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Approximation and Estimation Essentials

A. Neural Net Model and Approximation Error
Target function f , Variation V (f )=VL(f ) with L hidden-layers
Approximation fK ,L with K subnetworks
Single hidden-layer case (L = 1)

fK (x) =
∑K

k=1 ckψ(wk · x)

Approximation Accuracy

||f − fK ,L||2 ≤ V 2(f )
K

B. Neural Net Estimation and Risk
Via constrained least squares, penalized least squares or
Bayes predictions f̂ , with sample size N, input dimension d

Risk E [||̂f − f ||2] ≤ c V (f )
( log(2d)+L

N

)1/2

There are also lower bounds of such order (Klusowski, Ba. 17)

We provide computationally-feasible Bayes predictions with
accuracy (in the single hidden layer case)

E [||̂f − f ||2] ≤ c V (f )2/3
( log(2d)

N

)1/3
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Essentials of Sampling of a Neural Net Posterior

C. Log Concave Coupling for Bayesian Computation

Focus on single hidden-layer network models

Prior density p0(w): Uniform on an `1 constrained set

Posterior p(w): Multimodal. No known direct rapid sampler

Coupling p(ξ|w): cond indep Gaussian auxiliary variables
ξi,k with mean xi ·wk for each observation i and neuron k

Conditional p(w |ξ) always log-concave

Marginal p(ξ) and its score ∇ logp(ξ) rapidly computable

p(ξ) is log concave when the number of parameters K d is
large compared to the sample size N

Langevin diffusion and other samplers are rapidly mixing

A draw from p(ξ) followed by a draw from p(w |ξ) yields
a draw from the desired posterior p(w)

Andrew Barron stat.yale.edu/∼arb4/BragaLecture.pdf Sampling Neural Net Posterior Distributions 3/25



A. Variation and Approximation with a Dictionary G

Variation with respect to a dictionary
Dictionary G of functions g(x ,w), each bounded by 1
Linear combinations

∑
j cj g(x ,wj)

Control the sum of abs values of weights
∑

j |cj | ≤ V
FV = closure of signed convex hull of functions V g(x ,w)

Variation V (f ) = VG(f ) = the infimum of V such that f ∈ FV .

Approximation accuracy
Function norm square ||f − g||2 in L2(PX )

K term approximation: fK (x) =
∑K

k=1 ck g(x ,wk )

Approximation error: ||f − fK ||2 ≤ V (f )2

K

Relative Approximation error: ||f − fK ||2 − ||f − f ∗||2 ≤ V (f∗)2

K

Existence proof: Ba. 93. Precursors: Gauss, Hilbert, Pisier

Greedy approximation proof: Jones, Ba. 93

Outer weights ck may equal ± V
K

Relative approx error better than order
( 1

K

)1.5 is NP−hard (Vu 97)
Rate 1

K is dimension independent
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Models

Models fK (x) =
∑K

k=1 ck g(x ,wk ) with error ||f − fK ||2 ≤ V 2
G(f )
K

There are similar bounds for empirical average squares

Various Algorithmic Terminology
Sparse term selection, variable selection, forward stepwise regression,
relaxed greedy algorithm, orthogonal matching pursuit, Frank Wolf alg,
L2 boosting, greedy Bayes
Dictionary

Finite set of terms: Original predictors, products, polynomials,
wavelets, sinusoids (grid of frequencies)
Product-type models: Parameterized bases, MARS (splines),
CART regression trees, random forests
Ridge-type models: Multiple-index models, projection pursuit reg,
neural networks, ridgelets, sinusoids (paramerized frequencies)

Neural Network Models
Single hidden-layer networks, multi-layer networks, deep networks,
adaptive learning networks, polynomial networks, residual networks

Network Units (neurons)
Sigmoids, Rectified Linear Units (ReLU), low-order polynomials,
compositions thereof

Andrew Barron stat.yale.edu/∼arb4/BragaLecture.pdf Sampling Neural Net Posterior Distributions 5/25



Optional: Multi-Layer Neural Network Model

Multi-Layer Net: Layers L, input x in [−1,1]d , weights w
Activation function: ψ(z).

Rectified linear unit (ReLU): ψ(z) = (z)+

Twice differentiable unit: sigmoid, smoothed ReLU, squared ReLU

Paths of linked nodes: j = j1, j2, ..., jL.
Path weight: Wj = wj1,j2wj2,j3 · · ·wjL−1,jL .
Function representation:
f (x , c,w) =

∑
jL cjLψ

(∑
jL−1

wjL−1,jLψ(...ψ(
∑

j1 wj1,j2xj1)...)
)

Network Variation:
Internal: Sum abs. values of path weights set to 1.
External:

∑
j |cj | ≤ V

Variation: VL(f ) = infimum of such V to represent f
Single Hidden-Layer Case: V1(f ) ≤

∫
|ω|21 |̃f (ω)|dω spectral norm

Class FL,V of functions f with VL(f ) ≤ V

Interests: Approx, Metric Entropy, Stat. Risk, Computation
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B. Methods of Bounding Statistical Risk

Statistical risk or generalization squared error: E [||̂f − f ||2]

Five methods of controlling such statistical risk
Empirical process control of constrained least squares via

Gaussian complexity: Ba. Klusowski 19
Rademacher complexity: Neshabur et al 15, Golowich et al 18
Metric entropy

Penalized least squares risk control via relation to MDL
Adaptive bounds via an index of resolvability: Ba et al 90, 94, 99, 08

Concentration of posterior distributions
Necessary and sufficient conditions for posterior concentration B. 88, 98,
also Ba, Shervish, Wasserman 98, Ghoshal, Ghosh, Van der Vaart 00

Cumulative Kullback risk of Bayes predictive distributions
Clean Information Theoretic bounds: Ba 87,98, Clarke, Ba 90, Yang, Ba

98, Ba, Klusowski 19, Ba, McDonald 24

Online learning regret bounds for squared error & log-loss
Provides bounds for arbitrary data sequences

All five have connections to information theory
The posterior predictive procedures allow rapid computation
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Optional: Metric Entropy, Empirical Complexity, Statistical Risk

Gaussian complexity approach to bounding risk
Function class restricted to data
Fn = {f (x1), f (x2), . . . , f (xn) : f ∈ F}

Gaussian Complexity of A ⊂ Rn

C(A) = 1√
n EZ [supa∈A a · Z ] for Z ∼ N(0, I),

Complexity of Neural Nets: for ψ Lipshitz 1

C(Fn
L,V ) ≤ V

√
2 log 2d + 2L log 2

Via Sudakov-Fernique 75 comparison ineq. (Ba, Klusowski, 19)

(cf Neshabur, Tomioka, Srebro 15, Golowich, Rakhlin, Shamir 18)

Gaussian complexity provides control of
Metric Entropy:

log |Cover(FL,V , δ)| ≤ 16C2(FL,V )

δ2

Stat Risk of Constrained Least Squares:

E [||̂f − f ||2]| ≤ c C(FL,V )√
n ≤ c V

( 2 log 2d+2L log 2
n

)1/2
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Optional: Minimum Description Length and Penalized Likelihood

− log likelihood plus penalty (e.g. penalized least squares)
min

w,K ,V∈Ω

{
log 1

p(Y N |XN ,fw,K ,V )
+ penN (w,K,V )

}
Minimum description-length interpretation when it is at least

min
w,K ,V∈Ω̃

{
log 1

p(Y N |XN ,fw,K ,V )
+ L(w,K,V )

}
for Kraft valid codelengths L(ω), such that

∑
ω 2−L(ω) ≤ 1

`1 penalities with suitable multipliers are valid
Battacharya-Renyi risk control via Index of Resolvability

E [d2(pf , pfω̂ )] ≤ min
ω∈Ω

{
D(pf ||pfω ) +

penN (ω)
N

}
(Ba., Cover 90, Li, Ba. 99, Grünwald 07, Li, Huang, Luo, Ba. 08)

Index of Resolvability: ApproxError + Complexity/N

Bounds for neural net risk E [||̂f − f ||2] in the L = 1 case
(Ba. 94, Ba., Birge, Massart 99, Huang, Cheang, Ba. 08, Ba., Luo 08)

minK
{ V 2(f )

K + Kd
N logN

}
= V (f )

( d log N
N

)1/2

Also, via the metric entropy bound, with `1 weight control

E [||̂f − f ||2] ≤ cV (f )
( 2log(4d)

N

)1/2

Computationally feasible?
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Optional: Predictive Bayes and its Cumulative Risk Control

Predictive density p̂n(y |x) =
∫

p(y |x ,w)p(w |xn, yn)dw
Predictive mean f̂n(x) =

∫
f (x ,w)p(w |xn, yn)dw

Predictive evaluations for Yn+1 = y when Xn+1 = x
Information theory chain rule for cumulative Kullback risk: Ba. 87,98

1
N

∑N−1
n=0 ED(P∗Y |X ||P̂n

Y |X ) =
1
N D(P∗Y N ,XN ||PY N ,XN )

Controls data compression redundancy and the risk of ˆ̂f (x) = 1
N
∑N−1

n=0 f̂n(x)

E
[
|| ˆ̂f − f ||2

]
≤ 1

N

∑N−1
n=0 E

[
||f − f̂n||2

]
Total Kullback risk controlled by index of resolvability, Ba. 87,98

1
N D(P∗Y N ,XN ||PY N ,XN ) = 1

N E log p∗(Y N ,XN )∫
p(Y N ,XN |w)p0(w)dw

≤ 1
N E log p∗(Y N ,XN )∫

A p(Y N ,XN |w)p0(w)dw

≤ DA + 1
N log 1

P0(A)

where DA = maxw∈A D(P∗Y |X ||PY |X ,w ) is Kullback approximation error
Predictive risk for neural net estimators with priors uniform on optimal covers

E [ || ˆ̂f − f ||2] ≤ cV (f )
( d log N

N

)1/2
Yang, Ba. 98

E [ || ˆ̂f − f ||2] ≤ cV (f )
( 2 log(4d)

N

)1/2
Ba., Klusowski 19

with practical priors and feasibly computable estimates for sufficiently large d

E [ || ˆ̂f − f ||2] ≤ cV (f )2/3( log(2d)
N

)1/3
Ba., McDonald 24, now
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Optional: Arbitrary Sequence Predictive Bayes Regret

On-line learning
Arbitrary-sequence regret for predictive Bayes

Squared error 1
N

∑N
n=1(Yn − f̂n−1(Xn))

2 − 1
N

∑N
n=1(Yn − f (Xn))

2

Log-loss case 1
N

∑N
n=1 log

1
p(Yn|fn−1(Xn))

− 1
N

∑N
n=1 log

1
p(Yn|f (Xn))

Simplification 1
N

{
log 1

p(Y N ,XN )
− log 1

p(Y N ,XN |f )

}
Corresponds to pointwise regret of an arithmetic code

Amenable to Laplace approximation and resolvablity bound
Bounds of the same form

RegretN ≤ Approx Error + 1
N log 1

PriorProb(Approx Set)

Specialization to the case of functions f in F1,V

RegretN ≤ cV 2/3
(

log d
N

)1/3

Taking expectation controls
1
N

∑N
n=1 E

[
||f − f̂n−1||2

]
The estimator ˆ̂f (x) = 1

N

∑N
n=1 f̂n−1(x) also has this bound

E
[
|| ˆ̂f − f ||2

]
≤ cV 2/3

(
log d

N

)1/3
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C. Bayesian Computation for Neural Nets

Data: (Xi ,Yi) for i = 1, 2, . . . , n, with Xi in [−1, 1]d and n ≤ N
Natural yet optional statistical assumption:
(Xi ,Yi) independent PX ,Y , target f (x) = E [Y |X =x ], variance σ2

Y = σ2

Not needed for Bayesian computation statements
Not needed for online learning bounds

Single hidden-layer network model: f (x ,w)

fK (x ,w1, . . .wK ) = V
K

∑K
k=1 ψ(wk · xi )

One coordinate of each xi always −1 to allow shifts
Odd symmetry of ψ provides sign freedom

Each wk in the symmetric simplex Sd
1 = {w :

∑d
j=1 |wj | ≤ 1}

Prior: p0(w) makes wk independent uniform on Sd
1

Likelihood: exp{−βg(w)} with gain 0 < β ≤ 1/σ2

where g(w) = 1
2

∑n
i=1

(
Yi − V

K

∑K
k=1 ψ(xi · wk )

)2

Posterior: p(w) = p0(w) exp{−βg(w)− Γ(β)}
Bayesian Computation: Estimate f̂ (x) =

∫
f (x ,w)p(w)dw

by drawing independent samples from p(w) and averaging f (x ,w)
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Hessian of the Minus Log Likelihood

Log 1/Likelihood = β g(w)

Hessian = βH(w) = β∇∇′g(w)

Squared error loss: g(w) = 1
2
∑n

i=1(resi(w))2 where

resi(w) = Yi − V
K
∑K

k=1 ψ(xi ·wk )

Hessian Quadratic form: a′H(w)a, where a has blocks ak
V 2

K 2

∑n
i=1
(∑K

k=1 ψ
′(xi ·wk ) ak · xi

)2

− V
K
∑n

i=1 resi(w)
∑K

k=1 ψ
′′(xi ·wk )(ak · xi)

2

p(w) is not log-concave; that is, g(w) is not convex

The first term is positive definite, the second term is not

No clear reason for gradient methods to be effective
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Log Concave Coupling

Auxiliary Random Variables ξi,k chosen conditionally indep
Normal with mean xi · wk , variance 1/ρ, with ρ = βcV/K
restricted to ξ with each

∑n
i=1 ξi,k xi,j in a high probability interval

Conditional density:
p(ξ|w) =

(
ρ/2π

)Kn/2exp
{
− ρ

2

∑n
i=1
∑K

k=1(ξi,k − xi ·wk )2
}

Multiplier c = cY ,V = maxi |Yi |+ V bounds |resi (w)| for all w
Activation second derivative: |ψ′′(z)| ≤ 1 for |z| ≤ 1
Joint density: p(w , ξ) = p(w)p(ξ|w)

Reverse conditional density:
p(w |ξ) = p0(w) exp{−βgξ(w)− Γξ(β)}

Conditional log 1/Likelihood = βgξ(w) with
gξ(w) = g(w) + 1

2
V
K c
∑n

i=1
∑K

k=1

(
xi ·wk − ξi,k

)2

Modifies Hessian a′Hξ(w)a with new positive def second term
V
K

∑
i
∑

k [c − resi (w)ψ′′(xi ·wk )](ak · xi )
2

p(w |ξ) is log concave in w for each ξ
MCMC Efficient sample Applegate, Kannan 91, Lovász, Vempala 07
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Marginal Density and Score of the Auxiliary Variables

Auxiliary variable density function:
p(ξ) =

∫
p(w , ξ)dw

Integral of a log concave function of w

Rule for Marginal Score:
∇ log 1/p(ξ) = E [∇ log 1/p(ξ|w) | ξ ]

Normal Score: linear
∂ξi,k log 1/p(ξ|w) = ρ ξi,k − ρ xi ·wk

Marginal Score:
∂ξi,k log 1/p(ξ) = ρ ξi,k − ρ xi ·E [wk | ξ ]

Efficiently compute ξ score by Monte Carlo sampling of w |ξ

Permits Langevin stochastic diffusion: with gradient drift
d ξ(t) = 1

2∇ log p(ξ(t)) dt + d B(t)
converging to a draw from the invariant density p(ξ)
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Hessian of log 1/p(ξ). Is p(ξ) log concave?

Hessian of log 1/p(ξ), an nK by nK matrix

H̃(ξ) = ∇∇′ log 1/p(ξ) = ρ
{

I − ρCov
[Xw1···

XwK
| ξ
]}

Hessian quadratic form for unit vectors a in RnK with blocks ak

a′H̃(ξ)a = ρ {1− ρVar [ã · w |ξ]}

where ã =
[

X ′a1·
X ′aK

]
has ||ã||2 ≤ n d

Requires variance of ã · w using the log-concave pβ(w |ξ)

More concentrated, smaller variance, than with the prior?
Counterpart using the prior

ρ {1− ρVar0[ã · w ]}
Use Cov0(wm) = 2

(d+2)(d+1) I and ρ = βcV/K to see its at least

ρ
{

1− 2βcVn
K (d+2)

}
Constant β chosen such that βcV ≤ 1/4
Strictly positive when number param Kd exceeds sample size n
Hessian ≥ (ρ/2)I. Strictly log concave
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Rapid Convergence of Stochastic Diffusion
Recall the Langevin diffusion

d ξ(t) = 1
2∇ log p(ξ(t)) dt + d B(t)

There are time-discretizations (e.g. Metropolis adjusted)
A natural initialization choice is ξ(0) distributed N(0, (1/ρ)I)
Bakry-Emery theory (initiated in 85)
Strong log concavity yields rapid Markov process convergence
In particular, in the stochastic diffusion setting

∇∇′ log 1/p(ξ) ≥ (ρ/2)I
yields exponential conv. of relative entropy (Kullback distance)

D(pt ||p) ≤ e−t ρ/2D0

In particular, the time required for small relative entropy is
controlled by τ = 2/ρ, here equal to 2K/(βcV )

Note: with time discretization, one also has a number of draws of
w at given ξ(t) to compute the score ∇ log p(ξ(t)), and each
such draw requires a number of MCMC steps, with order nKd
computation time for each gξ(w) evaluation
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Is p(ξ) log concave?

Recap: quadratic form in Hessian of log 1/p(ξ)

a′H̃(ξ)a = ρ {1− ρVar [ã · w |ξ]}
Another control on the variance
ρVar [ã · w |ξ] ≤ ρ

∫
(ã · w)2exp{−βg̃ξ(w)− Γξ(β)}p0(w)dw

using g̃ξ(w) = gξ(w)− E0[gξ(w)]

Hölder’s inequality with r ≥ 1
≤ ρ [E0[(ã · w)2r ]]1/r exp{ r−1

r Γξ(
r

r−1β)− Γξ(β)}
which is, using a bound CV n on gξ(w) with CV = 9V 2 + 7V maxi |Yi |,

≤ cβV
K

4nr
de exp{βCV n/r}

which is, with the optimal r = βCV n,

= 4c V CV
β2n2

Kd

Less than 1/2 when num param Kd exceeds a multiple of (βn)2

Then indeed Hessian ≥ (ρ/2)I. Strictly log concave
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Optional: Greedy Bayes

Initialize f̂n,0(x) = 0

Given previous neuron fits, iterate k , for each n
fn,k (x ,w) = (1− α)fn,k−1(x) + λψ(w · x)

α = 1/
√

n and λ = Vα are suitable.

Form the iterative squared error g(w)

gn,k (w) = 1
2
∑n−1

i=1
(
yi − fi,k (xi ,w)

)2

Again Hessian has a not necessarily positive definite part

−λ
∑n−1

i=1 ri,k−1 ψ
′′(w · xi) xix ′i

where ri,k−1 are the previous residuals

Associated greedy posterior pn,k (w) proportional to
p0(w) exp{−βgn,k (w)}

Update fn,k replacing ψ(w · x) with its posterior mean

Estimate by sampling from the greedy posterior
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Optional: Log Concave Coupling for Greedy Bayes

For the moment, fix n, k
Again p(w) = p0(w) exp{−βg(w)}
Coupling random variables ξi ∼ N(xi · w ,1/ρ) with ρ = cλβ
where c bounds the absolute values of the residuals ri,k

Joint density p(w , ξ) with logarithm −β gξ(w) built from

gξ(w) = g(w) + 1
2cλ

∑n−1
i=1 (ξi − w · xi)

2

which is convex in w for each ξ, so p(w |ξ) is log concave
The associated marginal is p(ξ)

Hessian quadratic form a′∇∇′ log(1/p(ξ)) a
ρ{1− ρVar [ ã · w |ξ ]}

for a with ||a|| = 1 and ã = X ′a
Deduce p(ξ) is log concave for sufficiently large d
From which get w by a draw from p(w |ξ)
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Optional: Variance control using Hölder’s inequality

As before Var [ã · w |ξ] is not more than∫
(ã · w)2 exp{−βg̃ξ(w)− Γξ(β)}p0(w) dw

where g̃ξ(w) is gξ(w) minus its mean value at β = 0
Γξ(w) is the cumulant generating function of −g̃ξ(w)

By Hölders inequality that variance is not more than
[E0[(ã · w)2r ]]1/r exp{ r−1

r Γξ(
r

r−1β)− Γξ(β)}

For the first factor, with integer r ≥ 1

E0[(xi · w)2r ] ≤
(

d+r−1
r

) (2r)!
(d+2r)···(d+1)

Implication
[E0[(ã · w)2r ]]1/r ≤ n 4r

ed
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Optional: On the second factor from Hölders inequality

The exponent of the second factor is
r−1

r Γξ(
r

r−1β)− Γξ(β)

Not more than β
r−1 maxw g̃ξ(w) where

g̃ξ(w) = gξ(w)− E0[gξ(w0)]

It has the bound βmaxw ,w0(gξ(w)− gξ(w0))/(r − 1)

Indeed a value near 5cλn bounds maxw ,w0(gξ(w)− gξ(w0))

Optional page verifies this for a suitable set of ξ

Hence exponent of second factor not more than value near
5βλ c n/r
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Optional: Verifying bound on g̃ξ(w)

The gξ(w)− gξ(w0) = (w − w0) · ∇gξ(w̃).
Concerning ∇gξ(w̃) it is

−λ
{∑n−1

i=1
[
resi,k−1ψ

′(w̃ · xi)− cw̃ · xi
]

xi +
∑n−1

i=1 ξixi

}
Hit with w − w0, the result has magnitude not more than

4cλn + λmaxj |
∑n−1

i=1 ξixi,j |

With high probability, the max is ≤ n + κ
√

n/ρ where κ ≥
√

2 log 2d

Conditioning on ξ which have this bound, the conditional density
remains log concave when κ =

√
2 log 6d4

With ρ = cλβ and λ = V/
√

n, the max is ≤ n + Õ(n3/4)

Then exponent of second factor not more than value near
5βλc n/r
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Optional: Combining the two factors

Use ã =
∑

i aixi with ||ã||2 ≤ nd and ρ = cλβ

Combine the two factors

Obtain ρVar [ã · w |ξ] not more than a value near
cλβ 4n r/(ed) exp{5βλc n/r}

The optimal r = 5βλc n yielding not more than
20(cλβn)2/d

Recall λ = Vα = V/
√

n
Choose β = 1/(5cV ), choose d ≥ n.
ρVar [ã · w |ξ] is strictly less than 1 (indeed less than 4/5)
Hence p(ξ) is strictly log concave, for d exceeding n
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Summary

Multimodal neural net posteriors can be efficiently sampled

Log concave coupling provides the key trick

Requires number of parameters K d large compared to the
sample size N

Statistically accurate provided `1 controls are maintained
on the parameters

Provides the first demonstration that the class F1,V
associated with single hidden layer networks is both
computationally and statistically learnable

A polynomial number of computations in the size of the
problem is sufficient

The approximation rate 1/K and statistical learning rate 1/
√

N
are independent of dimension for this class of functions
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Outline

The Blessing of Dimensionality
Trap of Optimization of Multi-Modal Landscapes versus
Freedom of Posterior Sampling in High Dimensions

Historical Roots of Bayesian Computation: Laplace and Gauss
From Laplace to Modern Prediction and Compression: Discrete Data
From Gauss to Modern Prediction and Learning: Continuous Data

Information-Theoretic Determination of Risk and Regret

Inform Theory of Sampling Log-Concave Posterior Distributions

Beyond Log-Concavity

Provably Fast Regression Codes, Achieving Shannon Capacity
Provably Computationally-Feasible Posterior Sampling
for Neural Net Posterior Distributions
in Sufficiently-High Dimensions
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Historical Highlight of Bayesian Computation: Laplace
Bayes (1763)

Ideas of a prior and posterior distribution
Discusses the uniform as an appropriate prior choice
Posterior computations not available except in simple cases

Laplace (1774) Commentary and translation by Stigler (1986)
Influential. Dominates statistical science perspective for over a century
Uniform prior (without discussion of any other choice)
Exact computation in discrete conditionally independent cases of

The predictive distrib p(yn+1|y1, ..., yn) (a rule of succession)
The joint distribution p(y1, ..., yN) =

∫
p(y1, ..., yN |θ)p(θ)dθ

Approximate computation by integration using a normal approx
Central limit theory for posterior distributions
First appearance of the normal distribution, and

√
2π normalization

Optimal estimation of location:
Median of posterior minimizes posterior expected absolute deviation

Precursor to a result of Gauss:
Posterior mean minimizes the posterior expected square

Laplace (1812) Included in later Essays on Probability
Central limit theory for sums of independent random variables
Regarded by Gauss as infinite-causes justification of least squares
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From Laplace to Inform Theory of Prediction & Data Compression

The Computational Heart of Laplace’s Calculus of Probability
Joint distribution: p(y1, ..., yN ) =

∫
p(y1, ..., yN |θ) p(θ)dθ

Reduction for n ≤ N: p(y1, ..., yn) =
∫

p(y1, ..., yn |θ) p(θ)dθ
Predictive distributions p(yn+1|y1, ..., yn)

Ratios of joint at n+1 and n
Interpretable as posterior mean distribution estimator at yn+1 = y

p(yn+1|y1, ..., yn) =
∫

p(y |θ) p(θ|yn)dθ
Chain rule of probability

p(y1, ..., yN ) =
∏N−1

n=0 p(yn+1|y1, ..., yn)

Also heart of AEP: Shannon 48, McMillan 53, Breiman 57, Ba. 85, Orey 85

Decision Theory of Compression and Prediction with Kullback loss
Predictive distribution minimizes posterior mean of Kullback divergence
Average of Kullback loss of predictive distribution is I(θ; Yn+1|Y1, ...,Yn)

Code redundancy is the total Kullback divergence D(PY N |θ||PY N )

Code with respect to Laplace joint distribution is average case optimal
Average redundancy is the mutual information I(θ,Y N )
Information theory chain rule for cumulative Kullback risk

1
N
∑N−1

n=0 EY n|θ D(PYn+1|Y n,θ||PYn+1|Y n ) = 1
N D(PY N |θ||PY N )

Joint and predictive distributions permit Shannon/arithmetic codes par

Minimax tot Kullback risk = Minimax redundancy = Shannon capacity of Y N |θ
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Laplace Approximation, Model Selection, Prediction & Data Compression

Laplace approximation in general smooth families with empirical Fisher info Î∫
p(Y N |θ) p0(θ) dθ ∼ p(Y N |θ̂) p0(θ̂)

∫
exp{− 1

2 N Î (θ−θ̂)2} dθ

Provides approximate computation for prediction, model selection, and codes

Yields the Bayes factor, and the pointwise regret of MDL, stochastic complexity
Ba 85, Clarke, Ba 90,94, Rissanen 96, Takeuchi, Ba 24

1
N log p(Y N |θ̂)∫

p(Y N |θ)p0(θ)dθ
= d

2N log N
2π + 1

N log |Î (θ̂)|1/2

p0(θ̂)
+ o
( 1

N

)
for posterior mode θ̂ in the interior of Θ, where d is the parameter dimension

Expected total divergence rate (Clarke, Ba 90,94)
1
N D(PY N |θ||PY N ) = d

2N log N
2πe + 1

N log |I(θ)|1/2

p0(θ)
+ o

( 1
N

)
Jeffreys prior p0(θ) prop to |I(θ)|1/2 is the approx equalizer rule, reference prior

Approximately mimimax for total Kulback risk and redundancy, Clarke, Ba 94

Approximately capacity-achieving optimizing asymptotic I(θ; Y N ), Bernardo 79,
Ibragimov, Hasminskii 73, Clarke, Ba 94

Hartigan 64: Jeffreys prior equalizes prob of small Kullback balls of given radius

Hartigan 98: Asymptotics of individual Kullback risk
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From Laplace’s Rule to Modern Bayesian Computation

Priors on probabilities θ that permit exact predictive distribution computation
and corresponding exact joint distribution computation for arithmetic coding
For discrete memoryless sources with m symbols

Laplace uniform prior yields computation by Laplace rule of succession
p(yn+1 = y |y1, ..., yn) =

ny +1
n+m from counts ny =

∑n
i=1 1{yi =y}

and computation of corresponding Laplace joint distribution

Dirichlet(λ, ..., λ) prior produces the prediction rule ny +λ

n+mλ

The case λ = 1/2 has distinguished properties identified by
Jeffreys 61: Specialization of his general prior, proportional to |I(θ)|1/2

Krichevski, Trofimov 81: Redundancy rate
m−1
2N log N + O

( 1
N

)
Xie, B.97,00: Minimax redundancy and minimax regret

m−1
2N log N

2π + 1
N log

∫
|I(θ)|1/2dθ + o

( 1
N

)
For sources with memory

Takeuchi, Kawabata, Ba. 02: Jeffreys prior and redundancy for Markov sources
Willems, Shtarkov, Tjalkens 95: for variable order Markov models, e.g., for text,
With a flexible prior and a recursive Context Tree Weighting (CTW) algorithm

Optimal prediction, compression, text generation for their prior & posterior
Scale up CTW at word level should yield competitive large language model
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Optional Page: A Surprising Application of Bayes-Laplace Computation

Contrast minimax redundancy minQ maxθ D(PY n|θ||QY n )

with minimax pointwise regret minq maxθ,yn log p(yn|θ)/q(yn)

Shtarkov minimax-regret solution: q(yn) = maxθ p(yn|θ)/cn

This is the normalized maximum likelihood championed by Rissanen
Apparently, it is a not Bayes-Laplace mixture
So how to compute predictive distributions for arithmetic coding?
Solution in discrete settings by linear algebra:
Represent q(yn) =

∑
j wj p(yn|θj) with weights wj possibly negative

Then Laplace’s calculus still applies for this q(yn)!
May evaluate its positive marginals and predictive distributions
Negative prior probabilities!
These priors yield computation of positive-valued quantities
for optimal prediction & compression quantities.
They are not for prior subjective assessment
Here yn has an exponentially numerous domain. Fortunately, the set of values of
sufficient statistics (e.g. counts) may be more moderate-sized, and the number
of θj can be arranged accordingly

Practical minimax-regret optimal data compression
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Historical Highlight of Bayesian Computation: Gauss
Gauss (1806 German, 1809 Latin) English Transl. Davis (1857)

Treatise on planetary motion (describing work developed 1794 -1805)
Improves orbit determination when there are more than three observations
Linearizes smooth nonlinear dependence on parameters (per Newton)
Linear system of equations characterizing least squares solution
Also recognized in a paper by Legendre (1805)
Gauss elimination solution iterative in the number of parameter

Gauss justification of least squares as a Bayesian Computation
For linear models f (xi ,w) = w · xi with observed responses yi

Given a density φ(z) for deviations with score s(z) = φ′(z)/φ(z)

The posterior density p(w |Data) is proportional to the joint density function
φ(y1−w · x1) . . . φ(yn−w · xn)

Mode ŵ of the posterior distribution is found by solving the system of equations∑n
i=1 s(yi−w · xi ) xi = 0

Gauss’ density φ(z) with linear score provides the linear system of equations
Accordingly the least squares solution is the posterior mode
Moreover Gauss showed:

The least squares solution is a linear combination of the observed yi
Moreover, if posterior modes are linear for location and regression
problems then the density φ(z) must be the Gaussian
For independent random variables the variance of a sum is the sum of the
variances. Leads to evaluation of var(ŵj ) and the standard error
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From Gauss to Modern Bayesian Computation
Later work: Gauss (1823) also noted

The least squares solution is unbiased
Least squares solution has smallest variance among linear unbiased estimators

Other Linear Model Conclusions credited to Gauss & Laplace, with normal φ
Least square solution is also the post mean, optimizes posterior expected square
Least squares methods provide the predictive densities for yn+1 = y at xn+1 = x

p(y |x ,Data) =
∫
φ(y−w ·x) p(w |Data) dw

as well as their predictive means E [Y |x ,Data] =
∫

w ·x p(w |Data) dw = ŵ · x
Gauss’ recursive least squares yields solution iterating one observation at a time

Linear Filtering and Prediction
Kalman (1960) theory extends recursive Bayes computation to setting of linear
difference equation evolution of the states xn

Model Selection and Data Compression: computation of Bayes factors
p(Y N |X N ) =

∫
p(Y N |X N ,w)p(w)dw matches product of predictive densities

Permits optimal arithmetic coding of finely discretized observations
Related to linear predictive coding

Minimax Estimation and Compression for linear models, general φ
The Uniform prior yields the minimax optimal procedure for

param estim with squared error loss (Hunt-Stein xx, Girshick-Savage 51)
predictive density estimation with Kullback risk (Liang, Ba.02)
data compression with minimax redundancy (Liang, Ba.02)

Gaussian model continues providing ease of Bayes computation in these settings
Proper Bayes minimax rules found for d ≥ 5 (Strawderman 72, Liang 00)
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Optional Page: Entropic Central Limit Theorem
Random variable X centered and scaled to have mean 0 and variance 1
- log density log 1/p(x) and score s(x) = d

dx log 1/p(x)
For the standard normal density φ(x) these are, respectively

1
2 x2 + c and x

Closeness of the score to linear: J(X ) = E [(s(X )− X )2]
to assess statistical efficiency of Gauss likelihood equation solution
Closeness of log densities to quadratic: D(X ) = D(p||φ)
to assess redundancy of descriptions based on the normal
Score representation of divergence: Ba 86, with τt = e−2t , indep Z ∼ φ

D(X ) = 1
2

∫∞
0 J(

√
τt X +

√
1−τt Z ) dt

Remark: Score of Y = X +Z relates best nonlinear and linear estimates of X
given Y , Brown 71, 82, Ba 86, so its an integrated mmse representation

For Sn = X1+...Xn√
n with Xi i.i.d. Precursor results: Linnik 59, Brown 82

Entropic CLT: D(Sn)→ 0 iff eventually finite, Ba 86
Score CLT: J(Sn) → 0 iff eventually finite, Johnson, Ba 04
Monotone: Artstein, Ball, Barthe, Naor 04, Tulino, Verdú 06, Madiman, Ba 06
Related results:

Subset Sum Entropy Power Inequality, Madiman, Ba 07
Log Sobolev Inequality (LSI): D(X) ≤ 1

2 J(X) Stam 57, Gross 75
Stochastic diffusion distribution properties with Gaussian limit
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From Gaussian to Log-Concave Distributions

Summary thus far:
Laplace and Gauss performed required normal distribution integrations
in their linear models to compute the posterior optimal procedures

What is the right extension
to preserve rapid computation of high-dimensional posterior integrals?

Main Generalized Setting of the Last Forty Years: Log-Concavity
MCMC samplers: Accurate and Mmx rapidly for log concave posteriors

Implication: Rapid computation of Minimax Optimal Procedures
Minimax optimal location estimation, linear regression and minimax
redundancy codes in lin predictive setting are low-order polynomial-time
computable for any log-concave error distribution

What about regressions with non-convex domains?

What about non-linear regressions, such as neural networks?
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Information Theory of Rapid MCMC with Log Concavity

Langevin Diffusion Path for sample parameter values w(t)

d w(t) = 1
2∇ log p(w(t)) dt + d B(t)

Remarks:
Score ∇ log p(w) is non-linear in general
There are time-discretizations (e.g. Metropolis adjusted)
A natural initialization choice is w(0) distributed N(0, (1/ρ)I)

Theory of Bakry-Emery 85, see Bakry, Gentil, Ledoux 14
Strong log concavity yields rapid Markov process convergence

In particular, in the stochastic diffusion setting

∇∇′ log 1/p(w) ≥ ρI
yields exponential conv. of relative entropy (Kullback distance)

D(pt ||p) ≤ e−t ρ D(p0||p)

Time required for small relative entropy is controlled by τ = 1/ρ

Proof uses D(pt ||p) = 1
2

∫
τ≥t J(pτ ||p) dτ

And demonstrates the Log Sobolev Ineq: D(pt ||p) ≤ 1
2 ρJ(pτ ||p)

where J is the mean square norm between the scores
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Beyond Log-Concavity

Some important posterior are not log-concave

Examples with computationally feasible and accurate procedures
in high-dimensions

Bayes Computation for Communications
Capacity-achieving sparse regression codes
For a Gaussian noise channel
Codes are in a linear model Xw
but with a non-convex constraint on w

Bayes Computation for Non-linear Regression
Applies to neural nets with smooth activation functions
Posterior density has many peaks. It is not log-concave
Introduce of sufficiently many auxiliary random variable
to simplify the sampling landscape
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Bayes Computation for Communication
Communication strategy for
the additive Gaussian noise channel with a specified power control

Capacity-achieving Sparse Superposition Codes Joseph, Ba. 12
Gaussian design matrix X
Codewords of form X w
Non-convex constraint set W of size 2nC for the weights w
specified by a sparsity requirement of one non-zero in each of several sections
and by a power allocation

Bayes optimal decoder seeks minw∈W ||Y − Xw ||2

Computationally-feasible capacity-achieving iterative decoders
compute weight estimates wk concentrating on columns sent with high prob,
after a logarithmic number of steps

Adaptive Successive Hard-Decision Decoder (Joseph Ba. 14)
Adaptive Successive Soft-Decision Decoder (Ba., Cho, 12)
At step k compute wk , explicitly, as the posterior mean of indicators, given
approximate Gaussian distributions of inner products of columns of X
with residuals Y − Xwk−1, normalized

Approx Message Passing Decoder (Rush, Greig, Venkataramanan 17)
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