## Celebrations for three influential scholars in Information Theory and Statistics:

- Tom Cover: On the occasion of his 70th birthday Coverfest.stanford.edu *Elements of Information Theory Workshop* Stanford University, May 16, 2008: TODAY!
- Imre Csiszár: On the occasion of his 70th birthday www.renyi.hu/~infocom
   Information and Communication Conference
   Renyi Institute, Budapest, August 25-28, 2008
- Jorma Rissanen: On the occasion of his 75th birthday Festschrift at www.cs.tut.fi/~tabus/ presented at the IEEE Information Theory Workshop Porto, Portugal, May 8, 2008

## Principles of Information Theory in Probability and Statistics

Andrew Barron Department of Statistics Yale University

#### May 16, 2008 Elements of Information Theory Workshop

On the Occasion of the Festival for Tom Cover

イロト イポト イヨト イヨ

#### **Outline of Principles**



- Monotonicity of Information Divergence
- 2 Information-Stability, Error Probability, Info-Projection
- 3 Shannon Capacity Determines Limits of Statistical Accuracy
- 4 Simplest is Best



< 🗇 🕨

→ E → < E →</p>

#### . Summary

### **Outline of Principles**

#### 1

#### Monotonicity of Information Divergence

2 Information-Stability, Error Probability, Info-Projection

#### 3 Shannon Capacity Determines Limits of Statistical Accuracy

#### 4 Simplest is Best

#### 5 Summary

イロト イポト イヨト イヨト

### Monotonicity of Information Divergence

Chain Rule

$$D(P_{X,X'} || P_{X,X'}^*) = D(P_X || P_X^*) + E D(P_{X'|X} || P_{X'|X}^*)$$
$$= D(P_{X'} || P_{X'}^*) + E D(P_{X|X'} || P_{X|X'}^*)$$

Markov Chains

 $D(P_{X_n} \| P^*) \leq D(P_{X_m} \| P^*)$  for n > m

and log  $p_n(X_n)/p^*(X_n)$  is a Cauchy sequence in  $L_1(P)$ 

## Monotonicity of Information Divergence

 Nonnegative Martingales ρ<sub>n</sub> equal the density of a measure Q<sub>n</sub> and can be examined in the same way by the chain rule for n > m

$$D(Q_n || P) = D(Q_m || P) + \int \left( \rho_n \log \frac{\rho_n}{\rho_m} \right) dP$$

 Thus D(Q<sub>n</sub>||P) is an increasing sequence. When it is bounded ρ<sub>n</sub> is a Cauchy sequences in L<sub>1</sub>(P) with limit ρ defining a measure Q, also, log ρ<sub>n</sub> is a Cauchy sequence in L<sub>1</sub>(Q) and

$$D(Q_n || P) \nearrow D(Q || P)$$

イロト イポト イヨト イヨト

## Monotonicity of Information Divergence: CLT

• Central Limit Theorem Setting:

{*X<sub>i</sub>*} i.i.d. mean zero, finite variance  $P_n = P_{Y_n}$  is distribution of  $Y_n = \frac{X_1 + X_2 + \dots X_n}{\sqrt{n}}$  $P^*$  is the corresponding normal distribution

• Chain Rule: Action is mysterious in this case

$$\begin{split} D(P_{Y_m,Y_n} \| P^*_{Y_m,Y_n}) &= D(P_{Y_m} \| P^*) + ED(P_{Y_n|Y_m} \| P^*_{Y_n|Y_m}) \\ &= D(P_{Y_n} \| P^*) + ED(P_{Y_m|Y_n} \| P^*_{Y_m|Y_n}) \end{split}$$

## Monotonicity of Information Divergence: CLT

#### Entropy Power Inequality

$$e^{2H(X+X')} \ge e^{2H(X)} + e^{2H(X')}$$

yields

 $D(P_{2n}||P^*) \leq D(P_n||P^*)$ 

Information Theoretic proof of CLT (B. 1986):

 $D(P_n || P^*) \rightarrow 0$  iff finite

ヘロト 人間 ト くほ ト くほ トー

## Monotonicity of Information Divergence: CLT

Entropy Power Inequality

$$e^{2H(X+X')} \geq e^{2H(X)} + e^{2H(X')}$$

Generalized Entropy Power Inequality (Madiman&B.2006)

$$e^{H(X_1+\ldots+X_n)} \geq rac{1}{r(\mathcal{S})} \sum_{s\in\mathcal{S}} e^{2H(\sum_{i\in s} X_i)}$$

- Proof: simple L<sub>2</sub> projection properties of entropy derivative.
- Consequence, for all n > m,

#### $D(P_n \| P^*) \leq D(P_m \| P^*)$

B. and Madiman 2006, Tolino and Verdú 2006 Earlier elaborate proof by Artstein, Ball, Barthe, Naor 2004.

#### **Outline of Principles**



Monotonicity of Information Divergence

#### 2 Information-Stability, Error Probability, Info-Projection

#### 3 Shannon Capacity Determines Limits of Statistical Accuracy

#### 4 Simplest is Best

#### 5 Summary

イロト イポト イヨト イヨト

## AEP and behavior of optimal tests

• Stability of log-likelihood ratios,

$$\frac{1}{n}\log\frac{p(Y_1, Y_2, \dots, Y_n)}{q(Y_1, Y_2, \dots, Y_n)} \to \mathcal{D}(P||Q) \text{ with } P - prob 1$$

where  $\mathcal{D}(P||Q)$  is the relative entropy (I-divergence) rate.

Implication: Associated log-likelihood ratio test A<sub>n</sub> has asymptotic *P*-power 1 (at most finitely many mistakes P(A<sub>n</sub><sup>c</sup> i.o.) = 0) and has optimal *Q*-prob of error

$$Q(A_n) = \exp\{-n[\mathcal{D} + o(1)]\}$$

- Most general known form of the Chernoff-Stein Lemma.
- Intrinsic role for information divergence rate

$$\mathcal{D}(P||Q) = \lim \frac{1}{n} D(P_{\underline{Y}^n}||Q_{\underline{Y}^n})$$

# Large Deviations for Empirical Prob and Conditional Limit

- P\*: Information Projection of Q onto convex C
- Pythagorean Identity (Csiszar 75, Topsoe 79): For P in C

$$D(P \| Q) \geq D(C \| Q) + D(P \| P^*)$$

where

$$D(C||Q) = \inf_{P \in C} D(P||Q)$$

- Empirical Distribution P<sub>n</sub>
- If D(interior C || Q) = D(C || Q) then

$$Q\{P_n \in C\} = \exp\{-n[D(C||Q) + o(1)]\}$$

and the conditional distribution  $P_{Y_1, Y_2, ..., Y_n | \{P_n \in C\}}$  converges to  $P^*_{Y_1, Y_2, ..., Y_n}$  in the I-divergence rate sense (Csiszar 1985)

#### **Outline of Principles**



Monotonicity of Information Divergence

- 2 Information-Stability, Error Probability, Info-Projection
- 3 Shannon Capacity Determines Limits of Statistical Accuracy
- 4 Simplest is Best

#### 5 Summary

イロト イポト イヨト イヨト

#### **Information Capacity**

• A Channel  $\theta \rightarrow \underline{Y}$  is a family of probability distributions

$$\{P_{\underline{Y}|\theta}: \theta \in \Theta\}$$

Information Capacity

$$C = \max_{P_{\theta}} I(\theta; \underline{Y})$$

イロト イポト イヨト イヨト

#### **Communications Capacity**

- *C<sub>com</sub>* = maximum rate of reliable communication, measured in message bits per use of a channel
- Shannon Channel Capacity Theorem (Shannon 1948)

 $C_{com} = C$ 

イロト イポト イヨト イヨト

## **Data Compression Capacity**

Minimax Redundancy

$$\textit{Red} = \min_{\mathcal{Q}_Y} \max_{ heta \in \Theta} \textit{D}(\textit{P}_{\underline{Y}| heta} \| \textit{Q}_{\underline{Y}})$$

Data Compression Capacity Theorem

Red = C

(Gallager, Davisson & Leon-Garcia, Ryabko)

イロト イポト イヨト イヨト

#### Statistical Risk Setting

Loss function

 $\ell(\theta,\theta')$ 

- Examples:
- Kullback Loss

$$\ell( heta, heta') = \mathcal{D}(\mathcal{P}_{Y| heta} \| \mathcal{P}_{Y| heta'})$$

Squared metric loss, e.g. squared Hellinger loss:

$$\ell(\theta,\theta') = d^2(\theta,\theta')$$

イロト イポト イヨト イヨト

### Statistical Capacity

- Estimators:  $\hat{\theta}_n$
- Based on sample <u>Y</u> of size n
- Minimax Risk (Wald):

 $r_n = \min_{\hat{\theta}_n} \max_{\theta} E\ell(\theta, \hat{\theta}_n)$ 

イロト イポト イヨト イヨト

### Ingredients for determination of Statistical Capacity

• Kolmogorov Metric Entropy of  $S \subset \Theta$ :

 $H(\epsilon) = \max\{\log Card(\Theta_{\epsilon}) : d(\theta, \theta') > \epsilon \text{ for } \theta, \theta' \in \Theta_{\epsilon} \subset S\}$ 

#### • Loss Assumption, for $\theta, \theta' \in S$ :

$$\ell( heta, heta') \sim \textit{D}(\textit{P}_{Y| heta} \| \textit{P}_{Y| heta'}) \sim \textit{d}^2( heta, heta')$$

イロト イポト イヨト イヨト

## Statistical Capacity Theorem

- For infinite-dimensional Θ
- With metric entropy evaluated a critical separation  $\epsilon_n$
- Statistical Capacity Theorem Minimax Risk  $\sim$  Info Capacity Rate  $\sim$  Metric Entropy rate

$$r_n \sim \frac{C_n}{n} \sim \frac{H(\epsilon_n)}{n} \sim \epsilon_n^2$$

Yang 1997, Yang and B. 1999, Haussler and Opper 1997

イロト イポト イヨト イヨト

Summary

## **Outline of Principles**



Monotonicity of Information Divergence

2 Information-Stability, Error Probability, Info-Projection

#### 3 Shannon Capacity Determines Limits of Statistical Accuracy

#### 4 Simplest is Best

#### 5 Summary

イロト イポト イヨト イヨト

E

Summary

## Shannon Codes

 Kraft-McMillan characterization: Uniquely decodeable codelengths

$$L(\underline{x}), \quad \underline{x} \in \underline{\mathcal{X}}, \qquad \qquad \sum_{\underline{x}} 2^{-L(\underline{x})} \le 1$$
$$L(\underline{x}) = \log 1/p(\underline{x}) \qquad \qquad p(\underline{x}) = 2^{-L(\underline{x})}$$

• Operational meaning of probability:

A probability distribution p is given by a choice of code

イロト イポト イヨト イヨト

Summary

## Complexity

• Kolmogorov Idealized Compression:

 $K(\underline{Y}) =$  Length of shortest computer code for  $\underline{Y}$  on a given universal computer

• Shannon Idealized Codelength (expectation optimal):

 $\log 1/p^*(\underline{Y})$ 

- But p\* is not generally known
- Hybrid: Statistical measure of Complexity of Y

$$\min_{p} \left[ \log 1/p(\underline{Y}) + L(p) \right]$$

• Valid for any *L*(*p*) satisfying Kraft summability.

Summary

## Complexity

- Minimum Description Length Principle (MDL)
- Special cases: Rissanen 1978,1983,...
- Two-stage codelength formulation: (Cover Scratch pad 1981, B. 1985, B. and Cover 1991)

$$L(\underline{Y}) = \min_{p} \begin{bmatrix} \log 1/p(\underline{Y}) + L(p) \end{bmatrix}$$

bits for  $\underline{x}$  given p + bits for p

 Corresponding statistical estimator p̂ achieves the above minimization in a family of distributions for a specified L(p)

イロト イポト イヨト イヨト

Summary

## **MDL** Analysis

• Redundancy of Two-stage Code:

$$Red = rac{1}{n}E\left\{\min_{p}\left[\lograc{1}{p(\underline{Y})} + L(p)
ight] - \lograc{1}{p^{*}(\underline{Y})}
ight\}$$

• bounded by Index of Resolvability:

$$\textit{Res}_n(p^*) = \min_p \left\{ D(p^* || p) + \frac{L(p)}{n} \right\}$$

• Statistical Risk Analysis in i.i.d. case:

$$E d^2(p^*, \hat{p}) \leq \min_{p} \left\{ D(p^* \| p) + \frac{L(p)}{n} \right\}$$

 B. 1985, B.&Cover 1991, B., Rissanen, Yu 1998, Li 1999, Grunwald 2007

Summary

## **MDL** Analysis

• Statistical Risk Analysis:

$$E d^2(p^*, \hat{p}) \leq \min_{p} \{ D(p^* || p) + L(p)/n \}$$

Special Cases:

Traditional parametric:  $L(\theta) = (dim/2) \log n + C$ Nonparametric: L(p) = Metric entropy

(log cardinality of optimal net)

Idealized: L(p) =Kolmogorov complexity

• Adaptation:

Achieves minimax optimal rates simultaneously in every computable subfamily of distributions

イロト イ押ト イヨト イヨト

Summary

## MDL Analysis: Key to risk consideration

Discrepancy between training sample and future

$$\mathit{Disc}(
ho) = \log rac{
ho^*(\underline{Y})}{
ho(\underline{Y})} - \log rac{
ho^*(\underline{Y}')}{
ho(\underline{Y}')}$$

- Future term may be replaced by population counterpart
- Discrepancy control: If *L*(*p*) satisfies the Kraft sum then

$$E\left[\sup_{p}\left\{\textit{Disc}(p)+2L(p)\right\}\right]\geq 0$$

 From which the risk bound follows: Risk < Redundancy < Resolvability</li>

$$Ed^2(p^*, \hat{p}) \leq Red \leq Res_n(p^*)$$

イロト イポト イヨト イヨト

Summarv

## Statistically valid penalized likelihood

- New result
- (B., Li, Huang, Luo 2008, Festschrift for Jorma Rissanen)
- Penalized Likelihood:

$$\hat{p} = \arg\min_{p} \left\{ \frac{1}{n} \log \frac{1}{p(\underline{Y})} + pen_n(p) \right\}$$

• Penalty condition:

$$pen_n(p) \geq rac{1}{n} \min_{ ilde{
ho}} \left\{ 2L( ilde{
ho}) \ + \ \Delta_n(
ho, ilde{
ho}) 
ight\}$$

where the distortion  $\Delta_n(p, \tilde{p})$  is the difference in discrepancies at *p* and a representer  $\tilde{p}$ 

• Risk conclusion:

$$\mathsf{Ed}^2(p,\hat{p}) \leq \inf_p \left\{ D(p^* \| p) + pen_n(p) 
ight\}$$

Summarv

## Example: $\ell_1$ penalties on coefficients in gen. linear models

- $\bullet \ {\cal G}$  is a dictionary of candidate basis functions
- Wavelets, splines, polynomials, trigonometric terms, sigmoids, explanatory variables and their interactions
- Candidate functions in the linear span

$$f(x) = f_{\theta}(x) = \sum_{g \in \mathcal{G}} \theta_g g(x)$$

•  $\ell_1$  norm of coefficients

$$\|\theta\|_1 = \sum_g |\theta_g|$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Summary

## Example Models

•  $p = p_f$  specified through a family of function f

#### Regression

$$p_f(y|x) = \operatorname{Normal}(f(x), \sigma^2)$$

• Logistic regression with  $y \in \{0, 1\}$ 

$$p_f(y|x) = \text{Logistic}(f(x))$$
 for  $y = 1$ 

Log-density estimation

$$p_f(x) = \frac{p_0(x) \exp\{f(x)\}}{c_f}$$

イロト イポト イヨト イヨト

Summary



- $pen_n(f_{\theta}) = \lambda_n \|\theta\|_1$  where  $f_{\theta}(x) = \sum_{g \in \mathcal{G}} \theta_g g(x)$
- Popular penalty: Chen & Donoho (96) Basis Pursuit; Tibshirani (96) LASSO; Efron et al (04) LARS; Precursors: Jones (92), B.(90,93,94) greedy algorithm and analysis of combined l<sub>1</sub> and l<sub>0</sub> penalty
- Risk analysis: specify valid  $\lambda_n$  for risk  $\leq$  resolvability
- Computation analysis: bound accuracy of new  $\ell_1$ -penalized greedy pursuit algorithm

(ロ) (同) (三) (三) (三) (○)

Summary

## $\ell_1$ penalty is valid for $\lambda_n$ of order $1/\sqrt{n}$

• Example:  $\ell_1$  penalized log-density estimation, i.i.d. case

$$\hat{\theta} = \operatorname{argmin}_{\theta} \left\{ \frac{1}{n} \log \frac{1}{p_{f_{\theta}}(\underline{x})} + \lambda_n \|\theta\|_1 \right\}$$

Risk bound:

$$Ed(f^*, f_{\hat{\theta}}) \leq \inf_{\theta} \left\{ D(f^* || f_{\theta}) + \lambda_n \| \theta \|_1 \right\}$$

- Valid for  $\lambda_n \geq B\sqrt{\frac{H}{n}}$  with  $H = \log Card(\mathcal{G})$
- B = bound on the range of functions in G
- For infinite cardinality  $\mathcal{G}$  use metric entropy in place of H
- Results for regression shown in a companion paper

Summary

## $\ell_1$ penalty is valid for $\lambda_n$ of order $1/\sqrt{n}$

• Example:  $\ell_1$  penalized log-density estimation, i.i.d. case

$$\hat{\theta} = \operatorname{argmin}_{\theta} \left\{ \frac{1}{n} \log \frac{1}{p_{f_{\theta}}(\underline{x})} + \lambda_{n} \|\theta\|_{1} \right\}$$

Risk bound:

$$Ed(f^*, f_{\hat{\theta}}) \leq \inf_{\theta} \left\{ D(f^* || f_{\theta}) + \lambda_n \| \theta \|_1 \right\}$$

True with

$$\lambda_n = B \sqrt{\frac{H}{n}}$$
 with  $H = \log Card(\mathcal{G})$ 

• Risk of order  $\lambda_n$  when the target has finite  $\ell_1$  norm

Summary

#### Comment on proof

- Shannon-like demonstration of the existence of the variable complexity cover property
- Inspiration from technique originating with Lee Jones (92)
- Representer  $\tilde{f}$  of  $f_{\theta}$  of the form

$$\tilde{f}(x) = rac{v}{m} \sum_{k=1}^{m} g_k(x)$$

- *g*<sub>1</sub>,..., *g<sub>m</sub>* picked at random from *G*, independently, where *g* arises with probability proportional to |*θ<sub>g</sub>*|
- May pick them in greedy fashion as in demonstration of fast computation properties
- In the paper in the Festschrift for Rissanen with summary in the ITW - Porto proceedings

### **Outline of Principles**



Monotonicity of Information Divergence

- 2 Information-Stability, Error Probability, Info-Projection
- 3 Shannon Capacity Determines Limits of Statistical Accuracy

#### 4 Simplest is Best



イロト イポト イヨト イヨト



- Information divergence is monotone
- Info Capacity  $\sim$  Minimax Redundancy  $\sim$  Minimax Risk
- Adaptivity of MDL: simultaneously minimax optimal
- Penalized Likelihood risk analysis
- $\ell_0$  penalty  $\frac{dim}{2}$  log *n* classically analyzed
- $\ell_1$  penalty  $\lambda_n \|\theta\|_1$  valid for  $\lambda_n \ge \sqrt{H/n}$ .

イロト イポト イヨト イヨト