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Outline

The challenge of high-dimensional function estimation

Univariate & multivariate polynomials, sinusoids, sigmoids

The failure of rigid approximation models in high dimension

Flexible approximation
by stepwise subset selection
by optimization of parameterized basis functions

Approximation bounds (relating error to number of terms)

Statistical risk bounds
relate error to number of terms and sample size

Computational challenge

Summary
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Challenging Problem

From observational or experimental data, relate a response
variableY to several explanatory variablesX1,X2, . . . ,Xd

A fundamental task in academics and industry

Central to the "Scientific Method"

Used throughout science and engineering fields

Aspects of this problem are variously called:
Statistical regression, prediction, response surface estimation,
analysis of variance, function fitting, function approximation,
nonparametric estimation, high-dimensional statistics, data
mining, machine learning, computational learning, pattern
recognition, informatics, artificial intelligence, cybernetics,
artificial neural networks
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Core Questions

Must there be a specific scientific hypothesis about how
the best prediction of the response is related to the inputs

Y ≈ f (X1,X2, . . . ,Xd , θ)

Or can the relationship be learned from data with a general
flexible model?

Must the form of the relationship be limited: with f a
smooth additive function in X1, . . . ,Xd , or linear in the
parameter vector θ, or restricted to low-order interactions?

Or can a selection of significant high-order interactions be
learned accurately from data?

What is the relationship between the accuracy of the fit and
the number of observational cases n?
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Dimensionality

The blessing and the curse of dimensionality

With increasing number of variables d there is an
exponential growth in the number of distinct terms that can
be combined in modeling the function

Larger number of relevant variables d allows in principle for
better approximation to the response

Large d might lead to a need for exponentially large
number of observations n or to a need for exponentially
large computation time

Under what conditions can we take advantage of the
blessing and overcome the curse.
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Three papers

Some available readings from www.stat.yale.edu that illustrate
my background in addressing these questions of high
dimensionality

A. R. Barron, R. L. Barron (1988). Statistical learning
networks: a unifying view. In Computing Science and
Statistics: Proceedings of the 20th Symposium on the
Interface, American Statistical Association, p.192-203.
A. R. Barron (1993). Universal approximation bounds for
superpositions of a sigmoidal function. IEEE Transactions
on Information Theory, Vol.39, p.930-944.
A. R. Barron, A. Cohen, W. Dahmen, R. DeVore (2008).
Approximation and learning by greedy algorithms. Annals
of Statistics, Vol.36, p.64-94.
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Data

Data: (X i ,Yi), i = 1,2, . . . ,n

Inputs: explanatory variable vectors

X i = (Xi,1,Xi,2, . . . ,Xi,d )

Domain: Either a unit cube in Rd or all of Rd

Random design: independent X i ∼ P

Output: response variable Yi in R
Moment conditions, with Bernstein constant c

Relationship: E [Yi |X i ] = f (X i) as in:
Perfect observation: Yi = f (X i )

Noisy observation: Yi = f (Xi ) + εi with εi indep N(0, σ2)

Classification: Y ∈ {0,1} with f (X ) = P[Y = 1|X ]

Function: f (x) unknown

Andrew Barron Flexible High-Dimensional Non-Linear Function Estimation



Univariate function approximation: d = 1

Basis functions for series expansion

φ0(x), φ1(x), . . . , φK (x), . . .

Polynomial basis (with degree K )

1, x , x2, . . . , xK

Sinusoidal basis (with period L, and with K = 2k ),

1, cos(2π(1/L)x), sin(2π(1/L)x), . . . , cos(2π(k/L)x), sin(2π(k/L)x)

Piecewise constant on [0,1]

1{x≥0},1{x≥1/K},1{x≥2/K}, . . . ,1{x≥1}

Other spline bases and wavelet bases are also common
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Univariate function approximation: d = 1

Standard 1-dim approximation models

Project to the linear span of the basis

Rigid form (not flexible), with coefficients ck adjusted to fit
the response,

fK (x) =
K∑

k=0

ck φk (x).

Flexible form, with a subset k1 . . . km chosen to best fit the
response, for a given number of terms m

m∑
j=1

cj φkj (x).

Fit by all-subset regression (if m and K are not too large) or
by forward stepwise regression, selecting from the
dictionary Φ = {φ0, φ1, . . . , φK}
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Multivariate function approximation: d > 1

Multivariate product bases:

φk (x) = φk1,k2,...,kd (x1, x2, . . . , xd )

= φk1(x1)φk2(x2) · · ·φkd (xd )

Rigid approximation model

K∑
k1=0

K∑
k2=0

· · ·
K∑

kd =0

ck φk (x)

Exponential size: (K + 1)d terms in the sum
Requires exponentially large sample size n >> (K + 1)d

for accurate estimation
Statistically and computationally problematic
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Flexible multivariate function approximation: d > 1

By subset selection:
A subset k1 . . . km is chosen to fit the response, with a
given number of terms m

m∑
j=1

cj φk j
(x)

Full forward stepwise selection:
computationally infeasible for large d because the
dictionary is exponentially large, of size (K + 1)d .

Adhoc stepwise selection: (SAS stepwise polynomials,
Friedman MARS, Barron-Xiao MAPS 1991)

Start with m = 1 with k1 = (0,0, . . . ,0), then for m > 1
restrict the search for term m to those that incrementally
modify existing terms in one variable, with a manageable
number of choices (m−1)Kd .
Intuitively sensible and computationally fast, but not known
if it approximates well in general.
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Flexible multivariate function approximation: d > 1

By introducting internal parameters and nonlinear least squares

Fit functions fm(x) =
∑m

j=1 cjφ(x , θ) in the span of a
parameterized dictionary Φ = {φ(·, θ) : θ ∈ Θ}
Parameterized product bases (with continuous powers,
frequencies or thresholds)

φ(x , θ) = φ1(x1, θ1)φ1(x2, θ2) · · ·φ1(xd , θd )

Paramterized ridge bases (shaped like ridges of mountain
range) as in projection pursuit regression models,
sinusoidal models, and single-hidden-layer neural nets:

φ(x , θ) = φ1(θ0 + θ1x1 + θ2x2 + . . .+ θdxd )

Internal parameter vector θ of dimension d +1.
The univariate function φ(z) = φ1(z) is called the activation
function or basic nonlinearity
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Building Non-linear Dictionaries

Examples of activation functions φ(z)

Perceptron networks: 1{z>0} or sgn(z)

Sigmoidal networks: ez/(1+ez) or tanh(z)

Sinusoidal models: cos(z)

Hinging hyperplanes: (z)+

Quadratic splines: 1, z, (z)2
+

Cubic splines: 1, z, z2, (z)3
+

Polynomials: (z)q
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Notation

Response vector: Y = (Yi)
n
i=1 in Rn

Dictionary vectors: Φ(n) =
{

(φ(X i , θ))n
i=1 : θ ∈ Θ

}
⊂ Rn

Sample squared norm: ‖f‖2(n) = 1
n
∑n

i=1 f 2(X i)

Population squared norm: ‖f‖2 =
∫

f 2(x)P(dx)

Normalized dictionary condition: ‖φ‖ ≤ 1 for φ ∈ Φ
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Flexible m−term nonlinear optimization

Impractical one-shot optimization

Sample version

f̂m achieves min
(θj ,cj )

m
j=1

‖Y −
m∑

j=1

cj φθj
‖2(n)

Population version

fm achieves min
(θj ,cj )

m
j=1

‖f −
m∑

j=1

cj φθj
‖2

Optimization of (θj , cj)
m
j=1 in R(d+2)m.
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Flexible m−term nonlinear optimization

Greedy optimizations

Step 1: Choose c1, θ1 to achieve min ‖Y − cφθ‖2(n)

Step m > 1: Arrange

f̂m = α f̂m−1 + c φ(x , θm)

with αm, cm, θm chosen to achieve

min
α,c,θ
‖Y − α f̂m−1 − c φθ‖2(n).

Also acceptable, with resi = Yi − f̂m−1(X i),

Choose θm to achieve maxθ
∑n

i=1 resi φ(X i , θ)

Reduced dimensionality of the search space

Foward stepwise selection of Sm = {φθ1
, . . . , φθm

}. Given
Sm−1, combine the terms to achieve

min
θ

d(Y , span{φθ1
, . . . , φθm−1

, φθ})
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Basic m−term approximation and computation bounds

For either one-shot or greedy approximation
Population version:

‖f − fm‖ ≤
‖f‖Φ√

m

and moreover

‖f − fm‖2 ≤ inf
g

{
‖f − g‖2 +

2‖g‖2Φ
m

}
Sample version:

‖Y − f̂m‖2(n) ≤ ‖Y − f‖2(n) +
2‖f‖2Φ

m

where ‖f‖Φ is the variation of f with respect to Φ
(as will be defined on the next slide).
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`1 norm on coefficients in representation of f

Consider the range of a neural net, expressed via the
bound,∣∣∑

j

cj sgn(θ0,j + θ1,jx1 + . . .+ θd ,jxd )
∣∣ ≤∑

j

|cj |

equality if x is in polygon where sgn(θj · x) = sgn(cj) for all j

Motivates the norm

‖f‖Φ = lim
ε→0

inf
{∑

j

|cj | : ‖
∑

j

cjφθj
− f‖ ≤ ε

}
called the variation of f with respect to Φ (B. 1991)

‖f‖Φ = VΦ(f ) = inf{V : f/V ∈ closure(conv(±Φ))}

It appears in the bound ‖f − fm‖ ≤ ‖f‖Φ√
m
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`1 norm on coefficients in representation of f

Finite sum representations, f (x) =
∑

j cjφ(x , θj). Variation
‖f‖Φ =

∑
j |cj |, which is the `1 norm of the coefficients in

representation of f in the span of Φ

Infinite integral representation f (x) =
∫

ei θ·x f̃ (θ) dθ
(Fourier representation), for x in a unit cube. The variation
‖f‖Φ is bounded by an L1 spectral norm:

‖f‖cos =

∫
Rd
|̃f (θ)|dθ

‖f‖step ≤
∫
|̃f (θ)| ‖θ‖1 dθ

‖f‖q−spline ≤
∫
|̃f (θ)| ‖θ‖q+1

1 dθ

As we said, this ‖f‖Φ appears in the numerator of the
approximation bound.

Andrew Barron Flexible High-Dimensional Non-Linear Function Estimation



Statistical Risk

The population accuracy of function estimated from sample

Statistical risk E‖f̂m − f‖2 = E(f̂m(X )− f (X ))2

Expected squared generalization error on new X ∼ P
of the estimator trained on the data (X i ,Yi)

n
i=1

Minimax optimal risk bound

E‖f̂m − f‖2 ≤ ‖fm − f‖2 + c
m
n

log N(Φ, δn).

Here log N(Φ, δn) is the metric entropy of Φ at δn = 1/n ;
with Φ of metric dimension d , it is of order d log(1/δn), so

E‖f̂m − f‖2 ≤
‖f‖2Φ

m
+

cmd
n

log n

Need only n >> md rather than n >> (K + 1)d .

Best bound is 2‖f‖Φ

√
cd
n log n at m∗ = ‖f‖Φ

√
n/cd log n
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Adaptation

Adapt network size m and choice of internal parameters

Complexity penalized least squares criterion.
Let m̂ achieve

min
m

{
‖Y − f̂m‖2(n) + 2c

m
n

log N(Φ, δn)
}

Then the statistical risk (generalization error) satisfies

E‖f̂m̂ − f‖2 ≤ min
m

{
‖fm − f‖2 + 2c

m
n

log N(Φ, δn)
}

Performs as well as if the best m∗ were known in advance.

Andrew Barron Flexible High-Dimensional Non-Linear Function Estimation



Confronting the computational challenge

Greedy search reduces dimensionality of optimization from
md to just d to obtain the current θm maximizing

Jn(θ) =
1
n

n∑
i=1

resi φ(X i , θ).

This surface can still have many maxima. It provides a
computational challenge. We might get stuck at an
undesirably low local maximum.

Seek insight from a special case in which the set of
maxima can be identified.
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Identifying the maxima

Insight from a special case:
Sinusoidal dictionary: φ(x , θ) = e−iθ·x

Gaussian design: X i ∼ Normal(0, τ I )
Target function: f (x) =

∑mo
j=1 cj eiαj ·x

For step 1, with large n, the objective function becomes
near its population counterpart

J(θ) = E
[
f (X )e−iθ·x ] =

mo∑
j=1

cj E
[
eiαj ·xe−iθ·x]

which simplifies to
mo∑
j=1

cj e−(τ/2)‖αj−θ‖2
.

For large τ it has precisely mo maxima, one at each of the
αj in the target function.
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summary

Flexible approximation models
Subset selection
Nonlinearly parameterized bases as with neural nets
`1 control on coefficients of combination

Accurate approximation with moderate number of terms

Accurate estimation with a moderate sample size

Computational challenges remain
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