Least Squares Superposition Codes of Moderate Dictionary Size, Reliable at Rates up to Capacity

Antony Joseph

Department of Statistics Yale University

Joint work with Andrew Barron

June 13-18, 2009 2010 IEEE International Symposium on Information Theory

1 The Gaussian channel

2 Sparse Superposition Codes

3 Partitioned Superposition Codes

- Encoding
- Performance of Least Squares Decoding

Analysis of Reliability at Rates up to Capacity

Gaussian Channel. (Power P, Noise variance σ^2)

Characteristics

- Power constraint: Ave $||x||^2 \le nP$
- signal-to-noise: $v = P/\sigma^2$

• Capacity:
$$\frac{1}{2}\log(1+\frac{P}{\sigma^2})$$

Gaussian Channel. (Power P, Noise variance σ^2)

Characteristics

- Power constraint: Ave $||x||^2 \le nP$
- signal-to-noise: $v = P/\sigma^2$

• Capacity:
$$\frac{1}{2}\log(1+\frac{P}{\sigma^2})$$

Interested in

• Rate:
$$R = K/n$$

• Prob
$$\{\hat{u} \neq u\}$$

• Low fraction of mistakes

- 4 回 ト 4 ヨ ト 4 ヨ ト

Challenges in Code construction

- Achieve Rate arbitrarily close to Capacity
- Good error exponents
- Manageable codebook
- Fast Encoding
- Fast Decoding

Model : $Y = X\beta + \epsilon$

э

イロト イポト イヨト イヨト

Model :
$$Y = X\beta + \epsilon$$

Code design

- n × N design matrix X
- Received string: $Y = X\beta + \epsilon$
- Coefficient vector β is sparse is non-zero values

э

イロト イポト イヨト イヨト

Model :
$$Y = X\beta + \epsilon$$

Code design

- n × N design matrix X
- Received string: $Y = X\beta + \epsilon$
- Coefficient vector β is sparse is non-zero values
- Not a linear code in algebraic coding sense

э

< □ > < 同 > < 回 > < 回 > < 回 >

Code design

- $n \times N$ matrix X with entries independent Normal(0, P/L)
- β has exactly L, with $L \ll N$ non-zero elements, all equal to 1
- Average of $||X\beta||^2 \le nP$
- Codeword is the sum of the selected columns

< ロト < 同ト < ヨト < ヨト

Partitioned Superposition Codes

Code design

- $n \times N$ matrix X with entries independent Normal(0, P/L)
- Columns of X divided into L sections of size B. So N = LB
- β has exactly one element non-zero in each section

< 日 > < 同 > < 三 > < 三 >

Partitioned Superposition Codes

Relationship: L, B, n and R

- Number of codewords : B^L
- Length of message string $K = L \log_2 B$ bits
- Blocklength $n = (1/R)L \log B$

э

イロト イボト イヨト イヨト

Partitioned Superposition Codes

э

< 日 > < 同 > < 三 > < 三 >

$0 \ 1 \ 1 \ 1 \ 0 \ 0 \ 0 \ 1 \ 1 \ 0 \ 1$

Map from Message u to β

• Assume length of u, $K = L \log_2 B$ For ex. take L = 3 and $\log_2 B = 4$.

4 3 4 3 4 3 4

$\underbrace{0\,1\,1\,1}_{}\,\underbrace{0\,0\,0\,0}_{}\,\underbrace{1\,1\,0\,1}_{}$

Map from Message u to β

- Assume length of u, $K = L \log_2 B$ For ex. take L = 3 and $\log_2 B = 4$.
- Split u into L subtrings of $\log_2 B$ bits

Map from Message u to β

- Assume length of u, $K = L \log_2 B$ For ex. take L = 3 and $\log_2 B = 4$.
- Split u into L subtrings of $\log_2 B$ bits

• Substrings give addresses of chosen columns

4 3 4 3 4 3 4

Map from Message u to β

- Assume length of u, $K = L \log_2 B$ For ex. take L = 3 and $\log_2 B = 4$.
- Split u into L subtrings of $\log_2 B$ bits

• Substrings give addresses of chosen columns

4 3 4 3 4 3 4

13th element from Section 3

Map from Message u to β

- Assume length of u, $K = L \log_2 B$ For ex. take L = 3 and $\log_2 B = 4$.
- Split u into L subtrings of $\log_2 B$ bits

- Substrings give addresses of chosen columns
- For map : $u \to \beta$,

Choose non-zero elements of β in each section as given by these indices

・ロト ・四ト ・ヨト ・ヨト

Least Square Decoder

• Find $\hat{\beta}$ which minimizes $||Y - X\beta||^2$ over β 's of the assumed form

Least Square Decoder

• Find $\hat{\beta}$ which minimizes $||Y - X\beta||^2$ over β 's of the assumed form

Reliability

- Want error $\hat{\beta} \neq \beta^*$ to have small probability, when β^* is sent
 - Small probability of Block error

Least Square Decoder

• Find $\hat{\beta}$ which minimizes $||Y - X\beta||^2$ over β 's of the assumed form

Reliability

- Want error $\hat{\beta} \neq \beta^*$ to have small probability, when β^* is sent
 - Small probability of Block error
- Less stringent, want $\hat{\beta}$ to not equal to β^* in at most $\pmb{\alpha}$ sections
 - $\bullet\,$ Small probability that section error rate is greater than $\alpha\,$

• Least Squares is the optimal decoder. It minimizes probability of error with uniform distribution on input strings

- Least Squares is the optimal decoder. It minimizes probability of error with uniform distribution on input strings
- Analysis here of performance of Least Squares, without concern for computational feasibility
- A computationally feasible algorithm discussed

Today, Session S-Fr-3, 2:40-4:00 p.m.

Result 1: Section size

- To achieve rates up to capacity, the section size *B* need only be a polynomial in *L*.
- In particular, $B = L^{a_v}$, where a_v is a function of only v.
 - a_v is decreasing function of v
 - a_v is near 1 for large v
- Dictionary size $N = L^{1+a_v}$

Plot of a_v

٧

Barron, Joseph (Yale)

æ

イロト イヨト イヨト イヨト

Result 2: Error Exponent

Let

$$\epsilon = \mathsf{Prob}\{\# \text{ section mistakes} > \alpha L\}$$

be the probability that more than α fraction of sections are wrong. Then,

$$\epsilon \leq \exp\{-n c_{v} \min(\alpha, (C-R)^{2})\}$$

where c_v is a constant that depends on only v.

From Partially Correct to Completely Correct Decoding

• Let R be a rate for which the partitioned superposition code has

 $\mathsf{Prob}\{\# \textit{ section mistakes} > \alpha L\} = \epsilon.$

• Then through composition with an outer Reed-Solomon code, one obtains a code with Rate $R_{tot} = (1 - 2\alpha)R$ and

 $\mathsf{Prob}\{\mathit{block error}\} = \epsilon$

From Partially Correct to Completely Correct Decoding

• Let R be a rate for which the partitioned superposition code has

 $\mathsf{Prob}\{\# \textit{ section mistakes} > \alpha L\} = \epsilon.$

• Then through composition with an outer Reed-Solomon code, one obtains a code with Rate $R_{tot} = (1 - 2\alpha)R$ and

 $\mathsf{Prob}\{\mathit{block error}\} = \epsilon$

Corollary 3: Block error probability

• Taking α of order $(C-R)^2$ we have

 $\mathsf{Prob}\{\mathit{block error}\} \le \exp\{-n\,\tilde{c}_{v}(C-R_{tot})^{2}\}$

• Optimal form of exponent as in Shannon & Gallager or Polyanskiy et.al

(日) (同) (三) (三)

Comparison with PPV curve

• Polyanskiy, Poor and Verdu demonstrate that for the Gaussian channel the following approximate relation holds for an optimal code

$$R \approx C - \sqrt{\frac{V}{n}}Q^{-1}(\epsilon) + \frac{1}{2}\frac{\log n}{n}$$

V = (v/2)(v + 2) log² e/(v + 1)² is the channel dispersion
 Q = 1 - Φ, where Φ is Gaussian distribution function

Comparison with PPV curve

Barron, Joseph (Yale)

16 / 22

æ

- Cover introduced Superposition Codes for multi-user Gaussian channels
- Codeword sent is sum of codewords for respective users
- Here we use superpositions for simplification of the single user channel

- Wainwright and others: Necessary and Sufficient conditions on n for sparsity recovery. When applied to our settings where $N \gg L$, these give that the n required is *constant* $\times L \log(N/L)$
- It is natural to call (the reciprocal of) the best constant, for a given set of allowed signals and given noise distribution, the compressed sensing capacity or signal recovery capacity.
- For our setting $n = (1/R)L \log B$ so that the best constant is 1/C and thus the signal recovery capacity is equal to the Shannon capacity.

Analysis

- Least squares estimate $\hat{\beta}$ satisfies $|\textbf{Y}-\textbf{X}\hat{\beta}|^2 \leq |\textbf{Y}-\textbf{X}\beta^*|^2$
- Error event of a fraction of $\alpha = \ell/L$ section mistakes, contained in

 $E_{\alpha} = \{|Y - X\beta|^2 \le |Y - X\beta^*|^2 \text{ for some } \beta \in Wrong_{\alpha}\}$

where $Wrong_{\alpha}$ is the set of β differing from β^* in fraction α sections. • Our bound:

$$\mathsf{Prob}[E_{\alpha}] \leq \binom{L}{\alpha L} \exp\{-nD_{\alpha}\}$$

Exponent D_α is sufficiently large to cancel the combinatorial coefficient provided the B ≥ L^{a_ν} and R < C.

Analysis

• Ingredients in $D_{\alpha} = D(\Delta_{\alpha}, \rho_{\alpha}^2)$

$$egin{aligned} \Delta_lpha &= lpha (\mathcal{C} - \mathcal{R}) + (\mathcal{C}_lpha - lpha \mathcal{C}) \ \mathcal{C}_lpha &= (1/2) \log(1 + lpha
u) \end{aligned}$$

$$1 - \rho_{\alpha}^2 = \alpha (1 - \alpha) v / (1 + \alpha^2 v)$$

D(Δ, ρ²) is the cumulant generating function for (1/2)(Z₁² - Z₂²) with Z₁, Z₂ bivariate normal, mean zero, unit variance and correlation ρ.
 Near (1/2)Δ²/(1-ρ²) for small Δ

Contributions to Error Exponent

æ

э.

- Sparse superposition coding is reliable at rates up to channel capacity
- Error probability of the optimum form for R < C
- Analysis blends modern statistical regression and information theory

Thank You