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Models and Likelihood

@ Likelihood: Early statistical foundations
Bayes, Laplace, Gauss shared a Bayesian perspective.
R. A. Fisher championed likelihood.
@ Model: Input X, output Y with center f(X, 6), parameters 6.
For instance, a linear model or a modern deep network.
@ Probability Model: for finite precision X, Y.
Design distribution p(x), output condit. distrib. p(y|x, 0).
o Data: For training and for future evaluation
data = (X, V)l data’ = (X, Y))",
@ LIKELIHOOD: p(data|f)
Independent observations case: [[; p( y,\x,,

@ Likelihood Criterion: Prefer 6 with smaII
log 1/p(data|d)
@ Information Theory Viewpoint: Shannon, Cover, Rissanen
Prefer shorter codelength.
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Maximum Likelihood Estimation

What'’s good about the maximum likelihood estimate ,?
@ Short codelength interpretation provides motivation.
@ Consistency: Wald(1948) iid case. Target 6* is limit of 4.
Proof idea: Maximizing likelihood is same as minimizing
L3¢ log p(data;|6*)/p(data;|6),
which (akin to the AEP) is asymptotically close to
E[log p(datay|6")/p(datay|6) ],
uniformly so with Wald’s finite expected infimum condition, so the
empirical minimizer approaches the minimizer of the expectation.
@ Expected Favorability: Wald(1948), credited to Doob, showed
this expectation, later called Kullback divergence, is indeed
positive, also known as the Gibbs, Shannon inequality.

@ Empirical Risk Min: Gauss, Vapnik least squares, other settings

@ Accuracy: The finite sample risk is controlled by the best
trade-off of Kullback approximation error and metric entropy
relative to sample size, specializing a result shown later here.
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Maximum Likelihood Estimation

What can go wrong with likelihood maximization?

@ Lack of Parsimony: For nested models, it prefers larger,
more complex, models.

@ Non-adaptive: Accuracy (or lack thereof) dictated by the
largest size, in metric entropy, of the models considered.

@ Over-fit: Suppose the family includes the target, then
log 1/p(data|f) will be smaller than log 1/p(datal|6*).

Such over-fit is traditionally regarded as problematic.
We will come back to that.
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Penalized Likelihood

Penalized Log Likelihood
log 1/p(datald) + pen,(0)
Aims of Penalized Log Likelihood

@ Overcome limitations of maximum likelihood
@ Allow adaptivity

@ Overcome problematic over-fit
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Penalized Likelihood

Forms of penalized log-likelihood:
@ Bayes: Prior provides a penalty. Posterior favors smallest
log 1/p(data|d) + log 1/prior(0)

@ Minimum Description Length (MDL):

Codelength L,(0) for 6, plus codelength for data given 6

log 1/p(datald) + L,(0)
@ Parameter Dimension Penalty:
diTmlog n Schwartz BIC, Rissanen MDL.
@ Fisher Information Penalty:
dmlog /= + log(|/(0)|"/?/w(0)) Barron, Clarke, Rissanen.

@ /4 Norm Penalty: prop.to [0[; = S_¢™, |¢;] in linear models.
@ /1 Norm of Path Weights: In deep ReLU networks.

(e.g. Klusowski, Barron 2020).

@ Roughness Penalty: e.g. Tapia, Thompson (1978).
@ Structural Minimization: Vapnik.
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Information-Theoretic Unification of Pen Likelihood

Information-Theoretically Valid Penalty: Codelength valid if the
Shannon, Kraft inequality . 2-L() < 1 holds for the criterion
L(data) = (5“6‘8 {log 1/p(datal|6) + pen,(6)}

Description length interpretation that remains valid for continuous 6.

Mechanisms to Establish Information-Theoretic Validity
@ Compare L(data) to the Bayes Mixture Codelength:
log1/ [ p(datal@)w(0)d6
Laplace approx. shows Fisher Info penalty is codelength valid
@ Compare L(data) to a Discrete Two-Stage MDL:
gﬁg {log 1/p(data|d) + La(6)}
where 8 is a discfete set and L,(f) satisfies the Kraft inequality.

@ The ¢4 norm penalty pen,(6) = \y|0|; is codelength valid
for A\, > v/nlogdim (Barron, Huang, Li, Liu 2008)
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Information-Theoretic Unification of Pen Likelihood

Penalty doubling produces statistical generalization benefits.
Information-Theoretically Valid Penalty: Codelength valid if the
Shannon, Kraft inequality > 2-L() < 1 holds for the criterion
L(data) = min {log 1/p(datal6) + pen,(6)}
S
Description length interpretation that remains valid for continuous 6.

Mechanisms to Establish Information-Theoretic Validity
@ Compare L(data) to the Bayes Mixture Codelength:
log1/ [ p(datal@)w(0)d6
Laplace approx. shows Fisher Info penalty is codelength valid
@ Compare L(data) to a Discrete Two-Stage MDL:
min {log 1/p(data|d) + 2Ln(f)}
where 8 is a disegrite set and L,(f) satisfies the Kraft inequality.

@ The ¢4 norm penalty pen,(f) = A\p|6|1 is codelength valid
for A\, > 24/nlogdim (Barron, Huang, Li, Liu 2008)
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Statistical Aim

@ From training data X, Y obtain an estimator p = Pa

@ Generalize to subsequent data’ = X', Y’

@ Want log 1/p(data’) to compare favorably to log 1/p(data’)
@ For targets p which are close to or even inside the families

@ With data’ expectation, loss becomes Kullback divergence

@ Bhattacharyya, Hellinger loss also relevant
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Loss

@ Kullback Information-divergence:
Dn(67]10) = E[ log p(X', Y'|6")/p(X". Y'|6) ]
@ Bhattacharyya, Hellinger divergence:
dn(67(10) = 2log 1 /Elp(X', Y'|6)/p(X', Y'|6)]"/2

@ Product model case: With sample size n
Dn(6710) = nD(67(6)
dn(6*,0) = nd(6*,0)
@ Relationship: d < D < (2+ B) d if the log density ratio < B.
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Index of Resolvability

The empirical criterion
228 {log 1/p(data|6) + pen,(0)}
has the population counterpart
min { Da(6(|6) + peny () }

A parameter 6}, best resolves the target at sample size n.

Dividing by n yields a statistical rate, the index of resolvability
o 1 *
Rn(67) = — min { Da(0"]10) + pen,(6)}
For instance, in the i.i.d. case 0)
* . * pen
Rn(07) = min { D(0"]10) + =1}
Conservative bound

en,(6*
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One-sided empirical analysis reveals generalization

Idea: empirical process error may be complexity dependent

@ log likelihood-ratio discrepancy for training and future data

Po~ (data) *
{log po(data) In(0 ’9)]

@ Instead, we examine the penalized discrepancy

. pe+(data) .
{[Iog py(data) dn(6 ,6)} + penn(e)}
@ Key to statistical analysis:
With information-theoretically valid penalty with the
doubling property, the penalized discrepancy
e has expectation greater than or equal to zero and
e is stochastically greater than minus an exponential(1) r.v.

Li, Barron 1998 for discrete 6; extended to continuous 6 by the
variable covering condition in Barron, Huang, Li, Luo 2008.
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Risk Bounds and Confidence Bounds

For any information-theoretically valid pen,(¢) with the doubling
property, the penalized discrepancy
min { [Iog m — dn (0", 0)} + penn(ﬂ)}

@ has expectation greater than or equal to zero and

@ is stochastically greater than minus an exponential(1) r.v.
Risk bound: Apply the expectation inequality at the penalized log
likelihood optimizer 6 to get the risk bound (from Li, Barron 1998,
Grunwald 2007, with extension in Barron, Huang, Li, Liu 2008)
po-(data)
1p(data) + pen,,(@)}.
Hence, since the expected min is less than the min of expectations,

E[d(6*,0)] < Ra(6%).

Thus the population resolvability controls the estimation risk.
Analogous conclusion holds for general (non-iid) models.

) 1 :
E[d(0*,0)] < EE min {log
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Risk Bounds and Confidence Bounds

For any information-theoretically valid pen,(#) with the doubling
property, the penalized discrepancy

po-(data)

min { [Iog pp(data) dn(6°, 0)} + penn(ﬂ)}

@ has expectation greater than or equal to zero and

@ is stochastically greater than minus an exponential(1) r.v.
Confidence region: Apply the stochastic inequality to any
estimate 6 to get the following confidence statement. In an event
of probability at least 1 — ¢

1 1oq Pe- (data) penn(f) N log1/6

* 0) <
d(o.9) n > ps(data) n n

In particular, for any over-fit estimate 4, with the same prob,
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Risk Bounds and Confidence Bounds

@ Confidence region: In an event of probability at least 1 — §

d(g*,é) < 1| PG*(data) penn(e) + |Og1/(s
n = p;(data) n n

In particular, for any over-fit estimate 4, with the same prob,
A eny(8)  log1/s
n n
@ Implication for linear models and for deep ReLU nets:
for any over-fit estimate 6, with prob at least 1 -4,

A A log di n log1/0
d(o*,0) < 210, /ognlm N Consl‘+ ogn/

@ A fitted over-parameterized deep net with small /; path

norm compared to y/n/ log dim yields appropriately
confident in the indicated accuracy of generalization.

@ Provides understanding of sometimes benign over-fitting.

Andrew Barron Information Theory and Statistical Learning



Statistics and information theory are fundamentally intertwined.
General one-sided penalized empirical proc. analysis provides:
@ Risk bound by the index of resolvability.
@ Confidence bound from observed penalty, log-likelihood

@ Fundamental connection between empirically valid
penalties and information -theoretically valid penalties.

@ Surprisingly valid penalties.

@ Explanation for benign over-fitting.
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