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Monotonicity of Information Divergence

Chain Rule

D(PX ,X ′‖P∗
X ,X ′) = D(PX‖P∗

X ) + E D(PX ′|X‖P∗
X ′|X )

= D(PX ′‖P∗
X ′) + E D(PX |X ′‖P∗

X |X ′)

Markov Chains

D(PXn‖P∗) ≤ D(PXm‖P∗) for n > m

and log pn(Xn)/p∗(Xn) is a Cauchy sequence in L1(P)
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Monotonicity of Information Divergence

Nonnegative Martingales ρn equal the density of a
measure Qn and can be examined in the same way by the
chain rule for n > m

D(Qn‖P) = D(Qm‖P) +

∫ (
ρn log

ρn

ρm

)
dP

Thus D(Qn‖P) is an increasing sequence. When it is
bounded ρn is a Cauchy sequences in L1(P) with limit ρ
defining a measure Q, also, log ρn is a Cauchy sequence in
L1(Q) and

D(Qn‖P) ↗ D(Q‖P)
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Monotonicity of Information Divergence: CLT

Central Limit Theorem Setting:

{Xi} i.i.d. mean zero, finite variance
Pn = PYn is distribution of Yn = X1+X2+...Xn√

n

P∗ is the corresponding normal distribution

Chain Rule: Action is mysterious in this case

D(PYm,Yn‖P∗
Ym,Yn

) = D(PYm‖P∗) + ED(PYn|Ym‖P
∗
Yn|Ym

)

= D(PYn‖P∗) + ED(PYm|Yn‖P
∗
Ym|Yn

)
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Monotonicity of Information Divergence: CLT

Entropy Power Inequality

e2H(X+X ′) ≥ e2H(X) + e2H(X ′)

yields
D(P2n‖P∗) ≤ D(Pn‖P∗)

Information Theoretic proof of CLT (B. 1986):

D(Pn‖P∗) → 0 iff finite
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Monotonicity of Information Divergence: CLT

Entropy Power Inequality

e2H(X+X ′) ≥ e2H(X) + e2H(X ′)

Generalized Entropy Power Inequality (Madiman&B.2006)

eH(X1+...+Xn) ≥ 1
r(S)

∑
s∈S

e2H(
P

i∈s Xi )

Proof: simple L2 projection properties of entropy derivative.
Consequence, for all n > m,

D(Pn‖P∗) ≤ D(Pm‖P∗)

B. and Madiman 2006, Tolino and Verdú 2006
Earlier elaborate proof by Artstein, Ball, Barthe, Naor 2004.
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AEP and behavior of optimal tests

Stability of log-likelihood ratios,
1
n

log
p(Y1, Y2, . . . Yn)

q(Y1, Y2, . . . , Yn)
→ D(P‖Q) with P − prob 1

where D(P‖Q) is the relative entropy (I-divergence) rate.
Implication: Associated log-likelihood ratio test An has
asymptotic P-power 1 (at most finitely many mistakes
P(Ac

n i .o.) = 0) and has optimal Q-prob of error

Q(An) = exp{−n[D + o(1)]}
Most general known form of the Chernoff-Stein Lemma.
Intrinsic role for information divergence rate

D(P‖Q) = lim
1
n

D(PY n‖QY n)
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Large Deviations for Empirical Prob and Conditional
Limit

P∗: Information Projection of Q onto convex C
Pythagorean Identity (Csiszar 75, Topsoe 79): For P in C

D(P‖Q) ≥ D(C‖Q) + D(P‖P∗)

where
D(C‖Q) = inf

P∈C
D(P‖Q)

Empirical Distribution Pn
If D(interiorC‖Q) = D(C‖Q) then

Q{Pn ∈ C} = exp{−n[D(C‖Q) + o(1)]}
and the conditional distribution PY1,Y2,...,Yn|{Pn∈C} converges
to P∗

Y1,Y2,...,Yn
in the I-divergence rate sense (Csiszar 1985)
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Information Capacity

A Channel θ → Y is a family of probability distributions

{PY |θ : θ ∈ Θ}

Information Capacity

C = max
Pθ

I(θ; Y )
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Communications Capacity

Ccom = maximum rate of reliable communication,
measured in message bits per use of a channel

Shannon Channel Capacity Theorem (Shannon 1948)

Ccom = C

Andrew Barron Principles of Information Theory in Probability and Statist. 15/36



Monotonicity of Information Divergence
Information-Stability, Error Probability, Info-Projection

Shannon Capacity Determines Limits of Statistical Accuracy
Simplest is Best

Summary

Data Compression Capacity

Minimax Redundancy

Red = min
QY

max
θ∈Θ

D(PY |θ‖QY )

Data Compression Capacity Theorem

Red = C

(Gallager, Davisson & Leon-Garcia, Ryabko)
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Statistical Risk Setting

Loss function
`(θ, θ′)

Examples:

Kullback Loss

`(θ, θ′) = D(PY |θ‖PY |θ′)

Squared metric loss, e.g. squared Hellinger loss:

`(θ, θ′) = d2(θ, θ′)

Andrew Barron Principles of Information Theory in Probability and Statist. 17/36



Monotonicity of Information Divergence
Information-Stability, Error Probability, Info-Projection

Shannon Capacity Determines Limits of Statistical Accuracy
Simplest is Best

Summary

Statistical Capacity

Estimators: θ̂n

Based on sample Y of size n

Minimax Risk (Wald):

rn = min
θ̂n

max
θ

E`(θ, θ̂n)
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Ingredients for determination of Statistical Capacity

Kolmogorov Metric Entropy of S ⊂ Θ:

H(ε) = max{log Card(Θε) : d(θ, θ′) > ε for θ, θ′ ∈ Θε ⊂ S}

Loss Assumption, for θ, θ′ ∈ S:

`(θ, θ′) ∼ D(PY |θ‖PY |θ′) ∼ d2(θ, θ′)
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Statistical Capacity Theorem

For infinite-dimensional Θ

With metric entropy evaluated a critical separation εn

Statistical Capacity Theorem
Minimax Risk ∼ Info Capacity Rate ∼ Metric Entropy rate

rn ∼ Cn

n
∼ H(εn)

n
∼ ε2

n

Yang 1997, Yang and B. 1999, Haussler and Opper 1997
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Shannon Codes

Kraft-McMillan characterization:
Uniquely decodeable codelengths

L(x), x ∈ X ,
∑

x

2−L(x) ≤ 1

L(x) = log 1/p(x) p(x) = 2−L(x)

Operational meaning of probability:

A probability distribution p is given by a choice of code

Andrew Barron Principles of Information Theory in Probability and Statist. 22/36



Monotonicity of Information Divergence
Information-Stability, Error Probability, Info-Projection

Shannon Capacity Determines Limits of Statistical Accuracy
Simplest is Best

Summary

Complexity

Kolmogorov Idealized Compression:
K (Y ) = Length of shortest computer code for Y

on a given universal computer

Shannon Idealized Codelength (expectation optimal):

log 1/p∗(Y )

But p∗ is not generally known
Hybrid: Statistical measure of Complexity of Y

min
p

[
log 1/p(Y ) + L(p)

]
Valid for any L(p) satisfying Kraft summability.
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Complexity

Minimum Description Length Principle (MDL)
Special cases: Rissanen 1978,1983,...
Two-stage codelength formulation:
(Cover Scratch pad 1981, B. 1985, B. and Cover 1991)

L(Y ) = min
p

[
log 1/p(Y ) + L(p)

]
bits for x given p + bits for p

Corresponding statistical estimator p̂ achieves the above
minimization in a family of distributions for a specified L(p)
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MDL Analysis

Redundancy of Two-stage Code:

Red =
1
n

E
{

min
p

[
log

1
p(Y )

+ L(p)
]
− log

1
p∗(Y )

}
bounded by Index of Resolvability:

Resn(p∗) = min
p

{
D(p∗||p) +

L(p)

n

}
Statistical Risk Analysis in i.i.d. case:

E d2(p∗, p̂) ≤ min
p

{
D(p∗‖p) +

L(p)

n

}
B. 1985, B.&Cover 1991, B., Rissanen, Yu 1998, Li 1999,
Grunwald 2007
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MDL Analysis

Statistical Risk Analysis:

E d2(p∗, p̂) ≤ min
p
{D(p∗‖p) + L(p)/n}

Special Cases:
Traditional parametric: L(θ) = (dim/2) log n + C
Nonparametric: L(p) = Metric entropy

(log cardinality of optimal net)
Idealized: L(p) = Kolmogorov complexity
Adaptation:
Achieves minimax optimal rates simultaneously in every
computable subfamily of distributions
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MDL Analysis: Key to risk consideration

Discrepancy between training sample and future

Disc(p) = log
p∗(Y )

p(Y )
− log

p∗(Y ′)

p(Y ′)

Future term may be replaced by population counterpart
Discrepancy control: If L(p) satisfies the Kraft sum then

E
[

sup
p
{Disc(p) + 2L(p)}

]
≥ 0

From which the risk bound follows:
Risk ≤ Redundancy ≤ Resolvability

E d2(p∗, p̂) ≤ Red ≤ Resn(p∗)
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Statistically valid penalized likelihood

New result
(B., Li, Huang, Luo 2008, Festschrift for Jorma Rissanen)
Penalized Likelihood:

p̂ = arg min
p

{
1
n

log
1

p(Y )
+ penn(p)

}
Penalty condition:

penn(p) ≥ 1
n

min
p̃
{2L(p̃) + ∆n(p, p̃)}

where the distortion ∆n(p, p̃) is the difference in
discrepancies at p and a representer p̃
Risk conclusion:

Ed2(p, p̂) ≤ inf
p
{D(p∗‖p) + penn(p)}
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Example: `1 penalties on coefficients in gen. linear
models

G is a dictionary of candidate basis functions
Wavelets, splines, polynomials, trigonometric terms,
sigmoids, explanatory variables and their interactions

Candidate functions in the linear span

f (x) = fθ(x) =
∑
g∈G

θg g(x)

`1 norm of coefficients

‖θ‖1 =
∑

g

|θg |
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Example Models

p = pf specified through a family of function f

Regression
pf (y |x) = Normal(f (x), σ2)

Logistic regression with y ∈ {0, 1}

pf (y |x) = Logistic(f (x)) for y = 1

Log-density estimation

pf (x) =
p0(x) exp{f (x)}

cf
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`1 Penalty

penn(fθ) = λn‖θ‖1 where fθ(x) =
∑

g∈G θg g(x)

Popular penalty: Chen & Donoho (96) Basis Pursuit;
Tibshirani (96) LASSO; Efron et al (04) LARS;
Precursors: Jones (92), B.(90,93,94) greedy algorithm and
analysis of combined `1 and `0 penalty

Risk analysis: specify valid λn for risk ≤ resolvability
Computation analysis: bound accuracy of new
`1-penalized greedy pursuit algorithm
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`1 penalty is valid for λn of order 1/
√

n

Example: `1 penalized log-density estimation, i.i.d. case

θ̂ = argminθ

{
1
n

log
1

pfθ(x)
+ λn‖θ‖1

}
Risk bound:

Ed(f ∗, fθ̂) ≤ inf
θ

{
D(f ∗||fθ) + λn‖θ‖1

}
Valid for λn ≥ B

√
H
n with H = log Card(G)

B = bound on the range of functions in G
For infinite cardinality G use metric entropy in place of H
Results for regression shown in a companion paper
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`1 penalty is valid for λn of order 1/
√

n

Example: `1 penalized log-density estimation, i.i.d. case

θ̂ = argminθ

{
1
n

log
1

pfθ(x)
+ λn‖θ‖1

}
Risk bound:

Ed(f ∗, fθ̂) ≤ inf
θ

{
D(f ∗||fθ) + λn‖θ‖1

}
True with

λn = B

√
H
n

with H = log Card(G)

Risk of order λn when the target has finite `1 norm
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Comment on proof

Shannon-like demonstration of the existence of the
variable complexity cover property
Inspiration from technique originating with Lee Jones (92)
Representer f̃ of fθ of the form

f̃ (x) =
v
m

m∑
k=1

gk (x)

g1, . . . gm picked at random from G, independently, where g
arises with probability proportional to |θg |
May pick them in greedy fashion as in demonstration of
fast computation properties
In the paper in the Festschrift for Rissanen with summary
in the ITW - Porto proceedings
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Summary

Information divergence is monotone

Info Capacity ∼ Minimax Redundancy ∼ Minimax Risk

Adaptivity of MDL: simultaneously minimax optimal

Penalized Likelihood risk analysis
`0 penalty dim

2 log n classically analyzed

`1 penalty λn ‖θ‖1 valid for λn ≥
√

H/n.
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