Celebrations for three influential scholars in Information Theory and Statistics:

• Tom Cover: On the occasion of his 70th birthday Coverfest.stanford.edu *Elements of Information Theory Workshop* Stanford University, May 16, 2008

 Imre Csiszár: On the occasion of his 70th birthday www.renyi.hu/~infocom
 Information and Communication Conference
 Renyi Institute, Budapest, August 25-28, 2008

 Jorma Rissanen: On the occasion of his 75th birthday Festschrift at www.cs.tut.fi/~tabus/ presented at the IEEE Information Theory Workshop Porto, Portugal, May 8, 2008: THIS MORNING!

ヨト イヨト ヨー のへの

MDL, Penalized Likelihood and Statistical Risk

Andrew Barron

Department of Statistics Yale University

Coauthors: Jonathan Li, Cong Huang, Xi Luo

May 8, 2008 ITW - Porto, Portugal

On the Occasion of the Festschrift for Jorma Rissanen

< 🗇 🕨

→ E > < E >

Outline

- Something Old
 - Uniquely-Decodable Codes
 - Universal Codes
 - Statistical Setting
- 2 Something Borrowed
 - Minimum Description Length Principle for Statistics
 - Two-stage Code Redundancy and Resolvability
 - Statistical Risk of MDL Estimator
- Something New
 - Penalized Likelihood Analysis
 - Example: ℓ_1 penalties are information-theoretically valid

Summary

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Uniquely-Decodable Codes Universal Codes Statistical Setting

Outline

Something Old

- Uniquely-Decodable Codes
- Universal Codes
- Statistical Setting
- 2 Something Borrowed
 - Minimum Description Length Principle for Statistics
 - Two-stage Code Redundancy and Resolvability
 - Statistical Risk of MDL Estimator
- 3 Something New
 - Penalized Likelihood Analysis
 - Example: ℓ_1 penalties are information-theoretically valid

Summary

くロト (過) (目) (日)

Uniquely-Decodable Codes Universal Codes Statistical Setting

Shannon Codes

 Kraft-McMillan characterization: Uniquely decodeable codelengths

$$\begin{array}{ll} L(\underline{x}), & \underline{x} \in \underline{\mathcal{X}}, \\ L(\underline{x}) = \log 1/p(\underline{x}) \end{array} \qquad \qquad \sum_{\underline{x}} 2^{-L(\underline{x})} \leq 1 \\ \end{array}$$

• Operational meaning of probability:

A probability distribution p is given by a choice of code

ヘロト ヘ戸ト ヘヨト ヘヨト

Uniquely-Decodable Codes Universal Codes Statistical Setting

Codelength Comparison

- Targets *p** are possible distributions
- Compare codelength log 1/p(<u>x</u>) to alternatives log 1/p*(<u>x</u>)
- Redundancy or regret

$$\left[\log 1/p(\underline{x}) - \log 1/p^*(\underline{x})\right]$$

Expected redundancy

$$D(P_{\underline{X}}^* \| P_{\underline{X}}) = E_{P^*} \Big[\log \frac{p^*(\underline{X})}{p(\underline{X})} \Big]$$

くロト (過) (目) (日)

Uniquely-Decodable Codes Universal Codes Statistical Setting

Universal Codes

MODELS

Family of coding strategies \Leftrightarrow Family of prob. distributions

$$\left\{L_{\theta,m}(\underline{x}): \theta \in \Theta_m\right\} \Leftrightarrow \left\{p_{\theta,m}(\underline{x}): \theta \in \Theta_m\right\}$$

Model index $m \in \mathcal{M}$

• Universal codes \Leftrightarrow Universal probabilities $q_m(\underline{x})$

$$L_m(\underline{x}) = \log 1/q_m(\underline{x})$$

Redundancy: [log 1/q_m(<u>x</u>) - log 1/p_{θ,m}(<u>x</u>)]
 Want it small either uniformly in *x*, θ or in expectation

ヘロト ヘ戸ト ヘヨト ヘヨト

Uniquely-Decodable Codes Universal Codes Statistical Setting

Statistical Aim

- Training data $\underline{x} \Rightarrow$ estimator $\hat{p} = p_{\hat{\theta},\hat{m}}$
- Subsequent data <u>x</u>'
- Want log $1/\hat{p}(\underline{x}')$ to compare favorably to log $1/p_{\theta,m}(\underline{x}')$
- Likewise for *p** close to but not necessarily in the families

ヘロン ヘアン ヘビン ヘビン

= 900

Uniquely-Decodable Codes Universal Codes Statistical Setting

Loss

• Kullback Information-divergence:

$$D(P_{\underline{X}'}^* \| P_{\underline{X}'}) = E\big[\log p^*(\underline{X}') / p(\underline{X}')\big]$$

• Bhattacharyya, Hellinger, Chernoff, Rényi divergence:

$$d(P_{\underline{X}'}^*, P_{\underline{X}'}) = 2\log 1/E[p(\underline{X}')/p^*(\underline{X}')]^{1/2}$$

• Product model case: $p(\underline{x}') = \prod_{i=1}^{n} p(x'_i)$

$$D(P^*_{\underline{X}'} || P_{\underline{X}'}) = n D(P^* || P)$$

Likewise

$$d(P^*_{\underline{X}'},P_{\underline{X}'})=n\,d(P^*,P)$$

ヘロト ヘ戸ト ヘヨト ヘヨト

Uniquely-Decodable Codes Universal Codes Statistical Setting

Relationship:

$$d(P^*,P) \leq D(P^* \| P)$$

• and, if the log density ratio is not more than *B*, then

$$D(P^*||P) \leq C_B d(P^*, P)$$

with $C_B \leq 2 + B$

イロト 不得 とくほ とくほとう

= 900

Minimum Description Length Principle for Statistics Two-stage Code Redundancy and Resolvability Statistical Risk of MDL Estimator

Outline

- Something Old
 - Uniquely-Decodable Codes
 - Universal Codes
 - Statistical Setting

2 Something Borrowed

- Minimum Description Length Principle for Statistics
- Two-stage Code Redundancy and Resolvability
- Statistical Risk of MDL Estimator
- 3 Something New
 - Penalized Likelihood Analysis
 - Example: ℓ_1 penalties are information-theoretically valid
 - Summary

くロト (過) (目) (日)

Minimum Description Length Principle for Statistics Two-stage Code Redundancy and Resolvability Statistical Risk of MDL Estimator

- Universal coding brought into statistical play
- Minimum Description Length Principle:

The shortest code for data gives the best statistical model

イロト イポト イヨト イヨト

Minimum Description Length Principle for Statistics Two-stage Code Redundancy and Resolvability Statistical Risk of MDL Estimator

MDL: Two-stage Version

• Two-stage codelength (parametric case):

$$L(\underline{x}) = \min_{m} \min_{\theta \in \Theta_{m}} \left[\log 1/p_{\theta,m}(\underline{x}) + L(\theta,m) \right]$$

bits for \underline{x} given θ , m + bits for θ , m

Corresponding statistical estimator $\hat{p} = p_{\hat{\theta},\hat{m}}$

• Two-stage codelength (function case):

$$L(\underline{x}) = \min_{f \in \mathcal{F}} \left[\log 1/p_f(\underline{x}) + L(f) \right]$$

Corresponding statistical estimator $\hat{p} = p_{\hat{t}}$

ヘロト ヘ戸ト ヘヨト ヘヨト

Minimum Description Length Principle for Statistics Two-stage Code Redundancy and Resolvability Statistical Risk of MDL Estimator

MDL: Two-stage Version

• Two-stage codelength (parametric case):

$$L(\underline{x}) = \min_{m} \min_{\theta \in \Theta_m} \left[\log 1/p_{\theta,m}(\underline{x}) + L(\theta,m) \right]$$

bits for \underline{x} given θ , m + bits for θ , m

Corresponding statistical estimator $\hat{p} = p_{\hat{\theta},\hat{m}}$

• Typically $L(\theta, m)$ is of order

$$\frac{\dim(\Theta_m)}{2}\log n + L(m)$$

ヘロト ヘアト ヘビト ヘビト

∃ \$\\$<</p>

Minimum Description Length Principle for Statistics Two-stage Code Redundancy and Resolvability Statistical Risk of MDL Estimator

MDL: Mixture and Predictive Versions

• Codelength based on a selection of mixture models $L(\underline{x}) = \min_{m} \left[\log \frac{1}{\int_{\Theta_{m}} p_{m}(\underline{x}|\theta) w_{m}(\theta) d\theta} + L(m) \right]$

describe \underline{x} given m + describe m

average case optimal

• Corresponding statistical estimators are \hat{m} and

$$\hat{p}(\underline{x}') = p_m(\underline{x}'|\underline{x}) = \frac{\int p_m(\underline{x}'|\theta) p_m(\underline{x}|\theta) w_m(\theta) d\theta}{\int p_m(\underline{x}|\theta) w_m(\theta) d\theta}$$

which is a predictive distribution

ヘロン ヘアン ヘビン ヘビン

Minimum Description Length Principle for Statistics Two-stage Code Redundancy and Resolvability Statistical Risk of MDL Estimator

MDL: Predictive Version

Codelength based on predictive distributions

$$L(\underline{x}) = \log \frac{1}{p(x_1)} + \log \frac{1}{p(x_2|x_1)} + \dots \log \frac{1}{p(x_n|x_1, \dots, x_{n-1})}$$

Corresponding statistical estimator at x' = x_{n+1}

$$\hat{p}(x') = p(x_{n+1}|x_1,\ldots,x_n)$$

ヘロト ヘ戸ト ヘヨト ヘヨト

= 900

Minimum Description Length Principle for Statistics **Two-stage Code Redundancy and Resolvability** Statistical Risk of MDL Estimator

MDL: Two-stage Code Redundancy

• Expected codelength minus target at $p^* = p_{f^*}$

$$\mathsf{Redundancy} = E\Big[\min_{f \in \mathcal{F}} \left\{ \log \frac{1}{p_f(\underline{x})} + L(f) \right\} - \log \frac{1}{p_{f^*}(\underline{x})} \Big]$$

ヘロト ヘ戸ト ヘヨト ヘヨト

Minimum Description Length Principle for Statistics **Two-stage Code Redundancy and Resolvability** Statistical Risk of MDL Estimator

Redundancy and Resolvability

- Redundancy = $E \min_{f \in \mathcal{F}} \left[\log \frac{p_{f^*}(\underline{x})}{p_f(\underline{x})} + L(f) \right]$ • Resolvability = $\min_{f \in \mathcal{F}} E \left[\log \frac{p_{f^*}(\underline{x})}{p_f(\underline{x})} + L(f) \right]$ = $\min_{f \in \mathcal{F}} \left[D(P_{\underline{X}|f^*} || P_{\underline{X}|f}) + L(f) \right]$
- Ideal tradeoff of Kullback approximation error & complexity
- Population analogue of the two-stage code MDL criterion
- Divide by *n* to express as a rate. In the i.i.d. case

$$R_n(f^*) = \min_{f \in \mathcal{F}} \left[D(f^* || f) + \frac{L(f)}{n} \right]$$

ヘロア ヘビア ヘビア・

Minimum Description Length Principle for Statistics Two-stage Code Redundancy and Resolvability Statistical Risk of MDL Estimator

Risk of Estimator based on Two-stage Code

• Estimator \hat{f} is the choice achieving the minimization

$$\min_{f\in\mathcal{F}}\left\{\log\frac{1}{p_f(\underline{x})}+\mathcal{L}(f)\right\}$$

- Codelengths for *f* are $\mathcal{L}(f) = 2L(f)$ with $\sum_{f \in \mathcal{F}} 2^{-L(f)} \leq 1$.
- Total loss $d_n(f^*, \hat{f})$ with $d_n(f^*, f) = d(P_{\underline{X}'|f^*}, P_{X'|f})$

$$\mathsf{Risk} = E[d_n(f^*, \hat{f})]$$

• Info-Thy bound on risk: Barron (1985), Barron and Cover (1991), Jonathan Li (1999)

$\textit{Risk} \leq \textit{Redundancy} \leq \textit{Resolvability}$

<ロト (四) (日) (日) (日) (日) (日) (日)

Minimum Description Length Principle for Statistics Two-stage Code Redundancy and Resolvability Statistical Risk of MDL Estimator

Risk of Estimator based on Two-stage Code

- Estimator \hat{f} achieves $\min_{f \in \mathcal{F}} \{ \log 1/p_f(\underline{x}) + \mathcal{L}(f) \}$
- Codelengths require $\sum_{f \in \mathcal{F}} 2^{-L(f)} \leq 1$.
- *Risk* < Resolvability
- Specialize to i.i.d. case:

$$Ed(f^*, \hat{f}) \leq \min_{f \in \mathcal{F}} \left[D(f^* || f) + \frac{L(f)}{n} \right]$$

- As n , tolerate more complex f if needed to get near f^{*}
- Rate is 1/n, or close to that rate if f^* is simple
- Drawback: Code interpretation entails countable ${\cal F}$

・ロット (雪) (き) (ほ)

Minimum Description Length Principle for Statistics Two-stage Code Redundancy and Resolvability Statistical Risk of MDL Estimator

Key to Risk Analysis

• log likelihood-ratio discrepancy at training \underline{x} and future \underline{x}'

$$\left[\log rac{
ho_{f^*}(\underline{x})}{
ho_f(\underline{x})} - d_n(f^*, f)
ight]$$

• Proof shows, for *L*(*f*) satisfying Kraft, that

$$\min_{f \in \mathcal{F}} \left\{ \left[\log \frac{p_{f^*}(\underline{x})}{p_f(\underline{x})} - d_n(f^*, f) \right] + \mathcal{L}(f) \right\}$$

has expectation \geq 0. From which the risk bound follows.

・ロン ・ 一 と ・ 日 と ・ 日 と

Penalized Likelihood Analysis Example: ℓ_1 penalties are information-theoretically valid

Outline

- Something Old
 - Uniquely-Decodable Codes
 - Universal Codes
 - Statistical Setting
- 2 Something Borrowed
 - Minimum Description Length Principle for Statistics
 - Two-stage Code Redundancy and Resolvability
 - Statistical Risk of MDL Estimator

3 Something New

- Penalized Likelihood Analysis
- Example: ℓ_1 penalties are information-theoretically valid
- Summary

くロト (過) (目) (日)

Penalized Likelihood Analysis Example: ℓ_1 penalties are information-theoretically valid

Information-theoretically Valid Penalty

Penalized Likelihood

$$\hat{f} = \operatorname{argmin}_{f \in \mathcal{F}} \left\{ \log \frac{1}{p_f(\underline{x})} + Pen_n(f) \right\}$$

- Possibly uncountable $\mathcal F$
- Task: determine a condition on Pen_n(f) such that the risk is captured by the population analogue

$$\textit{Ed}_{\textit{n}}(f^{*},\hat{f}) \leq \inf_{f \in \mathcal{F}} \left\{\textit{E}\log \frac{\textit{p}_{f^{*}}(\underline{X})}{\textit{p}_{f}(\underline{X})} + \textit{Pen}_{\textit{n}}(f)
ight\}$$

イロト イポト イヨト イヨト

Penalized Likelihood Analysis Example: ℓ_1 penalties are information-theoretically valid

Info-thy Penalty: Link Uncountable & Countable

Suppose for uncountable *F* and penalty *Pen_n(f)*, *f* ∈ *F* there is a countable *F* and *L_n(Ĩ)* satisfying Kraft, such that, for all <u>x</u>, *f*^{*},

$$\begin{split} & \min_{f \in \mathcal{F}} \left\{ \left[\log \frac{p_{f^*}(\underline{x})}{p_f(\underline{x})} - d_n(f^*, f) \right] + \operatorname{Pen}_n(f) \right\} \\ & \geq \min_{\tilde{f} \in \tilde{\mathcal{F}}} \left\{ \left[\log \frac{p_{f^*}(\underline{x})}{p_{\tilde{f}}(\underline{x})} - d_n(f^*, \tilde{f}) \right] + \mathcal{L}_n(\tilde{f}) \right\} \end{split}$$

 Proof of the risk conclusion: The second expression has expectation ≥ 0, so the first expression does too.

イロト イポト イヨト イヨト

Penalized Likelihood Analysis Example: ℓ_1 penalties are information-theoretically valid

Variable Complexity, Variable Distortion Cover (Code)

Equivalently: Pen_n(f) is a valid penalty if for all <u>x</u>,

 $\textit{Pen}_n(f) \geq \min_{\tilde{f} \in \tilde{\mathcal{F}}} \left[\mathcal{L}(\tilde{f}) + \Delta_n(\tilde{f}, f) \right]$

where the distortion $\Delta_n(\tilde{f}, f)$ is the difference in the discrepancies at \tilde{f} and f

Equivalently: For each *f* in *F* there is a representer *f* in *F* with complexity *L*(*f*), distortion Δ_n(*f*, *f*) and

$$Pen_n(f) \geq \mathcal{L}(\tilde{f}) + \Delta_n(\tilde{f}, f)$$

イロト イポト イヨト イヨト

Penalized Likelihood Analysis Example: ℓ_1 penalties are information-theoretically valid

Linear Span of a Dictionary

- $\bullet \ {\cal G}$ is a dictionary of candidate basis functions
- Wavelets, splines, polynomials, trigonometric terms, sigmoids, explanatory variables and their interactions
- Candidate functions in the linear span

$$f(x) = f_{\theta}(x) = \sum_{g \in \mathcal{G}} \theta_g g(x)$$

• ℓ_1 norm of coefficients

$$\|\theta\|_1 = \sum_g |\theta_g|$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Penalized Likelihood Analysis Example: ℓ_1 penalties are information-theoretically valid

Example Models

Regression

$$p_f(y|x) = \operatorname{Normal}(f(x), \sigma^2)$$

• Logistic regression with $y \in \{0, 1\}$

$$p_f(y|x) = \text{Logistic}(f(x))$$
 for $y = 1$

Log-density estimation

$$p_f(x) = \frac{p_0(x) \exp\{f(x)\}}{c_f}$$

ヘロト ヘ戸ト ヘヨト ヘヨト

Penalized Likelihood Analysis Example: ℓ_1 penalties are information-theoretically valid

- $pen_n(f_{\theta}) = \lambda_n \|\theta\|_1$ where $f_{\theta}(x) = \sum_{g \in \mathcal{G}} \theta_g g(x)$
- Popular penalty: Chen & Donoho (96) Basis Pursuit; Tibshirani (96) LASSO; Efron et al (04) LARS; Precursors: Jones (92), B.(90,93,94) greedy algorithm and analysis of combined l₁ and l₀ penalty
- Risk analysis: specify valid λ_n for risk \leq resolvability
- Computation analysis: bound accuracy of new ℓ_1 -penalized greedy pursuit algorithm

Penalized Likelihood Analysis Example: ℓ_1 penalties are information-theoretically valid

ℓ_1 penalty is valid for λ_n of order $1/\sqrt{n}$

• Example: ℓ_1 penalized log-density estimation, i.i.d. case

$$\hat{\theta} = \operatorname{argmin}_{\theta} \left\{ \frac{1}{n} \log \frac{1}{p_{f_{\theta}}(\underline{x})} + \lambda_n \|\theta\|_1 \right\}$$

Risk bound:

$$Ed(f^*, f_{\hat{\theta}}) \leq \inf_{\theta} \left\{ D(f^* || f_{\theta}) + \lambda_n \| \theta \|_1 \right\}$$

Valid for

$$\lambda_n \ge \sqrt{\frac{H}{n}}$$
 with $H = \log Card(\mathcal{G})$

- For infinite G use metric entropy in place of H
- Results for regression shown in a companion paper

Penalized Likelihood Analysis Example: ℓ_1 penalties are information-theoretically valid

ℓ_1 penalty is valid for λ_n of order $1/\sqrt{n}$

• Example: ℓ_1 penalized log-density estimation, i.i.d. case

$$\hat{\theta} = \operatorname{argmin}_{\theta} \left\{ \frac{1}{n} \log \frac{1}{p_{f_{\theta}}(\underline{x})} + \lambda_n \|\theta\|_1 \right\}$$

Risk bound:

$$Ed(f^*, f_{\hat{\theta}}) \leq \inf_{\theta} \left\{ D(f^* || f_{\theta}) + \lambda_n \| \theta \|_1 \right\}$$

True with

$$\lambda_n = \sqrt{\frac{H}{n}}$$
 with $H = \log Card(\mathcal{G})$

• Risk of order λ_n when the target has finite ℓ_1 norm

Penalized Likelihood Analysis Example: ℓ_1 penalties are information-theoretically valid

Comment on proof

- Shannon-like demonstration of the existence of the variable complexity cover property
- Inspiration from technique originating with Lee Jones (92)
- Representer \tilde{f} of f_{θ} of the form

$$\tilde{f}(x) = rac{v}{m} \sum_{k=1}^{m} g_k(x)$$

- *g*₁,..., *g_m* picked at random from *G*, independently, where *g* arises with probability proportional to |*θ_g*|
- May pick them in greedy fashion as in demonstration of fast computation properties
- In the paper in the Festschrift with summary in the ITW proceedings

Outline

- Something Old
 - Uniquely-Decodable Codes
 - Universal Codes
 - Statistical Setting
- 2 Something Borrowed
 - Minimum Description Length Principle for Statistics
 - Two-stage Code Redundancy and Resolvability
 - Statistical Risk of MDL Estimator
- 3 Something New
 - Penalized Likelihood Analysis
 - Example: ℓ_1 penalties are information-theoretically valid

4 Summary

くロト (過) (目) (日)

Summary

- Handle penalized likelihoods with continuous domains for f
- Information-theoretically valid penalties: Penality exceed complexity plus distortion of optimized representors of *f*
- Yields statistical risk controlled by resolvability
- ℓ_0 penalty $\frac{dim}{2} \log n$ classically analyzed
- ℓ_1 penalty $\lambda_n \|\theta\|_1$ analyzed here: valid for $\lambda_n \ge \sqrt{H/n}$.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・