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@ The challenge of high-dimensional function estimation
@ Univariate & multivariate polynomials, sinusoids, sigmoids

@ The failure of rigid approximation models in high dimension
@ Flexible approximation

o by stepwise subset selection
@ by optimization of parameterized basis functions

@ Approximation bounds (relating error to number of terms)

@ Statistical risk bounds
o relate error to number of terms and sample size

@ Computational challenge

@ Summary
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Challenging Problem

From observational or experimental data, relate a response
variable Y to several explanatory variables Xy, X5, ..., Xy

@ A fundamental task in academics and industry
@ Central to the "Scientific Method"
@ Used throughout science and engineering fields

Aspects of this problem are variously called:

Statistical regression, prediction, response surface estimation,
analysis of variance, function fitting, function approximation,
nonparametric estimation, high-dimensional statistics, data
mining, machine learning, computational learning, pattern
recognition, informatics, artificial intelligence, cybernetics,
artificial neural networks
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Core Questions

@ Must there be a specific scientific hypothesis about how
the best prediction of the response is related to the inputs

Y ~ f(X1,X2,...,Xd,Q)
@ Or can the relationship be learned from data with a general
flexible model?

@ Must the form of the relationship be limited: with f a
smooth additive function in Xj, ..., Xy, or linear in the
parameter vector 6, or restricted to low-order interactions?

@ Or can a selection of significant high-order interactions be
learned accurately from data?

@ What is the relationship between the accuracy of the fit and
the number of observational cases n?
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Dimensionality

The blessing and the curse of dimensionality

@ With increasing number of variables d there is an
exponential growth in the number of distinct terms that can
be combined in modeling the function

@ Larger number of relevant variables d allows in principle for
better approximation to the response

@ Large d might lead to a need for exponentially large
number of observations n or to a need for exponentially
large computation time

@ Under what conditions can we take advantage of the
blessing and overcome the curse.
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Three papers

Some available readings from www.stat.yale.edu that illustrate
my background in addressing these questions of high
dimensionality

@ A. R. Barron, R. L. Barron (1988). Statistical learning
networks: a unifying view. In Computing Science and
Statistics: Proceedings of the 20th Symposium on the
Interface, American Statistical Association, p.192-203.

@ A. R. Barron (1993). Universal approximation bounds for
superpositions of a sigmoidal function. IEEE Transactions
on Information Theory, Vol.39, p.930-944.

@ A. R. Barron, A. Cohen, W. Dahmen, R. DeVore (2008).
Approximation and learning by greedy algorithms. Annals
of Statistics, Vol.36, p.64-94.

Andrew Barron Flexible High-Dimensional Non-Linear Function Estimation



e Data: (X, Y)),i=1,2,...,n
Inputs: explanatory variable vectors

Ki — ()(i,1 ) )(i,27 ceey )(f,d)

Domain: Either a unit cube in R? or all of R?Y

Random design: independent X; ~ P

Output: response variable Y;in R
e Moment conditions, with Bernstein constant ¢
Relationship: E[Y;|X;] = f(X;) as in:
e Perfect observation: Y; = f(X;)
e Noisy observation: Y; = f(X;) + ¢; with ¢; indep N(0, o?)
e Classification: Y € {0, 1} with f(X) = P[Y = 1|X]

Function: f(x) unknown
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Univariate function approximation: d = 1

Basis functions for series expansion
do(X), #1(X), ..., ok(X), ...

Polynomial basis (with degree K)

2

g ee ey

K

1, Xx, x°,....X

) )

Sinusoidal basis (with period L, and with K = 2k),
1,cos(27(1/L)x),sin(2r(1/L)x),...,cos(2n(k/L)x),sin(2x(k/L)x)
Piecewise constant on [0, 1]

1o Tixs1/kp Tixs2/kys -+ 5 Ty

Other spline bases and wavelet bases are also common
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Univariate function approximation: d = 1

Standard 1-dim approximation models

Project to the linear span of the basis

@ Rigid form (not flexible), with coefficients ¢ adjusted to fit
the response,

K
fie(x) =k dx(x).
k=0

@ Flexible form, with a subset k; ... ky, chosen to best fit the
response, for a given number of terms m

m

> Gow ().

=1

Fit by all-subset regression (if m and K are not too large) or
by forward stepwise regression, selecting from the

dictionary ® = {¢0, ¢1,. .., ok}
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Multivariate function approximation: d > 1

@ Multivariate product bases:
k(X)) = Py koo kg (K15 X2, -+, Xgt)

= bk (X1) Py (X2) - - - Dy (Xa)

@ Rigid approximation model

ZZ Zwk

=0 ko=

@ Exponential size: (K 4 1)9 terms in the sum

@ Requires exponentially large sample size n >> (K 4 1)
for accurate estimation

@ Statistically and computationally problematic
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Flexible multivariate function approximation: d > 1

By subset selection:

@ A subset k; ...k, is chosen to fit the response, with a
given number of terms m

> Gow,(x)
j=1

@ Full forward stepwise selection:

e computationally infeasible for large d because the
dictionary is exponentially large, of size (K + 1)°.

@ Adhoc stepwise selection: (SAS stepwise polynomials,
Friedman MARS, Barron-Xiao MAPS 1991)

e Start with m = 1 with k; = (0,0,...,0), then for m > 1
restrict the search for term m to those that incrementally
modify existing terms in one variable, with a manageable
number of choices (m—1)Kd.

e Intuitively sensible and computationally fast, but not known
if it approximates well in general.
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Flexible multivariate function approximation: d > 1

By introducting internal parameters and nonlinear least squares
@ Fit functions fm(x) = 3=/ ¢jé(x, ) in the span of a
parameterized dictionary ® = {¢(-,0) : 0 € ©}

@ Parameterized product bases (with continuous powers,
frequencies or thresholds)

d(x,0) = p1(x1,01) p1(X2,62) - - - P1(Xq, Oa)

@ Paramterized ridge bases (shaped like ridges of mountain
range) as in projection pursuit regression models,
sinusoidal models, and single-hidden-layer neural nets:

d(X,0) = P1(00 + 01x1 + Oaxo + ... + 04Xq)

@ Internal parameter vector 9 of dimension d+1.

@ The univariate function ¢(z) = ¢4(z) is called the activation
function or basic nonlinearity
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Building Non-linear Dictionaries

Examples of activation functions ¢(z)

@ Perceptron networks: 1;,-0; or sgn(z)

@ Sigmoidal networks: e*/(1+€%) or tanh(z)
@ Sinusoidal models: cos(z)
@ Hinging hyperplanes: (z)+
@ Quadratic splines: 1, z, (z)2
@ Cubic splines: 1, z, 22, (2)2

@ Polynomials: (z)9
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@ Response vector: Y = (Y;)iL,in R"

e Dictionary vectors: &, = {(#(X;,0))., : 6 € ©} C R"
® Sample squared norm:  |f|% ) = IS (X))

@ Population squared norm: ||f||2 = [ f2(x)P(dx)

@ Normalized dictionary condition: ||¢|| < 1 for ¢ € ®
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Flexible m—term nonlinear optimization

Impractical one-shot optimization

@ Sample version

fn achieves ml)n Iy — ZQ% H(n

/’Ij1

@ Population version

fm achieves min ||f — Z G ¢6 H2

6/7/,1 j=1

@ Optimization of (6}, ;)74 in R@T2)™.
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Flexible m—term nonlinear optimization

Greedy optimizations
@ Step 1: Choose ¢y, §; to achieve min||Y — CngH(zn)
@ Step m > 1: Arrange
fn=afn 1+ co(x,0,)
with am, ¢m, 8,, chosen to achieve

; f; 2
min ¥ — afny — conly.

@ Also acceptable, with res; = Y; — f,,_1(X,),
e Choose 0,, to achieve maxy Y"1, res; ¢(X;, 0)
e Reduced dimensionality of the search space

e Foward stepwise selection of Sp, = {¢g,, ..., by, }. Given
Sm—_1, combine the terms to achieve

mind(Y, span{éy,, .., ¢, ,: ¢0})
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Basic m—term approximation and computation bounds

For either one-shot or greedy approximation
@ Population version:

[l

f—rfn <
If=tnll < 72

and moreover
, 2||gll5
_ 2 ~ _ qgll2 £ ZiZlie
| — fm| _Igf{Hf alI*+—

@ Sample version:

. 2112
1Y Tl < 1Y — 712y + 20

where ||f||s is the variation of f with respect to ¢
(as will be defined on the next slide).
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¢1 norm on coefficients in representation of f

@ Consider the range of a neural net, expressed via the
bound,

‘ Z Gj sgn(@oJ + 91,jX1 + ...+ 9d7de)‘ < Z ’Cj‘
J i

equality if x is in polygon where sgn(9; - x) = sgn(c;) for all j
@ Motivates the norm

[flo = liminf {3 gl « II)_ ciog, — fl < ¢}
i i

called the variation of f with respect to ¢ (B. 1991)
Iflle = Vo(f) =inf{V : f/V € closure(conv(+®))}

i f
@ It appears in the bound || — fn| < %
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¢1 norm on coefficients in representation of f

@ Finite sum representations, f(x) = >_; ¢j¢(x, 6;). Variation
|flle = >_; [cj|, which is the ¢4 norm of the coefficients in
representation of f in the span of ¢

e Infinite integral representation f(x) = [ e'¢X f(0) do
(Fourier representation), for x in a unit cube. The variation
|f||s is bounded by an L; spectral norm:

1flloos = / #(9)| 08
Rd

IFllstep < / 7)) 6] do

IFllo-spine < [ (7)) 617+ o8

@ As we said, this ||f||¢ appears in the numerator of the
approximation bound.
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Statistical Risk

@ The population accuracy of function estimated from sample
o Statistical risk E||f, — f[|2 = E(fn(X) — f(X))?

@ Expected squared generalization error on new X ~ P
of the estimator trained on the data (X, Y;)i.;

@ Minimax optimal risk bound
- m
E|fn—fI? < |fn—fl?+ ¢ log N(®, 6n).
Here log N(®, 6,,) is the metric entropy of ¢ at 6, = 1/n;
with ® of metric dimension d, it is of order dlog(1/d,), so

17113 cmd

E|[f, — f|? < &+ = =logn

@ Need only n >> md rather than n >> (K + 1)“.

@ Bestboundis 2||f|e\/%logn at m* = ||f|e+/n/cdlogn
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@ Adapt network size m and choice of internal parameters

@ Complexity penalized least squares criterion.
Let /m achieve

. - m
min {H Y —fnlfy + 2¢- log N(©, (5,,)}
@ Then the statistical risk (generalization error) satisfies
2 2 ; 2 m
Ellfn— 712 < min {l1fn — 11 + 26™ log N(®, 80) |

@ Performs as well as if the best m* were known in advance.
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Confronting the computational challenge

@ Greedy search reduces dimensionality of optimization from
md to just d to obtain the current 8,,, maximizing

Zres, (X, 0).

@ This surface can still have many maxima. It provides a
computational challenge. We might get stuck at an
undesirably low local maximum.

@ Seek insight from a special case in which the set of
maxima can be identified.
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|dentifying the maxima

@ Insight from a special case:
e Sinusoidal dictionary: ¢(x, ) = e ¢X
e Gaussian design: X; ~ Normal(0, 7/)
e Target function: f(x) = Z T cje'X

@ For step 1, with large n, the objective function becomes
near its population counterpart

J(@) _ E[ —19x Z Cj ela] xe—16 X}
which simplifies to
Mo
Z ¢ e (7/2)l|ej—0]%
j=1

@ For large 7 it has precisely m, maxima, one at each of the
a; in the target function.
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summary

@ Flexible approximation models
e Subset selection
e Nonlinearly parameterized bases as with neural nets
e ¢4 control on coefficients of combination

@ Accurate approximation with moderate number of terms
@ Accurate estimation with a moderate sample size

@ Computational challenges remain
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