High-Rate Sparse Superposition Codes with Iteratively Optimal Estimates

Andrew Barron, Sanghee Cho Department of Statistics Yale University

2012 IEEE International Symposium on Information Theory July 2, 2012 MIT

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

・ロット (雪) ・ (日) ・ (日)

э

Linear Model $Y = X\beta + \epsilon$

・ロット (雪) ・ (日) ・ (日)

ъ

Partitioned Coef.: β = (00*0000, 000*000,..., 0*00000)

ヘロマ ヘ動 マイロマー

• *L* sections of size M = N/L, one non-zero in each

Partitioned Coef.: β = (00*0000, 000*000, ..., 0*00000)

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

э.

- *L* sections of size M = N/L, one non-zero in each
- Rate $R = \frac{K}{n} = \frac{L \log M}{n}$, Capacity $C = \frac{1}{2} \log(1 + snr)$

- Partitioned Coef.: $\beta = (00*0000, 000*000, \dots, 0*00000)$
- *L* sections of size M = N/L, one non-zero in each
- Rate $R = \frac{K}{n} = \frac{L \log M}{n}$, Capacity $C = \frac{1}{2} \log(1 + snr)$
- Ultra-sparse case: Impractical $M = 2^{nR/L}$ with *L* constant (successive decoder reliable for R < C: Cover 1972 IT)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ● ● ●

• Moderately-sparse: $M = L^a$ with $n = (L \log M)/R$

- Partitioned Coef.: β = (00*0000, 000*000,..., 0*00000)
- *L* sections of size M = N/L, one non-zero in each
- Rate $R = \frac{K}{n} = \frac{L \log M}{n}$, Capacity $C = \frac{1}{2} \log(1 + snr)$
- Ultra-sparse case: Impractical M = 2^{nR/L} with L constant (successive decoder reliable for R < C: Cover 1972 IT)
- Moderately-sparse: M = L^a with n = (L log M)/R (reliable for R < C)

Maximum likelihood decoder (Joseph & Barron 2010a ISIT, 2012a IT) Adaptive successive decoder with threshold (J&B 2010b ISIT, 2012b) Adaptive successive decoder with soft decision (B&C, this talk)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □□ ● ● ●

Progression of success rate

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ のへ⊙

Progression of success rate

х

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● 三 のへの

Progression of success rate

Power Allocation

- Power control: $\sum_{\ell=1}^{L} P_{\ell} = P$ $||\beta||^2 = P$
- Special choice: P_{ℓ} proportional to $e^{-2C\ell/L}$ for $\ell = 1, \ldots, L$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Power Allocation

- Power control: $\sum_{\ell=1}^{L} P_{\ell} = P$ $||\beta||^2 = P$
- Special choice: P_{ℓ} proportional to $e^{-2C\ell/L}$ for $\ell = 1, \ldots, L$

<□▶ <圖▶ < 差▶ < 差▶ = 差 = のへで

Coefficient vectors β

- Power control: $\sum_{\ell=1}^{L} P_{\ell} = P$ $||\beta||^2 = P$
- Special choice: P_{ℓ} proportional to $e^{-2C\ell/L}$ for $\ell = 1, \dots, L$
- Coeff. sent: $\beta = (00\sqrt{P_1}0000, 000\sqrt{P_2}000, \dots, 0\sqrt{P_L}00000)$

- Terms sent: (*j*₁, *j*₂, ..., *j*_L)
- $\beta_j = \sqrt{P_\ell} \mathbf{1}_{\{j=j_\ell\}}$ for *j* in section ℓ , for $\ell = 1, \dots, L$
- $\mathcal{B} = \text{set of such allowed vectors } \beta$ for codewords $X\beta$

Coefficient Estimates $\hat{\beta}$

- Power control: $\sum_{\ell=1}^{L} P_{\ell} = P$ $||\beta||^2 = P$
- Special choice: P_{ℓ} proportional to $e^{-2C\ell/L}$ for $\ell = 1, \dots, L$
- Coeff. sent: $\beta = (00\sqrt{P_1}0000, 000\sqrt{P_2}000, \dots, 0\sqrt{P_L}00000)$
- Terms sent: (*j*₁, *j*₂, ..., *j*_L)
- $\beta_j = \sqrt{P_\ell} \mathbf{1}_{\{j=j_\ell\}}$ for *j* in section ℓ , for $\ell = 1, \dots, L$
- $\mathcal{B} =$ set of such allowed vectors β for codewords $X\beta$
- $\hat{\beta}_j$ restricted to \mathcal{B} or the convex hull of \mathcal{B}
- $\hat{\beta}_j = \sqrt{P_\ell} \, \hat{w}_j$ for *j* in sec_ℓ , with $\hat{w}_j \ge 0$, $\sum_{j \in sec_\ell} \hat{w}_j = 1$

Iterative Estimation

For $k \geq 1$

- Coefficient fits: $\hat{\beta}_{k,j}$ (initially 0)
- Codeword fits: $F_k = X \hat{\beta}_k$
- Vector of statistics: $stat_k =$ function of (X, Y, F_1, \ldots, F_k)

(日) (日) (日) (日) (日) (日) (日)

- e.g. $stat_{k,j}$ proportional to $X_j^T(Y F_k)$
- Update $\hat{\beta}_{k+1}$ as a function of *stat_k*

Iterative Estimation

For $k \geq 1$

- Coefficient fits: $\hat{\beta}_{k,j}$ (initially 0)
- Codeword fits: $F_k = X \hat{\beta}_k$
- Vector of statistics: $stat_k =$ function of (X, Y, F_1, \dots, F_k)
- e.g. $stat_{k,j}$ proportional to $X_j^T(Y F_k)$
- Update $\hat{\beta}_{k+1}$ as a function of *stat_k*
 - Thresholding: Adaptive Successive Decoder $\hat{\beta}_{k+1,j} = \sqrt{P_{\ell}}$ if $stat_{k,j}$ is above threshold in sections ℓ not previously decoded

Iterative Estimation

For $k \geq 1$

- Coefficient fits: $\hat{\beta}_{k,j}$ (initially 0)
- Codeword fits: $F_k = X \hat{\beta}_k$ also $F_{k,-j} = X \hat{\beta}_{k,-j}$
- Vector of statistics: $stat_k =$ function of (X, Y, F_1, \ldots, F_k)
- e.g. $stat_{k,j}$ proportional to $X_j^T(Y F_{k,-j})$
- Update $\hat{\beta}_{k+1}$ as a function of *stat_k*
 - Thresholding: Adaptive Successive Decoder $\hat{\beta}_{k+1,j} = \sqrt{P_{\ell}}$ if $stat_{k,j}$ is above threshold in sections ℓ not previously decoded
 - Soft decision:

 $\hat{\beta}_{k+1,j} = \mathbb{E}[\beta_j | stat_k]$

with thresholding on the last step

Statistics

- $stat_k =$ function of (X, Y, F_1, \dots, F_k) $F_k = X\hat{\beta}_k$
- Orthogonalization : Let $G_0 = Y$ and for $k \ge 1$

 G_k = part of F_k orthogonal to $G_0, G_1, \ldots, G_{k-1}$

Components of statistics

$$\mathcal{Z}_{k,j} = \frac{X_j^T G_k}{\|G_k\|}$$

• Class of statistics *stat_k* formed by combining Z_0, \ldots, Z_k

Statistics

- $stat_k =$ function of (X, Y, F_1, \dots, F_k) $F_k = X\hat{\beta}_k$
- Orthogonalization : Let $G_0 = Y$ and for $k \ge 1$

 G_k = part of F_k orthogonal to $G_0, G_1, \ldots, G_{k-1}$

Components of statistics

$$\mathcal{Z}_{k,j} = \frac{X_j^T G_k}{\|G_k\|}$$

• Class of statistics *stat_k* formed by combining Z_0, \ldots, Z_k

$$stat_{k,j} = \mathcal{Z}_{k,j}^{comb} + \frac{\sqrt{n}}{\sqrt{c_k}} \hat{\beta}_{k,j}$$

where $\mathcal{Z}_{k}^{comb} = \sqrt{\lambda_{k,0}} \, \mathcal{Z}_{0} - \sqrt{\lambda_{k,1}} \, \mathcal{Z}_{1} - \ldots - \sqrt{\lambda_{k,k}} \, \mathcal{Z}_{k}$

with $\lambda_{k,0} + \lambda_{k,1} + \ldots + \lambda_{k,k} = 1$

・ロト・西ト・モート 中 のへの

Statistics based on residuals

Let *stat*_{*k*,*j*} be proportional to $X_j^T(Y - X\hat{\beta}_{k,-j})$

$$stat_{k,j} = \frac{X_j^T(Y - X\hat{\beta}_k)}{\sqrt{nc_k}} + \frac{\|X_j\|^2}{\sqrt{nc_k}}\hat{\beta}_{k,j}$$

Arises with $\underline{\lambda}_k$ proportional to

$$\left(\left(\|\boldsymbol{Y}\| - \boldsymbol{\mathcal{Z}}_{0}^{\mathsf{T}}\hat{\boldsymbol{\beta}}_{k}\right)^{2}, \ (\boldsymbol{\mathcal{Z}}_{1}^{\mathsf{T}}\hat{\boldsymbol{\beta}}_{k})^{2}, \ldots, \ (\boldsymbol{\mathcal{Z}}_{k}^{\mathsf{T}}\hat{\boldsymbol{\beta}}_{k})^{2}\right)^{2}\right)$$

(日) (日) (日) (日) (日) (日) (日)

and $nc_k = \|Y - X\hat{\beta}_k\|^2$.

Here, c_k is typically between σ^2 and $\sigma^2 + P$

Idealized Statistics

 $\underline{\lambda}_k$ exists yielding $stat_k^{ideal}$ with distributional representation

$$\frac{\sqrt{n}}{\sqrt{\sigma^2 + \|\beta - \hat{\beta}_k\|^2}} \beta + Z_k^{comb}$$

with $Z_k^{comb} \sim N(0, I)$.

This is a normal shift that improves with decreasing $\|\beta - \hat{\beta}_k\|^2$.

Idealized Statistics

 $\underline{\lambda}_k$ exists yielding $stat_k^{ideal}$ with distributional representation

$$\frac{\sqrt{n}}{\sqrt{\sigma^2 + \|\beta - \hat{\beta}_k\|^2}} \beta + Z_k^{comb}$$

with $Z_k^{comb} \sim N(0, I)$.

This is a normal shift that improves with decreasing $\|\beta - \hat{\beta}_k\|^2$.

For terms sent the shift $\alpha_{\ell,k}$ has an effective *snr* interpretation

$$lpha_{\ell,k} = \sqrt{n \; rac{P_\ell}{\sigma^2 + P_{remaining,k}}}$$

▲□▶▲□▶▲□▶▲□▶ □ のへで

where $P_{remaining,k} = \|\beta - \hat{\beta}_k\|^2$.

Distributional Analysis

Lemma 1: shifted normal conditional distribution Given $\mathcal{F}_{k-1} = (||G_0||, \dots, ||G_{k-1}||, \mathcal{Z}_0, \mathcal{Z}_1, \dots, \mathcal{Z}_{k-1})$, the \mathcal{Z}_k has the distributional representation

$$\mathcal{Z}_k = \frac{\|G_k\|}{\sigma_k} b_k + Z_k$$

(日) (日) (日) (日) (日) (日) (日)

• $\|G_k\|^2/\sigma_k^2 \sim \text{Chi-square}(n-k)$

•
$$Z_k \sim N(0, \Sigma_k)$$
 indep of $\|G_k\|$

Distributional Analysis

Lemma 1: shifted normal conditional distribution Given $\mathcal{F}_{k-1} = (\|G_0\|, \dots, \|G_{k-1}\|, \mathcal{Z}_0, \mathcal{Z}_1, \dots, \mathcal{Z}_{k-1})$, the \mathcal{Z}_k has the distributional representation

$$\mathcal{Z}_k = \frac{\|G_k\|}{\sigma_k} b_k + Z_k$$

- $\|G_k\|^2/\sigma_k^2 \sim \text{Chi-square}(n-k)$
- $Z_k \sim N(0, \Sigma_k)$ indep of $\|G_k\|$
- b_0, b_1, \dots, b_k the successive orthonormal components of

$$\begin{bmatrix} \beta \\ \sigma \end{bmatrix}, \begin{bmatrix} \hat{\beta}_1 \\ \mathbf{0} \end{bmatrix}, \dots, \begin{bmatrix} \hat{\beta}_k \\ \mathbf{0} \end{bmatrix} \quad (*)$$

(日) (日) (日) (日) (日) (日) (日)

• $\Sigma_k = I - b_0 b_0^T - b_1 b_1^T - \ldots - b_k b_k^T$ = projection onto space orthogonal to (*)

•
$$\sigma_k^2 = \hat{\beta}_k^T \Sigma_{k-1} \hat{\beta}_k$$

Distribution of $Z_k^T = \left(\frac{X_1^T G_k}{\|G_k\|}, \dots, \frac{X_N^T G_k}{\|G_k\|}, \frac{\epsilon^T G_k}{\sigma \|G_k\|}\right)$ Lemma 1: shifted normal conditional distribution Given $\mathcal{F}_{k-1} = (\|G_0\|, \dots, \|G_{k-1}\|, \mathcal{Z}_0, \mathcal{Z}_1, \dots, \mathcal{Z}_{k-1})$, the \mathcal{Z}_k has the distributional representation

$$\mathcal{Z}_k = \frac{\|G_k\|}{\sigma_k} b_k + Z_k$$

•
$$\|G_k\|^2/\sigma_k^2 \sim \text{Chi-square}(n-k)$$

•
$$Z_k \sim N(0, \Sigma_k)$$
 indep of $||G_k|$

• b_0, b_1, \dots, b_k the successive orthonormal components of

$$\begin{bmatrix} \beta \\ \sigma \end{bmatrix}, \begin{bmatrix} \hat{\beta}_1 \\ \mathbf{0} \end{bmatrix}, \dots, \begin{bmatrix} \hat{\beta}_k \\ \mathbf{0} \end{bmatrix} \quad (*)$$

(日) (日) (日) (日) (日) (日) (日)

• $\Sigma_k = I - b_0 b_0^T - b_1 b_1^T - \dots - b_k b_k^T$ = projection onto space orthogonal to (*)

•
$$\sigma_k^2 = \hat{\beta}_k^T \Sigma_{k-1} \hat{\beta}_k$$

Idealized Statistics

Weights of combination based on $\underline{\lambda}_k$ proportional to

$$\left((\sigma_Y - b_0^T \hat{\beta}_k)^2, (b_1^T \hat{\beta}_k)^2, \dots, (b_k^T \hat{\beta}_k)^2 \right)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

produces the desired distributional representation

$$\mathit{stat}_k^{\mathit{ideal}} = rac{\sqrt{n}}{\sqrt{\sigma^2 + \|\beta - \hat{\beta}_k\|^2}} \, eta + Z_k^{\mathit{comb}}$$

with $Z_k^{\mathit{comb}} \sim \mathit{N}(0, \mathit{I})$ and $\sigma_Y^2 = \sigma^2 + \mathit{P}$.

Idealized Statistics

Weights of combination based on $\underline{\lambda}_k$ proportional to

$$\left((\sigma_Y - \boldsymbol{b}_0^T \hat{\beta}_k)^2, \ (\boldsymbol{b}_1^T \hat{\beta}_k)^2, \ldots, \ (\boldsymbol{b}_k^T \hat{\beta}_k)^2 \right)$$

produces the desired distributional representation

$$stat_{k}^{ideal} = \frac{\sqrt{n}}{\sqrt{\sigma^{2} + \|\beta - \hat{\beta}_{k}\|^{2}}} \beta + Z_{k}^{comb}$$
with $Z_{k}^{comb} \sim N(0, I)$ and $\sigma_{Y}^{2} = \sigma^{2} + P$.

- $\|\beta \hat{\beta}_k\|^2$ is close to its known expectation
- This provides approximation of the distribution of the stat_{k,j} as independent shifted normals.

Relationship between statistics

The stats based on residuals estimate the idealized statistics. Why? For *stat*^{*ideal*} the λ_k are proportional to

$$n\left((\sigma_Y - b_0^T \hat{\beta}_k)^2, (b_1^T \hat{\beta}_k)^2, \ldots, (b_k^T \hat{\beta}_k)^2\right)$$

whereas, for the residual-based statk they are proportional to

$$\left((\|\boldsymbol{Y}\| - \boldsymbol{\mathcal{Z}}_{0}^{\mathsf{T}} \hat{\boldsymbol{\beta}}_{k})^{2}, \ (\boldsymbol{\mathcal{Z}}_{1}^{\mathsf{T}} \hat{\boldsymbol{\beta}}_{k})^{2}, \dots, \ (\boldsymbol{\mathcal{Z}}_{k}^{\mathsf{T}} \hat{\boldsymbol{\beta}}_{k})^{2} \right)$$

Here $\mathcal{Z}_{k'}^T \hat{\beta}_k / \sqrt{n}$ is approximately $b_{k'}^T \hat{\beta}_k$ for $k' \leq k$.

Indeed, with the chi-square factor replaced by its expectation,

$$\mathcal{Z}_{k'}^{\mathsf{T}}\hat{\beta}_k/\sqrt{n} = b_{k'}^{\mathsf{T}}\hat{\beta}_k + Z_{k'}^{\mathsf{T}}\hat{\beta}_k/\sqrt{n}.$$

The $Z_{k'}^T \hat{\beta}_k$ has mean 0 and is stochastically dominated by $Z_{k'}^T \beta$.

Iteratively Bayes optimal coefficient estimates With prior $j_{\ell} \sim Unif$ on sec_{ℓ} , the Bayes estimate based on $stat_k$

$$\hat{\beta}_{k+1} = \mathbb{E}[\beta|\textit{stat}_k]$$

has representation $\hat{\beta}_{k+1,j} = \sqrt{P_{\ell}} \ \hat{w}_{k,j}$ with

$$\hat{w}_{k,j} = Prob\{j_{\ell} = j | stat_k\}$$

Iteratively Bayes optimal coefficient estimates With prior $j_{\ell} \sim Unif$ on sec_{ℓ} , the Bayes estimate based on $stat_k$

 $\hat{\beta}_{k+1} = \mathbb{E}[\beta|stat_k]$

has representation $\hat{\beta}_{k+1,j} = \sqrt{P_{\ell}} \, \hat{w}_{k,j}$ with

$$\hat{w}_{k,j} = \operatorname{Prob}\{j_{\ell} = j | \operatorname{stat}_k\}.$$

Here, when the *stat*_{*k*,*j*} are independent $N(\alpha_{\ell,k} \mathbf{1}_{\{j=j_{\ell}\}}, \mathbf{1})$, we have the logit representation

$$\hat{w}_{k,j} = \frac{e^{\alpha_{\ell,k} \operatorname{stat}_{k,j}}}{\sum_{j \in \operatorname{sec}_{\ell}} e^{\alpha_{\ell,k} \operatorname{stat}_{k,j}}}.$$

In our setting, $\alpha_{\ell,k}$ is the shift given by

$$\alpha_{\ell,k} = \sqrt{\frac{nP_{\ell}}{\sigma^2 + \mathbb{E}\|\beta - \hat{\beta}_k\|^2}}$$

(日) (日) (日) (日) (日) (日) (日)

- Error of posterior weight is $(1 \hat{w}_{k,j_{\ell}})$ if j_{ℓ} is sent.
- The power-weighted error

$$\sum_{\ell=1}^{L} P_{\ell} \left(1 - \hat{w}_{k,j_{\ell}}\right)$$

(日) (日) (日) (日) (日) (日) (日)

• Squared distance from $\hat{\beta}_{k+1,j} = \sqrt{P_{\ell}} \hat{w}_{k,j}$ to $\beta_j = \sqrt{P_{\ell}} \mathbb{1}_{\{j=j_{\ell}\}}$ $\|\hat{\beta}_{k+1} - \beta\|^2$

- Error of posterior weight is $(1 \hat{w}_{k,j_{\ell}})$ if j_{ℓ} is sent.
- The power-weighted error

$$\sum_{\ell=1}^{L} P_{\ell} \left(1 - \hat{w}_{k,j_{\ell}}\right)$$

• Squared distance from $\hat{\beta}_{k+1,j} = \sqrt{P_{\ell}} \hat{w}_{k,j}$ to $\beta_j = \sqrt{P_{\ell}} \mathbb{1}_{\{j=j_{\ell}\}}$ $\|\hat{\beta}_{k+1} - \beta\|^2$

Lemma 2

- The power-weighted error and the squared distance have the same expectation.
- Equivalently, the success rate $\sum_{\ell=1}^{L} (P_{\ell}/P) \hat{w}_{k,j_{\ell}}$ which is $\beta^T \hat{\beta}_{k+1}/P$ and $\|\hat{\beta}_{k+1}\|^2/P$ have the same expectation.

- Error of posterior weight is $(1 \hat{w}_{k,j_{\ell}})$ if j_{ℓ} is sent.
- The power-weighted error

$$\sum_{\ell=1}^{L} P_{\ell} \left(1 - \hat{w}_{k,j_{\ell}}\right)$$

• Squared distance from $\hat{\beta}_{k+1,j} = \sqrt{P_{\ell}} \hat{w}_{k,j}$ to $\beta_j = \sqrt{P_{\ell}} \mathbb{1}_{\{j=j_{\ell}\}}$ $\|\hat{\beta}_{k+1} - \beta\|^2$

Lemma 2

- The power-weighted error and the squared distance have the same expectation.
- Equivalently, the success rate $\sum_{\ell=1}^{L} (P_{\ell}/P) \hat{w}_{k,j_{\ell}}$ which is $\beta^{T} \hat{\beta}_{k+1}/P$ and $\|\hat{\beta}_{k+1}\|^{2}/P$ have the same expectation. Proof: Use $\hat{\beta}_{k+1} = \mathbb{E} [\beta|stat_{k}]$.

- Error of posterior weight is $(1 \hat{w}_{k,j_{\ell}})$ if j_{ℓ} is sent.
- The power-weighted error

$$\sum_{\ell=1}^{L} P_{\ell} \left(1 - \hat{w}_{k,j_{\ell}}\right)$$

• Squared distance from $\hat{\beta}_{k+1,j} = \sqrt{P_{\ell}} \hat{w}_{k,j}$ to $\beta_j = \sqrt{P_{\ell}} \mathbb{1}_{\{j=j_{\ell}\}}$ $\|\hat{\beta}_{k+1} - \beta\|^2$

Lemma 2

- The power-weighted error and the squared distance have the same expectation.
- Equivalently, the success rate $\sum_{\ell=1}^{L} (P_{\ell}/P) \hat{w}_{k,j_{\ell}}$ which is $\beta^{T} \hat{\beta}_{k+1}/P$ and $\|\hat{\beta}_{k+1}\|^{2}/P$ have the same expectation. Proof: Use $\hat{\beta}_{k+1} = \mathbb{E} [\beta | stat_{k}]$.

Expected success rate: $x_{k+1} = \sum_{\ell=1}^{L} (P_{\ell}/P) \mathbb{E} \left[\hat{w}_{k,j_{\ell}} \right]$

Consequence for expected success rate

If the expected success rate was x_k , then using the $stat_{k,j}$ representation $\alpha_{\ell,k} \mathbf{1}_{\{j=j_\ell\}} + Z_{k,j}$ with

$$\alpha_{\ell,k} = \sqrt{nP_\ell/(\sigma^2 + P(1-x_k))},$$

then at the next step we have

where

$$x_{k+1} = g(x_k)$$

where g(x) is the success update function

 $egin{aligned} g(x) &= \sum_{\ell=1}^{L} rac{P_{\ell}}{P} \, \textit{success}(lpha_{\ell}(x)) \ & \textit{success}(lpha) &= \mathbb{E}\left[rac{e^{lpha^2 + lpha Z_1}}{e^{lpha^2 + lpha Z_1} + \sum_{j=2}^{M} e^{lpha Z_j}}
ight] \end{aligned}$

evaluated at $\alpha_{\ell}(x) = \sqrt{nP_{\ell}/(\sigma^2 + P(1-x))}$

assuming w.l.o.g. that first term is sent in each section

Decoding progression

Figure: Plot of g(x) and the sequence x_k .

Integral representation of g(x)

Change of variables from $t = \ell/L$ to

$$u = \frac{1 - e^{-2Ct}}{1 - e^{-2C}} \qquad \sim \quad \text{Uniform on } [0, 1],$$

 $\alpha_{\ell}(x)$ becomes

$$\alpha(u,x) = \tau \sqrt{\frac{C}{R} \frac{1 + snr(1-u)}{1 + snr(1-x)}}$$

which can be compared to $\tau = \sqrt{2 \log M}$.

We have the integral representation of g(x)

$$g(x) = \mathbb{E}_U[g(U,x)] = \int_0^1 g(u,x) du$$

where $g(u, x) = success(\alpha(u, x))$

Transition plots

Setting: $M = 2^9$, L = M, C = 1.5 bits and R = 0.8C. Plot of g(u, x) for x = 0, 0.2, 0.4, 0.6, 0.8, 1. Horizontal axis: depicts $u(\ell) = (1 - e^{-2C\ell/L})/(1 - e^{-2C})$. Black curves: our soft decision decoder Red curves: thresholding decoder with threshold $\sqrt{2 \log M} + a$

The area under the curve is g(x).

Lowerbound for update function

Using Jensen's inequality, we have

$$success(\alpha) = \mathbb{E}\left[\frac{e^{\alpha^{2}+\alpha Z_{1}}}{e^{\alpha^{2}+\alpha Z_{1}}+\sum_{j=2}^{M}e^{\alpha Z_{j}}}\right]$$
$$\geq \mathbb{E}\left[\frac{e^{\alpha^{2}+\alpha Z_{1}}}{e^{\alpha^{2}+\alpha Z_{1}}+(M-1)e^{\alpha^{2}/2}}\right]$$

so that

$$g(\mathbf{x}) \geq \mathbb{P}\{\xi \leq \alpha_U^2/2 - \tau^2/2 + \alpha_U Z\}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

where $\xi \sim logistic(0, 1)$ and $\alpha_u = \alpha(u, x)$

The Logit representation

• By McFadden(1974),

Let s_1, \ldots, s_m be a fixed sequence and ϵ_j be independent Gumbel distributed random variable. Then,

$$\mathbb{P}\{m{s}_1+\epsilon_1\geq \max_{2\leq j\leq m}(m{s}_j+\epsilon_j)\}=rac{m{e}^{m{s}_1}}{\sum_{j=1}^mm{e}^{m{s}_j}}$$

Thus, we can write g(x) as

$$g(x) = \mathbb{P}\left\{\alpha_U^2 + \alpha_U Z_1 + \epsilon_1 \ge \max_{2 \le j \le m} (\alpha_U Z_j + \epsilon_j)\right\},\$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Extreme value representation of the update function

• Using the logit representation: Approximation of the update function

$$g(x) = \mathbb{P}\{V_1 \leq \alpha_U\},\$$

where

$$V_1 = \max_{2 \le j \le m} \left\{ -\frac{Z_1 - Z_j}{2} + \sqrt{\left[\epsilon_j - \epsilon_1 + \frac{(Z_1 - Z_j)^2}{4}\right]_+} \right\}.$$

• For the lowerbound

$$g(x) \geq \mathbb{P}\{V_2 \leq \alpha_U\}$$

where

$$V_2 = -Z_1 + \sqrt{(\tau^2 + 2\xi + Z_1^2)_+}.$$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Analysis of Update function

- x^* solves g(x) = x, yields mistake rate $1 x^*$
- Communication rate $R = C/(1 + r/\tau^2)$
- with $r = \mathbb{E}[(V_+^2 \tau^2)\mathbf{1}_B]$, mistake rate

$$1-x^*=\frac{1}{snr}\ \frac{r}{\tau^2}$$

- Here *r* grows no faster than order of τ
- $B = \{ \alpha(1, x^*) \le V \le \alpha(0, x^*) \}$

Summary

Reliable for rates R < C

For the adaptive success decoder

- with thresholding (J&B 2010b ISIT, 2012b)
- with iteratively optimal soft decision (shown here)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Update fuctions

Figure: Comparison of update functions. Blue and light blue lines indicates $\{0, 1\}$ decision using the threshold $\sqrt{2 \log M} + a$ with respect to the value *a* as indicated.

Update fuctions

Figure: Comparison of update functions. Blue and light blue lines indicates $\{0, 1\}$ decision using the threshold $\sqrt{2 \log M} + a$ with respect to the value *a* as indicated.

Update fuctions

Figure: Comparison of update functions. Blue and light blue lines indicates $\{0, 1\}$ decision using the threshold $\sqrt{2 \log M} + a$ with respect to the value *a* as indicated.

Iteratively Bayes optimal coefficient estimates

With prior $j_{\ell} \sim Unif$ on sec_{ℓ} , the Bayes estimate based on $stat_k$

$$\hat{\beta}_{k+1} = \mathbb{E}[\beta | stat_k] \cong \mathbb{E}[\beta | stat_k, stat_{k-1}, \dots, stat_1] \cong \mathbb{E}[\beta | \mathcal{F}_k]$$

where $\mathcal{F}_k = \{$ Standardized inner products of *X* columns with *Y* and with components of the fits $F_1, \ldots, F_k \}$

Here, $F_k = X \hat{\beta}_k$

Fraction of Mistakes

Translating power-weighted value of $(1 - \hat{w}_{k,j_{\ell}})$

into fraction of occurrences of $\{1-\hat{w}_{k,j_\ell}\geq 1/2\}$

$$\delta_{mis} \leq \frac{snr}{C}(1-x^*) = \frac{r}{C\tau^2}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

at rate $R = \frac{C}{1+r/\tau^2}$