Overview of Recent Developments in Penalized Likelihood and MDL

Andrew R. Barron

Yale University

Collaborators
Penal. Like: Sabyasachi Chatterjee, Cong Huang, Jonathan Li, Xi Luo
NML vs Bayes: Teemu Roos, Kazuho Watanabe

Workshop on Information Theory Methods in Science & Engineering
WITMSE, 5 July 2014, Wakiki, Hawaii
Outline

1. Some Principles of Information Theory and Statistics
 - Data Compression
 - Minimum Description Length Principle
 - Two-stage Codes, Mixture Codes, Normalized Max Like.

2. Penalized Likelihood
 - Redundancy, Resolvability, and Risk
 - Risk-Valid Penalties
 - Penalized Likelihood Analysis for Continuous Parameters
 - ℓ_0 and ℓ_1 Penalties are Codelength-Valid and Risk-Valid

3. Summary
Outline

1. Some Principles of Information Theory and Statistics
 - Data Compression
 - Minimum Description Length Principle
 - Two-stage Codes, Mixture Codes, Normalized Max Like.

2. Penalized Likelihood
 - Redundancy, Resolvability, and Risk
 - Risk-Valid Penalties
 - Penalized Likelihood Analysis for Continuous Parameters
 - ℓ_0 and ℓ_1 Penalties are Codelength-Valid and Risk-Valid

3. Summary
Characterization of uniquely decodeable codelengths

\[L(x), \quad x \in \mathcal{X}, \quad \sum_{x} 2^{-L(x)} \leq 1 \]

\[L(x) = \log \frac{1}{q(x)} \quad q(x) = 2^{-L(x)} \]

Operational meaning of probability:

A distribution is given by a choice of code
Code-length Comparison

- Targets p are possible distributions
- Compare code-length $\log \frac{1}{q(x)}$ to targets $\log \frac{1}{p(x)}$
- Redundancy or regret

$$\left[\log \frac{1}{q(x)} - \log \frac{1}{p(x)} \right]$$

- Expected redundancy

$$D(P_X \parallel Q_X) = E_P \left[\log \frac{p(X)}{q(X)} \right]$$
Universal Codes

- MODELS
 Family of coding strategies \Leftrightarrow Family of prob. distributions
 Indexed by parameters or functions:

 \[
 \{ L_\theta(x) : \theta \in \Theta \} \Leftrightarrow \{ p_\theta(x) : \theta \in \Theta \}
 \]

 \[
 \{ L_f(x) : f \in F \} \Leftrightarrow \{ p_f(x) : f \in F \}
 \]

- Universal codes \Leftrightarrow Universal probabilities $q(x)$

 \[
 L(x) = \log 1 / q(x)
 \]

- Redundancy:

 \[
 \left[\log 1 / q(x) - \log 1 / p_\theta(x) \right]
 \]

 Want it small either uniformly in x, θ or in expectation
Statistical Aim

- Training data $x \Rightarrow$ estimator $\hat{p} = p_{\hat{\theta}}$

- Subsequent data x'

- Want $\log \frac{1}{\hat{p}(x')}$ to compare favorably to $\log \frac{1}{p(x')}$

- For targets p close to or in the families
Loss

- Kullback Information-divergence:
 \[D(P_{X'} \| Q_{X'}) = E \left[\log p(X')/q(X') \right] \]

- Bhattacharyya, Hellinger, Chernoff, Rényi divergence:
 \[d(P_{X'}, Q_{X'}) = 2 \log 1/E[q(X')/p(X')]^{1/2} \]

- Product model case: \(p(x') = \prod_{i=1}^{n} p(x'_i) \)
 \[D(P_{X'} \| Q_{X'}) = n D(P \| Q) \]
 Likewise \[d(P_{X'}, Q_{X'}) = n d(P, Q) \]
Minimum Description Length (MDL) Principle

- Universal coding brought into statistical play

- Minimum Description Length Principle:

 The shortest code for data gives the best statistical model
MDL: Two-stage Version

- Two-stage codelength:
 \[
 L(x) = \min_{\theta \in \Theta} \left[\log 1/p_{\theta}(x) + L(\theta) \right]
 \]
 bits for \(x\) given \(\theta\) + bits for \(\theta\)

- The corresponding statistical estimator is \(\hat{p} = p_{\hat{\theta}}\)

- Typically in \(d\)-dimensional families \(L(\theta)\) is of the form
 \[
 \frac{d}{2} \log n + C_d(\theta)
 \]
MDL: Mixture Versions

- Code length based on a Bayes mixture

\[L(x) = \log \frac{1}{q(x)} \]

where

\[q(x) = \int p(x|\theta)w(\theta)d\theta \text{ or } \sum_\theta p(x|\theta)w(\theta) \]

minimax optimal with least favorable \(w \) (capacity achieving)

- Code length approximation (Barron 1985, Clarke and Barron 1990,1994)

\[\log \frac{1}{p(x|\hat{\theta})} + \frac{d}{2} \log \frac{n}{2\pi} + \log \frac{\hat{I}(\hat{\theta})^{1/2}}{w(\hat{\theta})} \]

where \(\hat{I}(\hat{\theta}) \) is the empirical Fisher Information at the MLE
MDL: Mixture Versions

- Codelength based on a Bayes mixture
 \[q(x) = \int p(x|\theta)w(\theta)d\theta \]

- Corresponding statistical estimator is the predictive distrib
 \[\hat{p}(x') = q(x'|x) = \frac{\int p(x'|\theta)p(x|\theta)w(\theta)d\theta}{\int p(x|\theta)w(\theta)d\theta} \]

- It has a clean relative entropy risk bound
 \[ED(P||\hat{P}) \leq \text{Resolvability} \]
 \[= \text{Kullback Approx Error} + \log 1/(\text{Posterior prob of neigh.}) \]
NML Version

- Code-length via normalized maximum likelihood (NML)
 \[NML(x) = \frac{\max_\theta p(x|\theta)}{C_{Shtarkov}} \]

- Minimax optimal for pointwise regret

- It has the same code-length approximation as Bayes with asympt. least favorable prior \((\text{Takeuchi} \ & \ B. \ 1998, \ B., \ Rissanen, \ Yu \ 1998)\)

- Is NML exactly Bayes in finite samples? \((B., \ Roos, \ Watanabe \ 2014)\)
NML Version

- Codelength via normalized maximum likelihood (NML)

\[
NML(x) = \frac{\max_\theta p(x|\theta)}{C_{Shtarkov}}
\]

- Minimax optimal for pointwise regret

- It has the same codelength approximation as Bayes with asympt. least favorable prior (Takeuchi & B. 1998, B., Rissanen, Yu 1998)

- Is NML exactly Bayes in finite samples? (B., Roos, Watanabe 2014)
NML Version

- Codelength via normalized maximum likelihood (NML)
 \[
 NML(x) = \frac{\max_{\theta} p(x|\theta)}{C_{\text{Shtarkov}}}
 \]
- minimax optimal for pointwise regret
- It has the same codelength approximation as Bayes with asympt. least favorable prior (Takeuchi & B. 1998, B., Rissanen, Yu 1998)
- Is NML exactly Bayes in finite samples? (B., Roos, Watanabe 2014)
NML Version

- Codelength via normalized maximum likelihood (NML)
 \[NML(x) = \frac{\max_{\theta} p(x|\theta)}{C_{Shtarkov}} \]

- Minimax optimal for pointwise regret

- It has the same codelength approximation as Bayes with asympt. least favorable prior (Takeuchi & B. 1998, B., Rissanen, Yu 1998)

- Is NML exactly Bayes in finite samples? (B., Roos, Watanabe 2014)
 Yes, with sufficiently many linearly independent \(p(\cdot|\theta) \), [though in esoteric cases some weights are negative]:
 \[NML(x) = \sum_{\theta} p(x|\theta) w(\theta) \]
NML Version

- Codelength via normalized maximum likelihood (NML)
 \[NML(x) = \frac{\max_{\theta} p(x|\theta)}{C_{Shtarkov}} \]

- Minimax optimal for pointwise regret

- It has the same codelength approximation as Bayes with asymptotic least favorable prior (Takeuchi & B. 1998, B., Rissanen, Yu 1998)

- NML is exactly Bayes in finite samples (B., Roos, Watanabe 2014)
 \[NML(x) = \sum_{\theta} p(x|\theta) w(\theta) \]

 Allows fast computation of marginals and predictive distribution.
Outline

1. Some Principles of Information Theory and Statistics
 - Data Compression
 - Minimum Description Length Principle
 - Two-stage Codes, Mixture Codes, Normalized Max Like.

2. Penalized Likelihood
 - Redundancy, Resolvability, and Risk
 - Risk-Valid Penalties
 - Penalized Likelihood Analysis for Continuous Parameters
 - ℓ_0 and ℓ_1 Penalties are Codelength-Valid and Risk-Valid

3. Summary
Penalized Likelihood

Penalized likelihood estimators

\[\hat{\theta} = \text{argmin}_\theta \left\{ \log \frac{1}{p(x|\theta)} + \text{pen}(\theta) \right\} \]

where the penalty \(\text{pen}(\theta) \) arises from

- prior density: \(\text{pen}(\theta) = \log \frac{1}{w(\theta)} \)
- code length: \(\text{pen}(\theta) = L(\theta) \)
- dimensionality: \(\text{pen}(\theta) = \lambda_n \dim(\Theta) \)
- sparsity control: \(\text{pen}(\theta) = \lambda_n \|\theta\|_1 \)
- roughness penalty: \(\text{pen}(\theta) = \text{norm of derivative} \)
- maximum likelihood: \(\text{pen}(\theta) = \text{constant} \)
Penalized Likelihood

Penalized likelihood estimators

$$\hat{\theta} = \arg\min_{\theta} \{\log \frac{1}{p(x|\theta)} + \text{pen}(\theta)\}$$

where the penalty $\text{pen}(\theta)$ arises from

- prior density: $\text{pen}(\theta) = \log \frac{1}{w(\theta)}$
- codelength: $\text{pen}(\theta) = L(\theta)$
- dimensionality: $\text{pen}(\theta) = \lambda_n \text{dim}(\Theta)$
- sparsity control: $\text{pen}(\theta) = \lambda_n \|\theta\|_1$
- roughness penalty: $\text{pen}(\theta) = \text{norm of derivative}$
- maximum likelihood: $\text{pen}(\theta) = \text{constant}$

MDL analysis reveals which size penalties are valid for good prediction and compression properties.
Two-stage Code Redundancy

- Two-stage codes: the start of penalized likelihood analysis
- Expected codelength minus target at p_{θ^*}

$$\text{Redundancy} = \mathbb{E} \left[\min_{\theta \in \Theta} \left\{ \log \frac{1}{p_{\theta}(x)} + L(\theta) \right\} - \log \frac{1}{p_{\theta^*}(x)} \right]$$

- Redundancy approx in smooth families of dimension d

$$\frac{d}{2} \log n + C_d(\theta)$$
Redundancy and Resolvability

- Redundancy = $E \min_{\theta \in \Theta} \left[\log \frac{p_{\theta^*}(x)}{p_\theta(x)} + L(\theta) \right]$

- Resolvability = $\min_{\theta \in \Theta} E \left[\log \frac{p_{\theta^*}(x)}{p_\theta(x)} + L(\theta) \right]$

 $= \min_{\theta \in \Theta} \left[D(P_X|\theta^* \parallel P_X|\theta) + L(\theta) \right]$

- Ideal tradeoff of Kullback approximation error & complexity

- Population analogue of the two-stage code MDL criterion

- Divide by n to express as a rate. In the i.i.d. case

$$R_n(\theta^*) = \min_{\theta \in \Theta} \left[D(\theta^* || \theta) + \frac{L(\theta)}{n} \right]$$
Risk of Estimator based on Two-stage Code

- Estimator $\hat{\theta}$ is the choice achieving the minimization
 $$\min_{\theta \in \Theta} \left\{ \log \frac{1}{p_{\theta}(x)} + \mathcal{L}(\theta) \right\}$$

- Code lengths for θ are $\mathcal{L}(\theta) = 2L(\theta)$ with $\sum_{\theta \in \Theta} 2^{-L(\theta)} \leq 1$.

- Total loss $d_n(\theta^*, \hat{\theta})$ with $d_n(\theta^*, \theta) = d(P_{X'|\theta^*}, P_{X'|\theta})$

 \[
 \text{Risk} = E[d_n(\theta^*, \hat{\theta})]
 \]

- Info-Thy bound on risk: (Barron 1985, Barron and Cover 1991, Jonathan Li 1999)

 \[\text{Risk} \leq \text{Redundancy} \leq \text{Resolvability}\]
Risk of Estimator based on Two-stage Code

- Estimator $\hat{\theta}$ is the choice achieving the minimization
 \[
 \min_{\theta \in \Theta} \left\{ \log \frac{1}{p_\theta(x)} + L(\theta) \right\}
 \]
- Codelengths for θ are $L(\theta) = 2L(\theta)$ with $\sum_{\theta \in \Theta} 2^{-L(\theta)} \leq 1$.
- Total loss $d_n(\theta^*, \hat{\theta})$ with $d_n(\theta^*, \theta) = d(P_{X'|\theta^*}, P_{X'|\theta})$
 \[
 \text{Risk} = E[d_n(\theta^*, \hat{\theta})]
 \]
- Info-Thy bound on risk: (Barron 1985, Barron and Cover 1991, Jonathan Li 1999)
 \[
 \text{Risk} \leq \text{Redundancy} \leq \text{Resolvability}
 \]
- Drawback: Two-part code interpretation needs countable Θ
Key to Risk Analysis (in the countable Θ case)

- log likelihood-ratio discrepancy at training x and future x'

$$\left[\log \frac{p_{\theta^*}(x)}{p_\theta(x)} - d_n(\theta^*, \theta) \right]$$

- Proof shows, for $L(\theta) = Lcal(\theta)/2$ satisfying Kraft, that

$$\min_{\theta \in \Theta} \left\{ \left[\log \frac{p_{\theta^*}(x)}{p_\theta(x)} - d_n(\theta^*, \theta) \right] + L(\theta) \right\}$$

has expectation ≥ 0. From which the risk bound follows.
Penalized Likelihood

\[
\min_{\theta \in \Theta} \left\{ \log \frac{1}{p_{\theta}(x)} + Pen(\theta) \right\}
\]

Possibly uncountable \(\Theta \)

It is still a codelength if there exists a countable \(\tilde{\Theta} \) and \(L \) satisfying Kraft such that the above is not less than

\[
\min_{\tilde{\theta} \in \tilde{\Theta}} \left\{ \log \frac{1}{p_{\tilde{\theta}}(x)} + L(\tilde{\theta}) \right\}
\]
Equivalently, \(Pen(\theta) \) is valid for penalized likelihood to be a code length if there is such a countable \(\tilde{\Theta} \) and Kraft summable \(L(\tilde{\theta}) \), such that, for every \(\theta \) in \(\Theta \), there is a representor \(\tilde{\theta} \) in \(\tilde{\Theta} \) such that

\[
Pen(\theta) \geq L(\tilde{\theta}) + \log \frac{p_\theta(x)}{p_{\tilde{\theta}}(x)}
\]

This is the link between uncountable and countable cases.
Statistical-Risk Valid Penalties

- Penalized Likelihood
 \[\hat{\theta} = \arg\min_{\theta \in \Theta} \left\{ \log \frac{1}{p_\theta(x)} + Pen(\theta) \right\} \]

- Again: possibly uncountable \(\Theta \)
- Task: determine a condition on \(Pen(\theta) \) such that the risk is captured by the population analogue

\[Ed_n(\theta^*, \hat{\theta}) \leq \inf_{\theta \in \Theta} \left\{ E \log \frac{p_{\theta^*}(X)}{p_\theta(X)} + Pen(\theta) \right\} \]
Statistical-Risk Valid Penalty

For an uncountable Θ and a penalty $Pen(\theta)$, $\theta \in \Theta$, suppose there is a countable $\tilde{\Theta}$ and $L(\tilde{\theta}) = 2L(\tilde{\theta})$ where $L(\tilde{\theta})$ satisfies Kraft, such that, for all x, θ^*,

$$\min_{\theta \in \Theta} \left\{ \left[\log \frac{p_{\theta^*}(x)}{p_{\theta}(x)} - d_n(\theta^*, \theta) \right] + Pen(\theta) \right\}$$

$$\geq \min_{\tilde{\theta} \in \tilde{\Theta}} \left\{ \left[\log \frac{p_{\theta^*}(x)}{p_{\tilde{\theta}}(x)} - d_n(\theta^*, \tilde{\theta}) \right] + L(\tilde{\theta}) \right\}$$

Proof of the risk conclusion:
The second expression has expectation ≥ 0, so the first expression does too.

This condition and result is obtained with J. Li and X. Luo (in Rissanen Festschrift 2008)
Variable Complexity, Variable Distortion Cover

- **Equivalent statement of the condition:** \(\text{Pen}(\theta) \) is a valid penalty if for each \(\theta \) in \(\Theta \) there is a representor \(\tilde{\theta} \) in \(\tilde{\Theta} \) with complexity \(L(\tilde{\theta}) \), distortion \(\Delta_n(\tilde{\theta}, \theta) \) and

\[
\text{Pen}(\theta) \geq L(\tilde{\theta}) + \Delta_n(\tilde{\theta}, \theta)
\]

where the distortion \(\Delta_n(\tilde{\theta}, \theta) \) is the difference in the discrepancies at \(\tilde{\theta} \) and \(\theta \)

\[
\Delta_n(\tilde{\theta}, \theta) = \log \frac{p_\theta(x)}{p_{\tilde{\theta}}(x)} + d_n(\theta, \theta^*) - d_n(\tilde{\theta}, \theta^*)
\]
A Setting for Regression and log-density Estimation: Linear Span of a Dictionary

- G is a dictionary of candidate basis functions
 - E.g. wavelets, splines, polynomials, trigonometric terms, sigmoids, explanatory variables and their interactions

- Candidate functions in the linear span
 \[f_\theta(x) = \sum_{g \in G} \theta_g g(x) \]

- weighted ℓ_1 norm of coefficients
 \[\|\theta\|_1 = \sum_g a_g |\theta_g| \]

- weights $a_g = \|g\|_n$ where $\|g\|_n^2 = \frac{1}{n} \sum_{i=1}^n g^2(x_i)$

Barron Penalties and MDL

Penalized Likelihood Analysis for Continuous Parameters
ℓ_0 and ℓ_1 Penalties are Codelength-Valid and Risk-Valid
Example Models

- **Regression** (focus of current presentation)

 \[p_\theta(y \mid x) = \text{Normal}(f_\theta(x), \sigma^2) \]

- Logistic regression with \(y \in \{0, 1\} \)

 \[p_\theta(y \mid x) = \text{Logistic}(f_\theta(x)) \quad \text{for } y = 1 \]

- Log-density estimation (focus of Festschrift paper)

 \[p_\theta(x) = \frac{p_0(x) \exp\{f_\theta(x)\}}{c_f} \]

- Gaussian graphical models
\begin{itemize}
 \item $pen(\theta) = \lambda \|\theta\|_1$ where θ are coeff of $f_\theta(x) = \sum_{g \in G} \theta g(x)$
\end{itemize}
Regression with ℓ_1 penalty

- ℓ_1 penalized log-density estimation, i.i.d. case

$$\hat{\theta} = \arg\min_{\theta} \left\{ \frac{1}{n} \log \frac{1}{p_{f_\theta}(x)} + \lambda_n ||\theta||_1 \right\}$$

- Regression with Gaussian model, fixed σ^2

$$\min_{\theta} \left\{ \frac{1}{2\sigma^2} \frac{1}{n} \sum_{i=1}^{n} (Y_i - f_\theta(x_i))^2 + \frac{1}{2} \log 2\pi \sigma^2 + \frac{\lambda_n}{\sigma} ||\theta||_1 \right\}$$

- Valid for

$$\lambda_n \geq \sqrt{\frac{2 \log(2M_G)}{n}}$$

with $M_G = \text{Card}(\mathcal{G})$
Adaptive risk bound

- For log density estimation with suitable λ_n

$$Ed(f^*, f_{\hat{\theta}}) \leq \inf_{\theta} \left\{ D(f^* \parallel f_{\theta}) + \lambda_n \|\theta\|_1 \right\}$$

- For regression with fixed design points x_i, fixed σ, and

$$\lambda_n = \sqrt{\frac{2\log(2M)}{n}}$$

$$\frac{E\|f^* - f_{\hat{\theta}}\|^2_n}{4\sigma^2} \leq \inf_{\theta} \left\{ \frac{\|f^* - f_{\theta}\|^2_n}{2\sigma^2} + \frac{\lambda_n}{\sigma} \|\theta\|_1 \right\}$$
Adaptive risk bound specialized to regression

- Again for fixed design and $\lambda_n = \sqrt{\frac{2 \log 2M}{n}}$, multiplying through by $4\sigma^2$,

 $$E \| f^* - \hat{f}_\theta \|^2_n \leq \inf_{\theta} \left\{ 2\| f^* - f_\theta \|^2_n + 4\sigma \lambda_n \| \theta \|_1 \right\}$$

- In particular for all targets $f^* = f_{\theta^*}$ with finite $\| \theta^* \|$ the risk bound $4\sigma \lambda_n \| \theta^* \|$ is of order $\sqrt{\frac{\log M}{n}}$

- Details in Barron, Luo (proceedings Workshop on Information Theory Methods in Science & Eng. 2008), Tampere, Finland
Comments on proof

- Likelihood discrepancy plus complexity

\[\frac{1}{2\sigma^2} \sum_{i=1}^{n} (Y_i - f_{\tilde{\theta}}(x_i))^2 - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (Y_i - f_{\theta}(x_i))^2 + K \log(2M) \]

- Representor \(f_{\tilde{\theta}} \) of \(f_{\theta} \) of following form, with \(v \) near \(\|\theta\|_1 \)

\[f_{\tilde{\theta}}(x) = \frac{v}{K} \sum_{k=1}^{K} g_k(x) / \|g_k\| \]

- \(g_1, \ldots g_K \) picked at random from \(\mathcal{G} \), independently, where \(g \) arises with probability proportional to \(|\theta_g| a_g \)

- Shows exists representor with like. discrep. + complexity

\[\frac{nv^2}{2K} + K \log(2M) \]
Comments on proof

- Optimizing it yields penalty proportional to ℓ_1 norm
- Penalty $\lambda \|\theta\|_1$ is valid for both data compression and statistical risk requirements for $\lambda \geq \lambda_n$ where

$$\lambda_n = \sqrt{\frac{2 \log(2M)}{n}}$$

- Especially useful for very large dictionaries
- Improvement for small dictionaries gets rid of log factor: $\log(2M)$ may be replaced by $\log(2e \max\{\frac{M}{\sqrt{n}}, 1\})$
Comments on proof

- Existence of representor shown by random draw is a Shannon-like demonstration of the variable cover (code)
- Similar approximation in analysis of greedy computation of ℓ_1 penalized least squares
Fixed σ versus unknown σ

- MDL with ℓ_1 penalty for each possible σ. Recall

$$\min_\theta \left\{ \frac{1}{2\sigma^2} \frac{1}{n} \sum_{i=1}^{n} (Y_i - f_\theta(x_i))^2 + \frac{1}{2} \log 2\pi \sigma^2 + \frac{\lambda n}{\sigma} \|\theta\|_1 \right\}$$

- Provides a family of fits indexed by σ.
- For unknown σ suggest optimization over σ as well as θ

$$\min_{\theta,\sigma} \left\{ \frac{1}{2\sigma^2} \frac{1}{n} \sum_{i=1}^{n} (Y_i - f_\theta(x_i))^2 + \frac{1}{2} \log 2\pi \sigma^2 + \frac{\lambda n}{\sigma} \|\theta\|_1 \right\}$$

- Slight modification of this does indeed satisfy our condition for an information-theoretically valid penalty and risk bound (details in the WITMSE 2008 proceedings)
Best σ

- Best σ for each θ solves the quadratic equation

$$
\sigma^2 = \sigma \lambda_n \| \theta \|_1 + \frac{1}{n} \sum_{i=1}^{n} (Y_i - f_\theta(x_i))^2
$$

- By the quadratic formula the solution is

$$
\sigma = \frac{1}{2} \lambda_n \| \theta \|_1 + \sqrt{\left[\frac{1}{2} \lambda_n \| \theta \|_1 \right]^2 + \frac{1}{n} \sum_{i=1}^{n} (Y_i - f_\theta(x_i))^2}
$$
Outline

1. Some Principles of Information Theory and Statistics
 - Data Compression
 - Minimum Description Length Principle
 - Two-stage Codes, Mixture Codes, Normalized Max Like.

2. Penalized Likelihood
 - Redundancy, Resolvability, and Risk
 - Risk-Valid Penalties
 - Penalized Likelihood Analysis for Continuous Parameters
 - ℓ_0 and ℓ_1 Penalties are Codelength-Valid and Risk-Valid

3. Summary
Summary

- We equated forms of MDL including NML and Bayes
- We related MDL and penalized likelihood
- Allow penalized likelihoods with continuous domains for θ
- Information-theoretically valid penalties exceed complexity plus distortion of optimized representor of θ
- Yields MDL interpretation and stat. risk \leq resolvability
- ℓ_1 penalty $\lambda_n \|\theta\|_1$ valid in regression and related problems for $\lambda_n \geq \sqrt{2(\log 2M)/n}$
- ℓ_0 penalty $\frac{d}{2} \log n + C_d(\theta)$ is a classical codelength penalty.
- The next talk by Sabyasachi Chatterjee shows how to avoid the growth of $C_d(\theta)$ with the size of $\|\theta\|$.
- He shows that $\frac{d}{2} \log n + constant_d$ is conditionally codelength valid and risk valid.
Summary

- We equated forms of MDL including NML and Bayes
- We related MDL and penalized likelihood
- Allow penalized likelihoods with continuous domains for θ
- Information-theoretically valid penalties exceed complexity plus distortion of optimized representor of θ
- Yields MDL interpretation and stat. risk \leq resolvability
- ℓ_1 penalty $\lambda_n \|\theta\|_1$ valid in regression and related problems for $\lambda_n \geq \sqrt{2(\log 2M)/n}$
- ℓ_0 penalty $\frac{d}{2} \log n + C_d(\theta)$ is a classical codelength penalty.
- The next talk by Sabyasachi Chatterjee shows how to avoid the growth of $C_d(\theta)$ with the size of $\|\theta\|$.
- He shows that $\frac{d}{2} \log n + constant_d$ is conditionally codelength valid and risk valid.
Summary

- We equated forms of MDL including NML and Bayes
- We related MDL and penalized likelihood
- Allow penalized likelihoods with continuous domains for θ
- Information-theoretically valid penalties exceed complexity plus distortion of optimized representor of θ
- Yields MDL interpretation and stat. risk \leq resolvability
- ℓ_1 penalty $\lambda_n \|\theta\|_1$ valid in regression and related problems for $\lambda_n \geq \sqrt{2(\log 2M)/n}$
- ℓ_0 penalty $\frac{d}{2} \log n + C_d(\theta)$ is a classical codelength penalty.
- The next talk by Sabyasachi Chatterjee shows how to avoid the growth of $C_d(\theta)$ with the size of $\|\theta\|$.
- He shows that $\frac{d}{2} \log n + constant_d$ is conditionally codelength valid and risk valid.
We equated forms of MDL including NML and Bayes
We related MDL and penalized likelihood
Allow penalized likelihoods with continuous domains for θ
Information-theoretically valid penalties exceed complexity plus distortion of optimized representor of θ
Yields MDL interpretation and stat. risk \leq resolvability
ℓ_1 penalty $\lambda_n \|\theta\|_1$ valid in regression and related problems for $\lambda_n \geq \sqrt{2(\log 2M)/n}$
ℓ_0 penalty $\frac{d}{2} \log n + C_d(\theta)$ is a classical codelength penalty.
The next talk by Sabyasachi Chatterjee shows how to avoid the growth of $C_d(\theta)$ with the size of $\|\theta\|$.
He shows that $\frac{d}{2} \log n + constant_d$ is conditionally codelength valid and risk valid.
Summary

- We equated forms of MDL including NML and Bayes
- We related forms of MDL and penalized likelihood
- Allow penalized likelihoods with continuous domains for θ
- Information-theoretically valid penalties exceed complexity plus distortion of optimized representor of θ
- Yields MDL interpretation and stat. risk \leq resolvability
- ℓ_1 penalty $\lambda_n \|\theta\|_1$ valid in regression and related problems for $\lambda_n \geq \sqrt{2(\log 2M)/n}$
- ℓ_0 penalty $\frac{d}{2} \log n + C_d(\theta)$ is a classical codelength penalty.
- The next talk by Sabyasachi Chatterjee shows how to avoid the growth of $C_d(\theta)$ with the size of $\|\theta\|$.
- He shows that $\frac{d}{2} \log n + \text{constant}_d$ is conditionally codelength valid and risk valid.