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Celebrations for
three influential scholars in Information Theory and Statistics:

Tom Cover: On the occasion of his 70th birthday
Coverfest.stanford.edu
Elements of Information Theory Workshop
Stanford University, May 16, 2008

Imre Csiszár: On the occasion of his 70th birthday
www.renyi.hu/∼infocom
Information and Communication Conference
Renyi Institute, Budapest, August 25-28, 2008

Jorma Rissanen: On the occasion of his 75th birthday
Festschrift at www.cs.tut.fi/∼tabus/
presented at the IEEE Information Theory Workshop
Porto, Portugal, May 8, 2008: THIS MORNING!
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Shannon Codes

Kraft-McMillan characterization:
Uniquely decodeable codelengths

L(x), x ∈ X ,
∑

x

2−L(x) ≤ 1

L(x) = log 1/p(x) p(x) = 2−L(x)

Operational meaning of probability:

A probability distribution p is given by a choice of code
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Codelength Comparison

Targets p∗ are possible distributions

Compare codelength log 1/p(x) to alternatives log 1/p∗(x)

Redundancy or regret[
log 1/p(x)− log 1/p∗(x)

]

Expected redundancy

D(P∗
X‖PX ) = EP∗

[
log

p∗(X )

p(X )

]
Barron, Li, Huang, Luo MDL, Penalized Likelihood, Statistical Risk 6/33



Something Old
Something Borrowed

Something New
Summary

Uniquely-Decodable Codes
Universal Codes
Statistical Setting

Universal Codes

MODELS
Family of coding strategies ⇔ Family of prob. distributions{

Lθ,m(x) : θ ∈ Θm
}
⇔

{
pθ,m(x) : θ ∈ Θm

}
Model index m ∈M

Universal codes ⇔ Universal probabilities qm(x)

Lm(x) = log 1/qm(x)

Redundancy:
[

log 1/qm(x)− log 1/pθ,m(x)
]

Want it small either uniformly in x , θ or in expectation
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Statistical Aim

Training data x ⇒ estimator p̂ = pθ̂,m̂

Subsequent data x ′

Want log 1/p̂(x ′) to compare favorably to log 1/pθ,m(x ′)

Likewise for p∗ close to but not necessarily in the families
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Loss

Kullback Information-divergence:

D(P∗
X ′‖PX ′) = E

[
log p∗(X ′)/p(X ′)

]
Bhattacharyya, Hellinger, Chernoff, Rényi divergence:

d(P∗
X ′ , PX ′) = 2 log 1/E [p(X ′)/p∗(X ′)]1/2

Product model case: p(x ′) =
∏n

i=1 p(x ′i )

D(P∗
X ′‖PX ′) = n D(P∗‖P)

Likewise d(P∗
X ′ , PX ′) = n d(P∗, P)
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Loss

Relationship:
d(P∗, P) ≤ D(P∗‖P)

and, if the log density ratio is not more than B, then

D(P∗‖P) ≤ CB d(P∗, P)

with CB ≤ 2 + B
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MDL

Universal coding brought into statistical play

Minimum Description Length Principle:

The shortest code for data gives the best statistical model
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MDL: Two-stage Version

Two-stage codelength (parametric case):

L(x) = min
m

min
θ∈Θm

[
log 1/pθ,m(x) + L(θ, m)

]
bits for x given θ, m + bits for θ, m

Corresponding statistical estimator p̂ = pθ̂,m̂

Two-stage codelength (function case):

L(x) = min
f∈F

[
log 1/pf (x) + L(f )

]
Corresponding statistical estimator p̂ = p f̂
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MDL: Two-stage Version

Two-stage codelength (parametric case):

L(x) = min
m

min
θ∈Θm

[
log 1/pθ,m(x) + L(θ, m)

]
bits for x given θ, m + bits for θ, m

Corresponding statistical estimator p̂ = pθ̂,m̂

Typically L(θ, m) is of order

dim(Θm)

2
log n + L(m)
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MDL: Mixture and Predictive Versions

Codelength based on a selection of mixture models
L(x) = minm

[
log 1R

Θm
pm(x |θ)wm(θ)dθ

+ L(m)
]

describe x given m + describe m

average case optimal

Corresponding statistical estimators are m̂ and

p̂(x ′) = pm(x ′|x) =

∫
pm(x ′|θ)pm(x |θ)wm(θ)dθ∫

pm(x |θ)wm(θ)dθ

which is a predictive distribution
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MDL: Predictive Version

Codelength based on predictive distributions

L(x) = log
1

p(x1)
+ log

1
p(x2|x1)

+ . . . log
1

p(xn|x1, . . . , xn−1)

Corresponding statistical estimator at x ′ = xn+1

p̂(x ′) = p(xn+1|x1, . . . , xn)
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MDL: Two-stage Code Redundancy

Expected codelength minus target at p∗ = pf∗

Redundancy = E
[

min
f∈F

{
log

1
pf (x)

+ L(f )
}
− log

1
pf∗(x)

]
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Redundancy and Resolvability

Redundancy = E minf∈F

[
log pf∗ (x)

pf (x) + L(f )
]

Resolvability = minf∈F E
[

log pf∗ (x)
pf (x) + L(f )

]
= minf∈F

[
D(PX |f∗‖PX |f ) + L(f )

]
Ideal tradeoff of Kullback approximation error & complexity

Population analogue of the two-stage code MDL criterion

Divide by n to express as a rate. In the i.i.d. case

Rn(f ∗) = min
f∈F

[
D(f ∗‖f ) +

L(f )
n

]
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Risk of Estimator based on Two-stage Code

Estimator f̂ is the choice achieving the minimization

min
f∈F

{
log

1
pf (x)

+ L(f )
}

Codelengths for f are L(f ) = 2L(f ) with
∑

f∈F 2−L(f ) ≤ 1.

Total loss dn(f ∗, f̂ ) with dn(f ∗, f ) = d(PX ′|f∗ , PX ′|f )

Risk = E [dn(f ∗, f̂ )]

Info-Thy bound on risk: Barron (1985), Barron and Cover (1991), Jonathan Li (1999)

Risk ≤ Redundancy ≤ Resolvability

Barron, Li, Huang, Luo MDL, Penalized Likelihood, Statistical Risk 19/33



Something Old
Something Borrowed

Something New
Summary

Minimum Description Length Principle for Statistics
Two-stage Code Redundancy and Resolvability
Statistical Risk of MDL Estimator

Risk of Estimator based on Two-stage Code

Estimator f̂ achieves minf∈F {log 1/pf (x) + L(f )}
Codelengths require

∑
f∈F 2−L(f ) ≤ 1.

Risk ≤ Resolvability

Specialize to i.i.d. case:

Ed(f ∗, f̂ ) ≤ min
f∈F

[
D(f ∗‖f ) +

L(f )
n

]
As n ↗, tolerate more complex f if needed to get near f ∗

Rate is 1/n, or close to that rate if f ∗ is simple

Drawback: Code interpretation entails countable F
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Key to Risk Analysis

log likelihood-ratio discrepancy at training x and future x ′[
log

pf∗(x)

pf (x)
− dn(f ∗, f )

]
Proof shows, for L(f ) satisfying Kraft, that

min
f∈F

{[
log

pf∗(x)

pf (x)
− dn(f ∗, f )

]
+ L(f )

}
has expectation ≥ 0. From which the risk bound follows.
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Information-theoretically Valid Penalty

Penalized Likelihood

f̂ = argminf∈F

{
log

1
pf (x)

+ Penn(f )
}

Possibly uncountable F
Task: determine a condition on Penn(f ) such that the risk is
captured by the population analogue

Edn(f ∗, f̂ ) ≤ inf
f∈F

{
E log

pf∗(X )

pf (X )
+ Penn(f )

}
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Info-thy Penalty: Link Uncountable & Countable

Suppose for uncountable F and penalty Penn(f ), f ∈ F
there is a countable F̃ and Ln(f̃ ) satisfying Kraft,
such that, for all x , f ∗,

min
f∈F

{[
log

pf∗(x)

pf (x)
− dn(f ∗, f )

]
+ Penn(f )

}

≥ min
f̃∈F̃

{[
log

pf∗(x)

pf̃ (x)
− dn(f ∗, f̃ )

]
+ Ln(f̃ )

}
Proof of the risk conclusion:
The second expression has expectation ≥ 0,
so the first expression does too.
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Variable Complexity, Variable Distortion Cover (Code)

Equivalently: Penn(f ) is a valid penalty if for all x ,

Penn(f ) ≥ min
f̃∈F̃

[
L(f̃ ) + ∆n(f̃ , f )

]
where the distortion ∆n(f̃ , f ) is the difference in the
discrepancies at f̃ and f
Equivalently: For each f in F there is a representer f̃ in F̃
with complexity L(f̃ ), distortion ∆n(f̃ , f ) and

Penn(f ) ≥ L(f̃ ) + ∆n(f̃ , f )
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Linear Span of a Dictionary

G is a dictionary of candidate basis functions
Wavelets, splines, polynomials, trigonometric terms,
sigmoids, explanatory variables and their interactions

Candidate functions in the linear span

f (x) = fθ(x) =
∑
g∈G

θg g(x)

`1 norm of coefficients

‖θ‖1 =
∑

g

|θg |
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Example Models

Regression
pf (y |x) = Normal(f (x), σ2)

Logistic regression with y ∈ {0, 1}

pf (y |x) = Logistic(f (x)) for y = 1

Log-density estimation

pf (x) =
p0(x) exp{f (x)}

cf
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`1 Penalty

penn(fθ) = λn‖θ‖1 where fθ(x) =
∑

g∈G θg g(x)

Popular penalty: Chen & Donoho (96) Basis Pursuit;
Tibshirani (96) LASSO; Efron et al (04) LARS;
Precursors: Jones (92), B.(90,93,94) greedy algorithm and
analysis of combined `1 and `0 penalty

Risk analysis: specify valid λn for risk ≤ resolvability
Computation analysis: bound accuracy of new
`1-penalized greedy pursuit algorithm
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Penalized Likelihood Analysis
Example: `1 penalties are information-theoretically valid

`1 penalty is valid for λn of order 1/
√

n

Example: `1 penalized log-density estimation, i.i.d. case

θ̂ = argminθ

{
1
n

log
1

pfθ(x)
+ λn‖θ‖1

}
Risk bound:

Ed(f ∗, fθ̂) ≤ inf
θ

{
D(f ∗||fθ) + λn‖θ‖1

}
Valid for

λn ≥
√

H
n

with H = log Card(G)

For infinite G use metric entropy in place of H
Results for regression shown in a companion paper
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`1 penalty is valid for λn of order 1/
√

n

Example: `1 penalized log-density estimation, i.i.d. case

θ̂ = argminθ

{
1
n

log
1

pfθ(x)
+ λn‖θ‖1

}
Risk bound:

Ed(f ∗, fθ̂) ≤ inf
θ

{
D(f ∗||fθ) + λn‖θ‖1

}
True with

λn =

√
H
n

with H = log Card(G)

Risk of order λn when the target has finite `1 norm
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Comment on proof

Shannon-like demonstration of the existence of the
variable complexity cover property
Inspiration from technique originating with Lee Jones (92)
Representer f̃ of fθ of the form

f̃ (x) =
v
m

m∑
k=1

gk (x)

g1, . . . gm picked at random from G, independently, where g
arises with probability proportional to |θg |
May pick them in greedy fashion as in demonstration of
fast computation properties
In the paper in the Festschrift with summary in the ITW
proceedings
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Handle penalized likelihoods with continuous domains for f

Information-theoretically valid penalties:
Penality exceed complexity plus distortion of optimized
representors of f
Yields statistical risk controlled by resolvability

`0 penalty dim
2 log n classically analyzed

`1 penalty λn ‖θ‖1 analyzed here: valid for λn ≥
√

H/n.
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