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Fast Sparse Superposition Codes

Sparse Superposition Codes for the Gaussian Noise Channel

low complexity

exponentially small error probability

for any fixed rate R < C
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Outline

Sparse superposition coding

Adaptive successive decoding
simplified form based on residuals
refined form based on adaptive orthogonalization

Distributional analysis

Rate, reliability, and complexity
refined form of exponent

Comparison with polar codes
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Channel Communication Set-up

Input bits: U = (U1, U2, . . . . . . , UK ) indep Bern(1/2)

↓
Encoded: x = (x1, x2, . . . , xn)

↓
Channel: p(y |x)

↓
Received: Y = (Y1, Y2, . . . , Yn)

↓
Decoded: Û = (Û1, Û2, . . . . . . , ÛK )

Rate: R = K
n Capacity C

Reliability: Want small Prob{Û 6= U}
and small Prob{Fraction mistakes ≥ α}
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Gaussian Noise Channel

Input bits: U = (U1, U2, . . . . . . , UK )

↓
Encoded: x = (x1, x2, . . . , xn)

1
n
∑n

i=1 x2
i
∼= P

↓
Channel: p(y |x) y = x + ε , ε ∼ N(0, σ2I)

↓ snr = P/σ2

Received: Y = (Y1, Y2, . . . , Yn)

↓
Decoded: Û = (Û1, Û2, . . . . . . , ÛK )

Rate: R = K
n Capacity C = 1

2 log(1 + snr)

Reliability: Want small Prob{Û 6= U}
and small Prob{Fraction mistakes ≥ α}
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Sparse Superposition Code

Input bits: U = (U1 . . . . . . . . . . . . UK )

Coefficients: β = (00 ∗ 0000000000 ∗ 00 . . . 0 ∗ 000000)T

Sparsity: L entries non-zero out of N
Matrix: X , n by N, all entries indep Normal(0, 1)

Codeword: Xβ, superposition of a subset of columns
Receive: Y = Xβ + ε, a statistical linear model
Decode: β̂ and Û from X ,Y
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Sparse Superposition Code

Input bits: U = (U1 . . . . . . . . . . . . UK )

Coefficients: β = (00 ∗ 0000000000 ∗ 00 . . . 0 ∗ 000000)T

Sparsity: L entries non-zero out of N
Matrix: X , n by N, all entries indep Normal(0, 1)

Codeword: Xβ, superposition of a subset of columns
Receive: Y = Xβ + ε

Decode: β̂ and Û from X ,Y
Rate: R = K

n from K = log
(N

L

)
, near L log

(N
L e
)
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Sparse Superposition Code

Input bits: U = (U1 . . . . . . . . . . . . UK )

Coefficients: β = (00 ∗ 0000000000 ∗ 00 . . . 0 ∗ 000000)T

Sparsity: L entries non-zero out of N
Matrix: X , n by N, all entries indep Normal(0, 1)

Codeword: Xβ, superposition of a subset of columns
Receive: Y = Xβ + ε

Decode: β̂ and Û from X ,Y
Rate: R = K

n from K = log
(N

L

)
Reliability: small Prob{Fraction β̂ mistakes ≥ α}, small α
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Partitioned Superposition Code

Input bits: U = (U1 . . . , . . . , . . . , . . . UK )

Coefficients: β=(00 ∗ 00000, 00000 ∗ 00, . . . , 0 ∗ 000000)

Sparsity: L sections, each of size B =N/L, a power of 2.
1 non-zero entry in each section

Indices of nonzeros: (j1, j2, . . . , jL) specified by U segments
Matrix: X , n by N, splits into L sections
Codeword: Xβ, superposition of columns, one from each
Receive: Y = Xβ + ε

Decode: β̂ and Û
Rate: R = K

n from K = L log N
L = L log B
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Partitioned Superposition Code

Input bits: U = (U1 . . . , . . . , . . . , . . . UK )

Coefficients: β=(00 ∗ 00000, 00000 ∗ 00, . . . , 0 ∗ 000000)

Sparsity: L sections, each of size B =N/L, a power of 2.
1 non-zero entry in each section

Indices of nonzeros: (j1, j2, . . . , jL) specified by U segments
Matrix: X , n by N, splits into L sections
Codeword: Xβ, superposition of columns, one from each
Receive: Y = Xβ + ε

Decode: β̂ and Û
Rate: R = K

n from K = L log N
L = L log B

Interpretation: Orthogonal constellations forming β
are composed with a Gaussian matrix X
to yield the code vectors
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Partitioned Superposition Code

Input bits: U = (U1 . . . , . . . , . . . , . . . UK )

Coefficients: β=(00 ∗ 00000, 00000 ∗ 00, . . . , 0 ∗ 000000)

Sparsity: L sections, each of size B =N/L, a power of 2.
1 non-zero entry in each section

Indices of nonzeros: (j1, j2, . . . , jL) specified by U segments
Matrix: X , n by N, splits into L sections
Codeword: Xβ, superposition of columns, one from each
Receive: Y = Xβ + ε

Decode: β̂ and Û
Rate: R = K

n from K = L log N
L = L log B

Ultra-sparse case: Impractical B = 2nR/L with L constant
(reliable at all R < C: Cover 1972,1980)

Moderately-sparse: Practical B = n with L = nR/ log n
(still reliable with rate up to capacity)
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Partitioned Superposition Code

Input bits: U = (U1 . . . , . . . , . . . , . . . UK )

Coefficients: β=(00 ∗ 00000, 00000 ∗ 00, . . . , 0 ∗ 000000)

Sparsity: L sections, each of size B =N/L, a power of 2.
1 non-zero entry in each section

Indices of nonzeros: (j1, j2, . . . , jL) specified by U segments
Matrix: X , n by N, splits into L sections
Codeword: Xβ, superposition of columns, one from each
Receive: Y = Xβ + ε

Decode: β̂ and Û
Rate: R = K

n from K = L log N
L = L log B

Reliability: small Prob{Fraction mistakes ≥ α} small α

Outer RS code: rate 1−α, corrects remaining mistakes
Overall rate: Rtot = (1−α)R
Overall rate: up to capacity

Andrew Barron and Antony Joseph Analysis of Fast Sparse Superposition Codes 12/24



Power Allocation

Coefficients: β=(00∗00000, 00000∗00, . . . , 0∗000000)

Indices of nonzeros: sent = (j1, j2, . . . , jL)

Coeff. values: βj` =
√

P` for ` = 1, 2, . . . , L

Power control:
∑L

`=1 P` = P

Codewords: Xβ, have average power P

Power Allocations

Constant power: P` = P/L

Variable power: P` proportional to e−2C `/L
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Adaptive Successive Decoder (simplified version)

Decoding Steps

Start: [Step 1]
Compute the inner product of Y with each column of X
See which are above a threshold
Form initial fit as weighted sum of columns above threshold

Iterate: [Step k ≥ 2]
Compute the inner product of residuals Y − Fitk−1 with
each remaining column of X
See which are above threshold
Add these columns to the fit

Stop:
At Step k = 1 + snr log B, or
if there are no additional inner products above threshold
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Complexity of Adaptive Successive Decoder

Complexity in parallel pipelined implementation

Space: (from k = snr log B copies of the n by N dictionary)

knN = snr CnB memory positions
kN multiplier/accumulators and comparators

Time: O(1) per received Y symbol
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Rate and Reliability

Result for Optimal ML Decoder, with outer RS decoder, and
with equal power allowed across the sections

Prob error exponentially small in n for all R < C

Prob{Error} ≤ e−n (C−R)2/2V

In agreement with the Shannon-Gallager exponent of
optimal code, though with a suboptimal constant V
depending on the snr
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Rate and Reliability of Fast Superposition Code

Practical: Adaptive Successive Decoder, with outer RS code.

prob error exponentially small in n/(log B)1/2 for R < C

Value CB approaching capacity

CB =
C

1 + c1/ log B

Probability error exponentially small in L for R < CB

Prob
{

Error
}
≤ e−L(CB−R)2c2

Improves to e−c3L(CB−R)2(log B)0.5
using a Bernstein bound.

Nearly optimal when CB−R is at least C−CB.

Our c1 is near (2.5 + 1/snr) log log B + 4C
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Some Relationships to Other Work

Forney (1960): Concatenated codes
Barg,Zémor (2002,2004): Expander codes for the BSC:

exponential error bounds and linear complexity for R < C
LDPC and turbo codes:

some theoretical analysis (Richardson,Urbanke 2008), yet
obstacles remain for proof of rates up to capacity

Arikan polar codes for Gaussian channel (Abbe,Bar.2011):
q quantization levels
R < Cq with gap C − Cq ≤ snr/q
Error bound from Hassani, Urbanke (2011) in q = 2 case:

Prob
{

Error
}
≤ 2−n(1−α)/2(Cq−R)1/2α(1+o(1))

Tropp 08 codes from compressive sensing; related work:
Wainwright; Fletcher, Rangan, Goyal; Zhang; others
`1-constrained least squares practical, has positive rate
but not capacity achieving
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Ingredients in the Practical Decoder

Adaptive Successive Decoder Ingredients

Intialization: res1 = Y and J1 = {1, 2, . . . , N}, with N = LB

Loop:
Residual: resk = Y − Fitk−1

Test Stat: Zcomb
k ,j = X T

j resk/‖resk‖

Threshold: τ =
√

2 log B + a

Detections: 1Hk,j = 1{Zcomb
k,j ≥τ}

Fit Increment: Fk =
∑

j∈Jk

√
Pj Xj 1Hk,j

Fit Update: Fitk = Fitk−1 + Fk

Remaining: Jk+1 = { j ∈ Jk : Zcomb
k ,j < τ}
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Distributional analysis of refined decoder

Test statistic: Zcomb
k ,j

Test statistic ingredients: Zk ,j = Xj
T Gk/‖Gk‖

The Y ,−F1, . . . ,−Fk−1 have orthogonalized components

G1, G2, . . . , Gk

Approximate distrib: Zk ,j is shift of indep N(0, 1) r.v.s√
(wk u` C/R) 2 log B 1{j sent} + Zk ,j

with
u` = e−2C`/L for j in section `
wk = sk − sk−1 is the increment of the sequence sk
sk equals s(x) = 1/(1− νx) ν = snr/(1 + snr)
evaluated at x =xk−1, weighted fraction of prev. detections
initialized with x0 = 0 and w1 = 1.
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Distributional analysis of refined decoder

Combined test statistic: Zcomb
k ,j =

∑k
k ′=1

√
λk ′ Zk ′,j

Best weights λk ′ = wk ′/sk proportional to wk

Approximate distrib: Zcomb
k ,j , maximized shift of N(0, 1)√

(u` C/R) 2 log B
1− νx

1{j sent} + Z comb
k ,j

evaluated at x = xk−1

Expected weighted fraction of terms sent above threshold

g(x) =
L∑

`=1

π` Φ

(
τ

(√
u` C/R
1− νx

− 1

))

with π` = P`/P proportional to u` = e−2C`/L

Provides the performance update xk = g(xk−1)

g(x) shown to exceed x by at least const/ log B for R ≤ CB
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Decoding progression, example bounds
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B  = 216, L == B
snr == 15
C  = 2 bits
R  = 1.04 bits (0.52C )
No. of steps =  18

Figure: Plot of g(x) and the sequence xk for snr = 15, with variable
power allocation. The threshold uses a = 0.86. The final false alarm
and failed detection rates are less than 0.026 and 0.013 respectively,
with probability of at least that fraction of mistakes less than 0.002.
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Decoding Progression
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B  = 216, L == B
snr == 1
C  = 0.5 bits
R  = 0.31 bits (0.62C )
No. of steps =  7

Figure: Plot of g(x) and the sequence xk for snr = 1, with constant
power allocation. The threshold uses a = 0.56. The final false alarm
and failed detection rates are 0.026 and 0.053 respectively, with
probability bound 0.0007.

Andrew Barron and Antony Joseph Analysis of Fast Sparse Superposition Codes 23/24



Summary

Sparse superposition codes with adaptive successive decoding

Simplicity of the code permits:
distributional analysis of the decoding progression
low complexity decoder
exponentially small error probability for any fixed R < C

Asymptotics superior to polar code bounds for such rates

Study of Rn approaching C, e.g. at a polynomial rate
(slower than 1/

√
n) needs more attention

Need for new analysis and perhaps new decoding
refinements for both types of codes
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