Superposition Code

- **Input bits:** \(U = (U_1 \ldots, \ldots, \ldots, \ldots U_K) \)
 - \(L \) sections, each of size \(\log_2 M \)
- **Coefficients:** \(\beta = (00 \ast 00000, 00000 \ast 00, \ldots, 0 \ast 000000) \)
 - \(L \) sections, each of size \(M = N/L, \) a power of 2
- **Sparsity:** 1 non-zero entry in each section
- **Indices of nonzeros:** \((j_1, j_2, \ldots, j_L) \) specified by \(U \) segments
- **Matrix:** \(X, \) \(n \) by \(N, \) splits into \(L \) sections
- **Codeword:** \(X\beta, \) superposition of columns, one from each
- **Receive:** \(Y = X\beta + \varepsilon \)
- **Decode:** \(\hat{\beta} \) and \(\hat{U} \)
- **Rate:** \(R = \frac{K}{n} \) from \(K = L \log \frac{N}{L} = L \log M \)
- **Reliability:** small Prob\{Fraction mistakes \(\geq \alpha\} \) small \(\alpha \)
- **Outer RS code:** rate \(1 - 2\alpha, \) corrects remaining mistakes
- **Overall rate:** \(R_{tot} = (1 - 2\alpha)R \)
- **Overall rate:** up to capacity
Power Allocation

- **Coefficients**: \(\beta = (00*00000, 00000*00, \ldots, 0*000000) \)
- **Indices of nonzeros**: \(\text{sent} = (j_1, j_2, \ldots, j_L) \)
- **Coeff. values**: \(\beta_{j\ell} = \sqrt{P_{\ell}} \) for \(\ell = 1, 2, \ldots, L \)
- **Power control**: \(\sum_{\ell=1}^{L} P_{\ell} = P \)
- **Codewords**: \(X\beta \), have average power \(P \)

Power Allocations

- **Constant power**: \(P_{\ell} = P/L \)
- **Variable power**: \(P_{\ell} \) proportional to \(e^{-2C_{\ell}/L} \)
- **Variable with leveling**
Decoding Steps (with thresholding)

Start: [Step 1]
- Compute the inner product of Y with each column of X
- See which are above a threshold
- Form initial fit as weighted sum of columns above threshold

Iterate: [Step $k \geq 2$]
- Compute the inner product of residuals $Y - Fit_{k-1}$ with each remaining column of X
- See which are above threshold
- Add these columns to the fit

Stop:
- At Step $k = 1 + snr \log M$, or
- if there are no additional inner products above threshold
Complexity in parallel pipelined implementation

- **Space**: (use $k = snr \log M$ copies of the n by N dictionary)

 - $knN = snr C M n^2$ memory positions
 - kN multiplier/accumulators and comparators

- **Time**: $O(1)$ per received Y symbol
Adaptive Successive Decoder

Decoding Steps (with iteratively optimal statistics)

Start: [Step 1]
- Compute the inner product of Y with each column of X
- Form initial fit

Iterate: [Step $k \geq 2$]
- Compute inner product of residuals $Y - Fit_{k-1}$ with each X_j.
- Adjusted form: $Z_{k,j}$ equals $(Y - X \hat{\beta}_{k-1,-j})^T X_j$
- Standardize by dividing it by $\| Y - X \hat{\beta}_{k-1} \|$.
- Form the new fit

$$\hat{\beta}_{k,j} = \sqrt{P_\ell} \ w_j(b) = \sqrt{P_\ell} \ \frac{e^b Z_{k,j}}{\sum_{j \in \text{sec}_\ell} e^b Z_{k,j}}$$

Stop:
- At Step $k = O(\log M)$ if $R < C$.
- At Step $k = M^\alpha$, with $0 < \alpha < 1$, if R matches C to within polynomially small amount.
Approximate distribution of $Z_{k,j}$:

$$Z_{k,j} = \frac{\sqrt{n} \beta_j}{\sqrt{\sigma^2 + E\|\hat{\beta}_{k-1} - \beta\|^2}} + Z_{k,j}$$

with $Z_{k,j}$ independent standard normal.

$$Z_{k,j} = b_{\ell,x_{k-1}} 1\{j \text{ sent}\} + Z_{k,j}$$

where

$$b = \sqrt{\frac{n \ell}{\sigma^2 + P(1 - x)}}$$

Here

$$E\|\hat{\beta}_{k-1} - \beta\|^2 = P(1 - x_{k-1})$$

Update rule $x_k = g(x_{k-1})$ where

$$g(x) = \sum_{\ell=1}^{L} (P_{\ell}/P) E[w_{j_{\ell}}(b_{\ell,x})].$$
Decoding progression

Figure: Plot of $g(x)$ and the sequence x_k.

$M = 2^9$, $L = M$
$\text{snr} = 7$
$C = 1.5 \text{ bits}$
$R = 1.2 \text{ bits (0.8C)}$
Figure: Comparison of update functions. Blue and light blue lines indicates \(\{0, 1\} \) decision using the threshold \(\tau = \sqrt{2 \log M} + a \) with respect to the value \(a \) as indicated.
Figure: Transition plots: $M = 2^9$, $L = M$, $C = 1.5$ bits and $R = 0.8C$. We used Monte Carlo simulation with replicate size 10000. The horizontal axis depicts $u(\ell) = 1 - e^{-2C\ell/L}$ which is an increasing function of ℓ.
Result for Optimal ML Decoder [Joseph and B. 2012], with outer RS decoder, and with equal power allowed across the sections

- Prob error exponentially small in n for all $R < C$

$$\text{Prob}\{\text{Error}\} \leq e^{-n(C-R)^2/2V}$$

- In agreement with the Shannon-Gallager exponent of optimal code, though with a suboptimal constant V depending on the snr
Rate and Reliability of Fast Superposition Code

Practical: Adaptive Successive Decoder [B. and Joseph 2011]

- prob error exponentially small in $n/(\log M)^{1/2}$ for $R < C$
- Value C_M approaching capacity

$$C_M = \frac{C}{1 + c_1/\log M}$$

- Probability error exponentially small in L for $R < C_M$

$$\text{Prob}\{\text{Error}\} \leq e^{-L(C_M-R)^2c_2}$$

- Improves to $e^{-c_3L(C_M-R)^2(\log M)^{0.5}}$ using a Bernstein bound.
- Nearly optimal when $C_M - R$ is at least $C - C_M$.
- Our c_1 is near $(2.5 + 1/snr) \log \log M + 4C$
Some Relationships to Other Work

- Forney (1960): Concatenated codes
- Barg, Zémor (2002, 2004): Expander codes for the BSC:
 - exponential error bounds and linear complexity for $R < C$
- LDPC and turbo codes:
 - some theoretical analysis (Richardson, Urbanke 2008), yet obstacles remain for proof of rates up to capacity
- Arikan polar codes for Gaussian channel (Abbe, Bar. 2011):
 - q quantization levels
 - $R < C_q$ with gap $C - C_q \leq \text{snr} / q$
 - Error bound from Hassani, Urbanke (2011) in $q = 2$ case:
 \[
 \text{Prob}\{\text{Error}\} \leq 2^{-n(1-\alpha)/2(C_q-R)^{1/2\alpha}} (1+o(1))
 \]
- Tropp 08 codes from compressive sensing; related work:
 - Wainwright; Fletcher, Rangan, Goyal; Zhang; others
 - ℓ_1-constrained least squares practical, has positive rate
 - but not capacity achieving
Sparse superposition codes with adaptive successive decoding

- Simplicity of the code permits:
 - distributional analysis of the decoding progression
 - low complexity decoder
 - exponentially small error probability for any fixed $R < C$

- Asymptotics superior to polar code bounds for such rates

- Currently studying rates R_n approaching C, at a polynomial rate (slower than $1/\sqrt{n}$)
\[w_j(b) = P[j_\ell = j \mid Z_k] = \frac{e^{b Z_{k,j}}}{\sum_{j \in \text{sec}_\ell} e^{b Z_{k,j}}} \]

The following quantities have the same expectation when \(j_\ell = 1 \) was sent for each section \(\ell \).

(i) \(1 - w_1 \)

(ii) \((1 - w_1)^2 + \sum_{j=2}^{m} w_j^2 = \| e_1 - w \|^2 \)

(iii) \(1 - \sum_{j \in \text{sec}_\ell} w_j^2 \)

From these identities, we can estimate \(\beta^T \hat{\beta}_k \) by \(\| \hat{\beta}_k \|^2 \). Likewise, \(\| \beta - \hat{\beta}_k \|^2 \) and \(P - \| \hat{\beta}_k \|^2 \) have the same expectation.

Each of these is an average of \(L \) independent random variables bounded by 1, so the error of these estimates is accordingly small except in events of exponentially small probability.
Decoding progression

Figure: Plot of $g(x)$ and the sequence x_k.

$M = 2^9$, $L = M$

$\text{snr}=7$

$C=1.5 \text{ bits}$

$R=1.2 \text{ bits}(0.8C)$

Andrew Barron Communication by Regression 22/1
Figure: Comparison of update functions. Blue and light blue lines indicates 0, 1 decision using the threshold $\hat{a}2 \log M + a$ with respect to the value a as indicated.
Figure: Transition plots: $M = 2^9$, $L = M$, $C = 1.5$ bits and $R = 0.8C$. We used Monte Carlo simulation with replicate size 10000. The horizontal axis depicts $u(\ell) = 1 - e^{-2C\ell/L}$ which is an increasing function of ℓ.