
Information Theory and High-Dimensional Bayesian Computation

The Blessing of Dimensionality

Andrew R. Barron

YALE UNIVERSITY

Department of Statistics and Data Science
Joint work with Curtis McDonald (Yale)

Shannon Lecture
IEEE International Symposium on Information Theory

Athens, Greece, 11 July 2024

You may access these slides now at
stat.yale.edu/∼arb4/ShannonLecture.pdf



Outline

Some of the computational core of Information Theory
Shannon-arithmetic codes for univ. data compression & algorithms for predictive distributions
Encoding and decoding for reliable communication, at rate near the Shannon capacity

Average-case optimality or minimax optimality requires Bayes computation

Historical roots of Laplace and Gauss
From Laplace to modern prediction and compression: discrete data
From Gauss to modern prediction and learning: continuous data

Information-theoretic determination of performance
Essential ingredients: Approximation, Estimation, and Computation

Information theory of sampling log-concave posterior densities

Beyond Log-Concavity
Provably Fast Sparse Regression Codes achieving Shannon capacity for the Gaussian channel

Provably Fast Posterior Sampling for neural net posterior distributions in sufficiently high dimensions

Log concave coupling for sampling neural net posteriors
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Shannon Optimal-length Arithmetic Codes for Data Compression

For alphabetical or numerical Y N = (Y1, ...,YN) modeled with a distribution p(Y N)
with access to the predictive distributions p(Yn+1|Y n) for n < N

Shannon codelength: log 1/p(Y N) (rounded up to an integer)

Practical arithmetic coding achieving within 1 bit of Shannon codelength
Shannon-Fano-Elias, Gilbert-Moore 59, Jelinek 68, Pasco 76, Rissanen 76

The code-bits equal the binary-represented cumulative distribution function
using the half-way point at its jump at Y N to dlog 1/p(Y N )e+1 bits of accuracy

The code-bits are computed recursively updating the cumulative distribution,
from n to n + 1, using the predictive distributions

Coding for dependence of Y N on given inputs X N = (X1, ...,XN): The code of length
log 1/p(Y N |X N) uses predictive distributions p(y |x ,Y n,X n) evaluated at Xn+1=x and Yn+1=y

Want predictive density estimates and compression for wide range of linear & nonlinear models
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Shannon-Arithmetic Codes for Universal Data Compression
Realistic and practical data compression arises in the universal source coding context

Parameters θ of the distribution p(Y N |θ) not known, but can be modeled
Redundancy is the difference in expected codelength with and without knowledge
of the parameters, divided by N to get redundancy as a rate
The one or two bits of difference from log 1/p(Y N) are ignored, as they contribute
negligibly to the redundancy rate

For parameters modeled probabilistically, the average-case optimal codes use
p(Y N) =

∫
p(Y N |θ) p0(θ) dθ

to construct the Huffman code, or, preferably, the Shannon-arithmetic code
The average redundancy is the Shannon mutual information I(θ; Y N)

And the minimax redundancy is the capacity of the channel θ → Y N

Practical optimal-redundancy codes require computation of predictive distributions
p(Yn+1|Y n) =

∫
p(Yn+1|Y n, θ) p(θ|Y n) dθ
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Equivalence of Statistical Learning and Universal Data Compression

The redundancy of a code takes the form of the Kullback divergence

D(PY N |θ||PY N )

Chain rule of probability p(Y N) =
∏N−1

n=0 p(Yn+1|Y n) yields the chain rule of information theory

D(PY N |θ||PY N ) =
∑N−1

n=0 EY n|θ
[
D(PYn+1|Y n,θ||PYn+1|Y n )

]
Consider the case that the model makes Y1, . . . ,YN conditionally i.i.d. given θ

Predictive p(y |Y n) at Yn+1=y is average-case optimal estimator of p(y |θ) with Kullback loss

The Cesàro average of the risk with Kullback loss equals the redundancy rate
1
N

∑N−1
n=0 EY n|θ

[
D(PY |θ||PY |Y n )

]
= 1

N D(PY N |θ||PY N )

Statistical learning and universal data compression have the same computational challenge:
For suitable models p(Y n|θ) and p(θ), find a procedure to compute the predictive distributions

p(y |Y n) =
∫

p(y |θ) p(θ|Y n) dθ
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Index of Resolvability
A simple tool for exploring the quality of a mixture p(Y N) =

∫
p(Y N |θ)p0(θ)dθ.

Examine the redundancy rate (i.e. Cesàro average of the risk with Kullback loss) as follows

RN(θ∗) = 1
N D(PY N |θ∗ ||PY N ) = 1

N EY N |θ∗
[
log p(Y N |θ∗)∫

p(Y N |θ)p0(θ)dθ

]
Get the index of resolvability by restricting the integral to a Kullback neighborhood of θ∗

≤ 1
N EY N |θ∗

[
log p(Y N |θ∗)∫

A p(Y N |θ)p0(θ)dθ

]
= DA + 1

N log 1
P0(A)

where the A = Ar = {θ : D(θ∗||θ) ≤ r} is the neighborhood of Kullback radius r , the P0(A) is its
prior probability, the DA ≤ r is the Kullback divergence from the mixture conditional on A and r is
adjusted to suitably balance or optimize it.
Implications (Ba 87,98, Yang, Ba 99):

Consistency: RN(θ
∗)→ 0 for any θ∗ whose Kullback neighborhoods are given positive prior probability

Parametric rate: RN(θ
∗) ∼ d

2N logN in any smooth finite-dim family with positive prior density at θ∗

Non-parametric rates: Information theory determines the minimax rates (Yang, Ba 99)
Applicable to flexibly high-dimensional models such as neural nets (as we shall see)
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Settings with Practical Predictive Distributions

For suitable models p(Y n|θ) and p(θ), find practical procedures to compute the predictive
distributions p(y |Y n) =

∫
p(y |θ) p(θ|Y n) dθ

We discuss several settings:
Discrete memoryless sources

Markov models and variable order (context tree) models

General smooth parametric families

Location families for the normal and other log-concave error distributions

Linear models with the normal and other log-concave error distributions

Regression codes for achieving capacity in additive Gaussian noise channels

Nonlinear models such as single hidden-layer neural networks

Computation of optimal procedures in such models has roots in work of Laplace & Gauss

New computational innovations are based on log-concave sampling and beyond
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Aside: Remark Concerning Continuous-Valued Models

Models based on probability density functions allow nearly continuous-valued data:

Numerical data is often modeled as discretized real data to accuracy 2−b

(that is to b bits accuracy, with large b)

When large, b has little effect on the discretized redundancy, because the redundancy
depends on the ratio of probabilities, near the density ratio

Also, the supremum of redundancies over discretizations equals the Kullback divergence
between the densities

The Kullback divergence for densities remains an appropriate redundancy measure
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Historical Highlight: Bayes

Bayes (1763):
Rule for reversing conditional probability: P(A|B) = P(A)P(B|A)/P(B)

Provided notions of prior and posterior probability

Examined Binomial counts with uniform prior
Found that the resulting marginal distribution on the counts is uniform on {0, 1, 2, ..., n}
However, he was not able to compute the posterior predictive distribution.
He did not see the solution by a rule of succession
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Historical Computational Highlights: Laplace

Laplace (1774) Calculus of Probability. Commentary and translation by Stigler (1986)
Exact computation, for discrete memoryless sources, of the key ingredients

The predictive distrib p(yn+1|y1, ..., yn)
The joint distribution p(y1, ..., yn) =

∫
p(y1, ..., yn|θ)p(θ)dθ

The posterior density p(θ|yn) = p(yn|θ)p(θ)/p(yn)

Approximate computation, for general smooth families, by integration using a normal
Central limit theory for posterior distributions

Decision Theory for location models and linear models
Median of posterior minimizes expected absolute deviation
Two-sided exponential error distribution
Could not compute posterior median except when n ≤ 3
Fall-back choice of sample median recognized as suboptimal

Laplace (1810, 1812)
Central limit theory for sums of independent random variables
A many-causes justification of least squares for linear models
Normal error distrib. allows computation of posterior mean, optimizes expected posterior loss
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Laplace’s Prediction Rule based on Count Data

Certain priors on probabilities θ in the simplex {θ : θj ≥ 0,
∑m

j=1 θj = 1}
permit exact predictive distribution computation
allowing computation for arithmetic codes

For discrete memoryless sources with m symbols (Laplace 1774 used m=2)
Laplace 1774. Uniform prior yields computation by Laplace’s rule of succession

p̂n(y) = p(yn+1 = y |y1, ..., yn) =
ny +1
n+m from counts ny =

∑n
i=1 1{yi =y}

Laplace joint distribution p(y1, ..., yN ) = 1(N+m−1
m−1

) 1( N
N1...Nm

)
It gives the average-case optimal code for uniform prior (Gilbert 71, Cover 72, 73)

Risk bound for Kullback loss (Ba 86): E [D(p||p̂n)] ≤ log
(
1 + m

n

)
≤ m

n

Dirichlet(λ, ..., λ) prior (originally in Laplace 1781) produces the prediction rule ny +λ

n+mλ
Distinguished choice λ = 1/2

Asymtotically capacity-achieving, providing minimax redundancy
Krichevski, Trofimov 81: Redundancy rate m−1

2N log N + O
( 1

N

)
Xie, Ba 97,00: Minimax redundancy & regret m−1

2N log N
2π + 1

N log
∫
|I(θ)|1/2dθ + o

( 1
N

)
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Prediction and Compression for Sources with Memory

For discrete Markov sources: Takeuchi, Kawabata, Ba 02

Evaluates the asymtotically capacity-achieving Jeffreys prior achieving minimax redundancy

again redundancy rate equals d
2N logN + C

N + o
( 1

N

)
where d = parameter dimension

For variable order Markov sources: Willems, Shtarkov, Tjalkens 95

recursive Context Tree Weighting (CTW) algorithm

Optimal prediction, compression, text generation for their prior & posterior

Scaling-up CTW at the word level, with access to massive amounts of text data, should yield a
competitive, stochastically-optimal, large language model
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Laplace Approximation for Posterior and Bayes Factor

For general smooth parametric families
Laplace Approximation of the Posterior

from second order Taylor expansion of log density with empirical Fisher information Î

p(Y n|θ) p0(θ) ∼ p(Y n|θ̂) p0(θ̂) exp{− 1
2 n Î (θ−θ̂)2}

yields approximate normality of the posterior

Integrating it yields the Laplace Approximation of the Joint Distribution, Bayes factor∫
p(Y n|θ) p0(θ) dθ ∼ p(Y n|θ̂) p0(θ̂)

∫
exp{− 1

2 n Î (θ−θ̂)2} dθ

= p(Y n|θ̂) p0(θ̂)
(

2π
nd |Î |

)1/2

Taking logs yields the pointwise regret of stochastic complexity, MDL
Ba 85, Clarke, Ba 90,94, Rissanen 96, Takeuchi, Ba 24

1
N log p(Y n|θ̂)∫

p(Y n|θ)p0(θ)dθ = d
2n log n

2π + 1
n log |Î (θ̂)|1/2

p0(θ̂)
+ o
(1

n

)
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)1/2

Taking logs yields the pointwise regret of stochastic complexity, MDL
Ba 85, Clarke, Ba 90,94, Rissanen 96, Takeuchi, Ba 24

1
N log p(Y n|θ̂)∫

p(Y n|θ)p0(θ)dθ = d
2n log n

2π + 1
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)1/2

Taking logs yields the pointwise regret of stochastic complexity, MDL
Ba 85, Clarke, Ba 90,94, Rissanen 96, Takeuchi, Ba 24

1
N log p(Y n|θ̂)∫

p(Y n|θ)p0(θ)dθ = d
2n log n

2π + 1
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Kullback Risk and Data Compression
Continuing for general smooth parametric families with i.i.d. observations

Taking the expected value yields the redundancy of data compression, equivalently, it is
the cumulative Kullback risk for sample sizes n ≤ N (Clarke, Ba 90,94)

1
N D(PY N |θ||PY N ) = d

2N log N
2πe + 1

N log |I(θ)|1/2

p0(θ)
+ o
( 1

N

)
Jeffreys prior p0(θ) proportional to |I(θ)|1/2

Approximately mimimax for total Kullback risk and redundancy, (Clarke, Ba 94)
Approximately capacity-achieving, maximizing I(θ;Y N) asymptotically
(Bernardo 79, Ibragimov, Hasminskii 73, Clarke, Ba 94)
Hartigan 64: Jeffreys prior equalizes probability of small Kullback balls of given radius

Individual Kullback risk based on a sample of size n
Parametric settings: (Cencov 72, Akaike 73, Yang, Ba 98, Hartigan 99), in i.i.d. case

E
[
D(PY |θ||PY |Y n )

]
∼ d

2n
Dependence on θ and on the choice of prior arise only in terms of order (1/n)2

Nonparametric settings: approximation and estimation tradeoff (Ba, Sheu 91)
D(P||P̂n) ∼ minK

{( 1
K

)2/d0 + K
n

}
∼
( 1

n

)2/(2+d0)
in the one derivative case
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Historical Highlight of Bayesian Computation: Gauss

Gauss (1806 German, 1809 Latin) Treatise on Planetary Motion. English Transl. Davis (1857)
Investigates orbit determination when there are multiple observations
Linearizes smooth nonlinear dependence on parameters (per Newton)
Linear system of equations characterizing least squares solution
Recognized in a paper by Legendre (1805)
Gauss elimination solution

Gauss justification of least squares as a Bayesian Computation
For linear models f (xi ,w) = w · xi with observed responses yi ,
including location families, corresponding to constant xi = 1

Given a density φ(z) for deviations with score s(z) = −φ′(z)/φ(z)
The posterior density p(w |Data) is proportional to the joint density function

φ(y1−w · x1) . . . φ(yn−w · xn)

The mode ŵ of the posterior distribution is found by solving the system of equations∑n
i=1 s(yi−w · xi) xi = 0

Gauss’ density φ(z) with linear score provides the desired linear system of equations
Accordingly the least squares solution is the posterior mode
Moreover, if the posterior mode is a linear function of y , then φ(z) must be the Gaussian
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From Laplace and Gauss to Modern Bayesian Computation

Laplace & Gauss work for linear models and location families is celebrated
for providing computation of the posterior optimal solutions for Gaussian φ
for providing the predictive densities p(y |x ,Data), the predictive means, and the Bayes factors
and Gauss’ recursive least squares solution, which iterates one observation at a time

Linear Filtering and Prediction
Kalman (1960) theory extends recursive posterior predictive computation to the setting of
linear difference equation evolution of the states xn

Model Selection & Data Compression: for Gaussian φ, compute Bayes factors & MDL stochastic complexity
Evaluating p(Y n|X n) =

∫
p(Y n|X n,w)p(w)dw and associated predictive densities

Permits optimal arithmetic coding of finely discretized observations
Related to linear predictive coding

Minimax Estimation and Compression for linear models, for general φ
The uniform prior yields minimax optimality for

parameter estimation with squared error loss (Girshick, Savage 51)
predictive density estimation with Kullback risk (Liang, Ba 02)
data compression with minimax redundancy (Liang, Ba 02)

Is there a class of φ for which we have feasible Bayes computation in these settings?
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From Gaussian to Log-Concave Distributions
Summary thus far: Laplace & Gauss performed the required normal integrations
in linear models with normal errors to compute the posterior-optimal procedures

What is the right extension to non-normal error distributions
to preserve rapid computation of high-dimensional posterior integrals?

Answer emerging in the last forty years: Log-Concavity
Permits MCMC samplers of the posterior: Accurate and mix rapidly for log concave posteriors

Rapid computation of minimax optimal procedures
in settings with log-concave error distributions for:

location estimation
linear regression
minimax redundancy compression in linear predictive models

The optimal procedures in these settings become polynomial-time computable

Important settings that are not log-concave:
regressions with non-convex domains
non-linear regressions, such as neural networks
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Information Theory of Rapid MCMC with Log Concavity

Langevin Diffusion Path for sample parameter values wt

d wt = 1
2∇ log p(wt ) dt + d Bt

Score ∇ log p(w) is non-linear in general
There are time-discretizations (e.g. Metropolis adjusted Langevin) with similar mixing processing
Initialize with w0 distributed N(0, (1/ρ); I) or initialize using the Laplace approximation

Theory of Bakry-Emery 85, see Bakry, Gentil, Ledoux 14
Strong log concavity yields rapid Markov process convergence
In particular, in the stochastic diffusion setting, if for ρ > 0

∇∇′ log 1/p(w) ≥ ρ I
yields exponential convergence of relative entropy (Kullback divergence)

D(pt ||p) ≤ e−t ρ D(p0||p)

The time required for small relative entropy is controlled by τ = 1/ρ
Proof uses D(pt ||p) = 1

2

∫
τ≥t J(pτ ||p) dτ associated with d

dt D(pt ||p) = − 1
2 J(pt ||p) and

establishes Log Sobolev Ineq: D(pt ||p) ≤ 1
2 ρ J(pt ||p) where J is mean square norm between the scores

Similar identities in Stam (59) for entropy power inequality & log Sobolev ineq for the normal, and in Ba 86

Central Limit Theorem of Ba 86, shows relative entropy convergence to the normal
for standardized sums of i.i.d. random variables, using similar tools and the linear score target
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Beyond Log-Concavity

Some important posteriors are not log-concave

Bayes Computation for Communications
Capacity-achieving sparse regression codes
For a Gaussian noise channel
Codes are in a linear model Xw but with a non-convex constraint on w
Rapid decoders developed with Joseph, Cho and Rush

Bayes Computation for Non-linear Models, including Neural Nets

Applies to neural nets with smooth activation functions
Posterior density has many peaks. It is not log-concave
Introducing many auxiliary random variables simplifies the sampling landscape
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Bayes Computation for Communication
Communication strategy for additive Gaussian noise channel with specified power control
Capacity-achieving Sparse Regression Codes Joseph, Ba 12

Gaussian design matrix X
Codewords of form X w
Non-convex constraint set W of size 2nC for the weights w
specified by a sparsity requirement of one non-zero in each of several sections and by a power allocation
Bayes optimal decoder seeks minw∈W ||Y − Xw ||2

Computationally-feasible capacity-achieving iterative decoders
Compute weight estimates wk iteratively, for a small (logarithmic) number of steps.
After which the estimates concentrate on the columns sent with high probability

Adaptive Successive Hard-Decision Decoder (Joseph, Ba 14)
Adaptive Successive Soft-Decision Decoder (Ba, Cho, 12)
Compute wk as posterior mean of indicators, given approx normal distributions
of the inner products of the columns of X with residuals Y − Xwk−1, normalized
Approx Message Passing Decoder (Rush, Greig, Venkataramanan 17)

Sparse Regression Codes Monograph: Venkataramanan, Tatikonda, Ba 19
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Essentials of High-Dimensional Learning of Neural Nets

Artificial Neural Network Learning

A. Approximation

Squared approx error is of order 1
K with K neurons combined on last layer

B. Estimation

Squared estimation error is of order K log d
N with sample of size N, input dimension d

C. Computation

Computation time is a low order polynomial in N, K , d , when Kd is larger than N
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A. Approximation, Neural Nets, and Function Variation with a Dictionary G

Neural Nets and Variation with respect to a Dictionary
Dictionary G of functions g(x ,w), each bounded by 1
Consider linear combinations

∑
j cj g(x ,wj)

G may be the class of depth L− 1 subnetworks with control on their path weights
Single hidden-layer case

∑
j cj ψ(wj · x) with a bounded scalar activation function ψ

Control the sum of abs values of weights
∑

j |cj | ≤ V
FV = closure of signed convex hull of functions V g(x ,w)

Variation V (f ) = VG(f ) = the infimum of V such that f ∈ FV .

Approximation accuracy
K term approximation: fK (x) =

∑K
k=1 ck g(x ,wk )

Approximation error: ||f − fK ||2 ≤ V (f )2

K using the L2(PX ) norm squared
An existence proof and a Greedy approximation proof, Ba 93
Outer weights ck may equal ± V

K

Error better than order
( 1

K

)1.5 is NP−hard (Vu 97)
Rate 1

K is dimension independent
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B. Estimation Results for Neural Nets

B. Neural Net Estimation and its Statistical Risk

Via constrained least squares, penalized least squares or Bayes predictions f̂ ,

risk E [||̂f − f ||2] ≤ c V (f )
( log(2d)+L

N

)1/2

There are also lower bounds of such order (Klusowski, Ba 17)

Computationally-feasible Bayes prediction accuracy (in the single hidden layer case)

E [||̂f − f ||2] ≤ c V (f )2/3 ( log(2d)
N

)1/3

Both rates can be obtained by the Index of Resolvability:

ApproxError + 1
N log[ 1 / PriorProb(ApproxSet)]
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B. Methods of Obtaining such Statistical Risk Control
Statistical risk or generalization squared error: E [||̂f − f ||2]

Five methods of controlling such statistical risk
Empirical process control of constrained least squares via metric entropy

Gaussian complexity: Ba, Klusowski 19
Rademacher complexity: Neshabur et al 15, Golowich et al 18

Penalized least squares risk control via relationship to MDL
Adaptive bounds via an index of resolvability: Ba, Cover 90, Ba, Li et al 99, 08

Concentration of posterior distributions
Necessary and sufficient conditions for posterior concentration Ba 88, 98,
Ba, Shervish, Wasserman 98, Ghoshal, Ghosh, Van der Vaart 00

Cumulative Kullback risk of Bayes predictive distributions
Clean information-theoretic bounds, again by an index of resolvability: Ba 87, 98,
Yang, Ba 98, Ba, Klusowski 19, Ba, McDonald 24

Online learning regret bounds for squared error & log-loss
Provides bounds for arbitrary data sequences

All five have connections to information theory
The posterior predictive procedures allow rapid computation
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C. Essentials of Computation by Sampling a Neural Net Posterior

C. Log Concave Coupling for Bayesian Computation
Focus on single hidden-layer network models

Prior density p0(w): Uniform on an `1 constrained set

Posterior p(w): Multimodal. No known direct rapid sampler

Coupling p(ξ|w): conditionally independent Gaussian auxiliary variables ξi,k
with mean xi ·wk for each observation i and neuron k

The reverse conditional p(w |ξ) is always log-concave

The marginal p(ξ) and its score ∇ logp(ξ) are rapidly computable

p(ξ) is log concave when the number of parameters K d is large compared to N

Langevin diffusion and other samplers are rapidly mixing

A draw from p(ξ) followed by a draw from p(w |ξ) yields
a draw from the desired posterior p(w)
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C. Bayesian Computation for Neural Nets

Data: (Xi ,Yi) for i = 1, 2, . . . , n, with each Xi in [−1, 1]d and sample sizes n ≤ N

Natural yet optional statistical assumption:
(Xi ,Yi) independent PX ,Y , target f (x) = E [Y |X =x ], variance σ2

Y = σ2, sub-Gaussian Y
Useful for motivation and for risk bounds
Not needed for Bayesian computation statements
Not needed for online learning bounds

Single hidden-layer network model: f (x ,w)

fK (x ,w1, . . .wK ) = V
K

∑K
k=1 ψ(wk · xi )

with each wk in the symmetric simplex Sd
1 = {w :

∑d
j=1 |wj | ≤ 1}

Prior: p0(w) makes wk independent uniform on Sd
1

Likelihood: exp{−βg(w)} with gain 0 < β ≤ 1/σ2

where g(w) = 1
2

∑n
i=1

(
Yi − V

K

∑K
k=1 ψ(xi · wk )

)2

Posterior: p(w) = p0(w) exp{−βg(w)− Γ(β)}
Bayesian Computation: Estimate f̂ (x) =

∫
f (x ,w)p(w)dw

by drawing independent samples from p(w) and averaging f (x ,w)
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Hessian of the Minus Log Likelihood

Log 1/Likelihood = β g(w)

Hessian = β H(w) = β∇∇′g(w)

Squared error loss: g(w) = 1
2
∑n

i=1(resi(w))2 where

resi(w) = Yi − V
K
∑K

k=1 ψ(xi ·wk )

Hessian Quadratic form: a′H(w)a, where a has blocks ak
V 2

K 2

∑n
i=1
(∑K

k=1 ψ
′(xi ·wk ) ak · xi

)2

− V
K
∑n

i=1 resi(w)
∑K

k=1 ψ
′′(xi ·wk )(ak · xi)

2

This g(w) is not convex, that is, p(w) is not log-concave
The first term is positive definite, the second term is not

No clear reason for direct gradient methods to be effective
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Log Concave Coupling
Auxiliary Random Variables ξi,k chosen conditionally independent
Normal with mean xi · wk , variance 1/ρ, with ρ = βcV/K
restricted to ξ with each

∑n
i=1 ξi,k xi,j in a high probability interval

Conditional density:

p(ξ|w) =
(
ρ/2π

)Kn/2exp
{
− ρ

2

∑n
i=1
∑K

k=1(ξi,k − xi ·wk )2
}

Multiplier c = cY ,V = maxi |Yi |+ V bounds |resi (w)| for all w
Activation second derivative: |ψ′′(z)| ≤ 1 for |z| ≤ 1
Joint density: p(w , ξ) = p(w)p(ξ|w)

Reverse conditional density: p(w |ξ) = p0(w) exp{−βgξ(w)− Γξ(β)}
Conditional log 1/Likelihood = βgξ(w) with
gξ(w) = g(w) + 1

2
V
K c
∑n

i=1
∑K

k=1

(
xi ·wk − ξi,k

)2

Modifies Hessian a′Hξ(w)a with new positive def second term
V
K

∑
i
∑

k [c − resi (w)ψ′′(xi ·wk )](ak · xi )
2

p(w |ξ) is log concave in w for each ξ
MCMC Efficient sample Applegate, Kannan 91, Lovász, Vempala 07
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Marginal Density and Score of the Auxiliary Variables
Auxiliary variable density function:

p(ξ) =
∫

p(w , ξ)dw
Integral of a log concave function of w
Rule for Marginal Score:
∇ log 1/p(ξ) = E [∇ log 1/p(ξ|w) | ξ ]

Normal Score: linear
∂ξi,k log 1/p(ξ|w) = ρ ξi,k − ρ xi ·wk

Marginal Score:
∂ξi,k log 1/p(ξ) = ρ ξi,k − ρ xi ·E [wk | ξ ]

Efficiently compute ξ score by Monte Carlo sampling of w |ξ
Permits Langevin stochastic diffusion: with gradient drift

d ξt = 1
2∇ log p(ξt ) dt + d Bt

converging to a draw from the invariant density p(ξ)
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Hessian of log 1/p(ξ). Is p(ξ) log concave?

Hessian of log 1/p(ξ), an nK by nK matrix

H̃(ξ) = ∇∇′ log 1/p(ξ) = ρ
{

I − ρCov
[

Xw1···
XwK

| ξ
]}

Hessian quadratic form for unit vectors a in RnK with blocks ak

a′H̃(ξ)a = ρ {1− ρVar [ã · w |ξ]} where ã =
[

X ′a1·
X ′aK

]
has ||ã||2 ≤ n d

Role for variance of ã · w using the log-concave pβ(w |ξ)

More concentrated, having smaller variance than with the prior?

Counterpart using the prior ρ {1− ρVar0[ã · w ]}
Use Cov0(wk ) = 2

(d+2)(d+1) I and ρ = βcV/K to see its at least ρ
{

1− 2βcVn
K (d+2)

}
Constant β chosen such that, say, βcV ≤ 1/4
Strictly positive when the number of parameters Kd exceeds the sample size n
Hessian ≥ (ρ/2)I. Strictly log concave
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Hessian of log 1/p(ξ). Is p(ξ) log concave?

Hessian of log 1/p(ξ), an nK by nK matrix

H̃(ξ) = ∇∇′ log 1/p(ξ) = ρ
{

I − ρCov
[

Xw1···
XwK

| ξ
]}

Hessian quadratic form for unit vectors a in RnK with blocks ak

a′H̃(ξ)a = ρ {1− ρVar [ã · w |ξ]} where ã =
[

X ′a1·
X ′aK

]
has ||ã||2 ≤ n d

Role for variance of ã · w using the log-concave pβ(w |ξ)

More concentrated, having smaller variance than with the prior?

Counterpart using the prior ρ {1− ρVar0[ã · w ]}
Use Cov0(wk ) = 2

(d+2)(d+1) I and ρ = βcV/K to see its at least ρ
{

1− 2βcVn
K (d+2)

}
Constant β chosen such that, say, βcV ≤ 1/4
Strictly positive when the number of parameters Kd exceeds the sample size n
Hessian ≥ (ρ/2)I. Strictly log concave
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Is p(ξ) log concave?
Recap: The quadratic form of the Hessian of log 1/p(ξ) is

a′H̃(ξ)a = ρ {1− ρVar [ã · w |ξ]}
Control of the variance, dropping the mean from inside the square,
ρVar [ã · w |ξ] ≤ ρ

∫
(ã · w)2exp{−βg̃ξ(w)− Γξ(β)}p0(w)dw

using g̃ξ(w) = gξ(w)− E0[gξ(w)]

Hölder’s inequality with ` ≥ 1
≤ ρ [E0[(ã · w)2`]]1/`exp{ `−1

` Γξ(
`
`−1β)− Γξ(β)}

which is, using |g̃ξ(w)| ≤ CV n with CV = 9V 2 + 7V maxi |Yi |,

≤ cβV
K

4n`
d0e exp{βCV n/`}

= 4c V CV
β2n2

Kd , with the optimal ` = βCV n
Less than 1/2 when the number of parameters Kd exceeds a multiple of (βn)2

Then indeed Hessian ≥ (ρ/2)I. Strictly log concave
Hence the posterior sampler is rapidly mixing
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Is p(ξ) log concave?
Recap: The quadratic form of the Hessian of log 1/p(ξ) is

a′H̃(ξ)a = ρ {1− ρVar [ã · w |ξ]}
Control of the variance, dropping the mean from inside the square,
ρVar [ã · w |ξ] ≤ ρ

∫
(ã · w)2exp{−βg̃ξ(w)− Γξ(β)}p0(w)dw

using g̃ξ(w) = gξ(w)− E0[gξ(w)]

Hölder’s inequality with ` ≥ 1
≤ ρ [E0[(ã · w)2`]]1/`exp{ `−1

` Γξ(
`
`−1β)− Γξ(β)}

which is, using |g̃ξ(w)| ≤ CV n with CV = 9V 2 + 7V maxi |Yi |,

≤ cβV
K

4n`
d0e exp{βCV n/`}

= 4c V CV
β2n2

Kd , with the optimal ` = βCV n
Less than 1/2 when the number of parameters Kd exceeds a multiple of (βn)2

Then indeed Hessian ≥ (ρ/2)I. Strictly log concave
Hence the posterior sampler is rapidly mixing
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Summary
Information Theory provides keys to the study of Bayes predictive distributions

Multi-modal neural net posteriors can be efficiently sampled

Log concave coupling provides the key trick

Requires a number parameters K d large compared to the sample size N

Statistically accurate provided `1 controls on parameters are maintained

Provides the first demonstration that the class F1,V associated with single
hidden-layer networks is both computationally and statistically learnable

A polynomial number of computations in size of the problem is sufficient

The approximation rate 1/K and statistical learning rate 1/
√

N are independent of
dimension for this class of functions

Pages with additional details as well as topically arranged references can be accessed at

stat.yale.edu/∼arb4/ShannonLecture
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The following pages contain essentially the same presentation but with some more details,
some more material, a few more citations, and a topically arranged bibliography of
references

In this expanded version, an asterisk * in the upper right corner means that it is similar to
an included page but has added detail, a double asterisk ** means that it is a new page
that explains material that is only briefly alluded to in the original presentation
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Information Theory and High-Dimensional Bayesian Computation
The Blessing of Dimensionality

Expanded Version
Andrew R. Barron

YALE UNIVERSITY

Department of Statistics and Data Science
Joint work with Curtis McDonald (Yale)

Shannon Lecture
IEEE International Symposium on Information Theory

Athens, Greece, 11 July 2024

You may access these slides now at
stat.yale.edu/∼arb4/ShannonLecture.pdf
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Outline

Some of the computational core of Information Theory
Shannon-arithmetic codes for univ. data compression & algorithms for predictive distributions
Encoding and decoding for reliable communication, at rate near the Shannon capacity

Average-case optimality or minimax optimality requires Bayes computation

Historical roots of Laplace and Gauss
From Laplace to modern prediction and compression: discrete data
From Gauss to modern prediction and learning: continuous data

Information-Theoretic determination of performance
Essential ingredients: Approximation, Estimation, and Computation

Information Theory of sampling log-concave posterior densities

Beyond Log-Concavity
Provably Fast Sparse Regression Codes achieving Shannon capacity for the Gaussian channel

Provably Fast Posterior Sampling for neural net posterior distributions in sufficiently high dimensions

Log concave coupling for sampling neural net posteriors
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Outline of Conclusions for Mean Squared Error and Kullback Risk **
Approximation, Estimation and Computation
Can we meet all three objectives in flexible high-dimensional models?
Function Models: f (x ,w), inputs x ∈ Rd0 , weights w ∈ Rd

Linear and non-linear models
Unconstrained versus constrained parameters
Traditional models versus modern neural networks
K term approx squared error 1/K 2/d0 versus 1/K

Mean Squared Prediction Error or Kullback Risk, with sample size N
d

2N or
( 1

N

)2/(2+d0)
or

(
log d0

N

)1/2

and 1
N times Cumulative Risk or Data Compression Redundancy

d
2N log N or

( 1
N

)2/(2+d0)
or

(
log d0

N

)1/2

where the appropriate number of terms or neurons K grows with N
Arrange a large number of variables d0 and number of parameters d = Kd0 >> N
A Computational Success of Predictive Bayes
Log concave coupling for sampling neural net posteriors
The Blessing of Dimensionality
Posterior sampling in high dim avoids traps of multi-modal optimization
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Shannon-Arithmetic Codes for Universal Data Compression
Realistic and practical data compression arises in the universal source coding context

Parameters θ of the distribution p(Y N |θ) not known, but can be modeled
Redundancy is the difference in expected codelength with and without knowledge
of the parameters, divided by N to get redundancy as a rate
The one or two bits of difference from log 1/p(Y N) are ignored, as they contribute
negligibly to the redundancy rate

For parameters modeled probabilistically, the average-case optimal codes use
p(Y N) =

∫
p(Y N |θ) p(θ) dθ

to construct the Huffman code, or, preferably, the Shannon-arithmetic code
The average redundancy is the Shannon mutual information I(θ; Y N)

And the minimax redundancy is the capacity of the channel θ → Y N

Practical optimal-redundancy codes require computation of predictive distributions
p(Yn+1|Y n) =

∫
p(Yn+1|Y n, θ) p(θ|Y n) dθ
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Equivalence of Statistical Learning and Universal Data Compression

The redundancy of a code takes the form of the Kullback divergence

D(PY N |θ||PY N )

Chain rule of probability p(Y N) =
∏N−1

n=0 p(Yn+1|Y n) yields the chain rule of information theory

D(PY N |θ||PY N ) =
∑N−1

n=0 EY n|θ
[
D(PYn+1|Y n,θ||PYn+1|Y n )

]
Consider the case that the model makes Y1, . . . ,YN conditionally i.i.d. given θ

Predictive p(y |Y n) at Yn+1=y is average-case optimal estimator of p(y |θ) with Kullback loss

The Cesàro average of the risk with Kullback loss equals the redundancy rate
1
N

∑N−1
n=0 EY n|θ

[
D(PY |θ||PY |Y n )

]
= 1

N D(PY N |θ||PY N )

Statistical learning and universal data compression have the same computational challenge:
For suitable models p(Y n|θ) and p(θ), find a procedure to compute the predictive distributions

p(y |Y n) =
∫

p(y |θ) p(θ|Y n) dθ
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Settings with Practical Predictive Distributions

For suitable models p(Y n|θ) and p(θ), find practical procedures to compute the predictive
distributions p(y |Y n) =

∫
p(y |θ) p(θ|Y n) dθ

We discuss several settings:
Discrete memoryless sources

Markov models and variable order (context tree) models

General smooth parametric families

Location families for the normal and other log-concave error distributions

Linear models with the normal and other log-concave error distributions

Regression codes for achieving capacity in additive Gaussian noise channels

Nonlinear models such as single hidden-layer neural networks

Computation of optimal procedures in such models has roots in work of Laplace & Gauss

New computational innovations are based on log-concave sampling and beyond
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A Remark Concerning Continuous-Valued Models

Models based on probability density functions

allow nearly continuous-valued data:

Numerical data is often modeled as discretized real data to accuracy 2−b

(that is to b bits accuracy, with large b)

When large, b has little effect on the discretized redundancy, because the
redundancy depends on the ratio of probabilities, near the density ratio

The supremum of redundancies over discretizations equals the Kullback divergence
between the densities

Thus the Kullback divergence for densities is still an appropriate redundancy measure
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Historical Highlight: Bayes

Bayes (1763):
Rule for reversing conditional probability: P(A|B) = P(A)P(B|A)/P(B)

Provided notions of prior and posterior probability

Examined Binomial counts with uniform prior
Found that the resulting marginal distribution on the counts is uniform on {0, 1, 2, ..., n}
However, he was not able to compute the posterior predictive distribution.
He did not see the solution by a rule of succession

Also, the posterior probability of intervals was not computationally available to him

He did not submit his work for publication. It was submitted and read before the Philosophical
Society posthumously by Price.
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Historical Computational Highlights: Laplace

Laplace (1774) Calculus of Probability. Commentary and translation by Stigler (1986)
Also chooses the uniform prior
Exact computation, for discrete memoryless sources, of the key ingredients

The predictive distrib p(yn+1|y1, ..., yn)
The joint distribution p(y1, ..., yn) =

∫
p(y1, ..., yn|θ)p(θ)dθ

The posterior density p(θ|yn) = p(yn|θ)p(θ)/p(yn)

Approximate computation, for general smooth families, by integration using a normal
Central limit theory for posterior distributions
First appearance of the normal distribution, and

√
2π normalization

Decision Theory for location models and linear models
Median of posterior minimizes expected absolute deviation
Two-sided exponential error distribution
Could not compute posterior median except when n ≤ 3
Fall-back choice of sample median recognized as suboptimal

Laplace (1810, 1812)
Central limit theory for sums of independent random variables
A many-causes justification of least squares for linear models
Normal error distrib. allows computation of posterior mean, optimizes expected posterior loss
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From Laplace to Inform Theory of Prediction & Data Compression

The Computational Heart of Laplace’s Calculus of Probability
Joint distribution: p(y1, ..., yN ) =

∫
p(y1, ..., yN |θ) p(θ)dθ

Reduction for n ≤ N: p(y1, ..., yn) =
∫

p(y1, ..., yn |θ) p(θ)dθ
Predictive distributions p(yn+1|y1, ..., yn)

Ratios of joint at n+1 and n
Interpretable as posterior mean distribution estimator at yn+1 = y

p(yn+1|y1, ..., yn) =
∫

p(y |θ) p(θ|yn)dθ
Chain rule of probability

p(y1, ..., yN ) =
∏N−1

n=0 p(yn+1|y1, ..., yn)

Also heart of AEP: Shannon 48, McMillan 53, Breiman 57, Ba. 85, Orey 85

Decision Theory of Compression and Prediction with Kullback loss
Predictive distribution minimizes posterior mean of Kullback divergence
Code redundancy is the total Kullback divergence D(PY N |θ||PY N )

Code with respect to PY N is average case optimal
Average redundancy is the mutual information I(θ; Y N )

Information theory chain rule for cumulative Kullback risk
1
N
∑N−1

n=0 EY n|θ D(PYn+1|Y n,θ||PYn+1|Y n ) = 1
N D(PY N |θ||PY N )

Joint and predictive distributions permit Shannon and arithmetic codes

Minimax total Kullback risk = Minimax redundancy = Shannon capacity of Y N |θ
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Laplace’s Prediction Rule based on Count Data

Certain priors on probabilities θ in the simplex {θ : θj ≥ 0,
∑m

j=1 θj = 1}
permit exact predictive distribution computation
allowing computation for arithmetic codes

For discrete memoryless sources with m symbols (Laplace 1774 used m=2)
Laplace 1774. Uniform prior yields computation by Laplace’s rule of succession

p̂n(y) = p(yn+1 = y |y1, ..., yn) =
ny +1
n+m from counts ny =

∑n
i=1 1{yi =y}

Laplace joint distribution p(y1, ..., yN ) = 1(N+m−1
m−1

) 1( N
N1...Nm

)
It gives the average-case optimal code for uniform prior (Gilbert 71, Cover 72, 73)

Risk bound for Kullback loss (Ba 86): E [D(p||p̂n)] ≤ log
(
1 + m

n

)
≤ m

n

Dirichlet(λ, ..., λ) prior (originally in Laplace 1781) produces the prediction rule ny +λ

n+mλ
Distinguished choice λ = 1/2

Asymtotically capacity-achieving, providing minimax redundancy
Krichevski, Trofimov 81: Redundancy rate m−1

2N log N + O
( 1

N

)
Xie, Ba 97,00: Minimax redundancy & regret m−1

2N log N
2π + 1

N log
∫
|I(θ)|1/2dθ + o

( 1
N

)
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Prediction and Compression for Sources with Memory

For discrete Markov sources: Takeuchi, Kawabata, Ba 02

Evaluates the asymtotically capacity-achieving Jeffreys prior achieving minimax redundancy

again redundancy rate equals d
2N logN + C

N + o
( 1

N

)
where d = parameter dimension

For variable order Markov sources: Willems, Shtarkov, Tjalkens 95

recursive Context Tree Weighting (CTW) algorithm

Optimal prediction, compression, text generation for their prior & posterior

Scaling-up CTW at the word level, with access to massive amounts of text data, should yield a
competitive, stochastically-optimal, large language model
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Laplace Approximation for Posterior and Bayes Factor

For general smooth parametric families
Laplace Approximation of the Posterior

from second order Taylor expansion of log density with empirical Fisher information Î

p(Y n|θ) p0(θ) ∼ p(Y n|θ̂) p0(θ̂) exp{− 1
2 n Î (θ−θ̂)2}

yields approximate normality of the posterior

Integrating it yields the Laplace Approximation of the Joint Distribution, Bayes factor∫
p(Y n|θ) p0(θ) dθ ∼ p(Y n|θ̂) p0(θ̂)

∫
exp{− 1

2 n Î (θ−θ̂)2} dθ

= p(Y n|θ̂) p0(θ̂)
(

2π
nd |Î |

)1/2

Taking logs yields the pointwise regret of stochastic complexity, MDL
Ba 85, Clarke, Ba 90,94, Rissanen 96, Takeuchi, Ba 24

1
N log p(Y n|θ̂)∫

p(Y n|θ)p0(θ)dθ = d
2n log n

2π + 1
n log |Î (θ̂)|1/2

p0(θ̂)
+ o
(1

n

)
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Kullback Risk and Data Compression
Continuing for general smooth parametric families with i.i.d. observations

Taking the expected value yields the redundancy of data compression, equivalently, it is
the cumulative Kullback risk for sample sizes n ≤ N (Clarke, Ba 90,94)

1
N D(PY N |θ||PY N ) = d

2N log N
2πe + 1

N log |I(θ)|1/2

p0(θ)
+ o
( 1

N

)
Jeffreys prior p0(θ) proportional to |I(θ)|1/2

Approximately mimimax for total Kullback risk and redundancy, (Clarke, Ba 94)
Approximately capacity-achieving, maximizing I(θ;Y N) asymptotically
(Bernardo 79, Ibragimov, Hasminskii 73, Clarke, Ba 94)
Hartigan 64: Jeffreys prior equalizes probability of small Kullback balls of given radius

Individual Kullback risk based on a sample of size n
Parametric settings: (Cencov 72, Akaike 73, Yang, Ba 98, Hartigan 99), in i.i.d. case

E
[
D(PY |θ||PY |Y n )

]
∼ d

2n
Dependence on θ and on the choice of prior arise only in terms of order (1/n)2

Nonparametric settings: approximation and estimation tradeoff (Ba, Sheu 91)
D(P||P̂n) ∼ minK

{( 1
K

)2/d0 + K
n

}
∼
( 1

n

)2/(2+d0)
in the one derivative case
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Optional: From Laplace to Large Deviations **

Laplace (1785) approximation with series expansion
to compute integrals of products of functions raised to high powers
in particular to compute posterior probabilities of intervals
for the Beta distribution (posterior for Binomial)
for the normal, in particular

Large deviation probability:∫ ∞
T

e−t2
dt =

e−T 2

2T

(
1− 1

2T 2 +
1 · 3
22T 4 −

1 · 3 · 5
23T 6 + . . .

)
Leading term e−T 2

provides the large deviations exponent for the normal

Refinements for sums of i.i.d. random variables:
Similar infinite series: Bahadur, Ranga-Rao 1960
Coefficients of expansion related to moments
Focus on the leading term

Cramèr 37, Chernoff 52 large deviations exponents for other distributions
Sanov 57, Hoeffding 65, Csiszár 75, 84 Information theory characterization
Kullback 59, v. Campenhout,Cover 81, Csiszár84,91 Information projection & conditional limit theory.
Presented as an alternative to inverse probability
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Optional Page: A Surprising Application of Bayes-Laplace Computation **

Contrast minimax redundancy minQ maxθ D(PY n|θ||QY n )

with minimax pointwise regret minq maxθ,yn log p(yn|θ)/q(yn)

Shtarkov (88) minimax-regret solution: q(yn) = maxθ p(yn|θ)/cn

This is the normalized maximum likelihood championed by Rissanen 96
Detailed asymptotics: Szpankowski 95, Takeuchi, Ba 24
It is not a Bayes-Laplace mixture
So how can one compute its predictive distributions needed for its arithmetic code?
Ba, Roos, Watanabe 14, solution in discrete settings by linear algebra:
Represent q(yn) =

∑
j wj p(yn|θj) with weights wj possibly negative. Then

Laplace’s calculus still applies! May evaluate its positive marginals and predictive distributions
Negative prior probabilities!
These priors yield computation of positive-valued quantities for optimal prediction & compression.
They are not for prior subjective assessment
Here yn has an exponentially large domain. Fortunately, the set of values of sufficient statistics
(e.g. counts) is more moderate-sized, and the number of θj can be arranged accordingly
Practical exactly minimax regret data compression for arbitrary sequences
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Historical Highlight of Bayesian Computation: Gauss

Gauss (1806 German, 1809 Latin) English Transl. Davis (1857)
Treatise on planetary motion (describing work developed 1794 -1805)
Improves orbit determination when there are more than three observations
Linearizes smooth nonlinear dependence on parameters (per Newton)
Linear system of equations characterizing least squares solution
Recognized in a paper by Legendre (1805)
Gauss elimination solution

Gauss justification of least squares as a Bayesian Computation
For linear models f (xi ,w) = w · xi with observed responses yi

Given a density φ(z) for deviations with score s(z) = −φ′(z)/φ(z)

The posterior density p(w |Data) is proportional to the joint density function
φ(y1−w · x1) . . . φ(yn−w · xn)

Mode ŵ of the posterior distribution is found by solving the system of equations∑n
i=1 s(yi−w · xi ) xi = 0

Gauss’ density φ(z) with linear score provides the linear system of equations
Accordingly the least squares solution is the posterior mode
Moreover Gauss showed:

The least squares solution is a linear combination of the observed yi
Moreover, if posterior modes are linear for location and regression problems then the density φ(z)
must be the Gaussian

Andrew Barron stat.yale.edu/∼arb4/ShannonLecture.pdf Info Theory, Bayes Computation, Neural Net Estimation 16/32



Further Probability and Computation Conclusions of Laplace and Gauss **

Further linear model work, Laplace 1820, Gauss 1823, see Stigler (1986)

With independence, the variance of a sum is the sum of the variances

Provides valuation of var(ŵj ) and the standard error

The least squares solution is unbiased

Least squares solution has smallest variance among linear unbiased estimators

Its variance is the same for all w

The parameter estimates ŵj and predictions ŵ · x are asymptotically normal

Interval widths of given prob are asymp smallest with least squares estimates

Moreover, if the error density φ is normal, then

The least square solution is the post mean, optimizing posterior expected square

Normal integration explicitly provides predictive densities for yn+1 = y at xn+1 =x

p(y |x ,Data) =
∫
φ(y−w ·x) p(w |Data) dw

as well as their predictive means E [Y |x ,Data] =
∫

w ·x p(w |Data) dw = ŵ · x
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From Laplace and Gauss to Modern Bayesian Computation *

Laplace and Gauss least squares work celebrated
for appropriate setting providing computation of the posterior optimal solutions
for providing predictive densities p(y |x ,Data), predictive means, and Bayes factors
Gauss’ recursive least squares yields solution iterating one observation at a time

Linear Filtering and Prediction
Kalman (1960) theory extends recursive Bayes computation to the setting of linear difference
equation evolution of the states xn

Model Selection and Data Compression: compute Bayes factors and MDL stochastic complexity
Evaluating p(Y N |X N ) =

∫
p(Y N |X N ,w)p(w)dw and associated predictive densities

Permits optimal arithmetic coding of finely discretized observations
Related to linear predictive coding

Minimax Estimation and Compression for linear models, general φ
The Uniform prior yields minimax optimality per Hunt-Stein theory for

parameter estimation with squared error loss (Girshick, Savage 51)
predictive density estimation with Kullback risk (Liang, Ba.02)
data compression with minimax redundancy (Liang, Ba.02)

Gaussian model continues providing ease of Bayes computation in these settings
Proper Bayes minimax rules found for d ≥ 5 (Strawderman 72, Liang 00)
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From Gaussian to Log-Concave Distributions

Summary thus far:
Laplace and Gauss performed the required normal integrations
in linear models to compute the posterior optimal procedures

What is the right extension
to preserve rapid computation of high-dimensional posterior integrals?

Main approach emerging in the last forty years: Log-Concavity
MCMC samplers: Accurate and mix rapidly for log concave posteriors

Implication: Rapid computation of minimax optimal procedures
for location estimation, linear regression and for minimax redundancy
compression in linear predictive setting are polynomial-time computable
for any log-concave error distribution

Important settings that are not log-concave:
regressions with non-convex domains
non-linear regressions, such as neural networks
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Optional: Entropic Central Limit Theorem **
Random variable X centered and scaled to have mean 0 and variance 1
- log density log 1/p(x) and score s(x) = d

dx log 1/p(x)
For the standard normal density φ(x) these are, respectively

1
2 x2 + c and x

Closeness of the score to linear: J(X ) = E [(s(X )− X )2]
to assess statistical efficiency of Gauss likelihood equation solution
Closeness of log densities to quadratic: D(X ) = D(p||φ)
to assess redundancy of descriptions based on the normal
Score representation of divergence: Ba 86, with τt = e−2t , indep Z ∼ φ

D(X ) = 1
2

∫∞
0 J(

√
τt X +

√
1−τt Z ) dt

Remark: Score of Y = X +Z relates best nonlinear and linear estimates of X
given Y , Brown 71, 82, Ba 86, so its an integrated mmse representation

For Sn = X1+...Xn√
n with Xi i.i.d. Precursor results: Linnik 59, Brown 82

Entropic CLT: D(Sn)→ 0 iff eventually finite, Ba 86
Score CLT: J(Sn) → 0 iff eventually finite, Johnson, Ba 04
Monotone: Artstein, Ball, Barthe, Naor 04, Tulino, Verdú 06, Madiman, Ba 06
Related results:

Subset Sum Entropy Power Inequality, Madiman, Ba 07
Log Sobolev Inequality (LSI): D(X) ≤ 1

2 J(X) Stam 57, Gross 75
Stochastic diffusion distribution properties with Gaussian limit
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Information Theory of Rapid MCMC with Log Concavity

Langevin Diffusion Path for sample parameter values wt

d wt = 1
2∇ log p(wt ) dt + d Bt

Score ∇ log p(w) is non-linear in general
There are time-discretizations (e.g. Metropolis adjusted Langevin) with similar mixing processing
Initialize with w0 distributed N(0, (1/ρ); I) or initialize using the Laplace approximation

Theory of Bakry-Emery 85, see Bakry, Gentil, Ledoux 14
Strong log concavity yields rapid Markov process convergence
In particular, in the stochastic diffusion setting, if for ρ > 0

∇∇′ log 1/p(w) ≥ ρ I
yields exponential convergence of relative entropy (Kullback divergence)

D(pt ||p) ≤ e−t ρ D(p0||p)

The time required for small relative entropy is controlled by τ = 1/ρ
Proof uses D(pt ||p) = 1

2

∫
τ≥t J(pτ ||p) dτ associated with d

dt D(pt ||p) = − 1
2 J(pt ||p) and

establishes Log Sobolev Ineq: D(pt ||p) ≤ 1
2 ρ J(pt ||p) where J is mean square norm between the scores

Similar identities in Stam (59) for entropy power inequality & log Sobolev ineq for the normal, and in Ba 86

Central Limit Theorem of Ba 86, showing relative entropy convergence to the normal
for standardized sums of i.i.d. random variables, uses similar tools and the linear score target
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Beyond Log-Concavity

Some important posterior are not log-concave

Examples with computationally feasible and accurate procedures
in high-dimensions

Bayes Computation for Communications
Capacity-achieving sparse regression codes
For a Gaussian noise channel
Codes are in a linear model Xw
but with a non-convex constraint on w

Bayes Computation for Non-linear Regression
Applies to neural nets with smooth activation functions
Posterior density has many peaks. It is not log-concave
Introduce of sufficiently many auxiliary random variable
to simplify the sampling landscape
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Bayes Computation for Communication
Communication strategy for additive Gaussian noise channel with specified power control
Capacity-achieving Sparse Regression Codes Joseph, Ba 12

Gaussian design matrix X
Codewords of form X w
Non-convex constraint set W of size 2nC for the weights w
specified by a sparsity requirement of one non-zero in each of several sections and by a power allocation
Bayes optimal decoder seeks minw∈W ||Y − Xw ||2

Computationally-feasible capacity-achieving iterative decoders
Compute weight estimates wk iteratively, for a small (logarithmic) number of steps.
After which the estimates concentrate on the columns sent with high probability

Adaptive Successive Hard-Decision Decoder (Joseph, Ba 14)
Adaptive Successive Soft-Decision Decoder (Ba, Cho, 12)
Compute wk as posterior mean of indicators, given approx normal distributions
of the inner products of the columns of X with residuals Y − Xwk−1, normalized
Approx Message Passing Decoder (Rush, Greig, Venkataramanan 17)

Sparse Regression Codes Monograph: Venkataramanan, Tatikonda, Ba 19
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Essentials of High-Dimensional Learning of Neural Nets

Artificial Neural Network Learning

A. Approximation

Squared approx error is of order 1
K with K neurons combined on last layer

B. Estimation

Squared estimation error is of order K log d
N with sample of size N, input dimension d

C. Computation

Computation time is a low order polynomial in N, K , d , when Kd is larger than N
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Approximation and Estimation Essentials
A. Neural Net Model and Approximation Error

Target function f , Variation V (f )=VL(f ) with L hidden-layers
Approximation fK ,L with K subnetworks
Single hidden-layer case (L = 1)

fK (x) =
∑K

k=1 ckψ(wk · x)

Approximation Accuracy

||f − fK ,L||2 ≤ V 2(f )
K

B. Neural Net Estimation and Risk
Via constrained least squares, penalized least squares or Bayes predictions f̂ ,
with sample size N, input dimension d

Risk E [||̂f − f ||2] ≤ c V (f )
( log(2d)+L

N

)1/2

There are also lower bounds of such order (Klusowski, Ba 17)

We provide computationally-feasible Bayes predictions with accuracy (in the
single hidden layer case)

E [||̂f − f ||2] ≤ c V (f )2/3
( log(2d)

N

)1/3
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Essentials of Sampling of a Neural Net Posterior

C. Log Concave Coupling for Bayesian Computation
Focus on single hidden-layer network models

Prior density p0(w): Uniform on an `1 constrained set

Posterior p(w): Multimodal. No known direct rapid sampler

Coupling p(ξ|w): cond indep Gaussian auxiliary variables
ξi,k with mean xi ·wk for each observation i and neuron k

Conditional p(w |ξ) always log-concave

Marginal p(ξ) and its score ∇ logp(ξ) rapidly computable

p(ξ) is log concave when the number of parameters K d is large compared to
the sample size N

Langevin diffusion and other samplers are rapidly mixing

A draw from p(ξ) followed by a draw from p(w |ξ) yields
a draw from the desired posterior p(w)
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A. Variation and Approximation with a Dictionary G
Variation with respect to a dictionary

Dictionary G of functions g(x ,w), each bounded by 1
Linear combinations

∑
j cj g(x ,wj)

Control the sum of abs values of weights
∑

j |cj | ≤ V
FV = closure of signed convex hull of functions V g(x ,w)

Variation V (f ) = VG(f ) = the infimum of V such that f ∈ FV .

Approximation accuracy
Function norm square ||f − g||2 in L2(PX )

K term approximation: fK (x) =
∑K

k=1 ck g(x ,wk )

Approximation error: ||f − fK ||2 ≤ V (f )2

K

Relative Approximation error: ||f − fK ||2 − ||f − f ∗||2 ≤ V (f∗)2

K

Existence proof: Ba 93 Precursors: Gauss, Hilbert, Pisier

Greedy approximation proof: Jones, Ba 93
Outer weights ck may equal ± V

K

Relative approx error better than order
( 1

K

)1.5 is NP−hard (Vu 97)
Rate 1

K is dimension independent
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Models **

Models fK (x) =
∑K

k=1 ck g(x ,wk ) with error ||f − fK ||2 ≤ V 2
G(f )
K

There are similar bounds for empirical average squares

Various Algorithmic Terminology
Sparse term selection, variable selection, forward stepwise regression, relaxed greedy alg,
orthogonal matching pursuit, Frank Wolf algorithm, L2 boosting, greedy Bayes
Dictionary

Finite set of terms: Original predictors, products, polynomials, wavelets,
sinusoids (grid of frequencies)
Product-type models: Parameterized bases, MARS (splines), CART regression trees,
random forests
Ridge-type models: Multiple-index models, projection pursuit regression, neural
networks, ridgelets, sinusoids (paramerized frequencies)

Neural Network Models
Single hidden-layer networks, multi-layer networks, deep networks, residual networks,
adaptive learning networks, polynomial networks

Network Units (neurons)
Sigmoids, Rectified Linear Units (ReLU), low-order polynomials, compositions thereof
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B. Estimation Results for Neural Nets

B. Neural Net Estimation and its Statistical Risk

Via constrained least squares, penalized least squares or Bayes predictions f̂ ,

risk E [||̂f − f ||2] ≤ c V (f )
( log(2d)+L

N

)1/2

There are also lower bounds of such order (Klusowski, Ba 17)

Computationally-feasible Bayes prediction accuracy (in the single hidden layer case)

E [||̂f − f ||2] ≤ c V (f )2/3 ( log(2d)
N

)1/3

Both rates can be obtained by the Index of Resolvability:

ApproxError + 1
N log[ 1 / PriorProb(ApproxSet)]
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B. Methods of Obtaining such Statistical Risk Control
Statistical risk or generalization squared error: E [||̂f − f ||2]

Five methods of controlling such statistical risk
Empirical process control of constrained least squares via metric entropy

Gaussian complexity: Ba, Klusowski 19
Rademacher complexity: Neshabur et al 15, Golowich et al 18

Penalized least squares risk control via relationship to MDL
Adaptive bounds via an index of resolvability: Ba, Cover 90, Ba, Li et al 99, 08

Concentration of posterior distributions
Necessary and sufficient conditions for posterior concentration Ba 88, 98,
Ba, Shervish, Wasserman 98, Ghoshal, Ghosh, Van der Vaart 00

Cumulative Kullback risk of Bayes predictive distributions
Clean information-theoretic bounds, again by an index of resolvability: Ba 87, 98,
Yang, Ba 98, Ba, Klusowski 19, Ba, McDonald 24

Online learning regret bounds for squared error & log-loss
Provides bounds for arbitrary data sequences

All five have connections to information theory
The posterior predictive procedures allow rapid computation
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Multi-Layer Neural Network Model **

Multi-Layer Net: Layers L, input x in [−1,1]d , weights w
Activation function: ψ(z).

Rectified linear unit (ReLU): ψ(z) = (z)+

Twice differentiable unit: sigmoid, smoothed ReLU, squared ReLU

Paths of linked nodes: j = j1, j2, ..., jL.
Path weight: Wj = wj1,j2wj2,j3 · · ·wjL−1,jL .
Function representation:
f (x , c,w) =

∑
jL cjLψ

(∑
jL−1

wjL−1,jLψ(...ψ(
∑

j1 wj1,j2xj1)...)
)

Network Variation:
Internal: Sum abs. values of path weights set to 1.
External:

∑
j |cj | ≤ V

Variation: VL(f ) = infimum of such V to represent f
Single Hidden-Layer Case: V1(f ) ≤

∫
|ω|21 |̃f (ω)|dω spectral norm

Class FL,V of functions f with VL(f ) ≤ V

Interests: Approx, Metric Entropy, Statistical Risk, Computation
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Metric Entropy, Empirical Complexity, Statistical Risk

Gaussian complexity approach to bounding risk
Function class restricted to data Fn = {f (x1), f (x2), . . . , f (xn) : f ∈ F}
Gaussian Complexity of A ⊂ Rn

C(A) = 1√
n EZ [supa∈A a · Z ] for Z ∼ N(0, I),

Complexity of Neural Nets: for ψ Lipshitz 1

C(Fn
L,V ) ≤ V

√
2 log 2d + 2L log 2

Via Sudakov-Fernique 75 comparison ineq. (Ba, Klusowski, 19)

(cf Neshabur, Tomioka, Srebro 15, Golowich, Rakhlin, Shamir 18)

Gaussian complexity provides control of
Metric Entropy:

log |Cover(FL,V , δ)| ≤ 16C2(FL,V )

δ2

Statistical Risk of Constrained Least Squares:

E [||̂f − f ||2]| ≤ c C(FL,V )√
n ≤ c V

( 2 log 2d+2L log 2
n

)1/2
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Minimum Description Length and Penalized Likelihood
minus log likelihood plus penalty (e.g. penalized least squares)

minw,K ,V∈Ω

{
log 1

p(Y N |XN ,fw,K ,V )
+ penN (w,K,V )

}
Minimum description-length interpretation when it is at least

minw,K ,V∈Ω̃

{
log 1

p(Y N |XN ,fw,K ,V )
+ L(w,K,V )

}
for Kraft valid codelengths L(ω), such that

∑
ω 2−L(ω) ≤ 1

`1 penalities with suitable multipliers are valid
Battacharya-Renyi risk control via Index of Resolvability

E [d2(pf , pfω̂ )] ≤ minω∈Ω

{
D(pf ||pfω ) +

penN (ω)
N

}
(Ba., Cover 90, Li, Ba. 99, Grünwald 07, Li, Huang, Luo, Ba. 08)

Index of Resolvability: ApproxError + Complexity/N

Bounds for neural net risk E [||̂f − f ||2] in the L = 1 case
(Ba. 94, Ba., Birge, Massart 99, Huang, Cheang, Ba. 08, Ba., Luo 08)

minK
{ V 2(f )

K + Kd
N logN

}
= V (f )

( d log N
N

)1/2

Also, via the metric entropy bound, with `1 weight control

E [||̂f − f ||2] ≤ cV (f )
(

log d
N

)1/2

Computationally feasible?
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B. Optional: Predictive Bayes and its Cumulative Risk Control

Predictive density p̂n(y |x) =
∫

p(y |x ,w)p(w |xn, yn)dw evaluated at Yn+1=y with Xn+1=x
Predictive mean f̂n(x) =

∫
f (x ,w)p(w |xn, yn)dw

The information theory chain rule for cumulative Kullback risk, in Gaussian noise case, controls
data compression redundancy and the risk of ˆ̂f (x) = 1

N
∑N−1

n=0 f̂n(x) (Ba 87,98, Yang, Ba 99)

E
[
|| ˆ̂f − f ||2

]
≤ 1

N

∑N−1
n=0 E

[
||̂fn − f ||2

]
Indeed, the risk is controlled by the index of resolvability, Ba 87,98

1
N D(P∗Y N ,X N ||PY N ,X N ) = 1

N E log p∗(Y N ,X N )∫
p(Y N ,X N |w)p0(w)dw

≤ 1
N E log p∗(Y N ,X N )∫

A p(Y N ,X N |w)p0(w)dw

≤ DA + 1
N log 1

P0(A)

where DA = maxw∈A D(P∗Y |X ||PY |X ,w ) is Kullback approx error. Best for a Kullback ball of optimized radius

Predictive risk for neural net estimators with priors uniform on optimal covers
E [ || ˆ̂f − f ||2] ≤ cV (f )

( d log N
N

)1/2
Yang, Ba 98

E [ || ˆ̂f − f ||2] ≤ cV (f )
( logd

N

)1/2
Ba, Klusowski 19

with practical priors and feasibly computable estimates for sufficiently large d
E [ || ˆ̂f − f ||2] ≤ cV (f )2/3( log(d0)

N

)1/3
Ba, McDonald 24, now
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Arbitrary Sequence Predictive Bayes Regret **

On-line learning
Arbitrary-sequence regret for predictive Bayes

Squared error 1
N

∑N
n=1(Yn − f̂n−1(Xn))

2 − 1
N

∑N
n=1(Yn − f (Xn))

2

Log-loss case 1
N

∑N
n=1 log

1
p(Yn|fn−1(Xn))

− 1
N

∑N
n=1 log

1
p(Yn|f (Xn))

Simplification 1
N

{
log 1

p(Y N ,XN )
− log 1

p(Y N ,XN |f )

}
Corresponds to pointwise regret of an arithmetic code

Amenable to Laplace approximation and resolvablity bound
Bounds of the same form

RegretN ≤ Approx Error + 1
N log 1

PriorProb(Approx Set)

Specialization to the case of functions f in F1,V

RegretN ≤ cV 2/3
(

log d
N

)1/3

Taking expectation controls
1
N

∑N
n=1 E

[
||f − f̂n−1||2

]
The estimator ˆ̂f (x) = 1

N

∑N
n=1 f̂n−1(x) also has this bound

E
[
|| ˆ̂f − f ||2

]
≤ cV 2/3

(
log d

N

)1/3
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C. Bayesian Computation for Neural Nets

Data: (Xi ,Yi) for i = 1, 2, . . . , n, with Xi in [−1, 1]d0 and n ≤ N
Natural yet optional statistical assumption:
(Xi ,Yi) independent PX ,Y , target f (x) = E [Y |X =x ], variance σ2

Y = σ2

Not needed for Bayesian computation statements
Not needed for online learning bounds

Single hidden-layer network model: f (x ,w)

fK (x ,w1, . . .wK ) = V
K

∑K
k=1 ψ(wk · xi )

One coordinate of each xi always −1 to allow shifts
Odd symmetry of ψ provides sign freedom

Each wk in the symmetric simplex Sd
1 = {w :

∑d
j=1 |wj | ≤ 1}

Prior: p0(w) makes wk independent uniform on Sd
1

Likelihood: exp{−βg(w)} with gain 0 < β ≤ 1/σ2

where g(w) = 1
2

∑n
i=1

(
Yi − V

K

∑K
k=1 ψ(xi · wk )

)2

Posterior: p(w) = p0(w) exp{−βg(w)− Γ(β)}
Bayesian Computation: Estimate f̂ (x) =

∫
f (x ,w)p(w)dw

by drawing independent samples from p(w) and averaging f (x ,w)
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Hessian of the Minus Log Likelihood

Log 1/Likelihood = β g(w)

Hessian = βH(w) = β∇∇′g(w)

Squared error loss: g(w) = 1
2
∑n

i=1(resi(w))2 where

resi(w) = Yi − V
K
∑K

k=1 ψ(xi ·wk )

Hessian Quadratic form: a′H(w)a, where a has blocks ak
V 2

K 2

∑n
i=1
(∑K

k=1 ψ
′(xi ·wk ) ak · xi

)2

− V
K
∑n

i=1 resi(w)
∑K

k=1 ψ
′′(xi ·wk )(ak · xi)

2

p(w) is not log-concave; that is, g(w) is not convex

The first term is positive definite, the second term is not

No clear reason for gradient methods to be effective
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Log Concave Coupling
Auxiliary Random Variables ξi,k chosen conditionally indep
Normal with mean xi · wk , variance 1/ρ, with ρ = βcV/K
restricted to ξ with each

∑n
i=1 ξi,k xi,j in a high probability interval

Conditional density:
p(ξ|w) =

(
ρ/2π

)Kn/2exp
{
− ρ

2

∑n
i=1
∑K

k=1(ξi,k − xi ·wk )2
}

Multiplier c = cY ,V = maxi |Yi |+ V bounds |resi (w)| for all w
Activation second derivative: |ψ′′(z)| ≤ 1 for |z| ≤ 1
Joint density: p(w , ξ) = p(w)p(ξ|w)

Reverse conditional density: p(w |ξ) = p0(w) exp{−βgξ(w)− Γξ(β)}
Conditional log 1/Likelihood = βgξ(w) with
gξ(w) = g(w) + 1

2
V
K c
∑n

i=1
∑K

k=1

(
xi ·wk − ξi,k

)2

Modifies Hessian a′Hξ(w)a with new positive def second term
V
K

∑
i
∑

k [c − resi (w)ψ′′(xi ·wk )](ak · xi )
2

p(w |ξ) is log concave in w for each ξ
MCMC Efficient sample Applegate, Kannan 91, Lovász, Vempala 07
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Marginal Density and Score of the Auxiliary Variables

Auxiliary variable density function:
p(ξ) =

∫
p(w , ξ)dw

Integral of a log concave function of w

Rule for Marginal Score:
∇ log 1/p(ξ) = E [∇ log 1/p(ξ|w) | ξ ]

Normal Score: linear
∂ξi,k log 1/p(ξ|w) = ρ ξi,k − ρ xi ·wk

Marginal Score:
∂ξi,k log 1/p(ξ) = ρ ξi,k − ρ xi ·E [wk | ξ ]

Efficiently compute ξ score by Monte Carlo sampling of w |ξ

Permits Langevin stochastic diffusion: with gradient drift
d ξt = 1

2∇ log p(ξt ) dt + d Bt

converging to a draw from the invariant density p(ξ)
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Hessian of log 1/p(ξ). Is p(ξ) log concave?

Hessian of log 1/p(ξ), an nK by nK matrix

H̃(ξ) = ∇∇′ log 1/p(ξ) = ρ
{

I − ρCov
[Xw1···

XwK
| ξ
]}

Hessian quadratic form for unit vectors a in RnK with blocks ak

a′H̃(ξ)a = ρ {1− ρVar [ã · w |ξ]}

where ã =
[

X ′a1·
X ′aK

]
has ||ã||2 ≤ n d0

Role for variance of ã · w using the log-concave pβ(w |ξ)

More concentrated, smaller variance, than with the prior?
Counterpart using the prior

ρ {1− ρVar0[ã · w ]}
Use Cov0(wm) = 2

(d0+2)(d0+1) I and ρ = βcV/K to see its at least

ρ
{

1− 2βcVn
K (d0+2)

}
Constant β chosen such that, say, βcV ≤ 1/4
Strictly positive when number param Kd0 exceeds sample size n
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Is p(ξ) log concave?

Recap: quadratic form in Hessian of log 1/p(ξ)

a′H̃(ξ)a = ρ {1− ρVar [ã · w |ξ]}
Another control on the variance
ρVar [ã · w |ξ] ≤ ρ

∫
(ã · w)2exp{−βg̃ξ(w)− Γξ(β)}p0(w)dw

using g̃ξ(w) = gξ(w)− E0[gξ(w)]

Hölder’s inequality with ` ≥ 1
≤ ρ [E0[(ã · w)2`]]1/`exp{ `−1

` Γξ(
`
`−1β)− Γξ(β)}

which is, using a bound CV n on gξ(w) with CV = 9V 2 + 7V maxi |Yi |,

≤ cβV
K

4n`
d0e exp{βCV n/`}

which is, with the optimal ` = βCV n,

= 4c V CV
β2n2

Kd0

Less than 1/2 when num param Kd exceeds a multiple of (βn)2

Then indeed Hessian ≥ (ρ/2)I. Strictly log concave
Hence the posterior sampler is rapidly mixing
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Greedy Bayes **

Initialize f̂n,0(x) = 0
Given previous neuron fits, iterate k , for each n

fn,k (x ,w) = (1− α)fn,k−1(x) + λψ(w · x)

α = 1/
√

n and λ = Vα are suitable.
Form the iterative squared error g(w)

gn,k (w) = 1
2
∑n−1

i=1
(
yi − fi,k (xi ,w)

)2

Again Hessian has a not necessarily positive definite part

−λ
∑n−1

i=1 ri,k−1 ψ
′′(w · xi) xix ′i

where ri,k−1 are the previous residuals
Associated greedy posterior pn,k (w) proportional to

p0(w) exp{−βgn,k (w)}
Update fn,k replacing ψ(w · x) with its posterior mean
Estimate by sampling from the greedy posterior
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Log Concave Coupling for Greedy Bayes **

For the moment, fix n, k
Again p(w) = p0(w) exp{−βg(w)}
Coupling random variables ξi ∼ N(xi · w ,1/ρ) with ρ = cλβ
where c bounds the absolute values of the residuals ri,k

Joint density p(w , ξ) with logarithm −β gξ(w) built from

gξ(w) = g(w) + 1
2cλ

∑n−1
i=1 (ξi − w · xi)

2

which is convex in w for each ξ, so p(w |ξ) is log concave
The associated marginal is p(ξ)

Hessian quadratic form a′∇∇′ log(1/p(ξ)) a
ρ{1− ρVar [ ã · w |ξ ]}

for a with ||a|| = 1 and ã = X ′a
Deduce p(ξ) is log concave for sufficiently large d
From which get w by a draw from p(w |ξ)
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Variance control for Greedy Bayes using Hölder’s inequality **

As before Var [ã · w |ξ] is not more than∫
(ã · w)2 exp{−βg̃ξ(w)− Γξ(β)}p0(w) dw

where g̃ξ(w) is gξ(w) minus its mean value at β = 0

Γξ(w) is the cumulant generating function of −g̃ξ(w)

By Hölders inequality that variance is not more than

[E0[(ã · w)2`]]1/` exp{ `−1
` Γξ(

`
`−1β)− Γξ(β)}

For the first factor, with integer ` ≥ 1

E0[(xi · w)2`] ≤
(

d+`−1
`

) (2`)!
(d+2`)···(d+1)

hence

[E0[(ã · w)2`]]1/` ≤ n 4`
ed
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On the second factor from Hölders inequality **

The exponent of the second factor is
`−1
` Γξ(

`
`−1β)− Γξ(β)

Not more than β
`−1 maxw g̃ξ(w) where

g̃ξ(w) = gξ(w)− E0[gξ(w0)]

It has the bound βmaxw ,w0(gξ(w)− gξ(w0))/(`− 1)

Indeed a value near 5cλn bounds maxw ,w0(gξ(w)− gξ(w0))

Optional page verifies this for a suitable set of ξ

Hence exponent of second factor not more than value near
5βλ c n/`
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Optional Page: Verifying the Bound on g̃ξ(w) **

The gξ(w)− gξ(w0) = (w − w0) · ∇gξ(w̃).
Concerning ∇gξ(w̃) it is

−λ
{∑n−1

i=1
[
resi,k−1ψ

′(w̃ · xi)− cw̃ · xi
]

xi +
∑n−1

i=1 ξixi

}
Hit with w − w0, the result has magnitude not more than

4cλn + λmaxj |
∑n−1

i=1 ξixi,j |

With high probability, the max is ≤ n + κ
√

n/ρ where κ ≥
√

2 log 2d

Conditioning on ξ which have this bound, the conditional density remains log concave when
κ =

√
2 log 6d4

With ρ = cλβ and λ = V/
√

n, the max is ≤ n + Õ(n3/4)

Then exponent of second factor not more than value near
5βλc n/`
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Combining the two factors for Greedy Bayes log concavity **

Use ã =
∑

i aixi with ||ã||2 ≤ nd and ρ = cλβ

Combine the two factors

Obtain ρVar [ã · w |ξ] not more than a value near
cλβ 4n `/(ed) exp{5βλc n/`}

The optimal ` = 5βλc n yielding not more than
20(cλβn)2/d

Recall λ = Vα = V/
√

n
Choose β = 1/(5cV ), choose d ≥ n.
ρVar [ã · w |ξ] is strictly less than 1 (indeed less than 4/5)
Hence p(ξ) is strictly log concave, for d exceeding n
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Summary

Information Theory provides keys to the study of Bayes predictive distributions

Multi-modal neural net posteriors can be efficiently sampled

Log concave coupling provides the key trick

Requires a number parameters K d large compared to the sample size N

Statistically accurate provided `1 controls on parameters are maintained

Provides the first demonstration that the class F1,V associated with single
hidden-layer networks is both computationally and statistically learnable

A polynomial number of computations in size of the problem is sufficient

The approximation rate 1/K and statistical learning rate 1/
√

N are independent of
dimension for this class of functions

Pages with topically arranged references can be accessed next
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