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Gaussian Channel. (Power P , Noise variance σ2)

u
Message

(length K bits)

Encoder x
Codeword
(length n)

Channel

εNoise ∼ Normal(0, σ2In)

y Decoder û

Characteristics

Power constraint: Ave‖x‖2≤nP

signal-to-noise: v = P/σ2

Capacity: 1
2 log(1 + P

σ2 )

Interested in

Rate: R = K/n

Prob{û 6= u}
Low fraction of mistakes
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Characteristics

Power constraint: Ave‖x‖2≤nP

signal-to-noise: v = P/σ2

Capacity: 1
2 log(1 + P

σ2 )

Interested in

Rate: R = K/n

Prob{û 6= u}
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Gaussian Channel

Challenges in Code construction

Achieve Rate arbitrarily close to Capacity

Good error exponents

Manageable codebook

Fast Encoding

Fast Decoding
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Sparse Superposition Codes

Model : Y = Xβ + ε

u
Message

(length K)

β

Encoder

Xβ
Codeword
(length n)

Channel

εNoise ∼ N(0, σ2In)

Y Decoder û

Code design

n × N design matrix X

Received string: Y = Xβ + ε

Coefficient vector β is sparse is non-zero values

Not a linear code in algebraic coding sense
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Code design

n × N design matrix X

Received string: Y = Xβ + ε

Coefficient vector β is sparse is non-zero values

Not a linear code in algebraic coding sense

Barron, Joseph (Yale) Least Squares, Superposition codes 5 / 22



Sparse Superposition Codes

Model : Y = Xβ + ε

u
Message

(length K)

β

Encoder

Xβ
Codeword
(length n)

Channel

εNoise ∼ N(0, σ2In)

Y Decoder û
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Sparse Superposition Codes

X = . . .

β = (....., 1, ............. .............., 1, ... .... .............., 1, ...)

Code design

n × N matrix X with entries independent Normal(0,P/L)

β has exactly L, with L� N non-zero elements, all equal to 1

Average of ||Xβ||2 ≤ nP

Codeword is the sum of the selected columns
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Partitioned Superposition Codes

X = . . .

B columns B columns B columns

Section 1  Section 2  .... Section L 

β = (....., 1, ............. .............., 1, ... .... .............., 1, ...)

0,1,............................,B-1,0,1,............................,B-1

Code design

n × N matrix X with entries independent Normal(0,P/L)

Columns of X divided into L sections of size B. So N = LB

β has exactly one element non-zero in each section

Relationship: L, B , n and R

Number of codewords : BL

Length of message string K = L log2 B bits

Blocklength n = (1/R)L log B
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Encoding

0 1 1 1 0 0 0 0 1 1 0 1

{ { {

Non-zero elements of β:

7th element from Section 1

0th element from Section 2

13th element from Section 3

Map from Message u to β

Assume length of u, K = L log2 B
For ex. take L = 3 and log2 B = 4.

Split u into L subtrings of log2 B bits

Substrings give addresses of chosen
columns

For map : u → β,
Choose non-zero elements of β in each
section as given by these indices
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Decoding, Least Squares

Least Square Decoder

Find β̂ which minimizes ||Y − Xβ||2 over β’s of the assumed form

Reliability

Want error β̂ 6= β∗ to have small probability, when β∗ is sent

Small probability of Block error

Less stringent, want β̂ to not equal to β∗ in at most α sections

Small probability that section error rate is greater than α
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Decoding, Least Squares

Least Squares is the optimal decoder. It minimizes probability of error
with uniform distribution on input strings

Analysis here of performance of Least Squares, without concern for
computational feasibility

A computationally feasible algorithm discussed

Today, Session S-Fr-3, 2:40-4:00 p.m.
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Performance of Least Squares

Result 1: Section size

To achieve rates up to capacity, the section size B need only be a
polynomial in L.

In particular, B = Lav , where av is a function of only v .

av is decreasing function of v
av is near 1 for large v

Dictionary size N = L1+av

Barron, Joseph (Yale) Least Squares, Superposition codes 11 / 22



Plot of av
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Performance of Least Squares

Result 2: Error Exponent

Let
ε = Prob{# section mistakes > αL}

be the probability that more than α fraction of sections are wrong.
Then,

ε ≤ exp{−n cv min(α, (C−R)2)}

where cv is a constant that depends on only v .
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Performance of Least Squares

From Partially Correct to Completely Correct Decoding

Let R be a rate for which the partitioned superposition code has

Prob{# section mistakes > αL} = ε.

Then through composition with an outer Reed-Solomon code, one
obtains a code with Rate Rtot = (1− 2α)R and

Prob{block error} = ε

Corollary 3: Block error probability

Taking α of order (C−R)2 we have

Prob{block error} ≤ exp{−n c̃v (C − Rtot)2}
Optimal form of exponent as in Shannon & Gallager or Polyanskiy
et.al
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Performance of Least Squares

Comparison with PPV curve

Polyanskiy, Poor and Verdu demonstrate that for the Gaussian
channel the following approximate relation holds for an optimal code

R ≈ C −
√

V

n
Q−1(ε) +

1

2

log n

n

V = (v/2)(v + 2) log2 e/(v + 1)2 is the channel dispersion
Q = 1− Φ, where Φ is Gaussian distribution function
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Comparison with PPV curve
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Superpositions for Multiple users vs our Single user channel

Cover introduced Superposition Codes for multi-user Gaussian
channels

Codeword sent is sum of codewords for respective users

Here we use superpositions for simplification of the single user channel
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Relationship to Sparse Signal Recovery

Wainwright and others: Necessary and Sufficient conditions on n for
sparsity recovery. When applied to our settings where N � L, these
give that the n required is constant × L log(N/L)

It is natural to call (the reciprocal of) the best constant, for a given
set of allowed signals and given noise distribution, the compressed
sensing capacity or signal recovery capacity.

For our setting n = (1/R)L log B so that the best constant is 1/C and
thus the signal recovery capacity is equal to the Shannon capacity.
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Error Probability Bound

Analysis

Least squares estimate β̂ satisfies |Y − X β̂|2 ≤ |Y − Xβ∗|2

Error event of a fraction of α = `/L section mistakes, contained in

Eα = {|Y − Xβ|2 ≤ |Y − Xβ∗|2 for some β ∈Wrongα}

where Wrongα is the set of β differing from β∗ in fraction α sections.

Our bound:

Prob[Eα] ≤
(

L

αL

)
exp{−nDα}

Exponent Dα is sufficiently large to cancel the combinatorial
coefficient provided the B ≥ Lav and R < C .
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Some ingredients of the error exponent

Analysis

Ingredients in Dα = D(∆α, ρ
2
α)

∆α = α(C − R) + (Cα − αC )

Cα = (1/2) log(1 + αv)

1−ρ2
α = α(1−α)v/(1 + α2v)

D(∆, ρ2) is the cumulant generating function for (1/2)(Z 2
1 −Z 2

2 ) with
Z1,Z2 bivariate normal, mean zero, unit variance and correlation ρ.

Near (1/2)∆2/(1−ρ2) for small ∆
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Contributions to Error Exponent
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Summary

Sparse superposition coding is reliable at rates up to channel capacity

Error probability of the optimum form for R < C

Analysis blends modern statistical regression and information theory

Thank You
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