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Outline

Neural Net Model and Approximation
Target f with variation VL(f ) when represented with L layers

Approximation fM,L with L layers and M subnetworks

Approximation Accuracy ||f − fM,L||2 ≤ V 2
L (f )
M

Neural Net Estimation and Risk
Estimate weights w , variation V , num subnets M, depth L

Constrained Least Squares: computational open problem

Bayes Predictive Mean Estimators: MCMC. Is it rapid?

Risk with sample size N and input dimension d

E ||̂f − f ||2 ≤
V 2

L (f )

M
+

M log(2d) + ML
N

E ||̂f − f ||2 ≤ VL(f )

√
log(2d) + L

N
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Outline: Continued

Log Concave Coupling for Bayesian Computation
Focus attention on single hidden-layer network models

Prior density p0(w): Uniform on `1 constrained set

Posterior p(w): Multimodal. No known direct rapid sampler

Coupling p(ξ|w): cond indep Gaussian auxiliary variables
ξi,m with mean xi ·wm for each observation i and neuron m

Conditional p(w |ξ) always log-concave

Marginal p(ξ) and its score ∇ logp(ξ) rapidly computable

p(ξ) is log concave when the number of parameters Md is
large compared to the sample size N

Langevin diffusion and other samplers are rapidly mixing

With a draw from p(ξ) followed by a draw from p(w |ξ) we
obtain a draw from the desired posterior p(w)
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Variation and Approximation with a Dictionary G

Variation with respect to a dictionary
Dictionary G of functions g(x ,w), each bounded by 1
Consider linear combinations

∑
j cj g(x ,wj )

Control the sum of abs values of the weights
∑

j |cj | ≤ V
FV = closure of signed convex hull of functions V g(x ,w)

Variation VG(f ) = the infimum of V such that f ∈ FV .
Approximation accuracy

Function norm square ||f − g||2 in L2(PX )

M term approximation: fM(x) =
∑M

m=1 cm g(x ,wm)

Approximation error: ||f − fM ||2 ≤ V (f )2

M

Trivial existence proof: Bernoulli, Hilbert, Maurey, Pisier, Barron 93

Greedy approximation proof: Jones, Barron 93

Outer weights cm may equal ± V
M

Approximation error better than V 2

M is NP−hard (Vu 97)

Rate 1
M is dimension independent
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Models

Approximation error for fM(x) =
∑M

m=1 cm g(x ,wm)

||f − fM ||2 ≤
V 2

G(f )

M
Algorithmic Terminology
Sparse term selection, variable selection, forward stepwise regression,
relaxed greedy algorithm, orthogonal matching pursuit, Frank Wolf alg,
boosting, greedy Bayes

Models
Projection pursuit regression (ridge functions), MARS (splines),
MAPS (polynomials), Prony (sinusoids), wavelets, ridgelets,
random forests (regression trees)

Network Models
Single hidden-layer nets, multi-layer networks, deep nets,
adaptive learning networks, residual networks

Network Units (neurons)
Sigmoids, Rectified Linear Units (ReLU), polynomials,
compositions thereof
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Multi-Layer Neural Network Model

Multi-Layer Net: Layers L, input x in [−1,1]d , weights w
Activation function: ψ(z).

Rectified linear unit (ReLU): ψ(z) = (z)+

Twice differentiable unit: sigmoid, smoothed ReLU, squared ReLU

Paths of linked nodes: j = j1, j2, ..., jL.
Path weight: Wj = wj1,j2wj2,j3 · · ·wjL−1,jL .
Function representation:
f (x , c,w) =

∑
jL cjLψ

(∑
jL−1

wjL−1,jLψ(...ψ(
∑

j1 wj1,j2xj1)...)
)

Network Variation:
Internal: Sum abs. values of path weights set to 1.
External:

∑
j |cj | ≤ V

Variation: VL(f ) = infimum of such V to represent f
Single Hidden-Layer Case: V1(f ) ≤

∫
|ω|21 |̃f (ω)|dω spectral norm

Class FL,V of functions f with VL(f ) ≤ V

Interests: Approx, Metric Entropy, Stat. Risk, Computation
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Complexity, Metric Entropy, Statistical Risk

Gaussian complexity approach to bounding risk
Function class restricted to data:
Fn = {f (x1), f (x2), . . . , f (xn) : f ∈ F}

Gaussian Complexity:
C(A) = (1/

√
n)EZ [supa∈A a · Z ] for Z ∼ N(0, I) A ⊂ Rn

Complexity of Neural Nets:
C(Fn

L,V ) ≤ V
√

2 log 2d + 2L log 2
for ψ Lipshitz 1 via Fernique Gaussian comparison ineq,
Klusowski, B. 2020 (cf Neshabur et al 15, Golowich et al 18)

Gaussian complexity provides control of
Metric Entropy:

log |Cover(FL,V , δ)| ≤
16C2(FL,V )

δ2

Stat Risk of Constrained Least Squares:

E ||̂f − f ||2 ≤ 8C(FL,V )
√

n
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Minimum Description Length and Bayes predictive risk

Minimum Description Length; optimize penalized likelihood
Least squares with suitable penalization for choice of M, V
||̂f − f ||2 risk via Renyi-Battacharya risk inequality: B, Luo 08

Index of Resolvability: ApproxError + Complexity/N
Predictive Bayes and its cumulative risk control

Predictive density p̂n(y |x) =
∫

p(y |x ,w)p(w |xn, yn)dw
Predictive mean f̂n(x) =

∫
f (x ,w)p(w |xn, yn)dw

Predictive evaluations for Yn+1 = y when Xn+1 = x
Inf Thy chain rule for cumulative Kullback risk: B. 86,98

1
N

∑N−1
n=0 ED(P∗Y |X ||P̂

n
Y |X ) = 1

N D(P∗Y N ,X N ||PY N ,X N )

Controls data compression redundancy as well as the risk
Index of Resolvability:

ApproxError + 1
N log[ 1 / PriorProb(ApproxSet)]

Used in Yang, B (98) minimax risk characterization

E ||f − f̂N ||2 ≤ minδ
{
δ2 + 1

N log|Cover(FL,V , δ)|
}
≤ 8C(FL,V )√

N
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Arbitrary Sequence Predictive Bayes Regret

On-line learning
Arbitrary-sequence regret for predictive Bayes

1
N
∑N

n=1(Yn − f̂n−1(Xn))2 − 1
N
∑N

n=1(Yn − f (Xn))2

Bound hold of the same form, uniformly over X N ,Y N ,

RegretN ≤ Approx Error +
1
N

log
1

PriorProb(Approx Set)

Specialization of bound to the case of functions f in F1,V

RegretN ≤ V
√

log d√
N

Taking expectation controls
1
N
∑N

n=1 E
[
||f − f̂n−1||2

]
Estimator ˆ̂fN(x) = 1

N
∑N

n=1 f̂n−1 also has this bound

E
[
||ˆ̂fN − f ||2

]
≤ V
√

log d√
N
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Bayesian Computation for Neural Net

Sample sizes: n ≤ N
Datan = ((Xi ,Yi ) for i = 1,2, . . . ,n), with Xi in [−1,1]d

Natural yet optional statistical assumption:
(Xi ,Yi) independent PX ,Y , with target f (x)= E [Y |X =x ]

Not needed for Bayesian computation statements
Not needed for online learning bounds

Single hidden-layer network model: f (x ,w)

fM(x ,w1, . . .wM) = V
M

∑M
m=1 ψ(wm · xi )

One coordinate of each xi always −1 provides shifts
Odd symmetry of ψ provides sign freedom
each wm in symmetric simplex Sd

1 = {w :
∑d

j=1 |wj | ≤ 1}
Prior: p0(w) makes wm independent uniform on Sd

1
Likelihood: exp{−βg(w)}
where g(w) = 1

2

∑n
i=1

(
Yi − V

M

∑M
m=1 ψ(xi · wm)

)2

Posterior: p(w) = p0(w) exp{−βg(w)− Γ(β)}
Bayesian Computation: Estimate f̂ (x) =

∫
f (x ,w)p(w)dw

by drawing independent samples from p(w) and averaging f (x ,w)
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Hessian of the Minus Log Likelihood

Log 1/Likelihood = β g(w)
Gradient score(w) = β∇g(w)
Hessian = βH(w) = β∇∇′g(w)

Squared error loss: g(w)
1
2
∑n

i=1(resi(w))2 where resi(w) = Yi − V
M
∑M

m=1 ψ(xi ·wm)
Gradient: ∇wmg(w) for block m
− V

M
∑n

i=1 resi(w)ψ′(xi · wm) xi
Hessian: Hwk ,wm (w) = ∇wk∇′wmg(w) for block k ,m

V 2

M2

∑n
i=1 ψ

′(xi · wk )ψ′(xi ·wm) xix ′i
− V

M
∑n

i=1 resi(w)ψ′′(xi ·wm) xix ′i 1k=m
Quadratic form: a′H(w)a, where a has blocks am 1≤m≤M

V 2

M2

∑n
i=1
(∑M

m=1 ψ
′(xi ·wm) am · xi

)2

− V
M
∑n

i=1 resi(w)
∑M

m=1 ψ
′′(xi ·wm)(am · xi)

2

p(w) is not log-concave; that is, g(w) is not convex
The first term is positive definite, the second term is not
No clear reason for gradient methods to be effective
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Log Concave Coupling

Auxiliary Random Variables ξi,m chosen conditionally indep
Normal with mean xi · wm, variance 1/ρ, with ρ = βcV/M
restricted to ξ with

∑n
i=1 ξi,mxi,j in a high probability interval

Conditional density:

p(ξ|w) =
(
ρ/2π

)Mn/2exp
{
− ρ

2
∑n

i=1
∑M

m=1(ξi,m − xi ·wm)2}
Multiplier c = cY ,V = maxi |Yi |+ V exceeds |resi (w)| for all w
Activation second derivative: |ψ′′(z)| ≤ 1 for |z| ≤ 1
Joint density: p(w , ξ) = p(w)p(ξ|w)
Reverse conditional density:

p(w |ξ) = p0(w) exp{−βgξ(w)− Γξ(β)}
Conditional log 1/Likelihood = βgξ(w) with
gξ(w) = g(w) + 1

2
V
M c
∑n

i=1
∑M

m=1
(

xi ·wm − ξi,m
)2

Modifies Hessian a′Hξ(w)a with new positive def second term
V
M
∑

i
∑

m [c − resi(w)ψ′′(xi ·wm)](am · xi)
2

p(w |ξ) is log concave in w for each ξ
Efficiently sample. MCMC theory, Lovasz, Kannan, Vempala,...
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Marginal Density and Score of the Auxiliary Variables

Auxiliary variable density function:
p(ξ) =

∫
p(w , ξ)dw

Integral of a log concave function of w
Rule for Marginal Score:
∇ log 1/p(ξ) = E [∇ log 1/p(ξ|w) | ξ ]

Normal Score: linear
∂ξi,m log 1/p(ξ|w) = ρ ξi,m − ρ xi ·wm

Marginal Score:
∂ξi,m log 1/p(ξ) = ρ ξi,m − ρ xi ·E [wm | ξ ]

Efficiently compute ξ score by Monte Carlo sampling of w |ξ
Permits Langevin stochastic diffusion: with gradient drift

d ξ(t) = 1
2∇ log p(ξ(t)) dt + d B(t)

converging to a draw from the invariant density p(ξ)

Lyapunov function identification eα||ξ||
2

as in Hairer (21) reveals
exponential convergence ||pt − p||1 ≤ 2 e−t/τ

What is the size of τ > 0?
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Hessian of log 1/p(ξ). Is p(ξ) log concave?

Hessian of log 1/p(ξ), an nM by nM matrix

H̃(ξ) = ∇∇′ log 1/p(ξ) = ρ
{

I − ρCov
[Xw1···

XwM
| ξ
]}

Hessian quadratic form for unit vectors a in RnM with blocks am

a′H̃(ξ)a = ρ {1− ρVar [ã · w |ξ]}

where ã =
[

X ′a1·
X ′aM

]
has ||ã||2 ≤ n d

Requires variance of ã · w using the log-concave pβ(w |ξ)

More concentrated, smaller variance, than with the prior?
Counterpart using the prior

ρ {1− ρVar0[ã · w ]}
Use Cov0(wm) = 2

(d+2)(d+1) I and ρ = βcV/M to see its at least

ρ
{

1− 2βcVn
M(d+2)

}
Constant β chosen such that βcV ≤ 1/4
Strictly positive when number param Md exceeds sample size n
Hessian ≥ (ρ/2)I. Strictly log concave
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Rapid Convergence of Stochastic Diffusion

Recall the Langevin diffusion

d ξ(t) = 1
2∇ log p(ξ(t)dt + d B(t)

There are time-discretizations (e.g. Metropolis adjusted)
Natural initialization choice ξ(0) distributed N(0, (1/ρ)I)
Bakry-Emery theory (initiated in 85)
Strong log concavity yields rapid Markov proc. convergence
In particular, in the stochastic diffusion setting

∇∇′ log 1/p(ξ) ≥ (ρ/2)I
yields exponential conv. of relative entropy (Kullback distance)

D(pt ||p) ≤ e−tρ/2D0

In particular, the time required for small relative entropy is
controlled by τ = 2/ρ, here equal to 2M/(βcV )
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Is p(ξ) log concave?

Recap: quadratic form in Hessian of log 1/p(ξ)

a′H̃(ξ)a = ρ {1− ρVar [ã · w |ξ]}
Another control on the variance
ρVar [ã · w |ξ] ≤ ρ

∫
(ã · w)2exp{−βg̃ξ(w)− Γξ(β)}p0(w)dw

using g̃ξ(w) = gξ(w)− E0[gξ(w)]

Hölder’s inequality
≤ ρ [E0[(ã · w)2k ]]1/k exp{ k−1

k Γξ(
k

k−1β)− Γξ(β)}
which is, using a bound CV n on gξ(w) with CV = 9V 2 + 7V maxi |Yi |,

≤ cβV
M

4nk
de exp{βCV n/k}

which is, with the optimal k = βCV n,

= 4cVCV
β2n2

Md

Less than 1/2 when the num param exceeds a multiple of (βn)2

So indeed Hessian ≥ (ρ/2)I. Strictly log concave
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Greedy Bayes

Initialize f̂n,0(x) = 0

Given previous neuron fits, iterate k , for each n
fn,k (x ,w) = (1− α)fn,k−1(x) + λψ(w · x)

α = 1/
√

n and λ = Vα are suitable.

Form the iterative squared error g(w)

gn,k (w) = 1
2
∑n−1

i=1 (yi − fi,k (xi ,w))2

Again Hessian has a not necessarily positive definite part
−λ
∑n−1

i=1 ri,k−1ψ
′′(w · xi)xix ′i

Associated greedy posterior pn,k (w) proportional to
p0(w) exp{−βgn,k (w)}

Update fn,k replacing ψ(w · x) with its posterior mean

Estimate by sampling from the greedy posterior
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Log Concave Coupling for Greedy Bayes

For the moment, fix n, k
Again p(w) = p0(w) exp{−βg(w)}
Coupling random variables ξi ∼ N(xi · w ,1/ρ) with ρ = cλβ
Joint density p(w , ξ) with logarithm −βgξ(w) built from

gξ(w) = g(w) + 1
2cλ

∑n−1
i=1 (ξi − w · xi)

2

which is convex in w for each ξ, so p(w |ξ) is log concave
The associated marginal is p(ξ)

Hessian quadratic form a′∇∇′ log 1/p(ξ)a
ρ{1− ρVar [ã · w |ξ]}

for a with ||a|| = 1 and ã = X ′a
Deduce p(ξ) is log concave for sufficiently large d
From which get w by a draw from p(w |ξ)
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Variance control using Hölder’s inequality

As before Var [ã · w |ξ] is not more than∫
(ã · w)2 exp{−βg̃ξ(w)− Γξ(β)}p0(w) dw

where g̃ξ(w) is gξ(w) minus its mean value at β = 0
Γξ(w) is the cumulant generating function of −g̃ξ(w)

By Hölders inequality that variance is not more than
[E0[(ã · w)2k ]]1/k exp{k−1

k Γξ(
k

k−1β)− Γξ(β)}

For the first factor,
E0[(xi · w)2k ] ≤

(
d+k−1

k

) (2k)!
(d+2k)···(d+1)

Implication
[E0[(ã · w)2k ]]1/k ≤ n 4k

ed
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On the second factor from Hölders inequality

The exponent of the second factor is
k−1

k Γξ(
k

k−1β)− Γξ(β)

Not more than β
k−1 maxw g̃ξ(w) where

g̃ξ(w) = gξ(w)− E0[gξ(w0)]

It has the bound βmaxw ,w0(gξ(w)− gξ(w0))/(k − 1)

Indeed a value near 2cλn bounds maxw ,w0(gξ(w)− gξ(w0))

Optional page verifies this for a suitable set of ξ

Hence exponent of second factor not more than value near
2βλcn/k
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Optional page verifying bound on g̃ξ(w)

The gξ(w)− gξ(w0) = (w − w0) · ∇gξ(w̃).
Concerning ∇gξ(w̃) it is

−λ
{∑n−1

i=1
[
resi,k−1ψ

′(w̃ · xi)− cw̃ · xi
]

xi +
∑n−1

i=1 ξixi

}
Hit with w , the result has magnitude not more than

2cλn + λmaxj |
∑n−1

i=1 ξixi,j |

With high probability, the max is ≤ n + κ
√

n/ρ where κ ≥
√

2 log 2d

Conditioning on ξ which have this bound, the conditional density
remains log concave when κ =

√
2 log 6d4

With ρ = cλβ and λ = V/
√

n, the max is ≤ 2cn.

Then exponent of second factor not more than value near
4βλc n/k
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Combining the two factors

Use ã =
∑

i aixi with ||ã||2 ≤ nd and ρ = cλβ

Combine the two factors

Obtain ρVar [ã · w |ξ] not more than
cλβ 4n k/(ed) exp{4βλc n/k}

The optimal k = 4βλc n yielding not more than
16(cλβn)2/d

Recall λ = Vα = V/
√

n
Choose β = 1/(2cV ), choose d ≥ n.
ρVar [ã · w |ξ] is strictly less than 1 (indeed less than 1/2)
Hence p(ξ) is strictly log concave, for d exceeding n
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Summary

Multimodal neural net posteriors can be efficiently sampled

Log concave coupling provides the key trick

Requires number of parameters Md large compared to the
sample size N

Statistically accurate provided `1 controls are maintained
on the parameters

Provides the first demonstration that the class F1,V
associated with single hidden layer networks (including the
class of functions with bounded L1 spectral norm) is both
computationally and statistically learnable

A polynomial number of computations in the size of the
problem is sufficient

The approximation rate 1/M and the statistical learning
rate 1/

√
N are independent of the dimension for this class

of functions
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