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Outline

Flexible high-dimensional function estimation with
sigmoidal, sinusoidal and polynomial activation functions

Approximation and estimation bounds

Computation with Greedy Term Selection
Exhaustive Search
Nonlinear Power Method (improves upon tensor methods)
Adaptive Annealing Method (for general designs)
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Data Setting

Data: (X i ,Yi), i = 1,2, . . . ,n

Inputs: explanatory variable vectors

X i = (Xi,1,Xi,2, . . . ,Xi,d )

Domain: Rd

Random design: independent X i ∼ P, example N(0, I)

Output: response variable Yi in R
Bounded or subgaussian

Relationship: E [Yi |X i ] = f (X i) as in:
Perfect observation: Yi = f (X i )

Noisy observation: Yi = f (Xi ) + εi with εi indep N(0, σ2)

Classification: Y ∈ {0,1} with f (X ) = P[Y = 1|X ]

Function: f (x) unknown
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Univariate activation functions

Activation functions denoted φ(z) or g(z)

Piecewise constant: 1{z−b≥0} or sgn(z−b)

Sigmoid: (ez − e−z)/(ez + e−z)

Linear spline, ramp: (z − b)+

Sinusoidal: cos(2πf z), sin(2πf z)

Polynomial: standard z`, Hermite H`(z)

Multivariate Activation functions
are built from products or from ridge forms: φ(aTx)
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Flexible multivariate function approximation

Internally parameterized models & nonlinear least squares
Fit functions fm(x) =

∑m
j=1 ckφ(x ,ak ) in the span of a

parameterized dictionary Φ = {φa(·) = φ(·,a) : a ∈ Rd}
Product bases:

using continuous powers, frequencies or thresholds

φ(x ,a) = φ1(x1,a1)φ1(x2,a2) · · ·φ1(xd ,ad )

Ridge bases: as in projection pursuit regression models,
sinusoidal expansions, single-hidden-layer neural nets and
polynomial networks:

φ(x ,a) = φ(aT x) = φ(a1x1 + a2x2 + . . .+ adxd )

Internal parameter vector a of dimension d .
Activation function built from univariate function φ(z)
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Notation

Response vector: Y = (Yi)
n
i=1 in Rn

Dictionary vectors: Φ(n) =
{

(φ(X i ,a))n
i=1 : a ∈ Rd} ⊂ Rn

Sample squared norm: ‖f‖2(n) = 1
n
∑n

i=1 f 2(X i)

Population squared norm: ‖f‖2 =
∫

f 2(x)P(dx)

Normalized dictionary condition: ‖φ‖ ≤ 1 for φ ∈ Φ

Andrew Barron Computationally feasible greedy algorithms for neural nets



Flexible m−term nonlinear optimization

Impractical one-shot optimization

Sample version

f̂m achieves min
(aj ,cj )

m
j=1

‖Y −
m∑

j=1

cj φaj
‖2(n)

Population version

fm achieves min
(aj ,cj )

m
j=1

‖f −
m∑

j=1

cj φaj
‖2

Optimization of (aj , cj)
m
j=1 in R(d+1)m.
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GREEDY OPTIMIZATIONS

Step 1: Choose c1, a1 to achieve min ‖Y − cφθ‖2(n) or
sample version: maxa(1/n)

∑
i=1 nYiφ(X i ,a)

population version: maxa E [f (X )φ(X ,a)]

Step m > 1: Arrange

f̂m = α f̂m−1 + c φa

with αm, cm, θm chosen to achieve

min
α,c,a
‖Y − α f̂m−1 − c φa‖2(n).

Also acceptable:
With Resi = Yi − f̂m−1(X i ) and Res(X ) = f (X )− fm(X )
Choose am to achieve maxa

∑n
i=1 Resi φ(X i ,a)

Population version: maxa E [Res(X )φ(X ,a)]

Foward stepwise selection of Sm = {φa1
, . . . , φam

}. Given
Sm−1, choose am to mina d(Y , span{φθ1

. . . φam−1
, φa})
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Basic m−term approximation and computation bounds

For either one-shot or greedy approximation
(B. IT 1993, Lee et al IT 1995)

Population version:

‖f − fm‖ ≤
‖f‖Φ√

m
and moreover

‖f − fm‖2 ≤ inf
g

{
‖f − g‖2 +

2‖g‖2Φ
m

}
Sample version:

‖Y − f̂m‖2(n) ≤ ‖Y − f‖2(n) +
2‖f‖2Φ

m

where ‖f‖Φ is the variation of f with respect to Φ:
infimum of V such that f is in closure of convex hull of ±V Φ
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`1 norm on coefficients in representation of f

Consider the range of a neural net, expressed via the
bound,∣∣∑

j

cj sgn(θ0,j + θ1,jx1 + . . .+ θd ,jxd )
∣∣ ≤∑

j

|cj |

equality if x is in polygon where sgn(θj · x) = sgn(cj) for all j

Motivates the norm

‖f‖Φ = lim
ε→0

inf
{∑

j

|cj | : ‖
∑

j

cjφθj
− f‖ ≤ ε

}
called the variation of f with respect to Φ (B. 1991)

‖f‖Φ = VΦ(f ) = inf{V : f/V ∈ closure(conv(±Φ))}

It appears in the bound ‖f − fm‖ ≤ ‖f‖Φ√
m
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Greedy proof of the approximation bound:

Consider the case ‖f‖Φ = 1
Take Φ to be closed under sign changes.
The minφ is not more than aveφ
Take average with respect to the weights representing f

‖f − fm‖2 ≤ minφ‖f − (1− λ)fm−1 − λφ‖2

≤ aveφ‖f − (1− λ)fm−1 − λφ‖2

= (1− λ)2‖f − fm−1‖2 + λ2

Bound follows by induction with λ = 1/m

‖f − fm‖2 ≤
1
m

Jones (AS 1992), B. (IT 1993)
extensions: Lee et al (IT 1995), DeVore et al (AS 2008)
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`1 norm on coefficients in representation of f

Finite sum representations, f (x) =
∑

j cjφ(x , θj). The
variation ‖f‖Φ equals

∑
j |cj |, which is the `1 norm of the

coefficients in representation of f in the span of Φ

Infinite integral representation f (x) =
∫

ei θ·x f̃ (θ) dθ
(Fourier representation), for x in a unit cube. The
variation‖f‖Φ is bounded by an L1 spectral norm:

‖f‖cos =

∫
Rd
|̃f (θ)|dθ

‖f‖step ≤
∫
|̃f (θ)| ‖θ‖1 dθ

‖f‖ramp ≤
∫
|̃f (θ)| ‖θ‖21 dθ

As we said, this ‖f‖Φ appears in the numerator of the
approximation bound.
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Statistical Risk

The population accuracy of function estimated from sample

Statistical risk E‖f̂m − f‖2 = E(f̂m(X )− f (X ))2

Expected squared generalization error on new X ∼ P

Minimax optimal risk bound, via information theory

E‖f̂m − f‖2 ≤ ‖fm − f‖2 + c
m
n

log N(Φ, δ).

Here log N(Φ, δ) is the metric entropy of Φ at δ = 1/m ; it is
of order d log(1/δ) and, with `1 constrained internal
parameters, it is of order (1/δ) log d

E‖f̂m − f‖2 ≤
‖f‖2Φ

m
+

c
n

min{md log(n/d) , m2 log d}

Bound is 2‖f‖Φ[cd
n log(n/d)]1/2 or 3‖f‖4/3

Φ [ c
n log d ]1/3,

whichever is smallest
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Adaptation

Adapt network size m and choice of internal parameters

Minimum Description Length Principle leads to
Complexity penalized least squares criterion.
Let m̂ achieve

min
m

{
‖Y − f̂m‖2(n) + 2c

m
n

log N(Φ, δ)
}

Information-theoretic risk bound

E‖f̂m̂ − f‖2 ≤ min
m

{
‖fm − f‖2 + 2c

m
n

log N(Φ, δ)
}

Performs as well as if the best m∗ were known in advance.
‖f‖2

Φ/m replaces ‖fm − f‖2 in the greedy case.

`1 penalized least squares
Achieves the same risk bound (Huang, Cheang, B. 2008)
Retains the MDL interpretation (B, Huang,Li,Luo,2008)
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Confronting the computational challenge

Greedy search
Reduces dimensionality of optimization from md to just d
Obtain a current am achieving within a constant factor of the
maximum of

Jn(a) =
1
n

n∑
i=1

Ri φ(X i ,a).

This surface can still have many maxima.
We might get stuck at a spurious local maximum.

New computational strategies identify approximate maxima
with high probability

1 Third-order Tensor Methods (pros and cons)

2 Nonlinear Power Methods

3 Adaptive Annealing

These are stochastically initialized search methods
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Tensor and nonlinear power methods (overview)

Know design distribution p(X )

Target f (x) =
∑mo

k=1 gk (aT
kx) is a combination of ridge

functions with distinct linearly independent directions ak

Ideal: maximize E [f (X )φ(aTX )] or (1/n)
∑

i Yiφ(aTXi)

Score functions operating on f (X ) and f (X ) g(aT X ) yield
population and sample versions of tensors

E
[

∂3

∂Xj1∂Xj2∂Xj3
f (X )

]
and nonlinearly parameterized matrixes

E
[
(∇∇T f (X ))g(aTX )

]
Spectral decompositions then identify the directions ak
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Score method for representing expected derivatives

Score function (tensor) S`(X ) of order ` from known p(X )

Sj1,...j`(X ) p(X ) = (−1)`
∂`

∂Xj1 · ∂Xj`
p(X )

Gaussian score: S1(X ) = X ,

S2(X ) = XX T − I,

S3
j1,j2,j3(X ) = Xj1Xj2Xj3 − Xj11j2,j3 − Xj21j1,j3 − Xj31j1,j2 .

Expected derivative:

E
[

∂`

∂Xj1 · ∂Xj`
f (X )

]
= E

[
f (X )Sj1,...j`(X )

]
Repeated integration by parts
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Expected derivatives of ridge combinations

Ridge combination target functions:

f (X ) =
mo∑

k=1

gk (aT
k X )

Expected Hessian of f (X )

M =
mo∑

k=1

akaT
k E [g

′′

k (aT
k X )] = E

[
f (X )S2(X )

]
.

Principle eigenvector:

max
a

{
aT M a

}
Linear power method finds ak if othogonal (the’re not).

Third order array (Anandkumar et al 2015, draft):
mo∑

k=1

aj1,kaj2,kaj3,kE [g
′′′

k (aT
k X )] = E

[
f (X )Sj1,j2,j3(X )

]
can be whitened and a quadratic power method finds ak .
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Scoring a Ridge Function

A suitable activation function φ(a,X ) for optimization of

E [f (X )φ(a,X )]

Matrix scoring of a ridge function g(aTX ):

Ma,X = S2g(aTX )+[S1aT +a(S1)T ]g′(aTX )+[aaT ]g′′(aTX )

Activation function formed by scoring a ridge function

φ(a,X ) = aT [Ma,X ]a

= (aT S2a)g(aTX ) + 2(aT S1)(aTa)g′(aTX ) + (aTa)2g′′(aTX )

Scoring a ridge function permits finding the component of
φ(a,X ) in the target function using

E [f (X )φ(a,X )] = aT E [f (X )Ma,X ]a = aT E [(∇∇T f (X ))g(aTX )]a

Twice itegrating by parts
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Scoring a Ridge Function (Gaussian design case)

Matrix scoring of a ridge function g(aTX ):

Ma,X = S2g(aTX )+[S1aT +a(S1)T ]g′(aTX )+[aaT ]g′′(aTX )

Activation function formed by scoring a ridge function

φ(a,X ) = aT [Ma,X ]a

= (aT S2a)g(aTX ) + 2(aT S1)(aTa)g′(aTX ) + (aTa)2g′′(aTX )

Gaussian design case, simplifying when ‖a‖ = 1:

φ(aT X ) = [(aTX )2 − 1]g(aTX ) + [2aTX ]g′(aTX ) + g′′(aTX )

φ(z) = (z2−1)g(z) + 2z g′(z) + g′′(z)

Hermite poly: If g(z)=H`−2(z) then φ(z)=H`(z) for ` ≥ 2.
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Scored Ridge Function Decomposes E [f (X )φ(a,X )]

Matrix scored ridge function, providing φ(a,X ) = aT Ma,X a,

Ma,X = S2g(aTX ) + [SaT + aST ]g′(aTX ) + [aaT ]g′′(aTX )

The amount of φ(a,X ) in f (X ) via the matrix decomposition

Ma = E [f (X )Ma,X ] = E [(∇∇T f (X ))g(aTX )] =
∑mo

k=1 ak aT
k Gk (ak ,a)

is quantified by

E [f (X )φ(a,X )] = aT [Ma]a =

m0∑
k=1

(aT
k a)2Gk (ak ,a)

Here Gk (ak ,a) = E [g′′k (aT
kX )g(aTX )] measures the

strength of the match of a to the direction ak .

It replaces E [g′′k (aT
kX )ST ]a = (aT

k a)E [g′′′k (aT
kX )] in the

tensor method of Anandkumar et al
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Using Sinusoids or Sigmoids

The amount of φ(a,X ) in f (X ) via the matrix decomposition

Ma = E [f (X )Ma,X ] =
∑mo

k=1 ak aT
k Gk (ak ,a)

quantified by

E [f (X )φ(a,X )] = aT [Ma]a =

m0∑
k=1

(aT
k a)2Gk (ak ,a)

Here Gk (ak ,a) = E [g′′k (aT
kX )g(aTX )] measures the

strength of the match of a to the direction ak .

cos(z), sin(z) case, with X standard multivariate Normal:

gk (aT
kX ) = −ckei aT

k X and g(aTX ) = e−i aTX

expected product Gk (ak ,a) = cke−(1/2)‖ak−a‖2

Step sigmoid case φ(z) = 1{z>0}: The Gk (ak ,a) is
determined by the angle between ak and a.
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Using Hermite polynomials

The amount of φ(a,X ) in f (X ) via the matrix decomposition

Ma = E [f (X )Ma,X ] =
∑mo

k=1 ak aT
k Gk (ak ,a)

is given by

E [f (X )φ(a,X )] = aT [Ma]a =

m0∑
k=1

(aT
k a)2Gk (ak ,a)

Here Gk (ak ,a) = E [g′′k (aT
k X )g(aT X )] measures the

strength of the match of a to the direction ak .

Hermite case: g(z) = H`−2(z), with X ∼ Normal(0, I).
H`(aTX ) and H`′(aT

kX ) orthonormal for `′ 6= `.

Gk (ak ,a) = ck ,` (aT
ka)`

with ck ,` = E [gk (Z )H`(Z )] in gk (z) =
∑

`′ ck ,`′H`′(z)
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Nonlinear Power Method

Maximize J(a) = E [f (X )φ(a,X )] = aT Ma a, s.t. ‖a‖=1

Cauchy-Schwartz inequality:

aT Ma a ≤ ‖a‖ ‖Maa‖

with equality iff a is proportional to Maa.
Motivates the mapping of the nonlinear power method

V (a) =
Ma a
‖Maa‖

Seek fixed points a∗ = V (a∗) via iterations at = V (at−1).
Construct a whitened version.
Verify that J(at ) is increasing.
The nonlinear power method provides maximizers of

J(a) = E [f (X )φ(a,X )]
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Analysis with Whitening

Suppose mo ≤ d (# components ≤ dimension)

Let Ref =
∑

k akaT
k βk be a reference matrix,

for instance Ref = Maref has βk = Gk (ak ,aref ),
and let Q D QT be its eigen-decomposition.

Let W = QD−1/2 be the whitening matrix:

I = W T Ref W =
∑

k

(W Tak )(aT
k W )βk =

∑
k

αk α
T
k

with orthonormal directions

αk = W Tak
√
βk

Represent a = W u/‖Wu‖ = W u
√
β for unit vectors u.

Then aTak = uTαk (β/βk )1/2

Let uref be the unit vector prop to W−1aref = D1/2QTaref
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Analysis of the Nonlinear Power Method

Criterion E [f (X )φ(a,X )] = aT Ma a = uT M̃u u where

M̃u =
∑

k αkα
T
k G̃k (αk ,u)β/βk

and G̃k is Gk with ak ,a expressed via αk ,u. Example

G̃k (αT
k u) = ck ,` (αT

k u)` (β/βk )`/2

M̃u =
∑

k αkα
T
k (αT

ku/αT
kuref )`

The power mapping at = Mat−1at−1/‖ · ‖ corresponds to

ut = M̃ut−1ut−1/‖ · ‖

Provably rapidly convergent, when G̃k is increasing in αT
ku.

Limit of ut is u∗ = ±αk with largest initial (αT
ku0/α

T
kuref )`.

Each +αk or −αk is a local maximizer.
Global maximizer corresponds to largest 1/|αT

kuref |
Corresponding maximizer of aT Ma a is a∗ prop to Wu∗.
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Analysis of Nonlinear Power Method, Polynomial Case

Let ck (t) = αT
k ut be coefficient of ut in the direction αk

Let ck ,ref = αT
k uref be coefficient of uref in direction αk

M̃ut =
∑

k αk α
T
k (αT

kut/α
T
kuref )`

So that
M̃ut ut =

∑
k αk (αT

k ut ) (αT
kut/α

T
kuref )`

Thus the coefficienct for ut+1 satisfies the recursion:

ck (t +1) =

[
ck (t)/ck ,ref

]`+1 ck ,ref

[
∑

k ( )2]1/2

By induction

ck (t) =

[
ck (0)/ck ,ref

](`+1)t
ck ,ref

[
∑

k ( )2]1/2

It rapidly concentrates on the index k with the largest

ck (0)

ck ,ref
=

αT
k u0

αT
k uref
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Analysis of Nonlinear Power Method, Polynomial Case

Suppose k = 1 has the largest

ck (0)

ck ,ref
=

αT
k u0

αT
kuref

with the others less by the factor 1−∆. Then

‖ut − α1‖2 ≤ 2(1−∆)2(`+1)t

Moreover J(at ) = E [f (X )φ(at ,X )] = uT
t M̃ut ut equals∑

k
[
ck (t)/ck ,ref

]`+2 c2
k ,ref

which is strictly increasing in t , proven by applications of
Holder’s inequality
Factor of increase quantified by the exponential of a
relative entropy.
The increase each step is large unless c2

k (t) is close to
concentrated on the maximizers of αT

k u0/α
T
k uref .
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Summary: Computationally feasible greedy algorithms

Flexible approximation models
Subset selection
Nonlinearly parameterized bases as with neural nets
`1 control on coefficients of combination

Accurate approximation with moderate number of terms
Proof by greedy optimization of E [Res(X )φ(aT X )]

Information theoretic risk bounds
Based on the minimum description length principle
Shows accurate estimation with a moderate sample size

Computational challenges are being addressed by
Nonlinear power methods
Adaptive annealing
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Optimization path for bounded ridge bases

Adaptive Annealing:
A more general approach to seek approx optimization of

J(θ) =
∑n

i=1ri φ(θT X i)

recent & current work with Luo, Chatterjee, Klusowski
Sample θt from the evolving density

pt (θ) = e t J(θ)−ct p0(θ)

along a sequence of values of t from 0 to tfinal

use tfinal of order (d log d)/n
Initialize with θ0 drawn from a product prior p0(θ), such as
normal(0, I ) or a product of standard Cauchy
Starting from the random θ0 define the optimization path θt
such that its distribution tracks the target density pt
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Optimization path

Adaptive Annealing: Arrange θt from the evolving density

pt (θ) = etJ(θ)−ct p0(θ)

with θ0 drawn from p0(θ)

State evolution with vector-valued change function Gt (θ):

θt+h = θt − h Gt (θt )

or better: θt+h is the solution to

θt = θt+h + h Gt (θt+h),

with small step-size h, such that θ + h Gt (θ) is invertible
with a positive definite Jacobian, and solves equations for
the evolution of pt (θ).
As we will see there are many such change functions
Gt (θ), though not all are nice.
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Solve for the change Gt to track the density pt

Density evolution: by the Jacobian rule

pt+h(θ) = pt
(
θ + h Gt (θ)

)
det
(
I + h∇GT

t (θ)
)

Up to terms of order h

pt+h(θ) = pt (θ) + h
[
(Gt (θ))T ∇pt (θ) + pt (θ)∇T Gt (θ)

]
In agreement for small h with the partial diff equation

∂

∂t
pt (θ) = ∇T [Gt (θ)pt (θ)

]
The right side is GT

t (θ)∇pt (θ) + pt (θ)∇T Gt (θ). Dividing by
pt (θ) it is expressed in the log density form

∂

∂t
log pt (θ) = ∇T Gt (θ) + GT

t (θ)∇ log pt (θ)
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Four candidate solutions

Four solutions to the partial differential equation at time t

∂

∂t
pt (θ) = ∇T [G(θ)pt (θ)

]
1 Solution of smallest L2 norm of G(θ)p(θ) in which G(θ)p(θ)

is a gradient
2 Solution in which pairs of coordinates of G(θ)p(θ) are

2−dim gradients
3 Solution of smallest L2 norm of G(θ) in which G is a

gradient
4 Approximate solutions expressed in terms of ui = X T

i θ.
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Candidate solution 1.

Solution of smallest L2 norm of Gt (θ)pt (θ) at a specific t .

Let Gt (θ)pt (θ) = ∇b(θ), gradient of a function b(θ)

Let f (θ) = ∂
∂t pt (θ)

Set greend (θ) proportional to 1/‖θ‖d−2, harmonic for
θ 6= 0.

The partial diff equation becomes the Poisson equation:

∇T∇b(θ) = f (θ)

Solution
b(θ) = (f ∗ green)(θ)
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Candidate solution 1.

Solution of smallest L2 norm of Gt (θ)pt (θ) at a specific t

Let Gt (θ)pt (θ) = ∇b(θ), gradient of a function b(θ)

Let f (θ) = ∂
∂t pt (θ)

Set greend (θ) proportional to 1/‖θ‖d−2, harmonic for
θ 6= 0.

The partial diff equation becomes the Poisson equation:

∇T∇b(θ) = f (θ)

Solution, using ∇greend (θ) = cd θ/‖θ‖d

∇b(θ) = (f ∗ ∇greend )(θ)
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Candidate solution 1.

Solution of smallest L2 norm of Gt (θ)pt (θ) at a specific t

Let Gt (θ)pt (θ) = ∇b(θ), gradient of a function b(θ)

Let f (θ) = ∂
∂t pt (θ)

Set greend (θ) proportional to 1/‖θ‖d−2, harmonic for
θ 6= 0.

The partial diff equation becomes the Poisson equation:

∇T [Gt (θ)pt (θ)] = f (θ)

Solution, using ∇greend (θ) = cd θ/‖θ‖d

Gt (θ)pt (θ) = (f ∗ ∇greend )(θ)
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Candidate solution 1.

Solution of smallest L2 norm of Gt (θ)pt (θ) at a specific t

Let Gt (θ)pt (θ) = ∇b(θ), gradient of a function b(θ)

Let f (θ) = ∂
∂t pt (θ)

Set greend (θ) proportional to 1/‖θ‖d−2, harmonic for
θ 6= 0.

The partial diff equation becomes the Poisson equation:

∇T [Gt (θ)pt (θ)] = f (θ)

Solution, using ∇greend (θ) = cd θ/‖θ‖d

Gt (θ) =
(f ∗ ∇greend )(θ)

pt (θ)

Not nice. Convolution is a high-dimensional integral.
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Candidate solution 2.

Solution using 2−dimensional convolutions

Write the pde ∇T [Gt (θ)pt (θ)] = f (θ) in the coordinates Gt ,j

d∑
j=1

∂

∂θj
[Gt ,j(θ)pt (θ)] = f (θ)

Pair consecutive terms to achieve a portion of the solution∑
i∈{j,j+1}

∂

∂θi
[Gt ,i(θ)pt (θ)] =

2
d

f (θ)

Solution, for each consecutive pair of coordinates,[
Gt ,j(θ)

Gt ,j+1(θ)

]
=

2
d

(f ∗ ∇green2)(θ)

pt (θ)

The 2−dim Green’s function gradient acts on (θj , θj+1).
Solution computed numerically. Stable for particular
objective functions J and initial distributions p0?
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Candidate solution 2.

Solution using 2−dimensional convolutions

Solution, for each consecutive pair of coordinates,[
Gt ,j(θ)

Gt ,j+1(θ)

]
=

2
d

(f ∗ ∇green2)(θ)

pt (θ)
Stable for particular objective functions J?
For p0 we use a product of 2−dimensional circularly
symmetric Cauchy distributions
Stable if J(θ) can exhibit only small change by changing
two consecutive coordinates
True for sigmoids with coeff squashing and variable
replication. Terms φ(aT X ) represented using small η as

φ
(
η
∑

φ(θj,r )Xj,r

)
The internal φ is is an increasing sigmoid squashing real
θj,r into (−1,1). For each Xj the aggregate coefficient is
aj = η

∑rep
r=1 φ(θj,r )
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Candidate solution 3.

Perhaps the ideal solution is one of smallest L2 norm of Gt (θ)

It has Gt (θ) = ∇bt (θ) equal to the gradient of a function

The pde in log density form

∇T Gt (θ) + GT
t (θ)∇ log pt (θ) =

∂

∂t
log pt (θ)

then becomes an elliptic pde in bt (θ) for fixed t.
With ∇ log pt (θ) and ∂

∂t log pt (θ) arranged to be bounded,
the solution may exist and be nice.
But explicit solution to this elliptic pde is not available
(except perhaps numerically in low dim cases).
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Candidate solution 3.

Ideal solution of smallest L2 norm of Gt (θ)

It has Gt (θ) = ∇bt (θ) equal to the gradient of a function

The pde in log density form

∇T Gt (θ) + GT
t (θ)∇ log pt (θ) =

∂

∂t
log pt (θ)

then becomes an elliptic pde in bt (θ) for fixed t.
With ∇ log pt (θ) and ∂

∂t log pt (θ) arranged to be bounded,
the solution may exist and be nice.
But explicit solution to this elliptic pde is not available
(except perhaps numerically in low dim cases)
To achieve explicit solution give up Gt (θ) being a gradient
For ridge bases, we decompose into a system of first order
differential equations and integrate
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Candidate solution 4 by decomposition of ridge sum

Optimize J(θ) =
∑n

i=1 ri φ(X T
i θ)

Target density pt (θ) = e tJ(θ)−ct p0(θ) with c′t = Ept [J]

The time score is ∂
∂t log pt (θ) = J(θ)− Ept [J]

Specialize the pde in log density form

∇T Gt (θ) + GT
t (θ)∇ log pt (θ) = J(θ)− Ept [J]

The right side takes the form of a sum∑
ri [φ(X T

i θ)− ai ].

Likewise ∇ log pt (θ) = t ∇J(θ) +∇ log p0(θ) is the sum∑
Xi

[
t riφ

′(X T
i θ)− (1/n)(X T

i θ)
]

from the Gaussian initial distribution with log p0(θ) equal to

−(1/2n)
∑

θT XiX T
i θ

.
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Approximate solution for ridge sums

Seek approximate solution of the form

Gt (θ) =
∑ xi

‖xi‖2
gi(u)

with u = (u1, . . . ,un) evaluated at ui = X T
i θ, for which

∇T Gt (θ) =
∑

i

∂

∂ui
gi(u) +

∑
i,j:i 6=j

xT
i xj

‖xi‖2
∂

∂uj
gi(u)

Can we ignore the coupling in the derivative terms?
xT

j xi/‖xi‖2 are small for uncorrelated designs, large d .
Match the remaining terms in the sums to solve for gi(u)

Arrange gi(u) to solve the differential equations

∂

∂ui
gi(u) + gi(u)

[
t riφ

′(ui)− ui/n + resti
]

= ri
[
φ(ui)−ai

]
where resti =

∑
j 6=i [t rj φ

′(uj)− uj/n]xT
j xi/‖xi‖2.
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Integral form of solution

Differential equation for gi(ui), suppressing dependence on
the coordinates other than i
∂

∂ui
gi(ui) + gi(ui)

[
t riφ

′(ui)− ui/n + resti
]

= ri
[
φ(ui)−ai

]
Define the density factor

mi(ui) = et ri φ(ui )−u2
i /2n + ui resti

Allows the above diff equation to be put back in the form

∂

∂ui
[gi(ui) mi(ui)] = ri

[
φ(ui)−ai

]
mi(ui)

An explicit solution, evaluated at ui = xT
i θ, is

gi(ui) = ri

∫ ui
ci

mi(ũi)
[
φ(ũi)−ai

]
dũi

mi(ui)

where ci is such that φ(ci) = ai .
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The derived change function Gt for evolution of θt

Include the uj for j 6= i upon which resti depends. Our
solution for gi,t (u) is

ri

∫ ui

ci

et ri (φ(ũi )−φ(ui ))−(ũ2
i −u2

i )/2n +t(ũi−ui )resti (u)
[
φ(ũi)−ai

]
dũi

Evaluating at u = Xθ we have the change function

Gt (θ) =
∑ xi

‖xi‖2
gi,t (Xθ)

for which θt evolves according to

θt+h = θt + h Gt (θt )

For showing gi,t , Gt and ∇Gt are nice, assume the
activation function φ and its derivative is bounded (e.g. a
logistic sigmoid or a sinusoid).
Run several optimization paths in parallel, starting from
independent choices of θ0. Allows access to empirical
computation of ai,t = Ept [φ(xT

i θt )]
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Conjectured conclusion

Derived the desired optimization procedure and the following.

Conjecture: With step size h of order 1/n2 and a number of
steps of order n d log d and X1,X2, . . . ,Xn i.i.d. Normal(0, I).
With high probability on the design X, the above procedure
produces optimization paths θt whose distribution closely tracks
the target

pt (θ) = et J(θ)−ct p0(θ)

such that, with high probability, the solutions paths have
instances of J(θt ) which are at least 1/2 the maximum.

Consequently, the relaxed greedy procedure is computationally
feasible and achieves the indicated bounds for sparse linear
combinations from the dictionary Φ = {φ(θT x) : θ ∈ Rd}
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summary

Flexible approximation models
Subset selection
Nonlinearly parameterized bases as with neural nets
`1 control on coefficients of combination

Accurate approximation with moderate number of terms
Proof analogous to random coding

Information theoretic risk bounds
Based on the minimum description length principle
Shows accurate estimation with a moderate sample size

Computational challenges are being addressed by
Nonlinear power methods
Adaptive annealing
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