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Target of Investigation

Deep Nets: f (x ,W ). Inputs x in [−1,1]d . Weights W .
Rectified linear activation functions. L layers.

Network Variation V : Sums of weights of network paths.

Risk bound: Least squares f̂ . Observations Yi = f (Xi) + εi
with (sub-)Gaussian error, sample size n.

E [‖f̂ − f‖2] ≤ V
(

L + log d
n

)1/2

Precursor Work: Neyshabur et al (’15), Golowich et al (’18),
Barron & Klusowski (’18) with other complexity controls.
Gaussian process comparison inequalities: Key to provide
the risk bounds in current form.
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Geometric width of sets

Arbitrary set of interest: An in Rn. For statistical application

An = Fxn = {(f (x1), f (x2), . . . , f (xn)) : f ∈ F}

restriction of a class F of functions to data x1, x2, . . . , xn.

Half space in direction determined by ξ = (ξ1, ξ2, . . . , ξn)
with threshold t

{a : ξ · a ≤ t}

Half space supporting An in the direction determined by ξ
uses the threshold

tn = tn(ξ,An) = sup
a∈An

ξ · a

Support function tn(ξ,An) is "width” of An in direction ξ.
The least threshold such that the half space contains An.
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Probabilistic Geometry Width

Probabilistic width: for random ξ with distribution µ.
Mean width: The µ complexity of An

Cµ(An) = Eξ sup
a∈An

ξ · a

Cummulant generating function of the width:

Cλ,µ(An) =
1
λ

log E [eλ supa∈An ξ·a]

General width: Positive increasing convex g with inverse ψ
Cg,µ(An) = ψ(E [g(supa∈An

ξ · a])

For Rademacher Complexity: ξi indep symmetric Bernoulli
For Gaussian Complexity: ξi independent Gaussian
Some relationship: Tomczak-Jaegermann (’89). There are
positive constants c, c such that for all An

c CRad(An) ≤ CGaussian(An) ≤ c CRad(An) log n
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Random process perspective

Random process: indexed by a in An

Za = ξ · a =
n∑

i=1

ai ξi

This Za is of course a Gaussian process if ξ is Gaussian

Isometry: If ξ has identity covariance then

E [(Za − Zb)2] = ‖a − b‖2

Probabilistic width studies the maximum of the process

Cµ(An) = E [sup
a∈An

Za]
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Merit of Gaussian versus Rademacher Complexity

More general error distributions: sub-Gaussian instead of
bounded error

Stronger link to the metric entropy: via Sudakov and
Dudley inequalities. The Sudakov lower bound can also be
revealed via statistical risk and information theory analysis
using Fano’s inequality.

Analogous contraction properties: Most important for our
present purposes.
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Gaussian Comparison Inequality

Let Z̃a be Gaussian majorized by Za in expectation

E [Z̃ 2
a ] ≤ E [Z 2

a ] ∗

and
E [(Z̃a − Z̃b)2] ≤ E [(Za − Zb)2]

By Vitale (2000), equation 13, for increasing convex g,

E [g(sup
a∈An

Z̃a)] ≤ E [g(sup
a∈An

Za)]

Refines Fernique (1975) which worked with

E [ sup
a,b∈An

(Za − Zb)]

Refines Slepian (1962) which assumed equality in ∗.
Avoids a factor of 2.
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Contraction Inequality

Let φ be a contraction: Lipshitz 1 with φ(0) = 0.
Compare the processes:

Z̃a =
∑

i

ξi φ(ai) and Za =
∑

i

ξi ai

Satisfy the majorization inequalities: EZ̃ 2
a ≤ EZ 2

a and

E(Z̃a − Z̃b)2 ≤ E(Za − Zb)2

since this becomes∑
(φ(ai)− φ(bi))

2 ≤
∑

(ai − bi)
2

Consequent contraction of complexity: In Gaussian ξ case

E [sup
a∈An

g(
∑

ξiφ(ai))] ≤ E [sup
a∈An

g(
∑

ξiai)]

This Gaussian complexity contraction is an extension (with
different proof) of the Rademaker complexity contraction
obtained by Ledoux and Talagrand (’91), inequality (4.20).
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Network Layer Complexity Comparison

For arbitrary set A in Rn and a contraction φ, let φ ◦ A be

{(φ(ai), φ(a2), . . . , φ(an)) : a ∈ A

and let conv(±A) be the signed convex hull

{
∑

wj aj : aj ∈ A ,
∑

|wj | = 1}

A′ = conv(±φ ◦ A) is the set of values realizable by a layer
of a network for given original input values.

As in Neyshabur et al (’15) and Golowich et al (’18), which
was for Rademachers, we have also for Gaussian
complexity

C(A′) ≤ 2C(A)

and
Cλ(A′) ≤ Cλ(A) + (log 2)/λ

What happens with multiple layers?
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Multilayer networks for given inputs

Set of input vectors: A0 = {x1, x2, . . . , xd} each in Rn.

Set of one layer network outputs: restricted to said inputs

A1 = conv(±φ ◦ A0)

Intermediate layers: preserving unit total weight variation

A` = (A`−1)′ = conv(±φ ◦ A`−1)

Set of L layer networks outputs: restricted to said inputs

AL = (((A0)′)′ . . .)′
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Tracking Complexity through the layers

Assume each given xi,j has magnitude not exceeding 1

Initial complexity of signed input set: C(±A0) ≤ Cλ(±A0).

A familar bound often attributed to Massart uses a
cummulant generating function trick and replaces the
supremum by a sum.

Resulting complexity is not more than

Cλ(±A0) ≤ nλ/2 + (1/λ) log(2d)

when optimized over λ yields the complexity bound

C(±A0) ≤
√

2n log(2d).
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Multilayer Complexity

Intermediate layer complexity: for A` = conv(±φ ◦ A`−1)

C(A`) ≤ 2C(A`−1) and Cλ(A`) ≤ Cλ(A`−1) + (log 2)/λ

Complexity for the class of L layer networks:

Crude: C(AL) ≤ 2LC(A0).

Better: C(AL) ≤ Cλ(AL) ≤ Cλ(A0) + (L log 2)/λ
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Optimized Complexity bound

C(AL) ≤
√

2n[L log 2 + log 2d ]

Follows Golowich et al, but now, thanks to Vitale’s
comparison inequality it is seen to hold for Gaussian
complexity and not just Rademacher.

Corresponding risk: based on C(AL)/n equal to(
2L log 2 + 2 log 2d

n

)1/2
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Standard Deep Network Formulation

Deep net function f (W , x), weights W , inputs x in [−1,1]d ,

φout(
∑

j1

wj1φ
( ∑

j2

wj1,j2φ
( ∑

j3

wj2,j3 · · ·φ
( ∑

jL

wjL−1,jLxjL
)))

),

where φout is any specified Lipschitz(1) function.

Activation functions are ±positive part, rectified linear units
φ(z) = (z)+ for first half of nodes on each layer
φ(z) = −(z)+ for the second half.

Weights wj`−1,j` may thus be arranged to be non-negative.

Computation at node j` on layer `.

zj` = φ(
∑
j`+1

wj`,j`+1zj`+1)

Andrew Barron Gaussian Complexity and Deep Net Contraction



Composite Weights and their Variation

Homogeneity property of positive part. For w ≥ 0

wφ(z) = φ(wz).

Implication. May push weights to the innermost layer

f (W , x) =
∑

j1

φ
( ∑

j2

φ
( ∑

j3

· · ·φ
( ∑

jL

wj1,j2,...,jLxjL
)))

.

Composite weights of paths j1, j2, . . . , jL

wj1,j2,...,jL = wj1wj1,j2wj2,j3 · · ·wjL−1,jL .

Full network variation

V =
∑

j1,...,jL

wj1,...,jL .
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Probabilistic Characterization of Deep Nets

Path weights provide a joint probability distribution

qj1,j2,...,jL =
wj1,j2,...,jL

V
.

It has a Markov structure

qj1,j2,...,jL = qj1qj2|j1qj3|j2 · · ·qjL|jL−1
.

Probability characterization of deep net f (x ,W ) = V f (x ,q)

f (x ,q) =
∑

j1

φ
( ∑

j2

φ
( ∑

j3

· · ·φ
( ∑

jL

qj1,j2,...,jLxjL
)))

.

Iterated expectation representation, interspersed with
nonlinearities∑

j1

qj1φ
( ∑

j2

qj2|j1φ
( ∑

j3

qj3|j2 · · ·φ
( ∑

jL

qjL|jL−1
xjL

)))
.
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Interpretation of Variation

Interpretations of the Variation V

Probabilistic: The total variation of the measure W = V q
provided by the weight paths.

Calculus: With one hidden layer, as in B.1991, V extends
the notion of bounded variation of a function on an interval
(with respect to unit step functions) to functions in Rd (with
respect to half spaces). Generalizes to variation of
functions with respect to depth L−1 subnets.

Functional Analysis: V is the atomic norm of f with respect
to depth L−1 subnets.

Range: For x in [−1,1]d the range of f (x ,W ) is in [−V ,V ].
Linear Algebra: V is the entry-sum of the product of the
weight matrices W1W2 · · ·WL, where (W`)j`−1,j` = wj`−1,j` .
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Sparse Deep Net Approximation

Approximate the weights q by q̃ from a sparse set.

Draw sample, size M, independent from distrib qj1,j2,...,jL

Let Kj1,j2,...,jL be the counts of j1, j2, . . . , jL, usually zero.

Let Kj`,j`+1 be the marginal counts.

Let ã be the Markov distribution on (j1, j2, . . . , jL),
consistent with the pairwise marginals q̃j`,j`+1 = Kj`,j`+1/M.

Marginals q̃j` = Kj`/M.

Conditionals q̃j`+1|j` = Kj`,j`+1/Kj`

(when Kj` > 0 and 0/0 = 0 otherwise).

Size of set of indices j1, j2, . . . , jL

D = d1d2 · · ·dL = dL

where d is the geometric mean of d1,d2, . . . ,dL.

Andrew Barron Gaussian Complexity and Deep Net Contraction



Size of Cover of Deep Nets

Log Cardinality of set of counts with specified sum M

log
(

M+D−1
M

)
≤ M log(2ed1d2 · · ·dL/M) ≤ ML log d

At each layer, at most M of the nodes can have positive
weight, at most M from first half and at most M from
second half. So when d` ≥ 2M may replace d` with
dnew

` = min{d`,2M} in representation of f (ã, x).
Refined Log Cardinality bound

(L−2)M log(min{d̄ ,2M}) + M log(4e din),

where d̄ is the geometric mean of d2,d3, . . . ,dL−1.
The bound is independent of d1.
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Accuracy of Deep Net Cover

Use the L2(P) norm for any P = PX on [−1,1]d ,

‖f (·,q)− f (·, q̃)‖2 =

∫
(f (x ,q)− f (x , q̃))2PX (dx).

For each q there is a representor q̃ such that

‖f (·,q)− f (·, q̃)‖ ≤ Cv
L

M1/2

Also
‖f (·,q)− f (·, q̃)‖ ≤ 2 Cred

v
L

M1/2

Variation coefficient

Cv =
1
L

L−1∑
`=0

∑
j`

(
V out

j` V in
j`

/
V )1/2 ≤ V/V 1/2

Cred
v is the same but with V in,red

j`
in place of V in

j` with the
largest incoming weighted sub-variation via j∗`+1 removed.
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Data Setting

Data: (X i ,Yi), i = 1,2, . . . ,n

Inputs: explanatory variable vectors with arbitrary
dependence

X i = (Xi,1,Xi,2, . . . ,Xi,d)

Domain: Cube [−1,1]d in Rd

Random design: independent X i ∼ P

Output: response variable Yi in R
Bounded or subgaussian

Relationship: E [Yi |X i ] = f (X i) as in:
Perfect observation: Yi = f (X i)

Noisy observation: Yi = f (X i) + εi with εi indep

Andrew Barron Gaussian Complexity and Deep Net Contraction



Statistical Risk

Statistical risk E‖f̂ − f‖2 = E(f̂ (X )− f (X ))2

Expected squared generalization error on new X ∼ P

Minimax optimal risk, in the class Fv of functions with
composite variation not more than v

E‖f̂ − f‖2 ≤ ‖fM − f‖2 + c
1
n

log N(F , δM)

with log N(F , δ) the metric entropy of F at δM = ‖fM − f‖

Achieves ideal approximation, complexity trade-off.
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Statistical Risk

Statistical risk E‖f̂ − f‖2 = E(f̂ (X )− f (X ))2

Expected squared generalization error on new X ∼ P

Minimax optimal risk, in a class F of functions

E‖f̂ − f‖2 ≤ ‖fM − f‖2 + c
1
n

log N(F , δM)

with log N(F , δ) the metric entropy of F at δM = ‖fM − f‖
Specializing to the class Fv of functions with composite
variation V Cred

v not more than v

E‖f̂ − f‖2 ≤ (L v)2

M
+ c

LM log d
n

With best M, our risk bound is

E‖f̂ − f‖2 ≤ 2v
(

c L3 log d
n

)1/2
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Summary

Formulation of Deep Nets: Positive part activation function
provides weight homogeneity, probabilistic interpretation.

Average Variation V and Geometric Mean Variation Cv :
Extends notion to multi-layer nets and their sub-nets

Metric Entropy: Simple log-cardinality bound LM log d

Approximation: Sample M paths and set weights based on
second order counts.

Approximation bound: From telescoping control of
accuracy of each layer. Bounds Cv L/

√
M and 2Cred

v L/
√

M.

Estimation: Risk bound Cv

(
L3 log d

n

)1/2
. From trade-off of

approximation and complexity relative to the sample size n.
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The norm of f with respect to a dictionary G

Minimal `1 norm on coefficients in approximation of f

‖f‖G = lim
ε→0

inf
{∑

j

|cj | : ‖
∑

j

cjgaj
− f‖ ≤ ε

}
Also called the variation of f with respect to G (B. 1991)

‖f‖G = VG(f ) = inf{V : f/V ∈ closure(conv(±G))}

Later also called the atomic norm of f with respect to G
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Summary

Flexible approximation models
Subset selection
Nonlinearly parameterized bases as with neural nets
`1 control on coefficients of combination

Accurate approximation with moderate number of terms
Proof analogous to random coding

Information theoretic risk bounds
Based on the minimum description length principle
Shows accurate estimation, even for very large dimension

Computational challenges are being addressed by
Adaptive annealing
Nonlinear power methods
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