Computationally feasible greedy algorithms for neural nets

Andrew R. Barron

YALE UNIVERSITY DEPARTMENT OF STATISTICS

Presentation, December 12, 2015 NIPS Workshop on Non-convex Optimization, Montreal Joint work with Jason Klusowski

・聞き ・ヨト ・ヨト

- Flexible high-dimensional function estimation with sigmoidal, sinusoidal and polynomial activation functions
- Approximation and estimation bounds
- Greedy term selection
- Computational strategies
 - Exhaustive search in discretized directions
 - Adaptive Annealing
 - Nonlinear power methods

< 回 > < 回 > < 回 >

Data Setting

- Data: $(X_i, Y_i), i = 1, 2, ..., n$
- Inputs: explanatory variable vectors

$$\underline{X}_i = (X_{i,1}, X_{i,2}, \ldots, X_{i,d})$$

- Domain: Either a unit cube in R^d or all of R^d
- Random design: independent <u>X</u>_i ~ P
- Output: response variable Y_i in R
 - Moment conditions, with Bernstein constant c
- Relationship: $E[Y_i | \underline{X}_i] = f(\underline{X}_i)$ as in:
 - Perfect observation: $Y_i = f(\underline{X}_i)$
 - Noisy observation: $Y_i = f(X_i) + \epsilon_i$ with ϵ_i indep $N(0, \sigma^2)$
 - Classification: $Y \in \{0, 1\}$ with $f(\underline{X}) = P[Y = 1 | \underline{X}]$
- Function: *f*(*x*) unknown

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Activation functions denoted $\phi(z)$ or g(z)

- Piecewise constant: $1_{\{z-b\geq 0\}}$ or sgn(z-b)
- Sigmoid: $(e^{z} e^{-z})/(e^{z} + e^{-z})$
- Linear spline, ramp: $(z b)_+$
- Sinusoidal: $\cos(2\pi f z)$, $\sin(2\pi f z)$
- Polynomial: standard z^{ℓ} , Hermite $H_{\ell}(z)$

Products or ridge form builds multivariate activation functions

<ロ> <同> <同> <三> <三> <三> <三> <三</p>

Flexible multivariate function approximation: d > 1

By internally parameterized models & nonlinear least squares

- Fit functions f_m(x) = Σ_{j=1}^m c_kφ(<u>x</u>, <u>a</u>_k) in the span of a parameterized dictionary Φ = {φ(·, <u>a</u>) : <u>a</u> ∈ R^d}
- Product bases:

using continuous powers, frequencies or thresholds

$$\phi(\underline{x},\underline{a}) = \phi_1(x_1,a_1) \phi_1(x_2,a_2) \cdots \phi_1(x_d,a_d)$$

• Ridge bases: as in projection pursuit regression models, sinusoidal models, and single-hidden-layer neural nets:

$$\phi(\underline{x},\underline{a}) = \phi(\underline{a}^T \underline{x}) = \phi_1(a_1x_1 + a_2x_2 + \ldots + a_dx_d)$$

- Internal parameter vector <u>a</u> of dimension d.
- Activation function built from univariate function $\phi_1(z)$

(画) (ヨ) (ヨ)

- Response vector: $Y = (Y_i)_{i=1}^n$ in \mathbb{R}^n
- Dictionary vectors: $\Phi_{(n)} = \{(\phi(\underline{X}_i, \underline{\theta}))_{i=1}^n : \underline{\theta} \in \Theta\} \subset R^n$
- Sample squared norm: $||f||_{(n)}^2 = \frac{1}{n} \sum_{i=1}^n f^2(\underline{X}_i)$
- Population squared norm: $||f||^2 = \int f^2(\underline{x}) P(d\underline{x})$
- Normalized dictionary condition: $\|\phi\| \leq 1$ for $\phi \in \Phi$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Flexible *m*-term nonlinear optimization

Impractical one-shot optimization

Sample version

$$\hat{f}_m$$
 achieves $\min_{(\underline{\theta}_j, c_j)_{j=1}^m} \|Y - \sum_{j=1}^m c_j \phi_{\underline{\theta}_j}\|_{(n)}^2$

Population version

$$f_m$$
 achieves $\min_{(\underline{\theta}_j, c_j)_{j=1}^m} \|f - \sum_{j=1}^m c_j \phi_{\underline{\theta}_j}\|^2$

• Optimization of $(\underline{\theta}_j, c_j)_{j=1}^m$ in $\mathbb{R}^{(d+1)m}$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

GREEDY OPTIMIZATIONS

• Step 1: Choose c_1 , $\underline{\theta}_1$ to achieve min $||Y - c\phi_{\underline{\theta}}||^2_{(n)}$ or

- sample version: $max_{\theta}(1/n) \sum_{i=1} nY_i \phi(\underline{X}_i, \underline{\theta})$
- population version: max_θ E[f(X)φ(X, θ)]
- Step *m* > 1: Arrange

$$\hat{f}_m = \alpha \, \hat{f}_{m-1} + c \, \phi(\underline{x}, \underline{\theta}_m)$$

with α_m , c_m , $\underline{\theta}_m$ chosen to achieve

$$\min_{\alpha, \boldsymbol{c}, \underline{\theta}} \| \boldsymbol{Y} - \alpha \, \hat{\boldsymbol{f}}_{m-1} - \boldsymbol{c} \, \phi_{\underline{\theta}} \|_{(n)}^2.$$

- Also acceptable, with $R_i = Y_i \hat{f}_{m-1}(\underline{X}_i)$,
 - Choose $\underline{\theta}_m$ to achieve $\max_{\underline{\theta}} \sum_{i=1}^n R_i \phi(\underline{X}_i, \underline{\theta})$
 - Population version: $max_{\theta} E[R(X)\phi(\underline{X},\underline{\theta})]$
- Foward stepwise selection of $S_m = \{\phi_{\underline{\theta}_1}, \dots, \phi_{\underline{\theta}_m}\}$. Given S_{m-1} , choose θ_m to $\min_{\theta} d(Y, span\{\phi_{\underline{\theta}_1}, \dots, \phi_{\underline{\theta}, \phi_{\underline{\theta}_m}}\})$

Basic *m*-term approximation and computation bounds

For either one-shot or greedy approximation (B. *IT* 1993, Lee et al *IT* 1995)

• Population version:

$$\|f-f_m\| \leq \frac{\|f\|_{\Phi}}{\sqrt{m}}$$

and moreover

$$\|f - f_m\|^2 \leq \inf_g \left\{ \|f - g\|^2 + \frac{2\|g\|_{\Phi}^2}{m} \right\}$$

• Sample version:

$$\|Y - \hat{f}_m\|_{(n)}^2 \leq \|Y - f\|_{(n)}^2 + \frac{2\|f\|_{\Phi}^2}{m}$$

where $||f||_{\Phi}$ is the variation of *f* with respect to Φ (as will be defined on the next slide).

ℓ_1 norm on coefficients in representation of f

• Consider the range of a neural net, expressed via the bound,

$$\left|\sum_{j} c_{j} \operatorname{sgn}(\theta_{0,j} + \theta_{1,j} x_{1} + \ldots + \theta_{d,j} x_{d})\right| \leq \sum_{j} |c_{j}|$$

equality if \underline{x} is in polygon where $sgn(\underline{\theta}_j \cdot \underline{x}) = sgn(c_j)$ for all j

Motivates the norm

$$\|f\|_{\Phi} = \lim_{\epsilon \to 0} \inf \left\{ \sum_{j} |c_{j}| : \|\sum_{j} c_{j} \phi_{\underline{\theta}_{j}} - f\| \le \epsilon \right\}$$

called the variation of f with respect to Φ (B. 1991)

 $\|f\|_{\Phi} = V_{\Phi}(f) = \inf\{V : f/V \in closure(conv(\pm \Phi))\}$

• It appears in the bound $||f - f_m|| \le \frac{||f||_{\Phi}}{\sqrt{m}}$

(日)

ℓ_1 norm on coefficients in representation of f

- Finite sum representations, $f(\underline{x}) = \sum_{j} c_{j} \phi(\underline{x}, \underline{\theta}_{j})$. Variation $\|f\|_{\Phi} = \sum_{j} |c_{j}|$, which is the ℓ_{1} norm of the coefficients in representation of *f* in the span of Φ
- Infinite integral representation $f(\underline{x}) = \int e^{i \underline{\theta} \cdot \underline{x}} \tilde{f}(\underline{\theta}) d\theta$ (Fourier representation), for \underline{x} in a unit cube. The variation $||f||_{\Phi}$ is bounded by an L_1 spectral norm:

$$\begin{split} \|f\|_{cos} &= \int_{R^{d}} |\tilde{f}(\underline{\theta})| \, d\underline{\theta} \\ \|f\|_{step} &\leq \int |\tilde{f}(\underline{\theta})| \, \|\underline{\theta}\|_{1} \, d\underline{\theta} \\ \|f\|_{ramp} &\leq \int |\tilde{f}(\underline{\theta})| \, \|\underline{\theta}\|_{1}^{2} \, d\underline{\theta} \end{split}$$

As we said, this ||*f*||_⊕ appears in the numerator of the approximation bound.

Statistical Risk

- The population accuracy of function estimated from sample
- Statistical risk $E \|\hat{f}_m f\|^2 = E(\hat{f}_m(\underline{X}) f(\underline{X}))^2$
- Expected squared generalization error on new $\underline{X} \sim P$
- Minimax optimal risk bound, via information theory

$$E\|\hat{f}_m - f\|^2 \leq \|f_m - f\|^2 + c\frac{m}{n}\log N(\Phi, \delta).$$

Here log $N(\Phi, \delta)$ is the metric entropy of Φ at $\delta = 1/m$; it is of order $d \log(1/\delta)$ and, with ℓ_1 constrained internal parameters, it is of order $(1/\delta) \log d$

$$E\|\hat{f}_m - f\|^2 \leq \frac{\|f\|_{\Phi}^2}{m} + \frac{c}{n}\min\{md\log(n/d), m^2\log d\}$$

• Bound is $2\|f\|_{\Phi}[\frac{cd}{n}\log n/d]^{1/2}$ or $3\|f\|_{\Phi}^{4/3}[\frac{c}{n}\log d]^{1/3}$, whichever is smallest

Adaptation

- Adapt network size *m* and choice of internal parameters
- Minimum Description Length Principle leads to Complexity penalized least squares criterion. Let \hat{m} achieve

$$\min_{m}\left\{\|\boldsymbol{Y}-\hat{f}_{m}\|_{(n)}^{2}+2c\frac{m}{n}\log N(\Phi,\delta)\right\}$$

Information-theoretic risk bound

$$E\|\hat{f}_{\hat{m}}-f\|^2 \leq \min_{m} \left\{\|f_m-f\|^2 + 2c\frac{m}{n}\log N(\Phi,\delta)\right\}$$

- Performs as well as if the best m^* were known in advance.
- $||f||_{\Phi}^2/m$ replaces $||f_m f||^2$ in the greedy case.
- ℓ_1 penalized least squares
 - Achieves the same risk bound
 - Retains the MDL interpretation (B, Huang,Li,Luo,2008)

• Greedy search

- Reduces dimensionality of optimization from *md* to just *d*
- Obtain a current <u>θ</u>_m achieving within a constant factor of the maximum of

$$J_n(\theta) = \frac{1}{n} \sum_{i=1}^n R_i \phi(\underline{X}_i, \underline{\theta}).$$

- This surface can still have many maxima.
 - We might get stuck at a spurious local maximum.
- New computational strategies:
 - 1 Third order tensor methods (pros and cons)
 - 2 Nonlinear power methods
 - 3 Adaptive annealing

・ 同 ト ・ ヨ ト ・ ヨ ト

Tensor and nonlinear power methods

• Know design distribution p(X)

- Target $f(x) = \sum_{k=1}^{m_0} g_k(a_k^T x)$ is a combination of ridge functions with distinct linearly independent directions a_k
- Ideal: maximize $E[f(X)\phi(a^T X)]$ or $(1/n)\sum_i Y_i\phi(a^T X_i)$
- Score functions operating on f(X) and f(X) g(a^TX) yield population and sample versions of tensors

$$E\left[\frac{\partial^3}{\partial X_{j_1}\partial X_{j_2}\partial X_{j_3}}f(X)\right]$$

and nonlinearly parameterized matrixes

$$E\left[(\nabla\nabla^T f(X))g(a^T X)\right]$$

• Spectral decompositions then identify the directions *a_k*

Score method for representing expected derivatives

• Score function (tensor) $S^{\ell}(X)$ of order ℓ from known p(X)

$$S_{j_1,\dots,j_\ell}(X) p(X) = (-1)^\ell \frac{\partial^\ell}{\partial X_{j_1} \cdot \partial X_{j_\ell}} p(X)$$

Gaussian score: $S^1(X) = X$, $S^2(X) = XX^T - I$, $S^3_{j_1, j_2, j_3}(X) = X_{j_1}X_{j_2}X_{j_3} - X_{j_1}\mathbf{1}_{j_2, j_3} - X_{j_2}\mathbf{1}_{j_1, j_3} - X_{j_3}\mathbf{1}_{j_1, j_2}$.

• Expected derivative:

$$E\left[\frac{\partial^{\ell}}{\partial X_{j_1} \cdot \partial X_{j_\ell}}f(X)\right] = E\left[f(X)S_{j_1,\dots,j_\ell}(X)\right]$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Expected derivatives of ridge combinations

• Ridge combination target functions:

$$f(X) = \sum_{k=1}^{m_o} g_k(a_k^T X)$$

• Expected Hessian of f(X)

$$M = \sum_{k=1}^{m_o} a_k a_k^T E[g_k''(a_k^T X)] = E\left[f(X)S^2(X)\right].$$

Principle eigenvector:

$$\max_{a} \left\{ a^{T} M a \right\}$$

Linear power method finds a_k if othogonal (the're not).

• Third order array (Anandkumar et al):

 $\sum_{k=1}^{m_o} a_{j_1,k} a_{j_2,k} a_{j_3,k} E[g_k''(a_k^T X)] = E[f(X)S_{j_1,j_2,j_3}(X)]$ can be whitened and a quadratic power method finds a_k .

프 에 에 프 어 - -

• Matrix scoring of a ridge function $g(a^T X)$:

 $M_{a,X} = S^2 g(a^T X) + [S^1 a^T + a(S^1)^T]g'(a^T X) + [aa^T]g''(a^T X)$

Activation function formed by scoring a ridge function

$$\phi(a,X)=a^{T}[M_{a,X}]a$$

 $= (a^{T}S^{2}a)g(a^{T}X) + 2(a^{T}S^{1})(a^{T}a)g'(a^{T}X) + (a^{T}a)^{2}g''(a^{T}X)$

 Scoring a ridge function permits finding the component of φ(a, X) in the target function.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

• Matrix scoring of a ridge function $g(a^T X)$:

 $M_{a,X} = S^2 g(a^T X) + [S^1 a^T + a(S^1)^T]g'(a^T X) + [aa^T]g''(a^T X)$

Activation function formed by scoring a ridge function

$$\phi(\boldsymbol{a},\boldsymbol{X}) = \boldsymbol{a}^T[\boldsymbol{M}_{\boldsymbol{a},\boldsymbol{X}}]\boldsymbol{a}$$

 $= (a^{T}S^{2}a)g(a^{T}X) + 2(a^{T}S^{1})(a^{T}a)g'(a^{T}X) + (a^{T}a)^{2}g''(a^{T}X)$

• Gaussian case, simplifying when ||a|| = 1:

 $\phi(a^{T}X) = [(a^{T}X)^{2} - 1]g(a^{T}X) + [2a^{T}X]g'(a^{T}X) + g''(a^{T}X)$

 $\phi(z) = (z^2 - 1)g(z) + 2z g'(z) + g''(z)$

• Scoring a ridge function permits finding the component of $\phi(a^T X)$ in the target function.

Matrix scored ridge function:

 $M_{a,X} = S^2 g(a^T X) + [Sa^T + aS^T]g'(a^T X) + [aa^T]g''(a^T X)$

• The amount of $\phi(a, X)$ in f(X) via matrix decomposition

$$M_{a} = E[f(X)M_{a,X}] = E[(\nabla \nabla^{T} f(X))g(a^{T}X)] = \sum_{k=1}^{m_{o}} a_{k}a_{k}^{T}G_{k}(a_{k}, a)$$

and
$$m_{0}$$

$$E[f(X)\phi(a,X)] = a^{T}[M_{a}]a = \sum_{k=1}^{m_{0}} (a_{k}^{T}a)^{2}G_{k}(a_{k},a)$$

- Here $G_k(a_k, a) = E[g_k''(a_k^T X)g(a^T X)]$ measures the strength of the match of *a* to the direction a_k .
- It replaces E[g_k''(a_k^TX)S^T]a = (a_k^Ta)E[g_k'''(a_k^TX)] in the tensor method of Anandkumar *et al*

イロン 不良 とくほう 不良 とうほ

• The amount of $\phi(a, X)$ in f(X) via matrix decomposition

$$M_{a} = E[f(X)M_{a,X}] = E[(\nabla \nabla^{T} f(X))g(a^{T}X)] = \sum_{k=1}^{m_{o}} a_{k}a_{k}^{T}G_{k}(a_{k}, a)$$

and
$$\sum_{k=1}^{m_{o}} a_{k}a_{k}^{T}G_{k}(a_{k}, a) = \sum_{k=1}^{m_{o}} a_{k}a_{k}^{T}G_{k}(a_{k}, a)$$

$$E[f(X)\phi(a,X)] = a^{T}[M_{a}]a = \sum_{k=1}^{\infty} (a_{k}^{T}a)^{2}G_{k}(a_{k},a)$$

- Here $G_k(a_k, a) = E[g''_k(a_k^T X)g(a^T X)]$ measures the strength of the match of *a* to the direction a_k .
- $\cos(z)$, $\sin(z)$ case, with X standard multivariate Normal: $g_k(a_k^T X) = c_k e^{i a_k^T X}$ and $g(a^T X) = e^{-i a^T X}$ expected product $G_k(a_k, a) = c_k e^{-(1/2)||a_k - a||^2}$

ヘロン 人間 とくほ とくほ とう

• The amount of $\phi(a, X)$ in f(X) via matrix decomposition

$$M_{a} = E[f(X)M_{a,X}] = E[(\nabla \nabla^{T} f(X))g(a^{T}X)] = \sum_{k=1}^{m_{o}} a_{k}a_{k}^{T}G_{k}(a_{k}, a)$$

and

$$E[f(X)\phi(a,X)] = a^{T}[M_{a}]a = \sum_{k=1}^{m_{0}} (a_{k}^{T}a)^{2}G_{k}(a_{k},a)$$

- Here G_k(a_k, a) = E[g_k''(a_k^TX)g(a^TX)] measures the strength of the match of a to the direction a_k.
- Hermite polynomial case, with $X \sim \text{Normal}(0, I)$: $H_{\ell}(a^T X)$ and $H_{\ell'}(a_k^T X)$ orthogonal for $\ell' \neq \ell$, and

$$G_k(a_k,a) = c_{k,\ell} (a_k^T a)^\ell$$

< 回 > < 回 > < 回 > .

Nonlinear Power Method

- Ideal: maximize $E[f(X)\phi(a,X)] = a^T M_a a$ s.t. ||a|| = 1
- Cauchy-Schwartz inequality:

$$a^T M_a a \leq \|a\| \, \|M_a a\|$$

with equality iff *a* is proportional to M_aa .

Motivates the mapping of the nonlinear power method

$$V(a) = \frac{M_a a}{\|M_a a\|}$$

• Seek fixed points $a^* = V(a^*)$ via iterations $a_t = V(a_{t-1})$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Analysis via Whitening

- Suppose $m_o \leq d$ (# components \leq dimension)
- Let $R = \sum_{k} a_{k} a_{k}^{T} \beta_{k}$ be a reference matrix, for instance $R = M_{\theta}$ has $\beta_{k} = G_{k}(a_{k}, \theta)$, and let QDQ^{T} be its eigen-decomposition.
- Let $W = QD^{-1/2}$ be the whitening matrix:

$$I = W^T R W = \sum_k (W^T a_k) (a_k^T W) \beta_k = \sum_k \alpha_k \alpha_k^T$$

with orthonormal directions

$$\alpha_k = \boldsymbol{W}^T \boldsymbol{a}_k \sqrt{\beta_k}$$

Also represent

$$a = W u \sqrt{\beta}$$

or

$$a = Wu / \|Wu\|$$

for unit vectors u.

Analysis of the Nonlinear Power Method

Criterion

$$E[f(X)\phi(a,X)] = a^T M_a a = u^T \tilde{M}_u u$$

where

$$\tilde{M}_{u} = \sum_{k} \alpha_{k} \alpha_{k}^{\mathsf{T}} \, \tilde{G}_{k}(\alpha_{k}, u) \, \beta / \beta_{k}$$

and \tilde{G}_k is G_k with the a_k and a expressed via α_k and u.

• The power mapping $a_t = M_{a_{t-1}}a_{t-1}/\|\cdot\|$ corresponds to a_t proportional to u_t with

$$u_t = \tilde{M}_{u_{t-1}}/\|\cdot\|$$

- Provably rapidly convergent, when G
 *G*_k increasing in the inner product α^T_ku.
- Limit of u_t is $u^* = \alpha_k$ with the largest initial $\tilde{G}_k(\alpha_k, u_0)/\beta_k$.
- Corresponding limit of *a_t* is *a*^{*} proportional to *Wu*^{*}.
- Direction a_k is revealed by $W^{-T}\alpha_k/\sqrt{\beta_k}$.

Optimization path for bounded ridge bases

More general approach to seek approximation optimization of

$$J(\underline{\theta}) = \sum_{i=1}^{n} r_i \, \phi(\underline{\theta}^T \underline{X}_i)$$

Adaptive Annealing:

- recent & current work with Luo, Chatterjee, Klusowski
- Sample $\underline{\theta}_t$ from the evolving density

$$p_t(\underline{\theta}) = e^{t J(\underline{\theta}) - c_t} p_0(\underline{\theta})$$

along a sequence of values of t from 0 to t_{final}

- use t_{final} of order $(d \log d)/n$
- Initialize with θ₀ drawn from a product prior p₀(<u>θ</u>), such as normal(0, *I*) or a product of standard Cauchy
- Starting from the random θ₀ define the optimization path θ_t such that its distribution tracks the target density p_t

E > < E >

Optimization path

• Adaptive Annealing: Arrange θ_t from the evolving density

$$p_t(\theta) = e^{tJ(\theta) - c_t} p_0(\theta)$$

with θ_0 drawn from $p_0(\theta)$

• State evolution with vector-valued change function $G_t(\theta)$:

$$\theta_{t+h} = \theta_t - h G_t(\theta_t)$$

or better: θ_{t+h} is the solution to

$$\theta_t = \theta_{t+h} + h \, G_t(\theta_{t+h}),$$

with small step-size *h*, such that $\underline{\theta} + h G_t(\underline{\theta})$ is invertible with a positive definite Jacobian, and solves equations for the evolution of $p_t(\theta)$.

• As we will see there are many such change functions $G_t(\theta)$, though not all are nice.

Solve for the change G_t to track the density p_t

• Density evolution: by the Jacobian rule

$$p_{t+h}(\theta) = p_t(\theta + h G_t(\theta)) \det(I + h \nabla G_t^T(\theta))$$

Up to terms of order h

$$\boldsymbol{p}_{t+h}(\theta) = \boldsymbol{p}_t(\theta) + h\left[(\boldsymbol{G}_t(\theta))^T \nabla \boldsymbol{p}_t(\theta) + \boldsymbol{p}_t(\theta) \nabla^T \boldsymbol{G}_t(\theta) \right]$$

• In agreement for small *h* with the partial diff equation

$$\frac{\partial}{\partial t} \mathbf{p}_t(\theta) = \nabla^T \big[\mathbf{G}_t(\theta) \mathbf{p}_t(\theta) \big]$$

• The right side is $G_t^T(\theta) \nabla p_t(\theta) + p_t(\theta) \nabla^T G_t(\theta)$. Dividing by $p_t(\theta)$ it is expressed in the log density form

$$\frac{\partial}{\partial t}\log p_t(\theta) = \nabla^T G_t(\theta) + G_t^T(\theta) \nabla \log p_t(\theta)$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

Four solutions to the partial differential equation at time t

$$\frac{\partial}{\partial t}\boldsymbol{p}_t(\theta) = \nabla^{\mathsf{T}} \big[\boldsymbol{G}(\theta) \boldsymbol{p}_t(\theta) \big]$$

- Solution of smallest L₂ norm of G(θ)p(θ) in which G(θ)p(θ) is a gradient
- Solution in which pairs of coordinates of G(θ)p(θ) are 2-dim gradients
- Solution of smallest L_2 norm of $G(\theta)$ in which G is a gradient
- Approximate solutions expressed in terms of $u_i = X_i^T \theta$.

ヘロン 人間 とくほ とくほ とう

Solution of smallest L_2 norm of $G_t(\theta)p_t(\theta)$ at a specific t.

- Let $G_t(\theta)p_t(\theta) = \nabla b(\theta)$, gradient of a function $b(\theta)$
- Let $f(\theta) = \frac{\partial}{\partial t} p_t(\theta)$
- Set green_d(θ) proportional to $1/||\theta||^{d-2}$, harmonic for $\theta \neq 0$.
- The partial diff equation becomes the Poisson equation:

 $\nabla^T \nabla b(\theta) = f(\theta)$

Solution

$$b(\theta) = (f * green)(\theta)$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Solution of smallest L_2 norm of $G_t(\theta)p_t(\theta)$ at a specific t

- Let $G_t(\theta)p_t(\theta) = \nabla b(\theta)$, gradient of a function $b(\theta)$
- Let $f(\theta) = \frac{\partial}{\partial t} p_t(\theta)$
- Set green_d(θ) proportional to $1/||\theta||^{d-2}$, harmonic for $\theta \neq 0$.
- The partial diff equation becomes the Poisson equation:

 $\nabla^T \nabla b(\theta) = f(\theta)$

• Solution, using $\nabla green_d(\theta) = c_d \theta / \|\theta\|^d$

$$\nabla b(\theta) = (f * \nabla green_d)(\theta)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Solution of smallest L_2 norm of $G_t(\theta)p_t(\theta)$ at a specific t

- Let $G_t(\theta)p_t(\theta) = \nabla b(\theta)$, gradient of a function $b(\theta)$
- Let $f(\theta) = \frac{\partial}{\partial t} p_t(\theta)$
- Set green_d(θ) proportional to $1/||\theta||^{d-2}$, harmonic for $\theta \neq 0$.
- The partial diff equation becomes the Poisson equation:

 $\nabla^{T}[G_{t}(\theta)p_{t}(\theta)] = f(\theta)$

• Solution, using $\nabla green_d(\theta) = c_d \theta / \|\theta\|^d$

$$G_t(\theta)p_t(\theta) = (f * \nabla green_d)(\theta)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Solution of smallest L_2 norm of $G_t(\theta)p_t(\theta)$ at a specific t

- Let $G_t(\theta)p_t(\theta) = \nabla b(\theta)$, gradient of a function $b(\theta)$
- Let $f(\theta) = \frac{\partial}{\partial t} p_t(\theta)$
- Set green_d(θ) proportional to $1/||\theta||^{d-2}$, harmonic for $\theta \neq 0$.
- The partial diff equation becomes the Poisson equation:

 $\nabla^{T}[G_{t}(\theta)p_{t}(\theta)]=f(\theta)$

• Solution, using $\nabla green_d(\theta) = c_d \theta / \|\theta\|^d$

$$G_t(heta) = rac{(f *
abla green_d)(heta)}{p_t(heta)}$$

• Not nice. Convolution is a high-dimensional integral.

Solution using 2-dimensional convolutions

• Write the pde $\nabla^{T}[G_{t}(\theta)p_{t}(\theta)] = f(\theta)$ in the coordinates $G_{t,j}$

$$\sum_{j=1}^{d} \frac{\partial}{\partial \theta_j} [G_{t,j}(\theta) p_t(\theta)] = f(\theta)$$

Pair consecutive terms to achieve a portion of the solution

$$\sum_{i \in \{j,j+1\}} \frac{\partial}{\partial \theta_i} [G_{t,i}(\theta) p_t(\theta)] = \frac{2}{d} f(\theta)$$

• Solution, for each consecutive pair of coordinates,

$$\begin{bmatrix} G_{t,j}(\theta) \\ G_{t,j+1}(\theta) \end{bmatrix} = \frac{2}{d} \frac{(f * \nabla green_2)(\theta)}{p_t(\theta)}$$

The 2–dim Green's function gradient acts on (θ_i, θ_{i+1}) .

 Solution computed numerically. Stable for particular objective functions J and initial distributions p₀?

Solution using 2-dimensional convolutions

• Solution, for each consecutive pair of coordinates,

$$\begin{bmatrix} G_{t,j}(\theta) \\ G_{t,j+1}(\theta) \end{bmatrix} = \frac{2}{d} \frac{(f * \nabla green_2)(\theta)}{p_t(\theta)}$$

- Stable for particular objective functions J?
- For p₀ we use a product of 2–dimensional circularly symmetric Cauchy distributions
- Stable if J(θ) can exhibit only small change by changing two consecutive coordinates
- True for sigmoids with coeff squashing and variable replication. Terms φ(a^TX) represented using small η as

$$\phi\left(\eta\sum\phi(\theta_{j,r})X_{j,r}\right)$$

The internal ϕ is is an increasing sigmoid squashing real $\theta_{j,r}$ into (-1, 1). For each X_j the aggregate coefficient is $a_j = \eta \sum_{r=1}^{rep} \phi(\theta_{j,r})$

Perhaps the ideal solution is one of smallest L_2 norm of $G_t(\theta)$

- It has $G_t(\theta) = \nabla b_t(\theta)$ equal to the gradient of a function
- The pde in log density form

$$\nabla^{\mathsf{T}} G_t(\theta) + G_t^{\mathsf{T}}(\theta) \nabla \log p_t(\theta) = \frac{\partial}{\partial t} \log p_t(\theta)$$

then becomes an elliptic pde in $b_t(\theta)$ for fixed t.

- With ∇ log p_t(θ) and ∂/∂t log p_t(θ) arranged to be bounded, the solution may exist and be nice.
- But explicit solution to this elliptic pde is not available (except perhaps numerically in low dim cases).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Ideal solution of smallest L_2 norm of $G_t(\theta)$

- It has $G_t(\theta) = \nabla b_t(\theta)$ equal to the gradient of a function
- The pde in log density form

$$\nabla^{\mathsf{T}} G_t(\theta) + G_t^{\mathsf{T}}(\theta) \nabla \log p_t(\theta) = \frac{\partial}{\partial t} \log p_t(\theta)$$

then becomes an elliptic pde in $b_t(\theta)$ for fixed t.

- With ∇ log p_t(θ) and ∂/∂t log p_t(θ) arranged to be bounded, the solution may exist and be nice.
- But explicit solution to this elliptic pde is not available (except perhaps numerically in low dim cases)
- To achieve explicit solution give up $G_t(\theta)$ being a gradient
- For ridge bases, we decompose into a system of first order differential equations and integrate

Candidate solution 4 by decomposition of ridge sum

• Optimize
$$J(\theta) = \sum_{i=1}^{n} r_i \phi(X_i^T \theta)$$

• Target density $p_t(\theta) = e^{tJ(\theta) - c_t} p_0(\theta)$ with $c'_t = E_{p_t}[J]$

- The time score is $\frac{\partial}{\partial t} \log p_t(\theta) = J(\theta) E_{\rho_t}[J]$
- Specialize the pde in log density form

 $\nabla^{T} G_{t}(\theta) + G_{t}^{T}(\theta) \nabla \log p_{t}(\theta) = J(\theta) - E_{p_{t}}[J]$

• The right side takes the form of a sum

.

 $\sum r_i \left[\phi(X_i^T \theta) - a_i\right].$

• Likewise $\nabla \log p_t(\theta) = t \nabla J(\theta) + \nabla \log p_0(\theta)$ is the sum

$$\sum X_i \left[t r_i \phi'(X_i^T \theta) - (1/n)(X_i^T \theta) \right]$$

• from the Gaussian initial distribution with $\log p_0(\theta)$ equal to

$$-(1/2n)\sum \theta^T X_i X_i^T \theta$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Approximate solution for ridge sums

Seek approximate solution of the form

$$G_t(heta) = \sum rac{x_i}{\|x_i\|^2} g_i(\underline{u})$$

with $\underline{u} = (u_1, \ldots, u_n)$ evaluated at $u_i = X_i^T \theta$, for which

$$\nabla^{T} G_{t}(\theta) = \sum_{i} \frac{\partial}{\partial u_{i}} g_{i}(\underline{u}) + \sum_{i,j:i\neq j} \frac{\boldsymbol{x}_{i}^{T} \boldsymbol{x}_{j}}{\|\boldsymbol{x}_{i}\|^{2}} \frac{\partial}{\partial u_{j}} g_{i}(\underline{u})$$

- Can we ignore the coupling in the derivative terms?
- $x_i^T x_i / ||x_i||^2$ are small for uncorrelated designs, large *d*.
- Match the remaining terms in the sums to solve for g_i(<u>u</u>)
- Arrange g_i(<u>u</u>) to solve the differential equations

$$\frac{\partial}{\partial u_i}g_i(\underline{u}) + g_i(\underline{u})[t\,r_i\phi'(u_i) - u_i/n + rest_i] = r_i[\phi(u_i) - a_i]$$

where $rest_i = \sum_{j \neq i} [t r_j \phi'(u_j) - u_j/n] x_j^T x_i / ||x_i||^2$.

Integral form of solution

• Differential equation for $g_i(u_i)$, suppressing dependence on the coordinates other than *i*

 $\frac{\partial}{\partial u_i}g_i(u_i) + g_i(u_i)[t\,r_i\phi'(u_i) - u_i/n + rest_i] = r_i[\phi(u_i) - a_i]$

Define the density factor

$$m_i(u_i) = e^{t r_i \phi(u_i) - u_i^2/2n + u_i \operatorname{rest}_i}$$

Allows the above diff equation to be put back in the form

$$\frac{\partial}{\partial u_i}[g_i(u_i) m_i(u_i)] = r_i \big[\phi(u_i) - a_i\big] m_i(u_i)$$

• An explicit solution, evaluated at $u_i = x_i^T \theta$, is

$$g_i(u_i) = r_i \frac{\int_{c_i}^{u_i} m_i(\tilde{u}_i) [\phi(\tilde{u}_i) - a_i] d\tilde{u}_i}{m_i(u_i)}$$

where c_i is such that $\phi(c_i) = a_i$.

The derived change function G_t for evolution of θ_t

Include the u_j for j ≠ i upon which rest_i depends. Our solution for g_{i,t}(<u>u</u>) is

 $r_i \int_{c_i}^{u_i} e^{t r_i (\phi(\tilde{u}_i) - \phi(u_i)) - (\tilde{u}_i^2 - u_i^2)/2n + t(\tilde{u}_i - u_i) \operatorname{rest}_i(\underline{u})} \left[\phi(\tilde{u}_i) - a_i \right] d\tilde{u}_i$

• Evaluating at $\underline{u} = X\theta$ we have the change function

$$G_t(\theta) = \sum \frac{x_i}{\|x_i\|^2} g_{i,t}(X\theta)$$

for which θ_t evolves according to

$$\theta_{t+h} = \theta_t + h \, G_t(\theta_t)$$

- For showing g_{i,t}, G_t and ∇G_t are nice, assume the activation function φ and its derivative is bounded (e.g. a logistic sigmoid or a sinusoid).
- Run several optimization paths in parallel, starting from independent choices of θ_0 . Allows access to empirical computation of $a_{i,t} = E_{D_t}[\phi(x_i^T \theta_t)]$

Andrew Barron

Computationally feasible greedy algorithms for neural nets

Derived the desired optimization procedure and the following.

Conjecture: With step size *h* of order $1/n^2$ and a number of steps of order *n d* log *d* and $X_1, X_2, ..., X_n$ i.i.d. Normal(0, *I*). With high probability on the design *X*, the above procedure produces optimization paths θ_t whose distribution closely tracks the target

$$p_t(\theta) = e^{t J(\theta) - c_t} p_0(\theta)$$

such that, with high probability, the solutions paths have instances of $J(\theta_t)$ which are at least 1/2 the maximum.

Consequently, the relaxed greedy procedure is computationally feasible and achieves the indicated bounds for sparse linear combinations from the dictionary $\Phi = \{\phi(\theta^T x) : \theta \in \mathbb{R}^d\}$

ヘロト ヘ戸ト ヘヨト ヘヨト

summary

- Flexible approximation models
 - Subset selection
 - Nonlinearly parameterized bases as with neural nets
 - ℓ_1 control on coefficients of combination
- Accurate approximation with moderate number of terms
 - Proof analogous to random coding
- Information theoretic risk bounds
 - Based on the minimum description length principle
 - Shows accurate estimation with a moderate sample size
- Computational challenges are being addressed by
 - Nonlinear power methods
 - Adaptive annealing

・ロト ・ 理 ト ・ ヨ ト ・