
Computationally feasible greedy algorithms for neural nets

Andrew R. Barron

YALE UNIVERSITY

DEPARTMENT OF STATISTICS

Presentation, December 12, 2015

NIPS Workshop on Non-convex Optimization, Montreal

Joint work with Jason Klusowski

Outline

Flexible high-dimensional function estimation with
sigmoidal, sinusoidal and polynomial activation functions

Approximation and estimation bounds

Greedy term selection

Computational strategies
Exhaustive search in discretized directions
Adaptive Annealing
Nonlinear power methods

Andrew Barron Computationally feasible greedy algorithms for neural nets

Data Setting

Data: (X i ,Yi), i = 1,2, . . . ,n

Inputs: explanatory variable vectors

X i = (Xi,1,Xi,2, . . . ,Xi,d)

Domain: Either a unit cube in Rd or all of Rd

Random design: independent X i ∼ P

Output: response variable Yi in R
Moment conditions, with Bernstein constant c

Relationship: E [Yi |X i] = f (X i) as in:
Perfect observation: Yi = f (X i)

Noisy observation: Yi = f (Xi) + εi with εi indep N(0, σ2)

Classification: Y ∈ {0,1} with f (X) = P[Y = 1|X]

Function: f (x) unknown

Andrew Barron Computationally feasible greedy algorithms for neural nets

Univariate activation functions

Activation functions denoted φ(z) or g(z)

Piecewise constant: 1{z−b≥0} or sgn(z−b)

Sigmoid: (ez − e−z)/(ez + e−z)

Linear spline, ramp: (z − b)+

Sinusoidal: cos(2πf z), sin(2πf z)

Polynomial: standard z`, Hermite H`(z)

Products or ridge form builds multivariate activation functions

Andrew Barron Computationally feasible greedy algorithms for neural nets

Flexible multivariate function approximation: d > 1

By internally parameterized models & nonlinear least squares
Fit functions fm(x) =

∑m
j=1 ckφ(x ,ak) in the span of a

parameterized dictionary Φ = {φ(·,a) : a ∈ Rd}
Product bases:

using continuous powers, frequencies or thresholds

φ(x ,a) = φ1(x1,a1)φ1(x2,a2) · · ·φ1(xd ,ad)

Ridge bases: as in projection pursuit regression models,
sinusoidal models, and single-hidden-layer neural nets:

φ(x ,a) = φ(aT x) = φ1(a1x1 + a2x2 + . . .+ adxd)

Internal parameter vector a of dimension d .
Activation function built from univariate function φ1(z)

Andrew Barron Computationally feasible greedy algorithms for neural nets

Notation

Response vector: Y = (Yi)
n
i=1 in Rn

Dictionary vectors: Φ(n) =
{

(φ(X i , θ))n
i=1 : θ ∈ Θ

}
⊂ Rn

Sample squared norm: ‖f‖2(n) = 1
n
∑n

i=1 f 2(X i)

Population squared norm: ‖f‖2 =
∫

f 2(x)P(dx)

Normalized dictionary condition: ‖φ‖ ≤ 1 for φ ∈ Φ

Andrew Barron Computationally feasible greedy algorithms for neural nets

Flexible m−term nonlinear optimization

Impractical one-shot optimization

Sample version

f̂m achieves min
(θj ,cj)

m
j=1

‖Y −
m∑

j=1

cj φθj
‖2(n)

Population version

fm achieves min
(θj ,cj)

m
j=1

‖f −
m∑

j=1

cj φθj
‖2

Optimization of (θj , cj)
m
j=1 in R(d+1)m.

Andrew Barron Computationally feasible greedy algorithms for neural nets

GREEDY OPTIMIZATIONS

Step 1: Choose c1, θ1 to achieve min ‖Y − cφθ‖2(n) or
sample version: maxθ(1/n)

∑
i=1 nYiφ(X i , θ)

population version: maxθ E [f (X)φ(X , θ)]

Step m > 1: Arrange

f̂m = α f̂m−1 + c φ(x , θm)

with αm, cm, θm chosen to achieve

min
α,c,θ
‖Y − α f̂m−1 − c φθ‖2(n).

Also acceptable, with Ri = Yi − f̂m−1(X i),
Choose θm to achieve maxθ

∑n
i=1 Ri φ(X i , θ)

Population version: maxθ E [R(X)φ(X , θ)]

Foward stepwise selection of Sm = {φθ1
, . . . , φθm

}. Given
Sm−1, choose θm to minθ d(Y , span{φθ1

. . . φθ, φθm
})

Andrew Barron Computationally feasible greedy algorithms for neural nets

Basic m−term approximation and computation bounds

For either one-shot or greedy approximation
(B. IT 1993, Lee et al IT 1995)

Population version:

‖f − fm‖ ≤
‖f‖Φ√

m

and moreover

‖f − fm‖2 ≤ inf
g

{
‖f − g‖2 +

2‖g‖2Φ
m

}
Sample version:

‖Y − f̂m‖2(n) ≤ ‖Y − f‖2(n) +
2‖f‖2Φ

m

where ‖f‖Φ is the variation of f with respect to Φ
(as will be defined on the next slide).

Andrew Barron Computationally feasible greedy algorithms for neural nets

`1 norm on coefficients in representation of f

Consider the range of a neural net, expressed via the
bound,∣∣∑

j

cj sgn(θ0,j + θ1,jx1 + . . .+ θd ,jxd)
∣∣ ≤∑

j

|cj |

equality if x is in polygon where sgn(θj · x) = sgn(cj) for all j

Motivates the norm

‖f‖Φ = lim
ε→0

inf
{∑

j

|cj | : ‖
∑

j

cjφθj
− f‖ ≤ ε

}
called the variation of f with respect to Φ (B. 1991)

‖f‖Φ = VΦ(f) = inf{V : f/V ∈ closure(conv(±Φ))}

It appears in the bound ‖f − fm‖ ≤ ‖f‖Φ√
m

Andrew Barron Computationally feasible greedy algorithms for neural nets

`1 norm on coefficients in representation of f

Finite sum representations, f (x) =
∑

j cjφ(x , θj). Variation
‖f‖Φ =

∑
j |cj |, which is the `1 norm of the coefficients in

representation of f in the span of Φ

Infinite integral representation f (x) =
∫

ei θ·x f̃ (θ) dθ
(Fourier representation), for x in a unit cube. The variation
‖f‖Φ is bounded by an L1 spectral norm:

‖f‖cos =

∫
Rd
|̃f (θ)|dθ

‖f‖step ≤
∫
|̃f (θ)| ‖θ‖1 dθ

‖f‖ramp ≤
∫
|̃f (θ)| ‖θ‖21 dθ

As we said, this ‖f‖Φ appears in the numerator of the
approximation bound.

Andrew Barron Computationally feasible greedy algorithms for neural nets

Statistical Risk

The population accuracy of function estimated from sample

Statistical risk E‖f̂m − f‖2 = E(f̂m(X)− f (X))2

Expected squared generalization error on new X ∼ P

Minimax optimal risk bound, via information theory

E‖f̂m − f‖2 ≤ ‖fm − f‖2 + c
m
n

log N(Φ, δ).

Here log N(Φ, δ) is the metric entropy of Φ at δ = 1/m ; it is
of order d log(1/δ) and, with `1 constrained internal
parameters, it is of order (1/δ) log d

E‖f̂m − f‖2 ≤
‖f‖2Φ

m
+

c
n

min{md log(n/d) , m2 log d}

Bound is 2‖f‖Φ[cd
n log n/d]1/2 or 3‖f‖4/3

Φ [c
n log d]1/3,

whichever is smallest
Andrew Barron Computationally feasible greedy algorithms for neural nets

Adaptation

Adapt network size m and choice of internal parameters

Minimum Description Length Principle leads to
Complexity penalized least squares criterion.
Let m̂ achieve

min
m

{
‖Y − f̂m‖2(n) + 2c

m
n

log N(Φ, δ)
}

Information-theoretic risk bound

E‖f̂m̂ − f‖2 ≤ min
m

{
‖fm − f‖2 + 2c

m
n

log N(Φ, δ)
}

Performs as well as if the best m∗ were known in advance.
‖f‖2

Φ/m replaces ‖fm − f‖2 in the greedy case.

`1 penalized least squares
Achieves the same risk bound
Retains the MDL interpretation (B, Huang,Li,Luo,2008)

Andrew Barron Computationally feasible greedy algorithms for neural nets

Confronting the computational challenge

Greedy search
Reduces dimensionality of optimization from md to just d
Obtain a current θm achieving within a constant factor of the
maximum of

Jn(θ) =
1
n

n∑
i=1

Ri φ(X i , θ).

This surface can still have many maxima.
We might get stuck at a spurious local maximum.

New computational strategies:
1 Third order tensor methods (pros and cons)

2 Nonlinear power methods

3 Adaptive annealing

Andrew Barron Computationally feasible greedy algorithms for neural nets

Tensor and nonlinear power methods

Know design distribution p(X)

Target f (x) =
∑mo

k=1 gk (aT
kx) is a combination of ridge

functions with distinct linearly independent directions ak

Ideal: maximize E [f (X)φ(aTX)] or (1/n)
∑

i Yiφ(aTXi)

Score functions operating on f (X) and f (X) g(aT X) yield
population and sample versions of tensors

E
[

∂3

∂Xj1∂Xj2∂Xj3
f (X)

]
and nonlinearly parameterized matrixes

E
[
(∇∇T f (X))g(aTX)

]
Spectral decompositions then identify the directions ak

Andrew Barron Computationally feasible greedy algorithms for neural nets

Score method for representing expected derivatives

Score function (tensor) S`(X) of order ` from known p(X)

Sj1,...j`(X) p(X) = (−1)`
∂`

∂Xj1 · ∂Xj`
p(X)

Gaussian score: S1(X) = X ,

S2(X) = XX T − I,

S3
j1,j2,j3(X) = Xj1Xj2Xj3 − Xj11j2,j3 − Xj21j1,j3 − Xj31j1,j2 .

Expected derivative:

E
[

∂`

∂Xj1 · ∂Xj`
f (X)

]
= E

[
f (X)Sj1,...j`(X)

]

Andrew Barron Computationally feasible greedy algorithms for neural nets

Expected derivatives of ridge combinations

Ridge combination target functions:

f (X) =
mo∑

k=1

gk (aT
k X)

Expected Hessian of f (X)

M =
mo∑

k=1

akaT
k E [g

′′

k (aT
k X)] = E

[
f (X)S2(X)

]
.

Principle eigenvector:

max
a

{
aT M a

}
Linear power method finds ak if othogonal (the’re not).

Third order array (Anandkumar et al):
mo∑

k=1

aj1,kaj2,kaj3,kE [g
′′′

k (aT
k X)] = E

[
f (X)Sj1,j2,j3(X)

]
can be whitened and a quadratic power method finds ak .

Andrew Barron Computationally feasible greedy algorithms for neural nets

Scoring a Ridge Function

Matrix scoring of a ridge function g(aTX):

Ma,X = S2g(aTX)+[S1aT +a(S1)T]g′(aTX)+[aaT]g′′(aTX)

Activation function formed by scoring a ridge function

φ(a,X) = aT [Ma,X]a

= (aT S2a)g(aTX) + 2(aT S1)(aTa)g′(aTX) + (aTa)2g′′(aTX)

Scoring a ridge function permits finding the component of
φ(a,X) in the target function.

Andrew Barron Computationally feasible greedy algorithms for neural nets

Scoring a Ridge Function

Matrix scoring of a ridge function g(aTX):

Ma,X = S2g(aTX)+[S1aT +a(S1)T]g′(aTX)+[aaT]g′′(aTX)

Activation function formed by scoring a ridge function

φ(a,X) = aT [Ma,X]a

= (aT S2a)g(aTX) + 2(aT S1)(aTa)g′(aTX) + (aTa)2g′′(aTX)

Gaussian case, simplifying when ‖a‖ = 1:

φ(aT X) = [(aTX)2 − 1]g(aTX) + [2aT !X]g′(aTX) + g′′(aTX)

φ(z) = (z2−1)g(z) + 2z g′(z) + g′′(z)

Scoring a ridge function permits finding the component of
φ(aT X) in the target function.

Andrew Barron Computationally feasible greedy algorithms for neural nets

Scoring a Ridge Function

Matrix scored ridge function:

Ma,X = S2g(aTX) + [SaT + aST]g′(aTX) + [aaT]g′′(aTX)

The amount of φ(a,X) in f (X) via matrix decomposition

Ma = E [f (X)Ma,X] = E [(∇∇T f (X))g(aTX)] =
∑mo

k=1 ak aT
k Gk (ak ,a)

and

E [f (X)φ(a,X)] = aT [Ma]a =

m0∑
k=1

(aT
k a)2Gk (ak ,a)

Here Gk (ak ,a) = E [g′′k (aT
kX)g(aTX)] measures the

strength of the match of a to the direction ak .

It replaces E [g′′k (aT
kX)ST]a = (aT

k a)E [g′′′k (aT
kX)] in the

tensor method of Anandkumar et al

Andrew Barron Computationally feasible greedy algorithms for neural nets

Scoring a Ridge Function

The amount of φ(a,X) in f (X) via matrix decomposition

Ma = E [f (X)Ma,X] = E [(∇∇T f (X))g(aTX)] =
∑mo

k=1 ak aT
k Gk (ak ,a)

and

E [f (X)φ(a,X)] = aT [Ma]a =

m0∑
k=1

(aT
k a)2Gk (ak ,a)

Here Gk (ak ,a) = E [g′′k (aT
kX)g(aTX)] measures the

strength of the match of a to the direction ak .

cos(z), sin(z) case, with X standard multivariate Normal:

gk (aT
kX) = ckei aT

k X and g(aTX) = e−i aTX

expected product Gk (ak ,a) = cke−(1/2)‖ak−a‖2

Andrew Barron Computationally feasible greedy algorithms for neural nets

Scoring a Ridge Function

The amount of φ(a,X) in f (X) via matrix decomposition

Ma = E [f (X)Ma,X] = E [(∇∇T f (X))g(aT X)] =
∑mo

k=1 ak aT
k Gk (ak ,a)

and

E [f (X)φ(a,X)] = aT [Ma]a =

m0∑
k=1

(aT
k a)2Gk (ak ,a)

Here Gk (ak ,a) = E [g′′k (aT
k X)g(aT X)] measures the

strength of the match of a to the direction ak .

Hermite polynomial case, with X ∼ Normal(0, I):
H`(aTX) and H`′(aT

kX) orthogonal for `′ 6= `, and

Gk (ak ,a) = ck ,` (aT
ka)`

Andrew Barron Computationally feasible greedy algorithms for neural nets

Nonlinear Power Method

Ideal: maximize E [f (X)φ(a,X)] = aT Maa s.t. ‖a‖ = 1
Cauchy-Schwartz inequality:

aT Ma a ≤ ‖a‖ ‖Maa‖

with equality iff a is proportional to Maa.
Motivates the mapping of the nonlinear power method

V (a) =
Maa
‖Maa‖

Seek fixed points a∗ = V (a∗) via iterations at = V (at−1).

Andrew Barron Computationally feasible greedy algorithms for neural nets

Analysis via Whitening

Suppose mo ≤ d (# components ≤ dimension)

Let R =
∑

k akaT
k βk be a reference matrix,

for instance R = Mθ has βk = Gk (ak , θ),
and let QDQT be its eigen-decomposition.

Let W = QD−1/2 be the whitening matrix:

I = W T RW =
∑

k

(W T ak)(aT
k W)βk =

∑
k

αkα
T
k

with orthonormal directions

αk = W T ak
√
βk

Also represent
a = W u

√
β

or
a = Wu/‖Wu‖

for unit vectors u.
Andrew Barron Computationally feasible greedy algorithms for neural nets

Analysis of the Nonlinear Power Method

Criterion

E [f (X)φ(a,X)] = aT Ma a = uT M̃u u

where
M̃u =

∑
k

αkα
T
k G̃k (αk ,u)β/βk

and G̃k is Gk with the ak and a expressed via αk and u.
The power mapping at = Mat−1at−1/‖ · ‖ corresponds to at
proportional to ut with

ut = M̃ut−1/‖ · ‖

Provably rapidly convergent, when G̃k increasing in the
inner product αT

ku.
Limit of ut is u∗ = αk with the largest initial G̃k (αk ,u0)/βk .
Corresponding limit of at is a∗ proportional to Wu∗.
Direction ak is revealed by W−Tαk/

√
βk .

Andrew Barron Computationally feasible greedy algorithms for neural nets

Optimization path for bounded ridge bases

More general approach to seek approximation optimization of

J(θ) =
n∑

i=1

ri φ(θT X i)

Adaptive Annealing:
recent & current work with Luo, Chatterjee, Klusowski
Sample θt from the evolving density

pt (θ) = e t J(θ)−ct p0(θ)

along a sequence of values of t from 0 to tfinal

use tfinal of order (d log d)/n
Initialize with θ0 drawn from a product prior p0(θ), such as
normal(0, I) or a product of standard Cauchy
Starting from the random θ0 define the optimization path θt
such that its distribution tracks the target density pt

Andrew Barron Computationally feasible greedy algorithms for neural nets

Optimization path

Adaptive Annealing: Arrange θt from the evolving density

pt (θ) = etJ(θ)−ct p0(θ)

with θ0 drawn from p0(θ)

State evolution with vector-valued change function Gt (θ):

θt+h = θt − h Gt (θt)

or better: θt+h is the solution to

θt = θt+h + h Gt (θt+h),

with small step-size h, such that θ + h Gt (θ) is invertible
with a positive definite Jacobian, and solves equations for
the evolution of pt (θ).
As we will see there are many such change functions
Gt (θ), though not all are nice.

Andrew Barron Computationally feasible greedy algorithms for neural nets

Solve for the change Gt to track the density pt

Density evolution: by the Jacobian rule

pt+h(θ) = pt
(
θ + h Gt (θ)

)
det
(
I + h∇GT

t (θ)
)

Up to terms of order h

pt+h(θ) = pt (θ) + h
[
(Gt (θ))T ∇pt (θ) + pt (θ)∇T Gt (θ)

]
In agreement for small h with the partial diff equation

∂

∂t
pt (θ) = ∇T [Gt (θ)pt (θ)

]
The right side is GT

t (θ)∇pt (θ) + pt (θ)∇T Gt (θ). Dividing by
pt (θ) it is expressed in the log density form

∂

∂t
log pt (θ) = ∇T Gt (θ) + GT

t (θ)∇ log pt (θ)

Andrew Barron Computationally feasible greedy algorithms for neural nets

Four candidate solutions

Four solutions to the partial differential equation at time t

∂

∂t
pt (θ) = ∇T [G(θ)pt (θ)

]
1 Solution of smallest L2 norm of G(θ)p(θ) in which G(θ)p(θ)

is a gradient
2 Solution in which pairs of coordinates of G(θ)p(θ) are

2−dim gradients
3 Solution of smallest L2 norm of G(θ) in which G is a

gradient
4 Approximate solutions expressed in terms of ui = X T

i θ.

Andrew Barron Computationally feasible greedy algorithms for neural nets

Candidate solution 1.

Solution of smallest L2 norm of Gt (θ)pt (θ) at a specific t .

Let Gt (θ)pt (θ) = ∇b(θ), gradient of a function b(θ)

Let f (θ) = ∂
∂t pt (θ)

Set greend (θ) proportional to 1/‖θ‖d−2, harmonic for
θ 6= 0.

The partial diff equation becomes the Poisson equation:

∇T∇b(θ) = f (θ)

Solution
b(θ) = (f ∗ green)(θ)

Andrew Barron Computationally feasible greedy algorithms for neural nets

Candidate solution 1.

Solution of smallest L2 norm of Gt (θ)pt (θ) at a specific t

Let Gt (θ)pt (θ) = ∇b(θ), gradient of a function b(θ)

Let f (θ) = ∂
∂t pt (θ)

Set greend (θ) proportional to 1/‖θ‖d−2, harmonic for
θ 6= 0.

The partial diff equation becomes the Poisson equation:

∇T∇b(θ) = f (θ)

Solution, using ∇greend (θ) = cd θ/‖θ‖d

∇b(θ) = (f ∗ ∇greend)(θ)

Andrew Barron Computationally feasible greedy algorithms for neural nets

Candidate solution 1.

Solution of smallest L2 norm of Gt (θ)pt (θ) at a specific t

Let Gt (θ)pt (θ) = ∇b(θ), gradient of a function b(θ)

Let f (θ) = ∂
∂t pt (θ)

Set greend (θ) proportional to 1/‖θ‖d−2, harmonic for
θ 6= 0.

The partial diff equation becomes the Poisson equation:

∇T [Gt (θ)pt (θ)] = f (θ)

Solution, using ∇greend (θ) = cd θ/‖θ‖d

Gt (θ)pt (θ) = (f ∗ ∇greend)(θ)

Andrew Barron Computationally feasible greedy algorithms for neural nets

Candidate solution 1.

Solution of smallest L2 norm of Gt (θ)pt (θ) at a specific t

Let Gt (θ)pt (θ) = ∇b(θ), gradient of a function b(θ)

Let f (θ) = ∂
∂t pt (θ)

Set greend (θ) proportional to 1/‖θ‖d−2, harmonic for
θ 6= 0.

The partial diff equation becomes the Poisson equation:

∇T [Gt (θ)pt (θ)] = f (θ)

Solution, using ∇greend (θ) = cd θ/‖θ‖d

Gt (θ) =
(f ∗ ∇greend)(θ)

pt (θ)

Not nice. Convolution is a high-dimensional integral.

Andrew Barron Computationally feasible greedy algorithms for neural nets

Candidate solution 2.

Solution using 2−dimensional convolutions

Write the pde ∇T [Gt (θ)pt (θ)] = f (θ) in the coordinates Gt ,j

d∑
j=1

∂

∂θj
[Gt ,j(θ)pt (θ)] = f (θ)

Pair consecutive terms to achieve a portion of the solution∑
i∈{j,j+1}

∂

∂θi
[Gt ,i(θ)pt (θ)] =

2
d

f (θ)

Solution, for each consecutive pair of coordinates,[
Gt ,j(θ)

Gt ,j+1(θ)

]
=

2
d

(f ∗ ∇green2)(θ)

pt (θ)

The 2−dim Green’s function gradient acts on (θj , θj+1).
Solution computed numerically. Stable for particular
objective functions J and initial distributions p0?

Andrew Barron Computationally feasible greedy algorithms for neural nets

Candidate solution 2.

Solution using 2−dimensional convolutions

Solution, for each consecutive pair of coordinates,[
Gt ,j(θ)

Gt ,j+1(θ)

]
=

2
d

(f ∗ ∇green2)(θ)

pt (θ)
Stable for particular objective functions J?
For p0 we use a product of 2−dimensional circularly
symmetric Cauchy distributions
Stable if J(θ) can exhibit only small change by changing
two consecutive coordinates
True for sigmoids with coeff squashing and variable
replication. Terms φ(aT X) represented using small η as

φ
(
η
∑

φ(θj,r)Xj,r

)
The internal φ is is an increasing sigmoid squashing real
θj,r into (−1,1). For each Xj the aggregate coefficient is
aj = η

∑rep
r=1 φ(θj,r)

Andrew Barron Computationally feasible greedy algorithms for neural nets

Candidate solution 3.

Perhaps the ideal solution is one of smallest L2 norm of Gt (θ)

It has Gt (θ) = ∇bt (θ) equal to the gradient of a function

The pde in log density form

∇T Gt (θ) + GT
t (θ)∇ log pt (θ) =

∂

∂t
log pt (θ)

then becomes an elliptic pde in bt (θ) for fixed t.
With ∇ log pt (θ) and ∂

∂t log pt (θ) arranged to be bounded,
the solution may exist and be nice.
But explicit solution to this elliptic pde is not available
(except perhaps numerically in low dim cases).

Andrew Barron Computationally feasible greedy algorithms for neural nets

Candidate solution 3.

Ideal solution of smallest L2 norm of Gt (θ)

It has Gt (θ) = ∇bt (θ) equal to the gradient of a function

The pde in log density form

∇T Gt (θ) + GT
t (θ)∇ log pt (θ) =

∂

∂t
log pt (θ)

then becomes an elliptic pde in bt (θ) for fixed t.
With ∇ log pt (θ) and ∂

∂t log pt (θ) arranged to be bounded,
the solution may exist and be nice.
But explicit solution to this elliptic pde is not available
(except perhaps numerically in low dim cases)
To achieve explicit solution give up Gt (θ) being a gradient
For ridge bases, we decompose into a system of first order
differential equations and integrate

Andrew Barron Computationally feasible greedy algorithms for neural nets

Candidate solution 4 by decomposition of ridge sum

Optimize J(θ) =
∑n

i=1 ri φ(X T
i θ)

Target density pt (θ) = e tJ(θ)−ct p0(θ) with c′t = Ept [J]

The time score is ∂
∂t log pt (θ) = J(θ)− Ept [J]

Specialize the pde in log density form

∇T Gt (θ) + GT
t (θ)∇ log pt (θ) = J(θ)− Ept [J]

The right side takes the form of a sum∑
ri [φ(X T

i θ)− ai].

Likewise ∇ log pt (θ) = t ∇J(θ) +∇ log p0(θ) is the sum∑
Xi

[
t riφ

′(X T
i θ)− (1/n)(X T

i θ)
]

from the Gaussian initial distribution with log p0(θ) equal to

−(1/2n)
∑

θT XiX T
i θ

.
Andrew Barron Computationally feasible greedy algorithms for neural nets

Approximate solution for ridge sums

Seek approximate solution of the form

Gt (θ) =
∑ xi

‖xi‖2
gi(u)

with u = (u1, . . . ,un) evaluated at ui = X T
i θ, for which

∇T Gt (θ) =
∑

i

∂

∂ui
gi(u) +

∑
i,j:i 6=j

xT
i xj

‖xi‖2
∂

∂uj
gi(u)

Can we ignore the coupling in the derivative terms?
xT

j xi/‖xi‖2 are small for uncorrelated designs, large d .
Match the remaining terms in the sums to solve for gi(u)

Arrange gi(u) to solve the differential equations

∂

∂ui
gi(u) + gi(u)

[
t riφ

′(ui)− ui/n + resti
]

= ri
[
φ(ui)−ai

]
where resti =

∑
j 6=i [t rj φ

′(uj)− uj/n]xT
j xi/‖xi‖2.

Andrew Barron Computationally feasible greedy algorithms for neural nets

Integral form of solution

Differential equation for gi(ui), suppressing dependence on
the coordinates other than i
∂

∂ui
gi(ui) + gi(ui)

[
t riφ

′(ui)− ui/n + resti
]

= ri
[
φ(ui)−ai

]
Define the density factor

mi(ui) = et ri φ(ui)−u2
i /2n + ui resti

Allows the above diff equation to be put back in the form

∂

∂ui
[gi(ui) mi(ui)] = ri

[
φ(ui)−ai

]
mi(ui)

An explicit solution, evaluated at ui = xT
i θ, is

gi(ui) = ri

∫ ui
ci

mi(ũi)
[
φ(ũi)−ai

]
dũi

mi(ui)

where ci is such that φ(ci) = ai .

Andrew Barron Computationally feasible greedy algorithms for neural nets

The derived change function Gt for evolution of θt

Include the uj for j 6= i upon which resti depends. Our
solution for gi,t (u) is

ri

∫ ui

ci

et ri (φ(ũi)−φ(ui))−(ũ2
i −u2

i)/2n +t(ũi−ui)resti (u)
[
φ(ũi)−ai

]
dũi

Evaluating at u = Xθ we have the change function

Gt (θ) =
∑ xi

‖xi‖2
gi,t (Xθ)

for which θt evolves according to

θt+h = θt + h Gt (θt)

For showing gi,t , Gt and ∇Gt are nice, assume the
activation function φ and its derivative is bounded (e.g. a
logistic sigmoid or a sinusoid).
Run several optimization paths in parallel, starting from
independent choices of θ0. Allows access to empirical
computation of ai,t = Ept [φ(xT

i θt)]
Andrew Barron Computationally feasible greedy algorithms for neural nets

Conjectured conclusion

Derived the desired optimization procedure and the following.

Conjecture: With step size h of order 1/n2 and a number of
steps of order n d log d and X1,X2, . . . ,Xn i.i.d. Normal(0, I).
With high probability on the design X, the above procedure
produces optimization paths θt whose distribution closely tracks
the target

pt (θ) = et J(θ)−ct p0(θ)

such that, with high probability, the solutions paths have
instances of J(θt) which are at least 1/2 the maximum.

Consequently, the relaxed greedy procedure is computationally
feasible and achieves the indicated bounds for sparse linear
combinations from the dictionary Φ = {φ(θT x) : θ ∈ Rd}

Andrew Barron Computationally feasible greedy algorithms for neural nets

summary

Flexible approximation models
Subset selection
Nonlinearly parameterized bases as with neural nets
`1 control on coefficients of combination

Accurate approximation with moderate number of terms
Proof analogous to random coding

Information theoretic risk bounds
Based on the minimum description length principle
Shows accurate estimation with a moderate sample size

Computational challenges are being addressed by
Nonlinear power methods
Adaptive annealing

Andrew Barron Computationally feasible greedy algorithms for neural nets

