
Gaussian Complexity, Metric Entropy, and Statistical
Learning of Deep Nets

Andrew R. Barron

YALE UNIVERSITY

Department of Statistics and Data Science

Presentation, September 17, 2019

Joint work with Jason Klusowski, Rutgers University

IMA Workshop on Foundations of Data Science



Target of Investigation

Deep Nets: f (x ,W ). Inputs x in [−1,1]d . Weights W .
Rectified linear activation functions. L layers.

Network Variation V : Sums of weights of network paths.

Risk bound: Least squares f̂ . Observations Yi = f (Xi) + εi
with (sub-)Gaussian error, sample size n.

E [‖f̂ − f‖2] ≤ V
(

L + log d
n

)1/2

Precursor Work: Neyshabur et al (’15), Golowich et al (’18),
Barron & Klusowski (’18) with other complexity controls.
Gaussian process comparison inequalities: Key to provide
the risk bounds in current form.
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Geometric width of sets

Arbitrary set of interest: An in Rn. For statistical application

An = Fxn = {(f (x1), f (x2), . . . , f (xn)) : f ∈ F}

restriction of a class F of functions to data x1, x2, . . . , xn.

Half space in direction determined by ξ = (ξ1, ξ2, . . . , ξn)
with threshold t

{a : ξ · a ≤ t}

Half space supporting An in the direction determined by ξ
uses the threshold

tn = tn(ξ,An) = sup
a∈An

ξ · a

Support function tn(ξ,An) is "width” of An in direction ξ.
The least threshold such that the half space contains An.
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Probabilistic Geometry Width

Probabilistic width: for random ξ with distribution µ.
Mean width: The µ complexity of An

Cµ(An) = Eξ sup
a∈An

ξ · a

Cummulant generating function of the width:

Cλ,µ(An) =
1
λ

log E [eλ supa∈An ξ·a]

General width: Positive increasing convex g with inverse ψ
Cg,µ(An) = ψ(E [g(supa∈An

ξ · a])

For Rademacher Complexity: ξi indep symmetric Bernoulli
For Gaussian Complexity: ξi independent Gaussian
Some relationship: Tomczak-Jaegermann (’89). There are
positive constants c, c such that for all An

c CRad(An) ≤ CGaussian(An) ≤ c CRad(An) log n
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Random process perspective

Random process: indexed by a in An

Za = ξ · a =
n∑

i=1

ai ξi

This Za is of course a Gaussian process if ξ is Gaussian

Isometry: If ξ has identity covariance then

E [(Za − Zb)2] = ‖a − b‖2

Probabilistic width studies the maximum of the process

Cµ(An) = E [sup
a∈An

Za]
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Merit of Gaussian versus Rademacher Complexity

More general error distributions: sub-Gaussian instead of
bounded error

Stronger link to the metric entropy: via Sudakov and
Dudley inequalities. The Sudakov lower bound can also be
revealed via statistical risk and information theory analysis
using Fano’s inequality.

Analogous contraction properties: Most important for our
present purposes.

Andrew Barron Gaussian Complexity and Deep Net Contraction



Gaussian Comparison Inequality

Let Z̃a be Gaussian majorized by Za in expectation

E [Z̃ 2
a ] ≤ E [Z 2

a ] ∗

and
E [(Z̃a − Z̃b)2] ≤ E [(Za − Zb)2]

By Vitale (2000), equation 13, for increasing convex g,

E [g(sup
a∈An

Z̃a)] ≤ E [g(sup
a∈An

Za)]

Refines Fernique (1975) which worked with

E [ sup
a,b∈An

(Za − Zb)]

Refines Slepian (1962) which assumed equality in ∗.
Avoids a factor of 2.
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Contraction Inequality

Let φ be a contraction: Lipshitz 1 with φ(0) = 0.
Compare the processes:

Z̃a =
∑

i

ξi φ(ai) and Za =
∑

i

ξi ai

Satisfy the majorization inequalities: EZ̃ 2
a ≤ EZ 2

a and

E(Z̃a − Z̃b)2 ≤ E(Za − Zb)2

since this becomes∑
(φ(ai)− φ(bi))

2 ≤
∑

(ai − bi)
2

Consequent contraction of complexity: In Gaussian ξ case

E [sup
a∈An

g(
∑

ξiφ(ai))] ≤ E [sup
a∈An

g(
∑

ξiai)]

This Gaussian complexity contraction is an extension (with
different proof) of the Rademaker complexity contraction
obtained by Ledoux and Talagrand (’91), inequality (4.20).
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Network Layer Complexity Comparison

For arbitrary set A in Rn and a contraction φ, let φ ◦ A be

{(φ(ai), φ(a2), . . . , φ(an)) : a ∈ A

and let conv(±A) be the signed convex hull

{
∑

wj aj : aj ∈ A ,
∑

|wj | = 1}

A′ = conv(±φ ◦ A) is the set of values realizable by a layer
of a network for given original input values.

As in Neyshabur et al (’15) and Golowich et al (’18), which
was for Rademachers, we have also for Gaussian
complexity

C(A′) ≤ 2C(A)

and
Cλ(A′) ≤ Cλ(A) + (log 2)/λ

What happens with multiple layers?
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Multilayer networks for given inputs

Set of input vectors: A0 = {x1, x2, . . . , xd} each in Rn.

Set of one layer network outputs: restricted to said inputs

A1 = conv(±φ ◦ A0)

Intermediate layers: preserving unit total weight variation

A` = (A`−1)′ = conv(±φ ◦ A`−1)

Set of L layer networks outputs: restricted to said inputs

AL = (((A0)′)′ . . .)′
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Tracking Complexity through the layers

Assume each given xi,j has magnitude not exceeding 1

Initial complexity of signed input set: C(±A0) ≤ Cλ(±A0).

A familar bound often attributed to Massart uses a
cummulant generating function trick and replaces the
supremum by a sum.

Resulting complexity is not more than

Cλ(±A0) ≤ nλ/2 + (1/λ) log(2d)

when optimized over λ yields the complexity bound

C(±A0) ≤
√

2n log(2d).
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Multilayer Complexity

Intermediate layer complexity: for A` = conv(±φ ◦ A`−1)

C(A`) ≤ 2C(A`−1) and Cλ(A`) ≤ Cλ(A`−1) + (log 2)/λ

Complexity for the class of L layer networks:

Crude: C(AL) ≤ 2LC(A0).

Better: C(AL) ≤ Cλ(AL) ≤ Cλ(A0) + (L log 2)/λ
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Optimized Complexity bound

C(AL) ≤
√

2n[L log 2 + log 2d ]

Follows Golowich et al, but now, thanks to Vitale’s
comparison inequality it is seen to hold for Gaussian
complexity and not just Rademacher.

Corresponding risk: based on C(AL)/n equal to(
2L log 2 + 2 log 2d

n

)1/2
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Data Setting

Data: (X i ,Yi), i = 1,2, . . . ,n

Inputs: explanatory variable vectors with arbitrary
dependence

X i = (Xi,1,Xi,2, . . . ,Xi,d)

Domain: Cube [−1,1]d in Rd

Random design: independent X i ∼ P

Output: response variable Yi in R
Bounded or subgaussian

Relationship: E [Yi |X i ] = f (X i) as in:
Perfect observation: Yi = f (X i)

Noisy observation: Yi = f (X i) + εi with εi indep
f (x) assumed Bounded by a constant B
ε assumed subGaussian with parameter σ
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Statistical Risk

Statistical risk E‖f̂ − f‖2 = E(f̂ (X )− f (X ))2

Expected squared generalization error on new X ∼ P
Approximation, complexity trade-off

E‖f̂ − f‖2 ≤ ‖fδ − f‖2 + c
1
n
logN(F , δ)

the metric entropy logN(F , δ) is the smallest log cardinality
of cover such that for all f ∈ F there is an approximation fδ
in the cover with ‖fδ − f‖ ≤ δ.

The minimax risk corresponds to the optimal
approximations, complexity tradeoff,

rn(F) = min
f̂

max
f∈F

E‖f̂ − f‖2 ≈ min
δ

{
δ2 + c

1
n
logN(F , δ)

}
(Yuhong Yang and A.B. 1998).

Andrew Barron Accuracy of Deep Learning Nets



Metric Entropy and Gaussian Complexity

Relationship between metric entropy, Gaussian Complexity,
and statistical risk

If F has Gaussian complexity not more than
√

n CF then it
has the risk bound

rn(F) ≤ (B + σ)
CF√

n

and the metric entropy bound

logN(δ,F) ≤
16C2

F
δ2

The latter is an instance of a Sudakov inequality relating
metric entropy and Gaussian complexity.
It can be seen as a consequence of the risk bound
together with an information theory argument (via the Fano
inequality in a manner similar to Yang and B. 1998)
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Statistical Risk for the Neural Net class

Specializing to the class FV of networks with variation not
more than V our risk bound is

E‖f̂ − f‖2 ≤ 2(B + σ)V
(

2(L log 2 + log(2d))
n

)1/2
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