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X Channel
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(successive decoder reliable for R < C: Cover 1972 IT)
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Sparse Superposition Code for the Gaussian Channel

X Channel
u— 3 ———— XB —(PD——> Y —> Decoder =
Input bits Sparse Dictionary Codeword received
(length K) coeff. vector nby N (length n) (length n)
(length N) indep N(0,1)
L non-zero _ P
1812 =P Noise € ~ N(0, o2/) snr= —

o2

e Partitioned Coef.: 5 = (00«0000, 000000, ...,0«00000)
e [ sections of size M = N/L, one non-zero in each

o Rate R =K = L9V = Gapacity C = 1 log(1 + snr)

n
o Ultra-sparse case: Impractical M = 2"A/L with L constant
(successive decoder reliable for R < C: Cover 1972 1T)
e Moderately-sparse: M = L2 with n = (Llog M)/R
(reliable for R < C)
Maximum likelihood decoder (Joseph & Barron 2010a ISIT, 2012a IT)
Adaptive successive decoder with threshold (J&B 2010b ISIT, 2012b)
Adaptive successive decoder with soft decision (B&C, this talk)
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Progression of success rate
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Power Allocation

« Power control: Y5, P, = P 1812 = P

« Special choice: P, proportional to e 2¢/Lfor¢=1,...,L



Power Allocation

o Power control: S>5_, P, = P 182 =P

« Special choice: P, proportional to e=2C/Lfor¢ =1,. ..
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Coefficient vectors g

Power control: S5, P, = P 18112 = P

Special choice: P, proportional to e 2%“/Lfor¢=1,...,L
Coeff. sent: 3 = (00,/P;0000,000,/P-000, ..., 0,/P,00000)
Terms sent: (j1,jo, ..., Ji)

B =+/Pily,y forjinsectiont, foré=1,... L

B = set of such allowed vectors s for codewords X3



Coefficient Estimates 3

Power control: S5, P, = P 1812 = P

Special choice: P, proportional to e 2%“/Lfor¢=1,...,L

Coeff. sent: 3 = (00,/P;0000,000,/P,000,...,0,/P.00000)

Terms sent: (ji,jo,---,j1)

B =+/Pily,y forjinsectiont, foré=1,... L

B = set of such allowed vectors s for codewords X3
* [ restricted to B or the convex hull of B

o Bj=VPW forjinsec,, withW;>0, 3 e, Wj=1



lterative Estimation
For k > 1
o Coefficient fits: B, (initially 0)

Codeword fits: Fx = Xk

e.g. staty ; proportional to XjT(Y — F¥)

Update Bk+1 as a function of staty

Vector of statistics: stat, = function of (X, Y, Fy,...

. Fx)
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lterative Estimation

For k > 1
o Coefficient fits: B, (initially 0)

Codeword fits: Fy = XﬁAk also Fk.fj = X,AJ)/(_,]'

Vector of statistics: stat, = function of (X, Y, Fy,...

e.g. staty ; proportional to XjT(Y — Fi—))

Update Bk+1 as a function of staty

e Thresholding: Adaptive Successive Decoder

Bri1; = /Pu if stat; is above threshold in
sections ¢ not previously decoded

o Soft decision:
Bre1,j = E[Bj|staty]
with thresholding on the last step

. Fx)



Statistics
staty = function of (X, Y, Fy,...,F)  Fr = X[k
Orthogonalization : Let Gy = Y and for k > 1

Gy = part of Fx orthogonal to Gy, Gy, . . ., Gk_1

Components of statistics
kj= T AT
TG

Class of statistics stat, formed by combining Zy, ...

7Zk



Statistics
staty = function of (X, Y, Fy,...,F)  Fr = X[k
Orthogonalization : Let Gy = Y and for k > 1
Gy = part of Fx orthogonal to Gy, Gy, . . ., Gk_1
Components of statistics
ren|

Class of statistics stat, formed by combining Zy, ..., Zx

n
statk j = Zﬁ?mb + fCT(

where Z£0Mb =\ /N0 Zo — \/ Akt 21— .. — /[ Akk Bk

with )\k,O + )\k,1 + ...+ )\k,k =1

Bk,



Statistics based on residuals

Let stat, ; be proportional to X7 (Y — X5k _;)
bl i »—)

XY =X IX1
/NCx ey

Arises with )\, proportional to

statx j =

(Y= 23 B2, (ZT B2 (2T

and ncx = ||Y — XBk|2.

Here, ¢y is typically between 2 and o2 + P



|dealized Statistics
Ak exists yielding stat/®? with distributional representation

Jn

,8 + Zl?omb
Vo2 + 118 = Bull?

with — Zeomb ~ N(0, /).

This is a normal shift that improves with decreasing || 3 — /x||2.



|dealized Statistics
Ak exists yielding stat/®? with distributional representation

\/ﬁ
Vo2 + 118 = Bull?

,8 + Zl?omb

with ZEomb ~ N(0, /).
This is a normal shift that improves with decreasing || 3 — /x||2.

For terms sent the shift o, x has an effective snr interpretation

n Pg
Oy k =
02+ P remaining,k

where Premaining,k = |8 - BkHZ'




Distributional Analysis
Lemma 1: shifted normal conditional distribution

Given Fx_1 = ([|Gol|; - - -, [|Gk-11l; 20, 21, . - -, Zk-1), the Z, has
the distributional representation
G
Z = L k”bk + Zx
Ok

o ||Gk|[?/o2 ~ Chi-square(n — k)
e Z ~ N(0,Xk) indep of || G|l



Distributional Analysis
Lemma 1: shifted normal conditional distribution

Given Fx_1 = ([|Gol|; - - -, [|Gk-11l; 20, 21, . - -, Zk-1), the Z, has
the distributional representation
G
Z = L k”bk + Zx
Ok

o ||Gk|[?/o2 ~ Chi-square(n — k)
Zi ~ N(0, Xx) indep of || G|l

e bg, by, ..., bk the successive orthonormal components of
Lo ls] e
o Y= 1—bobl —b1b] —...— byb]

= projection onto space orthogonal to (x)

o2 = Bl T 1Bk



Distribution of 2] = (5, ... Fat. &%)

1Gkll 77 [|Gkll ? o Grll
Lemma 1: shifted normal conditional distribution
Given Fx—1 = (IGoll; - - -, IGk=1ll; 20, 21, - - -, Zk—1), the 2, has
the distributional representation
G
Zk _ ||0k||b +Z

|Gk /o2 ~ Chi-square(n — k)
Zx ~ N(0,Xy) indep of || G|l

e bo, by, ..., bk the successive orthonormal components of
Alle ] le] o
o Yy =1—bobl —byb] —...— byb]

= projection onto space orthogonal to (x)
02 = Bl k1P«



|dealized Statistics

Weights of combination based on )\, proportional to
((ov = BE B2, (BT B2, (bTB?)
produces the desired distributional representation

vn
Vo2 + 118 — Bl
with Zeomb  N(0,/) and o2 =02 + P.

Stal‘,i(dea/ _ 5 + chomb




|dealized Statistics

Weights of combination based on )\, proportional to
((ov = BE B2, (BT B2, (BT B)?)
produces the desired distributional representation

Vvn
Vo2 + 118 — Bl
with Z2omb ~ N(0,/) and o% = 0%+ P.

e |8 — B«||? is close to its known expectation

e This provides approximation of the distribution of the staty ;
as independent shifted normals.

statli(dea/ _ 6 + chomb




Relationship between statistics

The stats based on residuals estimate the idealized statistics.
Why? For stat/®®@ the )\, are proportional to
n ((ov = b3 B0% (O] B2, (bIB?)
whereas, for the residual-based stat they are proportional to
(Yl = 2332 (2732, (T3P
Here 2/ 5x/+/nis approximately b/, 3y for k' < k.
Indeed, with the chi-square factor replaced by its expectation,
24 Bk/V'n = BBk + Z{Bk/V/n.

The Z], 3« has mean 0 and is stochastically dominated by Z/,3.
K k



lteratively Bayes optimal coefficient estimates
With prior j, ~ Unif on sec,, the Bayes estimate based on stat

Brr1 = E[B|staty]
has representation S 1, = v/Pr Wi ; with

Wk,j = Prob{j, = j|staty}.



lteratively Bayes optimal coefficient estimates
With prior j, ~ Unif on sec,, the Bayes estimate based on stat

Bre1 = E[B|staty]
has representation S 1, = v/Pr Wi ; with
Wk,j = PI’Ob{jg = j|statk}.

Here, when the staty ; are independent N(ay x14j—;,3,1), we
have the logit representation

etk staty j
T esen, € I
74

In our setting, ay  is the shift given by

nPg
Qy gk = ~
o2 +E||B — B2

Wkj =




Relating error rate and squared distance

» Error of posterior weightis (1 — Wy ,) if j, is sent.
e The power-weighted error

L
> Pl = Wiy,
=1
o Squared distance from By, 1; = /PiWij to j = VPl
1Bis1 — Bl
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» Error of posterior weightis (1 — Wy ,) if j, is sent.
e The power-weighted error

L
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=1

e Squared distance from By 1; = /P to 5 = VPil -,
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Lemma 2

e The power-weighted error and the squared distance have
the same expectation.

o Equivalently, the success rate S";_, (Ps/P) Wk, which is
BT Bri1/P and || Bxs 1|2/ P have the same expectation.
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Relating error rate and squared distance

» Error of posterior weightis (1 — Wy ,) if j, is sent.
e The power-weighted error

L
ZP5(1 — Wk j,)
=1

e Squared distance from By 1; = /P to 5 = VPil -,
1Bk — BII?

Lemma 2

e The power-weighted error and the squared distance have
the same expectation.

o Equivalently, the success rate S";_, (Ps/P) Wk, which is
BT Bri1/P and || Bxs 1|2/ P have the same expectation.
Proof: Use k.1 = E[3]|staty].

Expected success rate: X1 = g (Pe/P)E [Wk ,]



Consequence for expected success rate
If the expected success rate was X, then using the staty ;
representation ay x 14—y + Zk,; with
ek = /1P (0 + P(1 = X))
then at the next step we have

Xk+1 = 9(Xk)
where g(x) is the success update function
LP
ax)=>_ % success(ag(x))
/=1

where eo?taZ,

success(a) = E
( ) ea2+aZ1 +Ejl\12 eaZj

evaluated at ay(x) = \/nP;/(02 + P(1 — x))

assuming w.l.0.g. that first term is sent in each section.



Decoding progression
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Figure: Plot of g(x) and the sequence x.



Integral representation of g(x)
Change of variables from t = ¢/L to

1— e—ZCt

U= ¢ ~  Uniform on [0, 1],

ay(Xx) becomes

o, X) = C 1+snr(1 —u)
T TNR At sar(1 - x)

which can be compared to 7 = /2 log M.

We have the integral representation of g(x)

1
9(x) = Ey[g(U. x)] = /0 9(u. X)alu

where g(u, x) = success(a(u, x))



Transition plots
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Setting: M=2° L =M, C=1.5bitsand R = 0.8C.

Plot of g(u, x) for x =0,0.2,0.4,0.6,0.8, 1.

Horizontal axis: depicts u(¢) = (1 — e~2C4/L) /(1 — e72©).
Black curves: our soft decision decoder

Red curves: thresholding decoder with threshold /2log M + a

The area under the curve is g(x).



Lowerbound for update function

Using Jensen’s inequality, we have

ea2+aZ1
success(a) = E

eoz2+OlZ1 + Z/AiZ eOéZ]

ea2+aZ1
Z E 2 2
ex +aZ1 +(M_1)eoz /2

so that
g(x) > P{¢ <a?/2-1%/2+ ayZ}

where ¢ ~ logistic(0,1) and ay = a(u, Xx)



The Logit representation

e By McFadden(1974),

Let s1,...,sm be a fixed sequence and ¢; be independent
Gumbel distributed random variable. Then,

est

P{s > max (S; i = — =

Thus, we can write g(x) as

x) =P a? Z. > max (ayZ +¢€) ¢,
o) =P {afy +auZi + e > max (auZ +4)



Extreme value representation of the update function

¢ Using the logit representation: Approximation of the update
function
9(x) = P{V;s < ay}.

where

Zi—Z; Zi — Z)2
V1:max{_ 1 /+\/[e/-—e1—|—(1j)] }
2<j<m 2 4 N

e For the lowerbound

g(x) > P{Vo < ay}

where

Vo= —2Z + \/(72 + 26+ 22).,.



Analysis of Update function

x* solves g(x) = x, yields mistake rate 1 — x*
Communication rate R = C/(1 + r/7?)

with r = E[(V2 — 72)1g], mistake rate

Here r grows no faster than order of ~

B = {a(1,x*) < V < a(0,x*)}



Summary
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For the adaptive success decoder

o with thresholding (J&B 2010b ISIT, 2012b)
e with iteratively optimal soft decision (shown here)
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Update fuctions
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Figure: Comparison of update functions. Blue and light blue lines
indicates {0, 1} decision using the threshold /2log M + a with
respect to the value a as indicated.
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Update fuctions
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respect to the value a as indicated.



lteratively Bayes optimal coefficient estimates

With prior j, ~ Unif on sec,, the Bayes estimate based on stat

By = E[B]staty]
E[p|statk, statk_1, . .., stati]
E[B|Fk]

1R

where Fy = { Standardized inner products of X columns with Y
and with components of the fits F4, ..., Fx}

Here, Fi = X By



Fraction of Mistakes

Translating power-weighted value of (1 — vy ;)

into fraction of occurrences of {1 — Wy ;, > 1/2}

snr . r
omis <= g (1 =X)=¢rz

__C
at rate R = 572



