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© The Gaussian channel
© Sparse Superposition Codes

© Partitioned Superposition Codes

@ Encoding
@ Performance of Least Squares Decoding

@ Analysis of Reliability at Rates up to Capacity
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Gaussian Channel. (Power P, Noise variance 0?)

Channel
Message Codeword
(length K bits) (length n)

Noise € ~ Normal(0,c?1,)

Characteristics

@ Power constraint: Ave ||x||?<nP
@ signal-to-noise: v = P/o?

o Capacity: 3 log(1+ %)
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Gaussian Channel. (Power P, Noise variance 0?)

Channel
Message Codeword
(length K bits) (length n)

Noise € ~ Normal(0,c?1,)

Interested in

Characteristics

e Power constraint: Ave||x||2<nP o Rate: R=K/n

@ signal-to-noise: v = P/o? o Prob{d # u}

o Capacity: 3 log(1+ 5) e Low fraction of mistakes
g
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Gaussian Channel

Challenges in Code construction

Achieve Rate arbitrarily close to Capacity

Good error exponents
Manageable codebook

Fast Encoding

Fast Decoding
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Sparse Superposition Codes

Model : Y = X3 + ¢ |
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Sparse Superposition Codes

Model : Y = X3 +¢ J
Encoder Channel
T i R SN g I
Message Codeword
(length K) (length n)

Noise € ~ N(0,02/,)

Code design

@ n x N design matrix X
@ Received string: Y = X3+ ¢

o Coefficient vector (3 is sparse is non-zero values
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Sparse Superposition Codes

Model : Y = X3 +¢ J
Encoder Channel
T i R SN g I
Message Codeword
(length K) (length n)

Noise € ~ N(0,02/,)

Code design

@ n x N design matrix X
@ Received string: Y = X3+ ¢
o Coefficient vector (3 is sparse is non-zero values

@ Not a linear code in algebraic coding sense
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Sparse Superposition Codes

Code design
@ n x N matrix X with entries independent Normal(0, P/L)

@ [ has exactly L, with L < N non-zero elements, all equal to 1
o Average of || Xj||?> < nP

@ Codeword is the sum of the selected columns
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Partitioned Superposition Codes

Section 1 ‘ Section 2 ‘ ‘ Section L

k—B columns—%——B columns— k—B columns—A
| | |
\ \ \
\ \ \
X = \ \ \
| | |
\ \ \

B= (s Ly, eeereeereeens 1, .. e 1,..)
\ \ \

Code design

@ n x N matrix X with entries independent Normal(0, P/L)
@ Columns of X divided into L sections of size B. So N = LB

@ [ has exactly one element non-zero in each section
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Partitioned Superposition Codes

Section 1 ‘ Section 2 ‘ ‘ Section L
—
k—B columns—¥%——B columns— k—B columns—A
| | |
\ \ \
\ \ \
X = \ \ \
| | |
\ \ \
B= (s lynne. I )1, rveereerennes 1,.)
\ \ \

Relationship: L, B, n and R

o Number of codewords : Bt
@ Length of message string K = Llog, B bits
o Blocklength n = (1/R)Llog B
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Partitioned Superposition Codes

Section 1 ‘ Section 2 ‘ ‘ Section L
—
k—B columns—¥%——B columns— k—B columns—A
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Map from Message u to 3

011100001101 @ Assume length of u, K = Llog, B
For ex. take L = 3 and log, B = 4.
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Map from Message u to 3

011100001101 @ Assume length of u, K = Llog, B
— Y~ For ex. take L = 3 and log, B = 4.

@ Split u into L subtrings of log, B bits
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Map from Message u to 3

011100001101 @ Assume length of u, K = Llog, B
- Yy For ex. take L = 3 and log, B = 4.

@ Split u into L subtrings of log, B bits

@ Substrings give addresses of chosen
0111 0000 1101 columns
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Map from Message u to 3

011100001101 @ Assume length of u, K = Llog, B
- Yy For ex. take L = 3 and log, B = 4.

@ Split u into L subtrings of log, B bits

@ Substrings give addresses of chosen
7 0 13 columns

N
N
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Map from Message u to [3

@ Assume length of u, K = Llog, B
—— —~— —— For ex. take L = 3 and log, B = 4.

@ Split u into L subtrings of log, B bits

@ Substrings give addresses of chosen

7 0 13 columns
Non-zero elements of [3: e For map : u — ﬁ,
7th element from Section 1 Choose non-zero elements of (§ in each

0t element from Section 2 section as given by these indices

13t" element from Section 3
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Decoding, Least Squares

Least Square Decoder

e Find (3 which minimizes ||Y — X3||2 over 3's of the assumed form

N
N

Barron, Joseph (Yale) Least Squares, Superposition codes 9/



Decoding, Least Squares

Least Square Decoder

e Find (3 which minimizes ||Y — X3||2 over 3's of the assumed form

Reliability

e Want error ﬁA = (* to have small probability, when 3* is sent
e Small probability of Block error
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Decoding, Least Squares

Least Square Decoder

e Find (3 which minimizes ||Y — X3||2 over 3's of the assumed form

Reliability

e Want error ﬁA = (* to have small probability, when 3* is sent
e Small probability of Block error

@ Less stringent, want B to not equal to 5* in at most « sections

e Small probability that section error rate is greater than «
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Decoding, Least Squares

@ Least Squares is the optimal decoder. It minimizes probability of error
with uniform distribution on input strings
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Decoding, Least Squares

@ Least Squares is the optimal decoder. It minimizes probability of error
with uniform distribution on input strings

@ Analysis here of performance of Least Squares, without concern for
computational feasibility

@ A computationally feasible algorithm discussed
Today, Session S-Fr-3, 2:40-4:00 p.m.
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Performance of Least Squares

Result 1: Section size

@ To achieve rates up to capacity, the section size B need only be a
polynomial in L.

@ In particular, B = L?, where a, is a function of only v.

e a, is decreasing function of v
e a, is near 1 for large v

e Dictionary size N = [1Ta
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Plot of a,

section size rate
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Performance of Least Squares

Result 2: Error Exponent

o Let

€ = Prob{# section mistakes > aL}

be the probability that more than « fraction of sections are wrong.

Then,
e < exp{—nc, min(a, (C—R)?)}

where ¢, is a constant that depends on only v.
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Performance of Least Squares

From Partially Correct to Completely Correct Decoding

@ Let R be a rate for which the partitioned superposition code has

Prob{# section mistakes > aL} = e.

@ Then through composition with an outer Reed-Solomon code, one
obtains a code with Rate R;o: = (1 — 2c)R and

Prob{block error} = e
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Performance of Least Squares

From Partially Correct to Completely Correct Decoding

@ Let R be a rate for which the partitioned superposition code has

Prob{# section mistakes > aL} = e.

@ Then through composition with an outer Reed-Solomon code, one
obtains a code with Rate R;o: = (1 — 2c)R and

Prob{block error} = e

v

Corollary 3: Block error probability

e Taking a of order (C—R)? we have
Prob{block error} < exp{—n&,(C — Riot)?}

@ Optimal form of exponent as in Shannon & Gallager or Polyanskiy
et.al
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Performance of Least Squares

Comparison with PPV curve

@ Polyanskiy, Poor and Verdu demonstrate that for the Gaussian
channel the following approximate relation holds for an optimal code

|V llogn
RNC nQ (€)+2 n

(v/2)(v 4 2)log? e/(v + 1)? is the channel dispersion
1 — &, where ® is Gaussian distribution function

oV
o Q=

Barron, Joseph (Yale) Least Squares, Superposition codes 15 / 22



Comparison with PPV curve
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Superpositions for Multiple users vs our Single user channel

@ Cover introduced Superposition Codes for multi-user Gaussian
channels

@ Codeword sent is sum of codewords for respective users

@ Here we use superpositions for simplification of the single user channel
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Relationship to Sparse Signal Recovery

@ Wainwright and others: Necessary and Sufficient conditions on n for
sparsity recovery. When applied to our settings where N >> L, these
give that the n required is constant x Llog(N/L)

@ It is natural to call (the reciprocal of) the best constant, for a given
set of allowed signals and given noise distribution, the compressed
sensing capacity or signal recovery capacity.

@ For our setting n = (1/R)Llog B so that the best constant is 1/C and
thus the signal recovery capacity is equal to the Shannon capacity.
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Error Probability Bound

o Least squares estimate (3 satisfies | Y — X3|2 < |Y — X%

@ Error event of a fraction of o = ¢/L section mistakes, contained in

E. = {|Y — XB]2 < |Y — XB*|? for some 3 € Wrong,}

where Wrong,, is the set of 3 differing from 3* in fraction « sections.

@ Our bound: "
Prob[E,] < (aL) exp{—nD,}

@ Exponent D, is sufficiently large to cancel the combinatorial
coefficient provided the B > L% and R < C.
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Some ingredients of the error exponent

e Ingredients in D, = D(A,, p2)

A, =a(C—-R)+(Cy —al)

Co = (1/2) log(1 + av)
102 = a(l—a)v/(1 + %)

e D(A, p?) is the cumulant generating function for (1/2)(Z? — Z3) with
/1, Z» bivariate normal, mean zero, unit variance and correlation p.
o Near (1/2)A2/(1—p?) for small A
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Contributions to Error Expon
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@ Sparse superposition coding is reliable at rates up to channel capacity
@ Error probability of the optimum form for R < C

@ Analysis blends modern statistical regression and information theory

Thank You
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