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@ Flexible high-dimensional function estimation using
sinusoid, sigmoid, ramp or polynomial activation functions

@ Approximation and estimation bounds to reveal the effect
of dimension, model size, and sample size

@ Computation with greedy term selection
e Adaptive Annealing Method (for general designs) to guide
parameter search
e Nonlinear Power Method (for specific designs) to improve
upon tensor methods for parameter estimation
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Example papers for some of what is to follow

Papers illustrating my background addressing these questions
of high dimensionality (available from www.stat.yale.edu)

@ A. R. Barron, R. L. Barron (1988). Statistical learning
networks: a unifying view. Computing Science & Statistics:
Proc. 20th Symp on the Interface, ASA, p.192-203.

@ A. R. Barron (1993). Universal approximation bounds for
superpositions of a sigmoidal function. IEEE Transactions
on Information Theory, Vol.39, p.930-944.

@ A. R. Barron, A. Cohen, W. Dahmen, R. DeVore (2008).
Approximation and learning by greedy algorithms. Annals
of Statistics, Vol.36, p.64-94.

@ J. M. Klusowski, A. R. Barron (2016) Risk bounds for
high-dimensional ridge function combinations including
neural networks, Submitted to the Annals of Statistics.
arXiv:1607.01434v1
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@ Data: (X;,Y)),i=1,2,.

@ Inputs: explanatory variable vectors (arbitrary dependence)
Ki = ()(I',‘I ) )(i,Za ceey )(i,d)

@ Domain: Cube in RY

@ Random design: independent X; ~ P

@ Output: response variable Y;in R
e Bounded or subgaussian

@ Relationship: E[Y;|X;] = f(X;) asin:

e Perfect observation: Y; = f(X;)
e Noisy observation: Y; = f(X;) + ¢ with ¢; indep

@ Function: f(x) unknown
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Activation functions

Activation functions denoted ¢(z) or g(z)
Piecewise constant: 1;,_p>0; or sgn(z—b)
Sigmoid: (e — e %) /(e* + e %)

Linear spline, ramp: (z — b)+

Sinusoidal: cos(2xf z), sin(2xf z)
Polynomial: standard z¢, Hermite H,(z)

Multivariate Activation functions
@ built from products or from ridge forms: ¢(a’x)
@ constructed using univariate function ¢
@ internal parameter vector a of dimension d.
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Product and Ridge Bases

@ Product bases: for polynomials, sinusoids, splines
using continuous powers, frequencies or thresholds

P(x,8) = ¢(x1,a1) p(X2, @) - - - p(Xq, aq)

@ Ridge bases: for projection pursuit regression, sinusoids,
neural networks and polynomial networks:

¢(x,8) = ¢p(a’ x) = p(aixy + axo + ... + agxq)
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Flexible multivariate function modeling

Internally parameterized models & nonlinear least squares
@ Functions fn(x) = - cké(x, &) in the span of a
parameterized dictionary ® = {¢a(-) = ¢(-,a) : a € A}
with parameter set A ¢ RY
@ Flexible function approximation

@ Statistically challenging

@ Computationally challenging
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@ Response vector: Y = (Y;),in R"

e Dictionary vectors: ¢, = {(¢(X;,a)), : ac A} C R"
® Sample squared norm:  |f|% ) = IS (X))

@ Population squared norm: ||f||2 = [ f2(x)P(dx)

@ Normalized dictionary condition: ||¢|| < 1 for ¢ € ®
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Flexible m—term nonlinear optimization

Impractical complete nonlinear least squares optimization

@ Sample version

A

fm achieves min ||Y — ZC/%H

(aj7]j 1

@ Population version

fm achieves min ||f — Z Cj ¢>a ”2

(alvjj 1

e Optimization of (g;, ;) in R(d+1)m
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GREEDY OPTIMIZATIONS

Optimize one term at a time

@ Step 1: Choose a4, ¢4 to produce a single best term:
e sample version: ming || Y — C%H(Zn)

e population version: minac ||f — céa|?
@ Step m > 1: Arrange
?m = 04?m—1 + Cda

with a,,,, cm, am providing the term with best improvement:
e sample version: Ming . | Y — afy 1 — call?,

e population version: ming ¢ . ||f — afm_1 — cgal|?
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Acceptable variants of greedy optimization

@ Step m > 1: Arrange
?m = 04?m—1 + C¢a
with a,,,, cm, am providing the term with best improvement:
o least squares: min e, ||Y — afy 1 — coallZ,

@ Acceptable variants
e Inner-product maximization: With Res; = Y; — fn_1(X,)
choose a,, to achieve max, > !, Res; #(X, a) to within a
constant factor

e Foward stepwise selection: Given ay,..., a,_+, choose a,,
to obtain ming (Y, span{¢y, ... ¢a, ,,ba})

e Orthogonal matching pursuit: Project onto span after
choosing inner-product maximizer.

e (4 Penalization: Update vy, = amVm_1 + Cm. Choose am, Cn
to achieve min, ¢ | Y — afn_1 — cgal?) + Alavin_1 + ]

Andrew Barron High-Dim Neural Nets: Statistics and Computation



Basic m—term approximation and computation bounds

For complete or greedy approximation (B. 1993, Lee et al 1995)

@ Population version:
Ifllo

f—fnl <
H me \/,,7,

and moreover
- 2||gl3
f—fnl2 <infl |f—g|?+ /22
If —fnll® < in {n glP+ =2
@ Sample version:

A 2||fl12
1Y —tnlly < 1Y - £, + 2o

@ Optimization with ¢; penalization:

; . 2|93
1Y = Fally + Mallo < inf {11V = 113 + Algllo + 21912

@ Here ||g||s is the minimal ¢; norm of coefficients of g in span of ¢
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The norm of f with respect to the dictionary ¢

@ Minimal ¢4 norm on coefficients in approximation of f
[flo = limint {3 iG] : | cjog —fl <e}
i J

called the variation of f with respect to ¢ (B. 1991)
Iflloe = Vo(f) =inf{V : f/V € closure(conv(+®))}

@ It appears in the bound ||f — fp|| < H%

@ Later also called the atomic norm of f with respect to ¢

@ In the case of the signum activation function it matches the
minimal range of neural nets arbitrarily well approximating f
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Greedy proof of the approximation bound:

@ Consider the case ||f||le = 1

@ Take ¢ to be closed under sign changes.

@ The miny is not more than ave,

@ Take average with respect to the weights representing f

If — fml < ming[f — (1 = A1 — Ag|1?
< ave¢||f — (1 — )\)fm_1 — )\qZ)||2
= (1 = XP|If = fmq P + A

@ Bound follows by induction with A = 1/m

1
I~ flf? < —

@ Jones (AS 1992), B. (IT 1993)
@ extensions: Lee et al (IT 1995), DeVore et al (AS 2008)
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Relating the variation to a spectral norm of f

@ Neural net approximation using the Fourier representation
f(x) = / e'“* f(w) dw.
@ Ly spectral norm: ||f||spectrum,s = [pd 1f(w)| |wl|§ dw

@ Let ® be the dictionary for sinusoids, sigmoids or ramps.
With unit cube domain for x, the variation ||f||¢ satisfies

Hf ||sinusoid = Hf ||spectrum,0
H f Hsigmoid < H f Hspectrum,1
Ifllramp < ||fl| spectrum,2
@ For sinusoid, sigmoid cases the parameter set is A = R?

@ Fortherampcase A={a: |al1 <1}.
@ As we said, this ||f||» appears in the approximation bound

1f = fmnll < [Iflle//m.
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Statistical Risk

e Statistical risk E||fy, — f||2 = E(fn(X) — f(X))?
@ Expected squared generalization error on new X ~ P

@ Minimax optimal risk bound, via information theory
o 5 5 m
Ellfm — 117 < |[fm = f]|* + ¢ log N(®. 9)

where log N(®, ¢) is the metric entropy of ® at 6,y = 1/m

@ With greedy optimization using ¢ penalty or suitable m
2
e 2< ; —f2 ||gH¢' ml N(®
N - 112 < min { g 12+ 1912 + 6T og N(&.51)

achieves ideal approximation, complexity tradeoff.
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Statistical Risk with MDL Selection

@ Again, general risk bound, using metric entropy log N(®, §)
2
A2 < mi a2, 19l m .
N - 112 < min { g 12+ 192 + 6T o N(&.51)
@ For greedy algorithm with Minimum Description Length m
. 2 2 m
min {Hyf Tl + 20~ log N(d),é)}

@ Performs as well as if the best m* were known in advance.
@ /4 penalty retains MDL interpretation and risk (e, Huang,Li, Luo,2008)

@ Risk bound specializes when ||f||¢ is finite

E|[f - f|? < min %—FCE log N(®, 5m)
—m m n ’

’ 1/2
< clfle (109 N(®.51) )

Andrew Barron High-Dim Neural Nets: Statistics and Computation



Statistical risk for neural nets

@ Specialize the metric entropy log N(®, §) (usowski, Barron 2016).

@ It is not more than order dlog(1/0) for Lipshitz activation
functions such as sigmoids.

@ With ¢4 constrained internal parameters, as in ramp case
with finite || f||spectrum,2, also not more than order (1/§) log d

@ Risk bound is ||f[|o[2 log(n/d)]"/2 or ||f|/°[L log d]'/3,
whichever is smallest.

@ The [(log d)/n]'/? is for the no-noise case. For the case
with noise that is sub-exponential and sub-Gaussian, may
replace it by [(log d)/n]'/4, to within log n factors.

@ Implication: Can allow d >> n provided nis large enough
to accomodate the worse exponent of 1/3 in place of 1/2.
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Confronting the computational challenge

@ Greedy search

e Reduces dimensionality of optimization from md to just d
e Obtain a current a,, achieving within a constant factor of the
maximum of

(@) = >R 00X;.2)

@ This surface can still have many maxima.
e We might get stuck at a spurious local maximum.

@ New computational strategies identify approximate maxima
with high probability

1 Adaptive Annealing
2 Third-order Tensor Methods (pros and cons)

3 Nonlinear Power Methods
@ These are stochastically initialized search methods
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Optimization path for bounded ridge bases

Adaptive Annealing:
@ A more general approach to seek approx optimization of

J(a) =S Ln¢@ X))
@ recent & current work with Luo, Chatterjee, Klusowski
@ Sample a; from the evolving density
pi(a) = e'/@% py(a)
along a sequence of values of t from 0 to t;,4

@ use lfny Of order (dlog d)/n
@ Initialize with ay drawn from a product prior py(a):
e Uniform[—1, 1] for each coefficient in bounded a case
e Normal(0,l) or product of Cauchy in unbounded a case
@ Starting from the random g, define the optimization path a;
such that its distribution tracks the target density py.
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Optimization path

@ Adaptive Annealing: Arrange a; from the evolving density
pi(a) = e¥(@~Cpy(a)
with ap drawn from py(a)
@ State evolution with vector-valued change function G;(a):
ainh = ar — hGya)
@ Better state evolution: a;,, = a* is the solution to
a=a + hGya),

with small step-size h, such that a+ h G;(a) is invertible
with a positive definite Jacobian, and solves equations for
the evolution of p;(a).

@ As we will see there are many such change functions
Gi(a), though not all are nice.
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Boundary requirements

Boundary requirements

@ Suppose ais restricted to a bounded domain A with
smooth boundary 0.4

@ For a € 0A, let v, be outward normal to 0.A at a.
e Either G¢(a) = 0 (vanishing at the boundary)

e Or Gi(a)"v, > 0 (to move inward, not move outside)

@ Likewise, for a near 04 , if Gi(a) approaches 0, it should
do so at order not larger than the distance of a from 0.A.

Andrew Barron High-Dim Neural Nets: Statistics and Computation



Solve for the change G; to track the density p;

@ Density evolution: by the Jacobian rule
pr+n(a) = pr(a+ hGi(a)) det(I+ hV G/ (a))

Up to terms of order h

prn(@) = pi(a) + h|(Gi(@))T Vpr(a) + pi(a) VT Gi(a)|
@ In agreement for small h with the partial diff equation

0

apr(a) = V7 [Gi(a)pi(a)]

@ The right side is G/ (a)Vp:(a) + p:(a)V' Gi(a). Dividing by
pi(a) it is expressed in the log density form

0
-logp(a) = VT Gi(a) + G (a) Viog py(a)
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Five candidate solutions

Five solutions to the partial differential equation at time t

v'[G(a)p(a)] = dipi(a)

@ Solution in which G(a)p(a) is a gradient

© Solution using pairs of coefficients

© Solution with j random, 9,[Gj(a)p(a)] provides d:p(a)
@ Solution in which G(a) is a gradient

@ Approximate solutions expressed in terms of u; = X/ a.
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Candidate solution 1.

Solution of smallest L, norm of Gi(a)p:(a) at a specific t.

@ Let Gi(a)p:(a) = Vb(a), gradient of a function b(a)

o Letf(a) = 2 pi(a)

@ Set greeny(a) proportional to 1/||a||9 2, harmonic a # 0.

@ The partial diff equation becomes the Poisson equation:
v'Vb(a) = f(a)

@ Solution
b(a) = (f=green)(a)
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Candidate solution 1.

Solution of smallest L, norm of Gi(a)p:(a) at a specific ¢
@ Let Gi(a)p:(a) = Vb(a), gradient of a function b(a)
o Letf(a) = 2 pi(a)
@ Set greeny(a) proportional to 1/||a||? 2, harmonic a # 0.
@ The partial diff equation becomes the Poisson equation:
v'Vb(a) = f(a)
@ Solution, using Vgreeny(a) = ¢y a/||al|’

Vb(a) = (f«Vgreeny)(a)
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Candidate solution 1.

Solution of smallest L, norm of Gi(a)p:(a) at a specific ¢
@ Let Gi(a)p:(a) = Vb(a), gradient of a function b(a)
o Letf(a) = Z pi(a)
@ greeny(a) proportional to 1/|/a||? 2, harmonic for a # 0.
@ The partial diff equation becomes the Poisson equation:
VTGi(a)pr(a)] = f(a)
@ Solution, using Vgreeny(a) = ¢4 a/||al|?

Gi(a)pi(a) = ( + Vgreeng)(a)

e If A C RY, set greeny(a, a) to be the associated Green’s
function, replacing greeny(a — a) in the convolution
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Candidate solution 1.

Solution of smallest L, norm of Gi(a)p:(a) at a specific ¢
@ Let Gi(a)p:(a) = Vb(a), gradient of a function b(a)
o Letf(a) = 2 pi(a)
@ greeny(a) proportional to 1/|/a||? 2, harmonic for a # 0.
@ The partial diff equation becomes the Poisson equation:
VTGi(a)pi(a)] = f(a)
@ Solution, using Vgreeny(a) = ¢y a/||al|’

Gi(a)pi(a) = (f x Vgreeny)(a)

e If A cC RY, let greeny(a, @) replace greeny(a — a).
@ Then G(a)pi(a) tends to 0 as a tends to 0.A.
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Candidate solution 1.

Solution of smallest L, norm of Gi(a)p:(a) at a specific ¢

o Let Gi(a)p:(a) = Vb(a), gradient of a function b(a)

o Letf(a) = 2 pi(a)

@ greeny(a) proportional to 1/|/a|“2, harmonic for a # 0.

@ The partial diff equation becomes the Poisson equation:
VT[Gi(a)pi(a)] = f(a)

@ Solution, using Vgreeny(a) = ¢y a/||al|’

(f = Vgreeny)(a)
pi(a)

Gi(a) =

@ Comp. challenge: high-dimensional convolution integral.
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Candidate solution 2.

Solution using 2—dimensional Green integrals
e Write the pde V7 [G;(a)p:(a)] = f(a) in the coordinates G;

)
) @[Gt,/(a)pt(a)] = f(a)
j=1

@ Pair consecutive terms to achieve a portion of the solution
0 2
—— (Gt =—f(a
mzj;} 5aCu@pa)] = (@)
@ Solution, for each consecutive pair of coordinates,
Gij(a) | 2(fxVgreeny)(a)
[Gt,jH (a)] - d p:(a)

The 2—dim Green'’s function gradient acts on (&;, aj1).

@ Yields a numerical solution. Stable for particular J and py?
Do we lose the desirable boundary behavior?
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Candidate solution 2.

Solution using 2—dimensional Green integrals

@ Solution, for each consecutive pair of coordinates,

[ Gtj(a) ] _ 2(f=Vgreeny)(a)
Grj+1(a)]  d p:(a)

@ Stable for particular objective functions J?

@ For py we use a product of 2—dimensional uniform
densities on unit disks

@ Stable if J(a) can exhibit only small change by changing
two consecutive coordinates

@ True for Lipshitz sigmoids with variable replication. Terms
#(a’ X) represented using small i as ¢ (77 Do a,-,,Xj). For
each X; the aggregate coefficientis aj = n>"/%, a; .

@ Challenge is that G(a) is not necessarily zero at boundary.
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Candidate solution 3. Solving 1-dim diff equations

Consider the equation with each g; in an interval [-1, 1],
04/[Gj(@)p(a)] = Orpr(a)

@ Call the right side f(a). It is an ordinary diff equation in a; if
other coordinates a_; held fixed

aaaj (Gj(a;, a_j)p(aj,a_)| = f(a,a_))

@ Solutions take the form
1 3
Gla)= [/ f(3,a_;)da — Cla_;
]( ) p(a) iy ( vl /) vl ( /)
@ Natural choices for the "constant" C(a_;) are 0 or
1
S(a_) = / (@.a.)d5

° Gi(a)p(a) is either [% (3, a;)da; or — [, f(3,a ;)d3
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Candidate solution 3. Solving 1-dim diff equations

Gi(a)p(a) is either [ f(Z;,a_;)d3; or — fa (&,a_;)da
@ These choices make Gj(a) be zero as a; approaches one
or the other of the end points, but not both.

@ Thus led to define the solution G;j(a) given by

1 g 1 i
o(a) f(&, a-;)da; 1 ; - f(a,a_;)da;1 ,
(a) [/1 (8, a-)daj1(s(a_)>0} /%' (3,a_)d8 1 (s(a_)<0}
@ This makes move be inward near the non-zero edge.

@ If we pick j atrandomin 1,...,d, get similar density
update.

@ The rule solves differential equation for the order h term.
@ It satisfies some desired boundary properties.

@ Challenge: Boundary slightly moved at the non-zero edge.
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Candidate solution 4.

Perhaps the ideal solution is one of smallest L, norm of G;(a)

@ It has Gi(a) = Vbi(a) equal to the gradient of a function

@ The pde in log density form

0
V'Gi(a) + G{(a) Vlogpi(a) = ot log p:(a)
then becomes an elliptic pde in b;(a) for fixed t.

@ With Vlog p:(a) and % log pt(a) arranged to be bounded,
the solution may exist and be nice.

@ But explicit solution to this elliptic pde is not available
(except perhaps numerically in low dim cases).
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Candidate solution 4.

Ideal solution of smallest L, norm of Gi(a)

@ It has Gi(a) = Vbi(a) equal to the gradient of a function

@ The pde in log density form
T T 0
V' Gi(a) + Gi (a) Viogpi(a) = . logpi(a)
then becomes an elliptic pde in b;(a) for fixed t.

@ With Vlog p:(a) and % log pt(a) arranged to be bounded,
the solution may exist and be nice.

@ But explicit solution to this elliptic pde is not available
(except perhaps numerically in low dim cases).

@ Next seek approximate solution.

@ For ridge bases, decompose into a system of first order
differential equations and integrate.
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Candidate solution 5 by decomposition of ridge sum

@ Optimize J(a) = 31, r; ¢(X a)
@ Target density py(a) = V(A= py(a) with ¢} = Ep,[J]
@ The time score is £ log pi(a) = J(a) — Ep,[J]
@ Specialize the pde in log density form
V'Gi(a) + G{(a)Viogpi(a) = J(a) — Ep[J]

@ The right side, setting b;; = Ep,[¢(x/ a)], takes the form of
asum

> rile(XTa) - bi.
@ Likewise Vlogp:(a) = tVd(a) + Vlog pp(a) is the sum
> X |tro(XTa) - (1/m)(X a)
@ Use a Gaussian initial distribution with log py(a) equal to
—(1/2n)> " a" XX a

Account for prior by appending d extra input vectors as columns
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Approximate solution for ridge sums

@ Seek approximate solution of the form

=% ,j/"zg,(u)

with u = (uy, ..., up) evaluated at u; = X-Ta for which
T x'x 0
VTa(@) =Y o)+ ¥ g e
ou i [ il Uj

@ Can we ignore the coupling in the derivative terms?
° ijx,-/Hx,-H2 are small for uncorrelated designs, large d.
@ Match the remaining terms in the sums to solve for g;(u)
@ Arrange g;(u) to solve the differential equations
0
B —gi(u) + g,-(g)[tr,-qﬁ’(u;) —ui/n + rest,-} = I [(b(u,')—b,',t]
/

where rest; = > ;[t r; ¢/ (up) — u;/nlx]T xi/ |||
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Integral form of solution

@ Differential equation for g;(u;), suppressing dependence on
the coordinates other than i

8TIIQ/'(U/) + gi(u;) [t rid' (u;) — ui/n+ rest]| = ri[¢(u;)—bi]

@ Define the density factor

mi(Ui) _ el ¢(uj)—u2/2n+ uj rest;

@ Allows the above diff equation to be put back in the form

30Uf [9i(ui) mi(u)] = rilo(ui)—bi ¢ mi(ui)

@ An explicit solution, evaluated at u; = x/" a, is

S mi(@) [¢(8;) - bi ] AT,
9i(u;) = 1 YTy

where ¢; = ¢;; is such that ¢(c; ) = bj ;.
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The derived change function G; for evolution of a;

@ Include the u; for j # i upon which rest; depends. Our
solution for g; +(u) is

~Uj . ) - ~ . ~
p / ! 11 (6T~ ())~ (T~ uP) /20 +H(Ei-u)rest() [ 1) — by | Ty
Ci

@ Evaluating at u = Xa we have the change function

X.
a) = Z _’ zgi,t(xa)
il

for which a; evolves according to
ain = ar— hGe(ar)

@ For showing g;+, Gt and VG; are nice, assume the
activation function ¢ and its derivative is bounded (e.g. a
logistic sigmoid or a sinusoid).

@ Run several optimization paths in parallel, starting from
independent choices of ay. Allows access to empirical
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Conjectured conclusion

Derived the desired optimization procedure and the following.

Conjecture: With step size h of order 1/n? and a number of
steps of order ndlogd and Xi, Xz, ..., X, i.i.d. Normal(0, /).
With high probability on the design X, the above procedure
produces optimization paths a; whose distribution closely tracks
the target

pi(a) = '@~ py(a)

such that, with high probability, the solutions paths have
instances of J(a;) which are at least 1/2 the maximum.

Consequently, the relaxed greedy procedure is computationally
feasible and achieves the indicated bounds for sparse linear
combinations from the dictionary ¢ = {¢(a’x) : a € R9}.
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@ Flexible approximation models
e Subset selection
e Nonlinearly parameterized bases as with neural nets
@ ¢4 control on coefficients of combination
@ Accurate approximation with moderate number of terms
e Proof analogous to random coding

@ Information theoretic risk bounds

e Based on the minimum description length principle

e Shows accurate estimation, even for very large dimension
@ Computational challenges are being addressed by

e Adaptive annealing
o Nonlinear power methods
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Tensor and nonlinear power methods (overview)

@ Know design distribution p(X)

@ Target f(x) = S°7°, gk(alx) is a combination of ridge
functions with distinct linearly independent directions a

@ ldeal: maximize E[f(X)s(a’™X)] or (1/n)3; Yie(a'x))
@ Score functions operating on f(X) and f(X) g(a’ X) yield
population and sample versions of tensors
83
€ (x5,
and nonlinearly parameterized matrixes
E [(vaf(X))g(aTX)]

@ Spectral decompositions then identify the directions ay
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Score method for representing expected derivatives

@ Score function (tensor) S‘(X) of order ¢ from known p(X)

4
S (X) P(X) = (1)‘M,:<x>

Gaussian score:  S'(X) = X,
S2(X) = XXT — 1,

g3

i ,jz,jg(X) = X/1 ijxjs - Xf1 1!'27!'3 - )(1'211'1 3 )(1'3111 o

@ Expected derivative:
aﬁ
E [Wf(x)] =E [f(X)Sj1,~..je(X)]

@ Repeated integration by parts
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Expected derivatives of ridge combinations

@ Ridge combination target functions:

00 =3 gn(alX)

@ Expected Hessian of f(X) =’

Mo
M =" aal Elgi(afX)] = E [(X)S3(X)] .
k=1
Principle eigenvector:

max {aTM a}
Linear power method finds ay if othogonal (the’re not).

@ Third order array (Anandkumar et al 2015, draft):

Mo
> aj kay, ka, kElgk (af X)) = E [[(X)S, jjs (X)]
k=1

can be whitened and a quadratic power method finds ay.
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Scoring a Ridge Function

@ A suitable activation function ¢(a, X) for optimization of
E[f(X)¢(a, X)]

@ Matrix scoring of a ridge function g(a’X):
M,x = S?g(a’X)+[S'a” +a(S")"|g'(a’X) +[aa’]g"(a’X)

@ Activation function formed by scoring a ridge function
o(a,X) = a' [Maxla
= (a’ S?a)g(a’X) +2(a’ S")(a'a)g'(a’X) + (a’a)?g"(a’X)
@ Scoring a ridge function permits finding the component of
¢(a, X) in the target function using
E[f(X)p(a, X)] = a’ E[(X)Max]a = a E[(VV'(X))g(a"X)]a

@ Twice itegrating by parts
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Scoring a Ridge Function (Gaussian design case)

@ Matrix scoring of a ridge function g(a’X):

M. x = SPg(a’X)+[S'a" +a(S")"]g'(a’X)+[aa’]g"(a'X)
@ Activation function formed by scoring a ridge function

¢(a,X)=a' [Myx]a

= (a’ SPa)g(a’X) +2(a’ S")(a'a)g'(a'X) + (a’a)?g" (a’X)
@ Gaussian design case, simplifying when ||a|| = 1:
p(a’ X) = [(a'X)? — 1]g(a’X) + [2a'X]g'(a’X) + g’ (a'X)
#(2) = (22-1)g(2) +229'(2) + 9"(2)

@ Hermite poly: If g(z) =H,_2(z) then ¢(z) =H,(z) for £ > 2.
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Scored Ridge Function Decomposes E[f(X)¢(a, X)]

@ Matrix scored ridge function, providing ¢(a, X) = aTMa,Xa,
M, x = S?g(a’X) + [Sa” + aS"]g'(a’X) + [aaT|g"(a’X)
@ The amount of ¢(a, X) in f(X) via the matrix decomposition
Ma = E[{(X)Max] = E[(VVT{(X))g(a’X)] = 342, axaf Gk(ax a)
is quantified by e

Elf(X)é(a, X)] = a' [Ma]a = _(afa)®Gr(ax, a)
k=1

@ Here Gi(ax, a) = E[g}(alX)g(a’X)] measures the
strength of the match of a to the direction ay.

e It replaces E[g}(alX)ST]a = (ala)E[g}"(alX)] in the
tensor method of Anandkumar et a/
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Using Sinusoids or Sigmoids

@ The amount of ¢(a, X) in f(X) via the matrix decomposition
Ma = E[f(X)Max] = -k axag Gr(ax. a)

quantified by

E[f(X)¢(a, X)) = a’ [Ma]a = _(aa)*G(ak. a)
k=1

@ Here Gi(ax, a) = E[g}(alX)g(a’X)] measures the
strength of the match of a to the direction ay.

@ cos(z), sin(z) case, with X standard multivariate Normal:
gk(alX) = —cxe/@X and g(a’X) = e~1a™X
expected product Gy (ax, a) = ce(1/2)la—al?

@ Step sigmoid case ¢(z) = 1;,-0;: The Gk(ak, a) is
determined by the angle between a, and a.
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Using Hermite polynomials

@ The amount of ¢(a, X) in f(X) via the matrix decomposition

M, = E[f(X)Max] = > 2 aka] Gk(ax, a)

is given by e
E[f(X)¢(a X)] = a [Ma]a =) (afa)*Gk(ax, a)
k=1

@ Here Gi(ax, a) = E[g)(a] X)g(a’ X)] measures the
strength of the match of a to the direction ay.

@ Hermite case: g(z) = Hy;_2(z), with X ~ Normal(0, /).
H,(a’X) and H, (alX) orthonormal for ¢’ # ¢.

Gk(ax, a) = cx ¢ (afa)’

with ¢k o = E[gk(Z2)Hi(2)] in gk(2) = >y Ck o Her(2)
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Nonlinear Power Method

@ Maximize J(a) = E[f(X)p(a, X)] = a"Maa, st |a||=1
@ Cauchy-Schwartz inequality:
a’Maa < | al | Maall
with equality iff a is proportional to M,a.
@ Motivates the mapping of the nonlinear power method

M, a
V4 —
(@) = Mol

@ Seek fixed points a* = V(a*) via iterations a; = V(a;_1).
@ Construct a whitened version.

@ Verify that J(a;) is increasing.

@ The nonlinear power method provides maximizers of

J(a) = E[f(X)¢(a, X)]
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Analysis with Whitening

@ Suppose m, < d (# components < dimension)

@ Let Ref =", aka[ B be a reference matrix,
for instance Ref = M, has Bx = Gk(ax, arer),
and let Q D Q" be its eigen-decomposition.

@ Let W = QD~'/2 be the whitening matrix:

I=WTRef W=> (Wak)(af W)Bk = > _axaj
k k

with orthonormal directions

Q= WTak \/E

@ Represent a= W u/||Wu|| = W u+/3 for unit vectors u.
@ Then a’ax = u'ax (B/8k)"/?
@ Let u,es be the unit vector prop to W—"a,es = D'/2Q7a,
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Analysis of the Nonlinear Power Method

@ Criterion E[f(X)¢(a, X)] = a' Maa = u” M, u where
My =3 akaf Gila, u) B/ Bk
and ék is Gk with ag, a expressed via oy, u. Example
Gr(afu) = cx (o u)’ (B/Bk)"/
My =3 akel (afu/ofuper)
@ The power mapping a; = M,,_,a;_1/|| - || corresponds to
Uy = MuH ur—1 /[ - |l
@ Provably rapidly convergent, when Gy is increasing in a,(u.
@ Limit of u is u* = Loy with largest initial (o ]ug/a]uyer)".
@ Each +ay or —ay is a local maximizer.

@ Global maximizer corresponds to largest 1/]a[u,ef]
@ Corresponding maximizer of a’ M, a is a* prop to Wu*.
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Analysis of Nonlinear Power Method, Polynomial Case

@ Let ck(t) = a] ut be coefficient of u; in the direction oy
@ Let Cy rer = a[u,ef be coefficient of u,e in direction ay

Mut =Dk Ok 04[ (O‘lz-ut/alz—uref)e
@ So that
My, ur = Yk axag ur) (efn/ orfirer)”
Thus the coefficienct for u;4 satisfies the recursion:

O+
[c(t)/Chrer] " Chrer

[k 212

Ck(f+1) =

@ By induction J
[Ck(o)/ck,ref}( ) Ck ref

) = s O e

@ It rapidly concentrates on the index k with the largest

Ck(O) . Oé[Uo

Ck ref aUref
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Analysis of Nonlinear Power Method, Polynomial Case

@ Suppose k = 1 has the largest
Ck(O) _ OzZ(-Uo
Ck,ref a;zuref

with the others less by the factor 1 — A. Then

lug — |2 < 2(1 — A)2ED

@ Moreover J(a;) = E[f(X)¢(ar, X)] = u] My,ut equals

042
Zk [Ck(t)/ck,l’ef} Clg,ref

which is strictly increasing in t, proven by applications of
Holder’s inequality

@ Factor of increase quantified by the exponential of a
relative entropy.

@ The increase each step is large unless c2(t) is close to
concentrated on the maximizers of a[uo/a[uref .
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