SPARSE SUPERPOSITION CODES:
low complexity and exponentially small error
probability at all rates below capacity

Andrew Barron and Antony Joseph
Department of Statistics
Yale University

Helsinki, August 8, 2011
Channel Communication Set-up

- **Input bits:** \(U = (U_1, U_2, \ldots, U_K) \) indep Bern(1/2)
- **Encoded:** \(x = (x_1, x_2, \ldots, x_n) \)
- **Channel:** \(p(y|x) \)
- **Received:** \(Y = (Y_1, Y_2, \ldots, Y_n) \)
- **Decoded:** \(\hat{U} = (\hat{U}_1, \hat{U}_2, \ldots, \hat{U}_K) \)

Rate: \(R = \frac{K}{n} \)

Capacity: \(C \)

Reliability: Want small Prob \(\{\hat{U} \neq U\} \)
and small Prob \(\{\text{Fraction mistakes} \geq \alpha\} \)
Gaussian Noise Channel

- Input bits: \(U = (U_1, U_2, \ldots, U_K) \)

- Encoded: \(x = (x_1, x_2, \ldots, x_n) \) \(\frac{1}{n} \sum_{i=1}^{n} x_i^2 \approx P \)

- Channel: \(p(y|x) \) \(y = x + \varepsilon, \varepsilon \sim N(0, \sigma^2 I) \) \(snr = P/\sigma^2 \)

- Received: \(Y = (Y_1, Y_2, \ldots, Y_n) \)

- Decoded: \(\hat{U} = (\hat{U}_1, \hat{U}_2, \ldots, \hat{U}_K) \)

- Rate: \(R = \frac{K}{n} \)

 Capacity \(C = \frac{1}{2} \log(1 + snr) \)

- Reliability: Want small \(\text{Prob}\{\hat{U} \neq U\} \)

 and small \(\text{Prob}\{\text{Fraction mistakes} \geq \alpha\} \)
Sparse Superposition Code

- **Input bits:** \(U = (U_1 \ldots \ldots \ldots U_K) \)
- **Coefficients:** \(\beta = (00 \ast 0000000000 \ast 00 \ldots 0 \ast 000000)^T \)
- **Sparsity:** \(L \) entries non-zero out of \(N \)
- **Matrix:** \(X, n \) by \(N \), all entries indep Normal(0, 1)
- **Codeword:** \(X\beta \), superposition of a subset of columns
- **Receive:** \(Y = X\beta + \varepsilon \), a statistical linear model
- **Decode:** \(\hat{\beta} \) and \(\hat{U} \) from \(X, Y \)
Sparse Superposition Code

- **Input bits:** \(U = (U_1 \ldots \ldots \ldots U_K) \)
- **Coefficients:** \(\beta = (00 \ast 0000000000 \ast 00 \ldots 0 \ast 000000)^T \)
- **Sparsity:** \(L \) entries non-zero out of \(N \)
- **Matrix:** \(X, \ n \) by \(N \), all entries indep Normal\((0, 1)\)
- **Codeword:** \(X\beta \), superposition of a subset of columns
- **Receive:** \(Y = X\beta + \varepsilon \)
- **Decode:** \(\hat{\beta} \) and \(\hat{U} \) from \(X, Y \)
- **Rate:** \(R = \frac{K}{n} \) from \(K = \log \left(\frac{N}{L} \right) \), near \(L \log \left(\frac{N}{L} e \right) \)
Sparse Superposition Code

- **Input bits:** \(U = (U_1 \ldots \ldots \ldots U_K) \)
- **Coefficients:** \(\beta = (00 \ast 0000000000 \ast 00 \ldots 0 \ast 00000) \)
- **Sparsity:** \(L \) entries non-zero out of \(N \)
- **Matrix:** \(X \), \(n \) by \(N \), all entries indep Normal(0, 1)
- **Codeword:** \(X\beta \), superposition of a subset of columns
- **Receive:** \(Y = X\beta + \varepsilon \)
- **Decode:** \(\hat{\beta} \) and \(\hat{U} \) from \(X, Y \)
- **Rate:** \(R = \frac{K}{n} \) from \(K = \log \left(\frac{N}{L} \right) \)
- **Reliability:** small \(\text{Prob}\{\text{Fraction } \hat{\beta} \text{ mistakes } \geq \alpha}\)\), small \(\alpha \)

Andrew Barron and Antony Joseph

Sparse Superposition Codes: Fast, Reliable, Capacity-Achieving
Partitioned Superposition Code

- **Input bits**: \(U = (U_1 \ldots, \ldots, \ldots, \ldots, U_K) \)
- **Coefficients**: \(\beta = (00 \ast 00000, 00000 \ast 00, \ldots, 0 \ast 000000) \)
- **Sparsity**: \(L \) sections, each of size \(B = N/L \), a power of 2. 1 non-zero entry in each section
- **Indices of nonzeros**: \((j_1, j_2, \ldots, j_L) \) specified by \(U \) segments
- **Matrix**: \(X \), \(n \) by \(N \), splits into \(L \) sections
- **Codeword**: \(X\beta \), superposition of columns, one from each
- **Receive**: \(Y = X\beta + \varepsilon \)
- **Decode**: \(\hat{\beta} \) and \(\hat{U} \)
- **Rate**: \(R = \frac{K}{n} \) from \(K = L \log \frac{N}{L} = L \log B \)
Partitioned Superposition Code

- **Input bits**: \(U = (U_1, \ldots, \ldots, \ldots, \ldots, U_K) \)
- **Coefficients**: \(\beta = (00 \ast 00000, 00000 \ast 00, \ldots, 0 \ast 000000) \)
- **Sparsity**: \(L \) sections, each of size \(B = N/L \), a power of 2. 1 non-zero entry in each section
- **Indices of nonzeros**: \((j_1, j_2, \ldots, j_L) \) specified by \(U \) segments
- **Matrix**: \(X \), \(n \) by \(N \), splits into \(L \) sections
- **Codeword**: \(X\beta \), superposition of columns, one from each
- **Receive**: \(Y = X\beta + \epsilon \)
- **Decode**: \(\hat{\beta} \) and \(\hat{U} \)
- **Rate**: \(R = \frac{K}{n} \) from \(K = L \log \frac{N}{L} = L \log B \)
- **Ultra-sparse case**: Impractical \(B = 2^{nR/L} \) with \(L \) constant (reliable at all \(R < C \): Cover 1972, 1980)
- **Moderately-sparse**: Practical \(B = n \) with \(L = nR/\log n \) (still reliable with rate up to capacity)
Partitioned Superposition Code

- **Input bits:** $U = (U_1 \ldots, \ldots, \ldots, \ldots U_K)$
- **Coefficients:** $\beta = (00 \ast 00000, 00000 \ast 00, \ldots, 0 \ast 000000)$
- **Sparsity:** L sections, each of size $B = N/L$, a power of 2. 1 non-zero entry in each section
- **Indices of nonzeros:** (j_1, j_2, \ldots, j_L) specified by U segments
- **Matrix:** X, n by N, splits into L sections
- **Codeword:** $X \beta$, superposition of columns, one from each
- **Receive:** $Y = X \beta + \varepsilon$
- **Decode:** $\hat{\beta}$ and \hat{U}
- **Rate:** $R = \frac{K}{n}$ from $K = L \log \frac{N}{L} = L \log B$
- **Reliability:** small Prob{$Fraction mistakes \geq \alpha$} small α
- **Outer RS code:** rate $1 - \alpha$, corrects remaining mistakes
- **Overall rate:** $R_{tot} = (1 - \alpha)R$
- **Overall rate:** up to capacity
Coefficients: \(\beta = (00*00000, 00000*00, \ldots, 0*000000) \)

Indices of nonzeros: \(sent = (j_1, j_2, \ldots, j_L) \)

Coeff. values: \(\beta_{j_\ell} = \sqrt{P_\ell} \) for \(\ell = 1, 2, \ldots, L \)

Power control: \(\sum_{\ell=1}^{L} P_\ell = P \)

Codewords: \(X_\beta \), have average power \(P \)

Power Allocations

- Constant power: \(P_\ell = P/L \)
- Variable power: \(P_\ell \) proportional to \(e^{-2C \ell/L} \)
Decoding Steps

- **Start**: [Step 1]
 - Compute the inner product of Y with each column of X
 - See which are above a threshold
 - Form initial fit as weighted sum of columns above threshold

- **Iterate**: [Step $k \geq 2$]
 - Compute the inner product of residuals $Y - \text{Fit}_{k-1}$ with each remaining column of X
 - See which are above threshold
 - Add these columns to the fit

- **Stop**:
 - At Step $k = 1 + \text{snr} \log B$, or
 - if there are no additional inner products above threshold
Complexity in parallel pipelined implementation

- **Space:** (from $k = snr \log B$ copies of the n by N dictionary)
 - $knN = snr CnB$ memory positions
 - kN multiplier/accumulators and comparators

- **Time:** $O(1)$ per received Y symbol
Result for Optimal ML Decoder, with outer RS decoder, and with equal power allowed across the sections

- Prob error exponentially small in \(n \) for all \(R < C \)

\[
\text{Prob}\{\text{Error}\} \leq e^{-n(C-R)^2/2V}
\]

- In agreement with the Shannon-Gallager exponent of optimal code, though with a suboptimal constant \(V \) depending on the \(\text{snr} \)
Practical: Adaptive Successive Decoder, with outer RS code.

- prob error exponentially small in \(n/(\log B)^{1/2} \) for \(R < C \)
- Value \(C_B \) approaching capacity

\[
C_B = \frac{C}{1 + c_1 / \log B}
\]

- Probability error exponentially small in \(L \) for \(R < C_B \)

\[
\text{Prob}\{\text{Error}\} \leq e^{-L(C_B - R)^2c_2}
\]

- Improves to \(e^{-c_3L(C_B - R)^2(\log B)^{0.5}} \) using a Bernstein bound.
- Nearly optimal when \(C_B - R \) is at least \(C - C_B \).
- Our \(c_1 \) is near \((2.5 + 1/snr)\log \log B + 4C\)
Forney (1960): Concatenated codes
Barg, Zémor (2002, 2004): Expander codes for the BSC:
 - exponential error bounds and linear complexity for $R < C$
LDPC and turbo codes:
 - some theoretical analysis (Richardson, Urbanke 2008), yet obstacles remain for proof of rates up to capacity
Arikan polar codes for Gaussian channel (Abbe, Bar. 2011):
 - q quantization levels
 - $R < C_q$ with gap $C - C_q \leq \text{snr} / q$
 - Error bound from Hassani, Urbanke (2011) in $q = 2$ case:
 \[
 \text{Prob}\{\text{Error}\} \leq 2^{-(1-\alpha)/2(C_q-R)^{1/2}\alpha(1+o(1))}
 \]
Tropp 08 codes from compressive sensing; related work:
 - Wainwright; Fletcher, Rangan, Goyal; Zhang; others
 - ℓ_1-constrained least squares practical, has positive rate
 - but not capacity achieving

Andrew Barron and Antony Joseph
Sparse Superposition Codes: Fast, Reliable, Capacity-Achieving
Adaptive Successive Decoder Ingredients

Initialization: \(\text{res}_1 = Y \) and \(J_1 = \{1, 2, \ldots, N\} \), with \(N = LB \)

Loop:

- **Residual:** \(\text{res}_k = Y - \text{Fit}_{k-1} \)
- **Test Stat:** \(Z_{k,j}^{\text{comb}} = X_j^T \text{res}_k / \| \text{res}_k \| \)
- **Threshold:** \(\tau = \sqrt{2 \log B + a} \)
- **Detections:** \(1_{H_{k,j}} = 1 \{ Z_{k,j}^{\text{comb}} \geq \tau \} \)
- **Fit Increment:** \(F_k = \sum_{j \in J_k} \sqrt{P_j} X_j 1_{H_{k,j}} \)
- **Fit Update:** \(\text{Fit}_k = \text{Fit}_{k-1} + F_k \)
- **Remaining:** \(J_{k+1} = \{ j \in J_k : Z_{k,j}^{\text{comb}} < \tau \} \)
Distributional analysis of refined decoder

- Test statistic: $Z_{k,j}^{comb}$
- Test statistic ingredients: $Z_{k,j} = X_j^T G_k / \|G_k\|$
- The $Y, -F_1, \ldots, -F_{k-1}$ have orthogonalized components G_1, G_2, \ldots, G_k
- Approximate distrib: $Z_{k,j}$ is shift of indep $N(0, 1)$ r.v.s

$$\sqrt{(w_k u_\ell C/R) 2 \log B} \ 1_{\{j \text{ sent}\}} + Z_{k,j}$$

with
- $u_\ell = e^{-2C\ell/L}$ for j in section ℓ
- $w_k = s_k - s_{k-1}$ is the increment of the sequence s_k
- s_k equals $s(x) = 1/(1 - \nu x)$ where $\nu = \text{snr}/(1 + \text{snr})$
- evaluated at $x = x_{k-1}$, weighted fraction of prev. detections
- initialized with $x_0 = 0$ and $w_1 = 1$.
Distributional analysis of refined decoder

- Combined test statistic: $Z_{k,j}^{\text{comb}} = \sum_{k'=1}^{k} \sqrt{\lambda_{k'}} Z_{k',j}$
- Best weights $\lambda_{k'} = w_{k'}/s_k$ proportional to w_k
- Approximate distrib: $Z_{k,j}^{\text{comb}}$, maximized shift of $N(0, 1)$

$$\sqrt{(u_\ell C/R) 2 \log B \over 1 - \nu x} \cdot 1_{\{j \text{ sent}\}} + Z_{k,j}^{\text{comb}}$$

evaluated at $x = x_{k-1}$

- Expected weighted fraction of terms sent above threshold

$$g(x) = \sum_{\ell=1}^{L} \pi_\ell \ \Phi \left(\tau \left(\sqrt{u_\ell C/R \over 1 - \nu x} - 1 \right) \right)$$

with $\pi_\ell = P_\ell/P$ proportional to $u_\ell = e^{-2C\ell/L}$

- Provides the performance update $x_k = g(x_{k-1})$
- $g(x)$ shown to exceed x by at least $\text{const} / \log B$ for $R \leq C_B$
Figure: Plot of $g(x)$ and the sequence x_k for $snr = 15$, with variable power allocation. The threshold uses $a = 0.86$. The final false alarm and failed detection rates are less than 0.026 and 0.013 respectively, with probability of at least that fraction of mistakes less than 0.002.
Figure: Plot of $g(x)$ and the sequence x_k for $snr = 1$, with constant power allocation. The threshold uses $a = 0.56$. The final false alarm and failed detection rates are 0.026 and 0.053 respectively, with probability bound 0.0007.
Sparse superposition codes with adaptive successive decoding

- Simplicity of the code permits:
 - distributional analysis of the decoding progression
 - low complexity decoder
 - exponentially small error probability for any fixed $R < C$

- Asymptotics superior to polar code bounds for such rates

- Study of R_n approaching C, e.g. at a polynomial rate (slower than $1/\sqrt{n}$) needs more attention

- Need for new analysis and perhaps new decoding refinements for both types of codes
[Figure: Rate as a function of B for $snr=15$ and error probability 10^{-3}.]
Figure: Rate as a function of B for $snr = 1$ and error probability 10^{-3}.

Andrew Barron and Antony Joseph
Sparse Superposition Codes: Fast, Reliable, Capacity-Achieving