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Approximation and Estimation Essentials
A. Neural Net Model and Approximation Error

Target function f , Variation V (f )=VL(f ) with L hidden-layers
Approximation fK ,L with K subnetworks
Single hidden-layer case (L = 1)

fK (x) =
∑K

k=1 ckψ(wk · x)
Approximation Accuracy

||f − fK ,L||2 ≤ V 2(f )
K

B. Neural Net Estimation and Risk
Via constrained least squares, penalized least squares or Bayes
predictions f̂ , with sample size N, input dimension d

Risk E [||̂f − f ||2] ≤ c V (f )
( log(2d)+L

N

)1/2

There are also lower bounds of such order (Klusowski, Ba. 17)

We provide computationally-feasible Bayes predictions with
accuracy (in the single hidden layer case)

E [||̂f − f ||2] ≤ c V (f )1−r
( log(2d)

N

)r

Rate r = 1/4 with K neuron posterior; r = 1/3 with greedy Bayes
Number of neurons K of order [N/ log(2d)]r
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Essentials of Sampling of a Neural Net Posterior

C. Log Concave Coupling for Bayesian Computation
Focus on single hidden-layer network models

Prior density p0(w): Uniform on an ℓ1 constrained set

Posterior p(w): Multimodal. No known direct rapid sampler

Coupling p(ξ|w): cond indep Gaussian auxiliary variables
ξi,k with mean xi ·wk for each observation i and neuron k

Conditional p(w |ξ) always log-concave

Marginal p(ξ) and its score ∇ logp(ξ) rapidly computable

p(ξ) is log concave when the number of parameters K d is
large compared to the sample size N

Langevin diffusion and other samplers are rapidly mixing

A draw from p(ξ) followed by a draw from p(w |ξ) yields
a draw from the desired posterior p(w)
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A. Variation and Approximation with a Dictionary G
Variation with respect to a dictionary

Dictionary G of functions g(x ,w), each bounded by 1
Linear combinations

∑
j cj g(x ,wj)

Control the sum of abs values of weights
∑

j |cj | ≤ V
FV = closure of signed convex hull of functions V g(x ,w)

Variation V (f ) = VG(f ) = the infimum of V such that f ∈ FV .

Approximation accuracy
Function norm square ||f − g||2 in L2(PX )

K term approximation: fK (x) =
∑K

k=1 ck g(x ,wk )

Approximation error: ||f − fK ||2 ≤ V (f )2

K

Relative Approximation error: ||f − fK ||2 − ||f − f ∗||2 ≤ V (f∗)2

K

Existence proof: Ba. 93. Precursors: Gauss, Hilbert, Pisier

Greedy approximation proof: Jones, Ba. 93

Outer weights ck may equal ± V
K

Relative approx error better than order
( 1

K

)1.5 is NP−hard (Vu 97)
Rate 1

K is dimension independent
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Models
Models fK (x) =

∑K
k=1 ck g(x ,wk ) with error ||f − fK ||2 ≤ V 2

G(f )
K

There are similar bounds for empirical average squares

Various Algorithmic Terminology
Sparse term selection, variable selection, forward stepwise regression,
relaxed greedy algorithm, orthogonal matching pursuit, Frank Wolf alg,
L2 boosting, greedy Bayes

Dictionary
Finite set of terms: Original predictors, products, polynomials,
wavelets, sinusoids (grid of frequencies)
Product-type models: Parameterized bases, MARS (splines),
CART regression trees, random forests
Ridge-type models: Multiple-index models, projection pursuit reg,
neural networks, ridgelets, sinusoids (paramerized frequencies)

Neural Network Models
Single hidden-layer networks, multi-layer networks, deep networks,
adaptive learning networks, polynomial networks, residual networks

Network Units (neurons)
Sigmoids, Rectified Linear Units (ReLU), low-order polynomials,
compositions thereof
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Optional: Multi-Layer Neural Network Model

Multi-Layer Net: Layers L, input x in [−1,1]d , weights w
Activation function: ψ(z).

Rectified linear unit (ReLU): ψ(z) = (z)+
Twice differentiable unit: sigmoid, smoothed ReLU, squared ReLU

Paths of linked nodes: j = j1, j2, ..., jL.
Path weight: Wj = wj1,j2wj2,j3 · · ·wjL−1,jL .
Function representation:
f (x , c,w) =

∑
jL cjLψ

(∑
jL−1

wjL−1,jLψ(...ψ(
∑

j1 wj1,j2xj1)...)
)

Network Variation:
Internal: Sum abs. values of path weights set to 1.
External:

∑
j |cj | ≤ V

Variation: VL(f ) = infimum of such V to represent f
Single Hidden-Layer Case: V1(f ) ≤

∫
|ω|21 |̃f (ω)|dω spectral norm

Class FL,V of functions f with VL(f ) ≤ V

Interests: Approx, Metric Entropy, Stat. Risk, Computation
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B. Methods of Bounding Statistical Risk
Statistical risk or generalization squared error: E [||̂f − f ||2]
Five methods of controlling such statistical risk

Empirical process control of constrained least squares via
Gaussian complexity: Ba. Klusowski 19
Rademacher complexity: Neshabur et al 15, Golowich et al 18
Metric entropy

Penalized least squares risk control via relation to MDL
Adaptive bounds via an index of resolvability: Ba et al 90, 94, 99, 08

Concentration of posterior distributions
Necessary and sufficient conditions for posterior concentration B. 88, 98,
also Ba, Shervish, Wasserman 98, Ghoshal, Ghosh, Van der Vaart 00

Cumulative Kullback risk of Bayes predictive distributions
Clean Information-Theoretic bound: Ba 87,98, Clarke,Ba 90, Yang,Ba 98,
Ba, Klusowski 19, Ba, McDonald 24,25

Online learning regret bounds for squared error & log-loss
Provides bounds for arbitrary data sequences

All five have connections to information theory

The posterior predictive procedures allow rapid computation
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Optional: Metric Entropy, Empirical Complexity, Statistical Risk

Gaussian complexity approach to bounding risk
Function class restricted to data

Fn = {f (x1), f (x2), . . . , f (xn) : f ∈ F}

Gaussian Complexity of A ⊂ Rn

C(A) = 1√
n EZ [supa∈A a · Z ] for Z ∼ N(0, I),

Complexity of Neural Nets: for ψ Lipshitz 1

C(Fn
L,V ) ≤ V

√
2 log 2d + 2L log 2

Via Sudakov-Fernique 75 comparison ineq. (Ba, Klusowski, 19)

(cf Neshabur, Tomioka, Srebro 15, Golowich, Rakhlin, Shamir 18)

Gaussian complexity provides control of
Metric Entropy:

log |Cover(FL,V , δ)| ≤ 16C2(FL,V )

δ2

Stat Risk of Constrained Least Squares:

E [||̂f − f ||2]| ≤ c C(FL,V )√
n ≤ c V

( 2 log 2d+2L log 2
n

)1/2
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Optional: Minimum Description Length and Penalized Likelihood
− log likelihood plus penalty (e.g. penalized least squares)

min
w,K ,V∈Ω

{
log 1

p(Y N |XN ,fw,K ,V )
+ penN (w,K,V )

}
Minimum description-length interpretation when it is at least

min
w,K ,V∈Ω̃

{
log 1

p(Y N |XN ,fw,K ,V )
+ L(w,K,V )

}
for Kraft valid codelengths L(ω), such that

∑
ω 2−L(ω) ≤ 1

ℓ1 penalities with suitable multipliers are valid

Battacharya-Renyi risk control via Index of Resolvability

E [d2(pf , pfω̂ )] ≤ min
ω∈Ω

{
D(pf ||pfω ) +

penN (ω)
N

}
(Ba., Cover 90, Li, Ba. 99, Grünwald 07, Li, Huang, Luo, Ba. 08)

Index of Resolvability: ApproxError + Complexity/N

Bounds for neural net risk E [||̂f − f ||2] in the L = 1 case
(Ba. 94, Ba., Birge, Massart 99, Huang, Cheang, Ba. 08, Ba., Luo 08)

minK
{ V 2(f )

K + Kd
N logN

}
= V (f )

( d log N
N

)1/2

Also, via the metric entropy bound, with ℓ1 weight control

E [||̂f − f ||2] ≤ cV (f )
( 2log(4d)

N

)1/2

Computationally feasible?
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Optional: Predictive Bayes and its Cumulative Risk Control
Predictive density p̂n(y |x) =

∫
p(y |x ,w)p(w |xn, yn)dw

Predictive mean f̂n(x) =
∫

f (x ,w)p(w |xn, yn)dw
Predictive evaluations for Yn+1 = y when Xn+1 = x

Information theory chain rule for cumulative Kullback risk: Ba. 87,98
1
N

∑N−1
n=0 ED(P∗

Y |X ||P̂n
Y |X ) =

1
N D(P∗

Y N ,XN ||PY N ,XN )

Controls data compression redundancy and the risk of ˆ̂f (x) = 1
N
∑N−1

n=0 f̂n(x)

E
[
|| ˆ̂f − f ||2

]
≤ 1

N

∑N−1
n=0 E

[
||f − f̂n||2

]
Total Kullback risk controlled by index of resolvability, Ba. 87,98

1
N D(P∗

Y N ,XN ||PY N ,XN ) = 1
N E log p∗(Y N ,XN )∫

p(Y N ,XN |w)p0(w)dw

≤ 1
N E log p∗(Y N ,XN )∫

A p(Y N ,XN |w)p0(w)dw

≤ DA + 1
N log 1

P0(A)
where DA = maxw∈A D(P∗

Y |X ||PY |X ,w ) is Kullback approximation error
Predictive risk for neural net estimators with priors uniform on optimal covers

E [ || ˆ̂f − f ||2] ≤ cV (f )
( d log N

N

)1/2
Yang, Ba. 98

E [ || ˆ̂f − f ||2] ≤ cV (f )
( 2 log(4d)

N

)1/2
Ba., Klusowski 19

with practical priors and feasibly computable estimates for sufficiently large d

E [ || ˆ̂f − f ||2] ≤ cV (f )2/3( log(2d)
N

)1/3
Ba., McDonald 24, 25
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Optional: Arbitrary Sequence Predictive Bayes Regret

On-line learning
Arbitrary-sequence regret for predictive Bayes

Squared error 1
N

∑N
n=1(Yn − f̂n−1(Xn))

2 − 1
N

∑N
n=1(Yn − f (Xn))

2

Log-loss case 1
N

∑N
n=1 log

1
p(Yn|fn−1(Xn))

− 1
N

∑N
n=1 log

1
p(Yn|f (Xn))

Simplification 1
N

{
log 1

p(Y N ,XN )
− log 1

p(Y N ,XN |f )

}
Corresponds to pointwise regret of an arithmetic code

Amenable to Laplace approximation and resolvablity bound
Bounds of the same form

RegretN ≤ Approx Error + 1
N log 1

PriorProb(Approx Set)

Specialization to the case of functions f in F1,V

RegretN ≤ cV 3/4
(
log d

N

)1/4

Taking expectation controls
1
N

∑N
n=1 E

[
||f − f̂n−1||2

]
The estimator ˆ̂f (x) = 1

N

∑N
n=1 f̂n−1(x) also has this bound

E
[
|| ˆ̂f − f ||2

]
≤ cV 3/4

(
log d

N

)1/4

Rate becomes 1/3 with greedy predictive Bayes
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C. Bayesian Computation for Neural Nets
Data: (Xi ,Yi) for i = 1, 2, . . . , n, with Xi in [−1, 1]d and n ≤ N

Natural yet optional statistical assumption:
(Xi ,Yi) indep PX ,Y , target f (x) = E [Y |X =x ], variance σ2

Y |x ≤ σ2

Not needed for Bayesian computation statements
Not needed for online learning bounds

Single hidden-layer network model: f (x ,w)

fK (x ,w1, . . .wK ) =
V
K

∑K
k=1 ψ(wk · xi)

One coordinate of each xi always −1 to allow shifts
Odd symmetry of ψ provides sign freedom

Each wk in the symmetric simplex Sd
1 = {w :

∑d
j=1 |wj | ≤ 1}

Prior: p0(w) makes wk independent uniform on Sd
1

Likelihood: exp{−βg(w)} with gain 0 < β ≤ 1/σ2

where g(w) = 1
2

∑n
i=1

(
Yi − V

K

∑K
k=1 ψ(xi · wk )

)2

Posterior: p(w) = p0(w) exp{−βg(w)− Γ(β)}
Bayesian Computation: Estimate f̂ (x) =

∫
f (x ,w)p(w)dw

by drawing independent samples from p(w) and averaging f (x ,w)
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Hessian of the Minus Log Likelihood

Log 1/Likelihood = β g(w)

Hessian = βH(w) = β∇∇′g(w)

Squared error loss: g(w) = 1
2
∑n

i=1(resi(w))2 where

resi(w) = Yi − V
K
∑K

k=1 ψ(xi ·wk )

Hessian Quadratic form: a′H(w)a, where a has blocks ak
V 2

K 2

∑n
i=1

(∑K
k=1 ψ

′(xi ·wk )ak · xi
)2

− V
K
∑n

i=1 resi(w)
∑K

k=1 ψ
′′(xi ·wk )(ak · xi)

2

p(w) is not log-concave; that is, g(w) is not convex

The first term is positive definite, the second term is not

No clear reason for gradient methods to be effective
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Log Concave Coupling
Auxiliary Random Variables ξi,k chosen conditionally indep
Normal with mean xi · wk , variance 1/ρ, with ρ = βcV/K
restricted to ξ with each

∑n
i=1 ξi,k xi,j in a high probability interval

Conditional density:
p(ξ|w) =

(
ρ/2π

)Kn/2exp
{
− ρ

2

∑n
i=1

∑K
k=1(ξi,k − xi ·wk )

2
}

Multiplier c = cY ,V = maxi |Yi |+ V bounds |resi(w)| for all w
Activation second derivative: |ψ′′(z)| ≤ 1 for |z| ≤ 1
Joint density: p(w , ξ) = p(w)p(ξ|w)

Reverse conditional density:
p(w |ξ) = p0(w) exp{−βgξ(w)− Γξ(β)}

Conditional log 1/Likelihood = βgξ(w) with
gξ(w) = g(w) + 1

2
V
K c

∑n
i=1

∑K
k=1

(
xi ·wk − ξi,k

)2

Modifies Hessian a′Hξ(w)a with new positive def second term
V
K

∑
i
∑

k [c − resi(w)ψ′′(xi ·wk )](ak · xi)
2

p(w |ξ) is log concave in w for each ξ
MCMC Efficient sample Applegate, Kannan 91, Lovász, Vempala 07
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Marginal Density and Score of the Auxiliary Variables

Auxiliary variable density function:
p(ξ) =

∫
p(w , ξ)dw

Integral of a log concave function of w

Rule for Marginal Score:
∇ log 1/p(ξ) = E [∇ log 1/p(ξ|w) | ξ ]

Normal Score: linear
∂ξi,k log 1/p(ξ|w) = ρ ξi,k − ρ xi ·wk

Marginal Score:
∂ξi,k log 1/p(ξ) = ρ ξi,k − ρ xi ·E [wk | ξ ]

Efficiently compute ξ score by Monte Carlo sampling of w |ξ

Permits Langevin stochastic diffusion: with gradient drift
d ξ(t) = 1

2∇ log p(ξ(t))dt + d B(t)
converging to a draw from the invariant density p(ξ)
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Hessian of log 1/p(ξ). Is p(ξ) log concave?
Hessian of log 1/p(ξ), an nK by nK matrix

H̃(ξ) = ∇∇′ log 1/p(ξ) = ρ
{

I − ρCov
[Xw1···

XwK
| ξ
]}

Hessian quadratic form for unit vectors a in RnK with blocks ak

a′H̃(ξ)a = ρ {1 − ρVar [ã · w |ξ]}

where ã =
[

X ′a1·
X ′aK

]
has ||ã||2 ≤ n d

Requires variance of ã · w using the log-concave pβ(w |ξ)
More concentrated, smaller variance, than with the prior?
Counterpart using the prior

ρ {1 − ρVar0[ã · w ]}
Use Cov0(wm) =

2
(d+2)(d+1) I and ρ = βcV/K to see its at least

ρ
{

1 − 2βcVn
K (d+2)

}
Constant β chosen such that βcV ≤ 1/4
Strictly positive when number param Kd exceeds sample size n
Hessian ≥ (ρ/2)I. Strictly log concave

Andrew Barron stat.yale.edu/∼arb4/PrincetonLecture.pdf Sampling Neural Net Posterior Distributions 16/25



Rapid Convergence of Stochastic Diffusion
Recall the Langevin diffusion

d ξ(t) = 1
2∇ log p(ξ(t))dt + d B(t)

There are time-discretizations (e.g. Metropolis adjusted)
A natural initialization choice is ξ(0) distributed N(0, (1/ρ)I)
Bakry-Emery theory (initiated in 85)
Strong log concavity yields rapid Markov process convergence
In particular, in the stochastic diffusion setting

∇∇′ log 1/p(ξ) ≥ (ρ/2)I
yields exponential conv. of relative entropy (Kullback distance)

D(pt ||p) ≤ e−t ρ/2D0

In particular, the time required for small relative entropy is
controlled by τ = 2/ρ, here equal to 2K/(βcV )

Note: with time discretization, one also has a number of draws of
w at given ξ(t) to compute the score ∇ log p(ξ(t)), and each
such draw requires a number of MCMC steps, with order nKd
computation time for each gξ(w) evaluation
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Is p(ξ) log concave?

Recap: quadratic form in Hessian of log 1/p(ξ)
a′H̃(ξ)a = ρ {1 − ρVar [ã · w |ξ]}

Another control on the variance
ρVar [ã · w |ξ] ≤ ρ

∫
(ã · w)2exp{−βg̃ξ(w)− Γξ(β)}p0(w)dw

using g̃ξ(w) = gξ(w)− E0[gξ(w)]

Hölder’s inequality with r ≥ 1
≤ ρ [E0[(ã · w)2r ]]1/r exp{ r−1

r Γξ(
r

r−1β)− Γξ(β)}
which is, using a bound CV n on gξ(w) with CV = 9V 2 + 7V maxi |Yi |,

≤ cβV
K

4nr
de exp{βCV n/r}

which is, with the optimal r = βCV n,

= 4c V CV
β2n2

Kd

Less than 1/2 when num param Kd exceeds a multiple of (βn)2

Then indeed Hessian ≥ (ρ/2)I. Strictly log concave

Andrew Barron stat.yale.edu/∼arb4/PrincetonLecture.pdf Sampling Neural Net Posterior Distributions 18/25



Optional: Greedy Bayes

Initialize f̂n,0(x) = 0

Given previous neuron fits, iterate k , for each n
fn,k (x ,w) = (1 − α)fn,k−1(x) + λψ(w · x)

α = 1/
√

n and λ = Vα are suitable.

Form the iterative squared error g(w)

gn,k (w) = 1
2
∑n−1

i=1
(
yi − fi,k (xi ,w)

)2

Again Hessian has a not necessarily positive definite part

−λ
∑n−1

i=1 ri,k−1 ψ
′′(w · xi) xix ′

i

where ri,k−1 are the previous residuals

Associated greedy posterior pn,k (w) proportional to
p0(w) exp{−βgn,k (w)}

Update fn,k replacing ψ(w · x) with its posterior mean

Estimate by sampling from the greedy posterior
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Optional: Log Concave Coupling for Greedy Bayes

For the moment, fix n, k
Again p(w) = p0(w) exp{−βg(w)}
Coupling random variables ξi ∼ N(xi · w ,1/ρ) with ρ = cλβ
where c bounds the absolute values of the residuals ri,k

Joint density p(w , ξ) with logarithm −β gξ(w) built from

gξ(w) = g(w) + 1
2cλ

∑n−1
i=1 (ξi − w · xi)

2

which is convex in w for each ξ, so p(w |ξ) is log concave
The associated marginal is p(ξ)
Hessian quadratic form a′∇∇′ log(1/p(ξ))a

ρ{1 − ρVar [ ã · w |ξ ]}
for a with ||a|| = 1 and ã = X ′a
Deduce p(ξ) is log concave for sufficiently large d
From which get w by a draw from p(w |ξ)
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Optional: Variance control using Hölder’s inequality

As before Var [ã · w |ξ] is not more than∫
(ã · w)2 exp{−βg̃ξ(w)− Γξ(β)}p0(w)dw

where g̃ξ(w) is gξ(w) minus its mean value at β = 0
Γξ(w) is the cumulant generating function of −g̃ξ(w)

By Hölders inequality that variance is not more than
[E0[(ã · w)2r ]]1/r exp{ r−1

r Γξ(
r

r−1β)− Γξ(β)}

For the first factor, with integer r ≥ 1

E0[(xi · w)2r ] ≤
(

d+r−1
r

) (2r)!
(d+2r)···(d+1)

Implication
[E0[(ã · w)2r ]]1/r ≤ n 4r

ed
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Optional: On the second factor from Hölders inequality

The exponent of the second factor is
r−1

r Γξ(
r

r−1β)− Γξ(β)

Not more than β
r−1 maxw g̃ξ(w) where

g̃ξ(w) = gξ(w)− E0[gξ(w0)]

It has the bound βmaxw ,w0(gξ(w)− gξ(w0))/(r − 1)

Indeed a value near 5cλn bounds maxw ,w0(gξ(w)− gξ(w0))

Optional page verifies this for a suitable set of ξ

Hence exponent of second factor not more than value near
5βλ c n/r
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Optional: Verifying bound on g̃ξ(w)

The gξ(w)− gξ(w0) = (w − w0) · ∇gξ(w̃).
Concerning ∇gξ(w̃) it is

−λ
{∑n−1

i=1
[
resi,k−1ψ

′(w̃ · xi)− cw̃ · xi
]

xi +
∑n−1

i=1 ξixi

}
Hit with w − w0, the result has magnitude not more than

4cλn + λmaxj |
∑n−1

i=1 ξixi,j |

With high probability, the max is ≤ n + κ
√

n/ρ where κ ≥
√

2 log 2d

Conditioning on ξ which have this bound, the conditional density
remains log concave when κ =

√
2 log 6d4

With ρ = cλβ and λ = V/
√

n, the max is ≤ n + Õ(n3/4)

Then exponent of second factor not more than value near
5βλc n/r
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Optional: Combining the two factors

Use ã =
∑

i aixi with ||ã||2 ≤ nd and ρ = cλβ

Combine the two factors

Obtain ρVar [ã · w |ξ] not more than a value near
cλβ 4n r/(ed)exp{5βλc n/r}

The optimal r = 5βλc n yielding not more than
20(cλβn)2/d

Recall λ = Vα = V/
√

n
Choose β = 1/(5cV ), choose d ≥ n.
ρVar [ã · w |ξ] is strictly less than 1 (indeed less than 4/5)
Hence p(ξ) is strictly log concave, for d exceeding n
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Summary

Multimodal neural net posteriors can be efficiently sampled

Log concave coupling provides the key trick

Requires number of parameters K d large compared to the
sample size N

Statistically accurate provided ℓ1 controls are maintained
on the parameters

Provides the first demonstration that the class F1,V
associated with single hidden layer networks is both
computationally and statistically learnable

A polynomial number of computations in the size of the
problem is sufficient

The approximation rate 1/K and statistical learning rate 1/
√

N
are independent of dimension for this class of functions
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