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• Partitioned Coef.: β = (00∗0000, 000∗000, . . . ,0∗00000)

• L sections of size M = N/L, one non-zero in each

• Rate R = K
n = L log M

n , Capacity C = 1
2 log(1 + snr)

• Ultra-sparse case: Impractical M = 2nR/L with L constant
(successive decoder reliable for R < C: Cover 1972 IT)

• Moderately-sparse: M = La with n = (L log M)/R
(reliable for R < C)

Maximum likelihood decoder (Joseph & Barron 2010a ISIT, 2012a IT)

Adaptive successive decoder with threshold (J&B 2010b ISIT, 2012b)

Adaptive successive decoder with soft decision (B&C, this talk)
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Power Allocation

• Power control:
∑L

`=1 P` = P ‖β‖2 = P

• Special choice: P` proportional to e−2C`/L for ` = 1, . . . ,L

• Coeff. sent: β = (00
√

P10000,000
√

P2000, . . . ,0
√

PL00000)

• Terms sent: (j1, j2, . . . , jL)

• βj =
√

P` 1{j=j`} for j in section ` , for ` = 1, . . . ,L

• B = set of such allowed vectors β for codewords Xβ

• β̂j restricted to B or the convex hull of B

• β̂j =
√

P` ŵj for j in sec` , with ŵj ≥ 0,
∑

j∈sec` ŵj = 1
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Coefficient vectors β

• Power control:
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Coefficient Estimates β̂

• Power control:
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Iterative Estimation
For k ≥ 1
• Coefficient fits: β̂k ,j (initially 0)

• Codeword fits: Fk = X β̂k

• Vector of statistics: statk = function of (X ,Y ,F1, . . . ,Fk )

• e.g. statk ,j proportional to X T
j (Y − Fk )

• Update β̂k+1 as a function of statk

• Thresholding: Adaptive Successive Decoder
β̂k+1,j =

√
P` if statk,j is above threshold in

sections ` not previously decoded
• Soft decision:

β̂k+1,j = E[βj |statk ]

with thresholding on the last step
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Statistics
• statk = function of (X ,Y ,F1, . . . ,Fk ) Fk = X β̂k

• Orthogonalization : Let G0 = Y and for k ≥ 1

Gk = part of Fk orthogonal to G0,G1, . . . ,Gk−1

• Components of statistics

Zk ,j =
X T

j Gk

‖Gk‖

• Class of statistics statk formed by combining Z0, . . . ,Zk

statk ,j = Zcomb
k ,j +

√
n√
ck
β̂k ,j

where Zcomb
k =

√
λk ,0Z0 −

√
λk ,1Z1 − . . .−

√
λk ,k Zk

with λk ,0 + λk ,1 + . . .+ λk ,k = 1
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Statistics based on residuals

Let statk ,j be proportional to X T
j (Y − X β̂k ,−j)

statk ,j =
X T

j (Y − X β̂k )
√

nck
+
‖Xj‖2√

nck
β̂k ,j

Arises with λk proportional to(
(‖Y‖ − ZT

0 β̂k )2, (ZT
1 β̂k )2, . . . , (ZT

k β̂k )2
)

and nck = ‖Y − X β̂k‖2.

Here, ck is typically between σ2 and σ2 + P



Idealized Statistics

λk exists yielding stat ideal
k with distributional representation
√

n√
σ2 + ‖β − β̂k‖2

β + Z comb
k

with Z comb
k ∼ N(0, I).

This is a normal shift that improves with decreasing ‖β − β̂k‖2.

For terms sent the shift α`,k has an effective snr interpretation

α`,k =

√
n

P`
σ2 + Premaining,k

where Premaining,k = ‖β − β̂k‖2.



Idealized Statistics

λk exists yielding stat ideal
k with distributional representation
√

n√
σ2 + ‖β − β̂k‖2

β + Z comb
k

with Z comb
k ∼ N(0, I).

This is a normal shift that improves with decreasing ‖β − β̂k‖2.

For terms sent the shift α`,k has an effective snr interpretation

α`,k =

√
n

P`
σ2 + Premaining,k

where Premaining,k = ‖β − β̂k‖2.



Distributional Analysis
Lemma 1: shifted normal conditional distribution
Given Fk−1 = (‖G0‖, . . . , ‖Gk−1‖,Z0,Z1, . . . ,Zk−1), the Zk has
the distributional representation

Zk =
‖Gk‖
σk

bk + Zk

• ‖Gk‖2/σ2
k ∼ Chi-square(n − k)

• Zk ∼ N(0,Σk ) indep of ‖Gk‖

• b0,b1, . . . ,bk the successive orthonormal components of[
β
σ

]
,

[
β̂1
0

]
, . . . ,

[
β̂k
0

]
(∗)

• Σk = I − b0bT
0 − b1bT

1 − . . .− bkbT
k

= projection onto space orthogonal to (∗)

• σ2
k = β̂T

k Σk−1β̂k
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Idealized Statistics

Weights of combination based on λk proportional to(
(σY − bT

0 β̂k )2, (bT
1 β̂k )2, . . . , (bT

k β̂k )2
)

produces the desired distributional representation

stat ideal
k =

√
n√

σ2 + ‖β − β̂k‖2
β + Z comb

k

with Z comb
k ∼ N(0, I) and σ2

Y = σ2 + P.

• ‖β − β̂k‖2 is close to its known expectation
• This provides approximation of the distribution of the statk ,j

as independent shifted normals.
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Relationship between statistics
The stats based on residuals estimate the idealized statistics.

Why? For stat ideal
k the λk are proportional to

n
(

(σY − bT
0 β̂k )2, (bT

1 β̂k )2, . . . , (bT
k β̂k )2

)
whereas, for the residual-based statk they are proportional to(

(‖Y‖ − ZT
0 β̂k )2, (ZT

1 β̂k )2, . . . , (ZT
k β̂k )2

)
Here ZT

k ′ β̂k/
√

n is approximately bT
k ′ β̂k for k ′ ≤ k .

Indeed, with the chi-square factor replaced by its expectation,

ZT
k ′ β̂k/

√
n = bT

k ′ β̂k + Z T
k ′ β̂k/

√
n.

The Z T
k ′ β̂k has mean 0 and is stochastically dominated by Z T

k ′β.



Iteratively Bayes optimal coefficient estimates
With prior j`∼Unif on sec`, the Bayes estimate based on statk

β̂k+1 = E[β|statk ]

has representation β̂k+1,j =
√

P` ŵk ,j with

ŵk ,j = Prob{j` = j |statk}.

Here, when the statk ,j are independent N(α`,k1{j=j`},1), we
have the logit representation

ŵk ,j =
eα`,k statk,j∑

j∈sec` eα`,k statk,j
.

In our setting, α`,k is the shift given by

α`,k =

√
n P`

σ2 + E‖β − β̂k‖2



Iteratively Bayes optimal coefficient estimates
With prior j`∼Unif on sec`, the Bayes estimate based on statk

β̂k+1 = E[β|statk ]

has representation β̂k+1,j =
√
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Relating error rate and squared distance

• Error of posterior weight is (1− ŵk ,j`) if j` is sent.
• The power-weighted error

L∑
`=1

P` (1− ŵk ,j`)

• Squared distance from β̂k+1,j =
√

P`ŵk ,j to βj =
√

P`1{j=j`}

‖β̂k+1 − β‖2

Lemma 2
• The power-weighted error and the squared distance have

the same expectation.
• Equivalently, the success rate

∑L
`=1(P`/P)ŵk ,j` which is

βT β̂k+1/P and ‖β̂k+1‖2/P have the same expectation.
Proof: Use β̂k+1 = E [β|statk ].

Expected success rate: xk+1 =
∑L

`=1(P`/P)E
[
ŵk ,j`

]
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ŵk ,j`

]



Relating error rate and squared distance

• Error of posterior weight is (1− ŵk ,j`) if j` is sent.
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Consequence for expected success rate
If the expected success rate was xk , then using the statk ,j
representation α`,k 1{j=j`} + Zk ,j with

α`,k =
√

nP`/(σ2 + P(1− xk )),

then at the next step we have

xk+1 = g(xk )

where g(x) is the success update function

g(x) =
L∑
`=1

P`
P

success(α`(x))

where
success(α) = E

[
e α2+αZ1

e α2+αZ1 +
∑M

j=2 e αZj

]

evaluated at α`(x) =
√

nP`/(σ2 + P(1− x))

assuming w.l.o.g. that first term is sent in each section.
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Integral representation of g(x)
Change of variables from t = `/L to

u =
1− e−2Ct

1− e−2C ∼ Uniform on [0,1],

α`(x) becomes

α(u, x) = τ

√
C
R

1 + snr(1− u)

1 + snr(1− x)

which can be compared to τ =
√

2 log M.

We have the integral representation of g(x)

g(x) = EU [g(U, x)] =

∫ 1

0
g(u, x)du

where g(u, x) = success(α(u, x))
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Lowerbound for update function

Using Jensen’s inequality, we have

success(α) = E

[
e α2+αZ1

e α2+αZ1 +
∑M

j=2 e αZj

]

≥ E

[
eα

2+αZ1

eα2+αZ1 + (M − 1)eα2/2

]

so that
g(x) ≥ P{ξ ≤ α2

U/2− τ2/2 + αUZ}

where ξ ∼ logistic(0,1) and αu = α(u, x)



The Logit representation

• By McFadden(1974),

Let s1, . . . , sm be a fixed sequence and εj be independent
Gumbel distributed random variable. Then,

P{s1 + ε1 ≥ max
2≤j≤m

(sj + εj)} =
es1∑m
j=1 esj

Thus, we can write g(x) as

g(x) = P
{
α2

U + αUZ1 + ε1 ≥ max
2≤j≤m

(αUZj + εj)

}
,



Extreme value representation of the update function

• Using the logit representation: Approximation of the update
function

g(x) = P{V1 ≤ αU},

where

V1 = max
2≤j≤m

{
−

Z1 − Zj

2
+

√[
εj − ε1 +

(Z1 − Zj)2

4

]
+

}
.

• For the lowerbound

g(x) ≥ P{V2 ≤ αU}

where
V2 = −Z1 +

√
(τ2 + 2ξ + Z 2

1 )+.



Analysis of Update function

• x∗ solves g(x) = x , yields mistake rate 1− x∗

• Communication rate R = C/(1 + r/τ2)

• with r = E[(V 2
+ − τ2)1B], mistake rate

1− x∗ =
1

snr
r
τ2

• Here r grows no faster than order of τ

• B = {α(1, x∗) ≤ V ≤ α(0, x∗)}



Summary

u
Input bits
(length K )

Sparse
Superposition

Encoder
Xβ

Gaussian Channel

εNoise

Y
received
(length n)

Adaptive
Successive

Decoder
û

Reliable for rates R < C

For the adaptive success decoder
• with thresholding (J&B 2010b ISIT, 2012b)

• with iteratively optimal soft decision (shown here)
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Iteratively Bayes optimal coefficient estimates

With prior j`∼Unif on sec`, the Bayes estimate based on statk

β̂k+1 = E[β|statk ]
∼= E[β|statk , statk−1, . . . , stat1]
∼= E[β|Fk ]

where Fk = { Standardized inner products of X columns with Y
and with components of the fits F1, . . . ,Fk}

Here, Fk = X β̂k



Fraction of Mistakes

Translating power-weighted value of (1− ŵk ,j`)

into fraction of occurrences of {1− ŵk ,j` ≥ 1/2}

δmis ≤
snr
C

(1− x∗) =
r

Cτ2

at rate R = C
1+r/τ2


