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Abstract—This paper investigates polar coding schemes achiev-
ing capacity for the AWGN channel. The approaches using a
multiple access channel with a large number of binary-input
users and a single-user channel with a large prime-cardinality
input are compared with respect to complexity attributes. The
problem of finding discrete approximations to the Gaussian input
is then investigated, and it is shown that a quantile quantizer
achieves a gap to capacity which decreases like 1/q (where q
is the number of constellation points), improving on the 1/log(q)
decay achieved with a binomial (central limit theorem) quantizer.

I. INTRODUCTION

Polar codes have many desirable attributes [2]. First, they
are linear codes with a low encoding and decoding complex-
ity. In addition, their construction is deterministic for most
channels (and close to deterministic in general). Finally, they
are the first class of low-complexity codes that are provably
capacity achieving on any discrete memoryless channels. Here,
we consider them for a non-discrete input channel, namely
the AWGN channel. We review first the basic construction
for binary input alphabets, and in Section III we discuss
extensions to larger input alphabets, with emphasis on the
complexity analysis. We then discuss in Section IV different
constellation schemes to connect polar codes for large input
alphabet channels and the AWGN channel.

1) Polar codes for binary input channels: Let P be a
binary-input channel with an arbitrary output. Let n be a
power of two, Un be i.i.d. Bernoulli(1/2), Xn = UnGn
(over F2) where Gn =

[
1 0
1 1

]⊗ log2 n, and Y n be the output
of n independent uses of P when Xn is the input. Define the
mutual information of the so-called synthesized channels by

I(Pi) = I(Ui;Y nU i−1),

for i = 1, . . . , n. The key result used in the polar code
construction is the ‘polarization phenomenon’, presented here
for the binary input case.

Theorem 1. For any ε > 0,
1
n
|{i ∈ [n] : I(Pi) ∈ [0, ε) ∪ (1− ε, 1]}| → 1.

That is, except for a vanishing fraction, most of the syn-
thesized channels are either very noisy or almost perfect. This
suggests the following coding scheme.
Polar encoder: For a threshold ε (which will upper bound the
probability of error), define the set of ‘good’ components by

Gε = {i ∈ [n] : I(Pi) ≥ 1− ε}.

On these components, transmit uncoded bits. On Gcε , draw the
bits uniformly at random and reveal their values to the decoder.
In the case where the channel is symmetric, one can equally
well freeze these bits deterministically and arbitrarily. Note
that the rate of this code is given by |Gε|/n which we know
to be I(P ) + on(1) by Theorem 1 (where I(P ) denotes the
mutual information with uniform input).
Polar decoder: Being in possession of Y n = yn and Un[Gcε ],
the decoder proceeds as follows.
(0) Define T = Gε and û[T ] = u[T ].
(1) Find the smallest component i in T and compute

ûi = arg max
u∈F2

P{Ui = u|Y n = yn, U i−1 = ûi−1}. (1)

Update T = T \ i and û[T ] = û[T ∪ i].
(2) Iterate (1) until T is empty.

The probability of error is then given by P{Ûn 6= Un}.

Theorem 2. [3] The polar coding scheme defined previously
allows to achieve the uniform mutual information1 of any
binary-input discrete memoryless channel, with an error prob-
ability of O(2−n

β

), β < 1/2, and an encoding and decoding
complexity of O(n log n).

If the input distribution maximizing the mutual information
of the channel is uniform, the uniform mutual information is
the capacity. This is the case if the channel is symmetric.

A. Discrete codes for the AWGN channel

The problem of modulating discrete codes to approach the
AWGN channel capacity is an old problem. To goal of this
paper is to compare the different approaches that are available
within polar codes, in particular the use polar codes for large
prime alphabets and for MACs. The idea of using a MAC
(with binary inputs) to approach the AWGN channel capacity
is also well-known, as discussed in [12]. A major part of
the existing literature as however focused on the problem of
optimally choosing a finite number of constellation points,
as discussed in [6], which provides a good survey of this
literature, in particular of [5], [7]. Yet, we are interested here
in a slightly different problem, namely, in studying the scaling
of the gap to capacity when the number of constellation point
grows, and when the constellation points must have equal
probability (which results from polar codes requirements). Our

1the uniform capacity of a channel is the mutual information of the channel
when the input has a uniform input distribution



goal is to achieve a fast enough decay, say inverse-linear in the
number of constellation points, to cope with the complexity
requirements of the polar coding schemes discussed in Section
III. There is a much smaller literature studying the scaling
of the gap to capacity for such constellations. In [10], it is
shown that this gap goes to zero, which is to be expected.
In [11], a fast decay is shown but for arbitrary constellations
which are not equiprobable. To the best of our knowledge,
the problem of finding the scaling of the gap to capacity for
equiprobable constellations has not been further studied. We
show in Section IV that the scaling is at least inverse-linear,
which is sufficient to cope with the complexity requirement of
the polar coding schemes of Section III and which significantly
improves on the inverse-logarithmic decay of the central limit
theorem approach used in [1], [7].

II. GOALS AND RESULTS

Our goal is to design an efficient polar coding scheme for
the AWGN channel. We first consider polar coding schemes
for large input alphabets, comparing the MAC approach [1]
(with many users) and the single-user approach [9] (with large
prime-cardinality inputs). We then investigate the problem of
constructing good finite constellations for the AWGN channel,
which we then combine with the polar code approaches.

The main results of this paper show that:
• The MAC approach with many users shows better com-

plexity attributes than the single-user approach with large
prime alphabets

• The constellation initially proposed in [1] using the
central limit theorem can be significantly improved upon,
with a quantile quantizer whose gap to capacity decay is
SNR/q, where q is the number of constellation points.

III. POLAR CODES FOR LARGE INPUT ALPHABETS

A. Prime alphabets

Let P be a q-ary input discrete memoryless channel, where
q is prime. Let Un be i.i.d. uniform on Fq , Xn = UnGn
(over Fq) and Y n be the output of n independent uses of P
when Xn is the input. Define the mutual information of the
synthesized channels (through the polar transform) by

I(Pi) = I(Ui;Y nU i−1),

for i = 1, . . . , n, where the logarithm in the mutual informa-
tion is computed in base q. Then the conclusion of Theorem
1 holds readily, using the logarithm in base q for the mutual
information computations.

Define now the encoder and decoder exactly as in Section
I-1, replacing F2 by Fq .

Theorem 3. [9] The polar coding scheme defined previously
allows to achieve the uniform mutual information of any q-ary
input discrete memoryless channel when q is prime, with an
error probability of O(2−n

β

), β < 1/2, and an encoding and
decoding complexity of O(n log n).

Note that in previous theorem, the dependency in q does not
appear in the error probability and complexity estimates. For

large q, this may matter. By inspection of [9], one finds that the
probability of error scales at most multiplicatively with q, i.e.,
as O(q2−n

β

). Regarding the complexity, one needs to inspect
the following optimization step in the decoding algorithm

ûi = arg max
u∈Fq

P{Ui = u|Y n = yn, U i−1 = ûi−1}.

As for the binary case [2], the computation of P{Ui = u|Y n =
yn, U i−1 = ui−1} can be done with a divide and conquer
algorithm, which computes the synthesized channels P (n)

i for
the block length level n by calling the computations of two
other synthesized channels P (n/2)

j and P
(n/2)
k corresponding

to the block length level n/2. It is easy to check that for a
fixed i, this requires n log2 n computations of either the + or
− operations of a q-ary input channel P , where

P−(y1y2|u1) =
1
q

∑
u2∈Fq

P (y1|u1 + u2)P (y2|u2)

P+(y1y2u1|u2) =
1
q
P (y1|u1 + u2)P (y2|u2).

Note that P− or P+ require now q2 computations. Therefore,
with the same argument as for the binary case, the total
decoding complexity is O(q2n log2 n).

B. Powers of prime alphabets and MAC polar codes

The results in [2], [9] (presented in previous sections), in
particular Theorem 1, do not extend to channels whose input
alphabets cardinality are not prime but powers of prime. An
alternative proposed in [2] consist in randomizing the polar
transformation, i.e., replacing Gn with a properly adapted
randomized matrix. Another alternative is yet possible with
the same matrix Gn, using the construction of polar codes for
the m-user MAC [1]. We now review this framework.

Let W be an m-user binary input MAC (the case of prime
input alphabets can be treated in a similar manner, as explained
later, powers of two are of particular interest here). Let Un

be i.i.d. uniform over Fm2 (note that these are vectors of
dimension m), Xn = UnGn (over F2) and Y n be the output
of n independent uses of W when Xn is the input. Define
the ‘mutual information vectors’ of the synthesized MACs
(through the polar transform) by

I(Wj) = {I(Wj)[S] : S ⊆ [m]},

where
I(Wj)[S] = I(Uj [S];Y nU j−1Ui[Sc]),

for j = 1, . . . , n.
The generalization of Theorem 1 to the MAC setting is as

follows.

Theorem 4. [1]

|{j ∈ [n] : I(Wj) ∈ {0, 1, . . . ,m} ± ε}| → 1.

This theorem suggests the following coding scheme.



MAC polar encoder: For a threshold ε (which will lead to
an upper bound on the probability of error), define the set of
‘good’ components by

Gε = ∪nj=1Gj,ε,
Gj,ε = arg max{|S| : I(Wj)[S] ≥ |S| − ε, S ⊆ [m]}, (2)

and if the maximizer is not unique in (2), pick one arbitrarily
(note that we can have Gj,ε = ∅). On the components indexed
by Gε, transmit uncoded bits. On Gcε , draw the bits uniformly
at random and reveal the realizations to the decoder. One
can also define symmetric MACs for which these bits can
frozen deterministically and arbitrarily. Note that the sum-
rate of this code is given by |Gε|/n which can be shown
to be I(W )[1, . . . ,m] + on(1), using Theorem 4 (where
I(W )[1, . . . ,m] denotes the uniform sum-rate).
MAC polar decoder: Being in possession of Y n = yn and
Un[Gcε ] = un[Gcε ], the decoder proceeds as follows.
(0) Define Sj = Gj,ε and û[Sj ] = u[Sj ] for all j = 1, . . . , n.
(1) For j = 1, . . . , n, if Sj 6= ∅ compute

ûj [Sj ] = arg max
u∈F

|Sj |
2

(3)

P{Uj [Sj ] = u|Y n = yn, U j−1 = ûj−1, Uj [Scj ] = ûj [Scj ]}.

The probability of error is then given by P{Ûn 6= Un}.

Theorem 5. [1] The polar coding scheme defined previously
allows to achieve the uniform sum-mutual information 2 of
any m-user binary input discrete memoryless MAC, with an
error probability of O(2−n

β

), β < 1/2, and an encoding and
decoding complexity of O(n log n).

We can then use this result to construct polar coding
schemes for single-user channels having q-ary input alphabets
when q = 2m. Indeed, for a 2m-ary input alphabet channel P ,
define W to be the m-user binary input MAC given by

W (y|x1, . . . , xm) = P (y|f(x1, . . . , xm))

where f is a bijection. Then, the uniform mutual information
of P is the uniform sum-mutual information of W and we
have the following from Theorem 5

Corollary 1. The polar coding scheme defined previously
allows to achieve the uniform mutual information of any q-
ary input channel when q is a power of two, with an error
probability of O(2−n

β

), β < 1/2, and an encoding and
decoding complexity of O(n log n).

This result extends to powers of primes, although powers
of two are of particular interest here.

We now investigate the dependency in q of previous orders.
By inspection of [1], one finds that the probability of error
scales at most multiplicatively with m. Regarding the com-
plexity, one needs to inspect the following optimization step

2The mutual information of the MAC when the inputs are uniformly
distributed

in the decoding algorithm

ûj [Sj ] = arg max
u∈F

|Sj |
2

P{Uj [Sj ] = u|Y n = yn, U j−1 = ûj−1, Uj [Scj ] = ûj [Scj ]}.

As for the binary case [2], the computation of these probabil-
ities can be done with a divide and conquer algorithm, which
computes the MACs W (n)

j by calling the computations of two
other synthesized MACs W (n/2)

j and W (n/2)
k corresponding to

the n/2-block length level. Again, for a fixed j, this requires
n log2 n computations of either the + or − operations of a
m-user binary input MAC W , where

W−(y1y2|u1) =
1
q

∑
u2∈Fm2

W (y1|u1 + u2)W (y2|u2)

W+(y1y2u1|u2) =
1
q
W (y1|u1 + u2)W (y2|u2).

In the single-user q-ary case where q is prime, each of these
convolution operations require at most q2 operations. However,
here, we can take advantage of the fact that q = 2m here and
that previous operations are convolution-like. Hence, using an
algorithm a la FFT, we can bring down the complexity of
these operations to O(q log2 q) instead of O(q2). In total, we
get a decoding complexity of O(q log2 q · n log2 n). Also one
can also consider a variant of the decoding procedure for the
MAC setting. In (3), instead of taking a maximization over all
elements of Fm2 elements, i.e., q elements, one can proceed
sequentially. Namely, one finds for k = 0, . . . , |SJ | − 1

ûj [ik+1] = arg max
u∈F2

P{Uj [ik+1] = u|Y n = yn, U j−1 = ûj−1, Uj [Scj ] = ûj [Scj ],
U [i1, . . . , ik] = û[i1, . . . , ik]}.

This could only increase the probability of error by a factor
m = log2 q, but this reduces the maximization search to
at most m elements. However, one now needs to find the
“conditional probabilities”. If we compute them from the m-
dimensional joint distribution, this may be equally costly.
One may also work from the beginning with the conditional
distributions, using a recursive procedure to compute them
(leading to possible computational gains). This goes back to an
onion-pealing approach (for the MAC or for the q-ary single-
user channel), and although it may have desirable complexity
attributes, one would have to evaluate and compare the entire
performance (in particular error propagation and memory).

Also note that the problem of “shaping” arbitrary distribu-
tions, including discrete ones, can be approached using larger
alphabet cardinalities (e.g., powers of two), and hence, the
capacity of any memoryless channel can be achieved using
polar coding schemes.

IV. CONSTELLATIONS FOR THE AWGN CHANNEL

In this section, we consider the problem of finding discrete
input distributions that serve as a good approximation of the
Gaussian input distribution (with fixed variance), when the



benchmark is the mutual information of the AWGN channel.
Using previous sections, this leads to “polar coding schemes”
for the AWGN channel.

A. Problem statement

From Section III, the input distribution of the polar coding
schemes for single-user channels with alphabets Fq , whether
q is prime or a power of prime, is uniform. Motivated by the
discussion of previous section, we consider input alphabets
whose cardinality are powers of two.

Definition 1. For m ∈ Z+, we call a discrete random
variable m-dyadic if its probability distribution p satisfies
p(x) = k2−m, for k ∈ Z+ and x ∈ Supp(p) ⊂ R.

Note that if X is m-dyadic, we have |Supp(pX)| ≤ 2m.
Another way of defining m-dyadic random variables is to say
that they are deterministic functions of m pure bits (i.e., i.i.d.
Bernoulli half bits).

Consider now the following optimization problem. Let v >
0, Zv ∼ N (0, v), m ∈ Z+, and define

Cv(m) := max
Xm:EX2

m≤1, Xm is m-dyadic
I(Xm;Xm + Zv). (4)

Define also

Cv := 1/2 log(1 + 1/v). (5)

We would like to show that the gap Cv − Cv(m) can be
made small enough by choosing m small enough, so as to
keep the complexity of the polar coding scheme defined in
Section III-B manageable. Note that we could not find results
about this problem in the literature.

B. The CLT approach

In [1], the following construction is proposed for the input,

Gm :=
1√
m

m∑
i=1

2(Xi − 1/2).

Note that Gm is by construction m-dyadic and EG2
m ≤ 1.

The support of Gm has cardinality m + 1, hence, the m-
degrees of freedom are used in quantizing a “Gaussian” shape
distribution. We now estimate how large the gap to capacity
is for this input.

Lemma 1. For any v > 0, there exists a constant B > 0 such
that

Cv − I(Gm;Gm + Zv) ≤ B/m

Proof: We have

Cv − I(Gm;Gm + Zv) = D(Gm + Zv||Z1+v)

and

Gm + Zv =
1√
m

m∑
i=1

[2(Xi − 1/2) + ζi] =: Sm,

where the ζi’s are i.i.d. N (0, v). So the gap to capacity is
exactly measured by the gap in divergence between a standard-
ized sum of m random variables distributed as 2(X1−1/2)+ζ1

and the Gaussian distribution. In [8], this gap is precisely
estimated, and it is shown that

D(Sm||Z1+v) ≤ B/m, (6)

where B is a constant depending on the distribution of 2(X1−
1/2) + ζ1, i.e., of a mixture of two Gaussian distributions
(more precisely, it depends on the Poincaré constant of this
distribution which is given by v(1 + 2/v exp(2/v))).

The constant could possibly be improved, but the estimate
seems accurate in the decay of 1/m (although for symmetric
distributions a decay of 1/m2 could maybe be achieved).
Hence, using the candidate Gm, and q := 2m, we have a
gap to capacity which decays like 1/ log2(q). This is a slow
decay in q. A small gap to capacity may then require q to be
large (exponentially in m) and this may become critical for the
complexity scaling discussed in Section III-B. We next show
that this can be improved.

C. Exponential decay and quantile approach

The following improves the gap-to-capacity decay from
1/m to 2−m.

Theorem 6. For any v (with 1
v = SNR) and any m ≥ 1

Cv − Cv(m) ≤ 1
v

2−m.

With such a decay, we can use Corollary 1 to cope with
the complexity scaling of the MAC polar coding scheme,
and approach the capacity of the AWGN channel with “low-
complexity” codes, since a small gap to capacity requires
1/q = 2−m to be small, i.e., m does not have to be very
large. Indeed, we will see that m can be chosen to be fairly
small for a reasonable gap (of course this also depends on the
SNR). This Lemma is proved without an explicit construction
of the input distribution; this is investigated in Section IV-C.

Proof of Theorem 6: Let ξ1, . . . , ξ2m be i.i.d. N (0, 1),
and let Qm be uniformly distributed on {ξ1, . . . , ξ2m} =: ξ.
Then, Qm is m-dyadic (surely) and EQ2

m = 1. Moreover,

Cv − EξI(Qm;Qm + Zv) = EξD(Qm + Zv||Z1+v)

≤ Eξχ2(Qm + Zv||Z1+v) (7)

where the last inequality uses the χ2-distance, given by

χ2(Qm + Zv||Z1+v) =
∫

R

(pm ? gv(y)− g1+v(y))2

g1+v(y)
dy

where pm denotes the random probability mass function of
Qm and gv the Gaussian density with mean 0 and variance v.
Note that pm ? gv = 1

2m

∑2m

i=1 g(y − ξi), and

Eξ
∫

R

(EQm|ξgv(y −Qm)− g1+v(y))2

g1+v(x)
dy

= 2−m
∫

R

EZ1gv(y − Z1)2 − g1+v(y)2

g1+v(x)
dy

= 2−m(
∫

R

EZ1gv(y − Z1)2

g1+v(y)
dy − 1)



where Z1 ∼ N (0, 1). Finally,∫
R

EZ1gv(y − Z1)2

g1+v(y)
dy =

∫
R

∫
R gv(y − z)

2g1(z)dz
g1+v(y)

dy (8)

and since

gv(y − z)2 =
1

2
√
πv
gv/2(y − z),

we have that
∫

R gv(y− z)
2g1(z)dz = 1

2
√
πv
g1+v/2(y) and (8)

is given by

1
2
√
πv

∫
R

g1+v/2(y)
g1+v(y)

dy =
1 + v

v

Therefore, Eξ(Cv − I(Qm;Qm + Zv)) ≤ 1
v2−m, and by a

standard probabilistic argument, there must exist a realization
ξ1(ω), . . . , ξm(ω), i.e., an input distribution uniformly dis-
tributed on these points, which satisfies the desired inequality.
Indeed, the set of such realizations has high probability and
one can show that there must exist realizations which also
satisfy the power constraint. Also notice by tightening the
bound in (7), one achieves a decay of log(1 + 1

v2−m).
One should stress that, although we use a probabilistic

argument to show the existence of a good dyadic input
distribution, as opposed to the problem of constructing good
codes which may also use probabilistic arguments, the problem
of finding a good dyadic distribution is much simpler (and can
be investigated analytically or numerically). We provide here
one such candidate.

Definition 2. [Gaussian quantile distribution] Let Dm =
{k2−m + 2−m−1 : k = 0, 1, . . . , 2m − 1} and let Um
be drawn uniformly at random within Dn. We then define
Q

(u)
m = Φ−1(Um), where Φ is the Normal c.d.f..

Analytical expansions suggests that Q(u)
m verifies the decay

condition of Theorem 6. We show here numerical results in
Figure 1, where the gap Cv − I(Q(u)

m ;Q(u)
m + Zv) is plotted

for different values of SNR = 1/v and m.

V. DISCUSSION

We have shown that the problem of finding good dyadic
distributions as defined in Section IV-A can be significantly
improved upon the CLT approach. The proposed constellation
exploits the “spatial degree of freedom”, i.e., it aims at care-
fully spacing uniform mass points to replicate the Gaussian
mass distribution, rather than trying to approach a proper bell
curve, as the CLT approach may do. On the other hand, in
the spirit of the CLT approach, one may also look for a better
way to discretize a Gaussian distribution using dyadic mass
points. For example, the optimization problem which does not
impose dyadic mass points, namely,

Iv(m) := max
Xm:EX2

m≤1, |Supp(Xm)|≤2m
I(Xm;Xm + Zv)

has been studied [11], and a distribution for Xm is provided
which ensures Cv − I(Xm;Xm + Zv) ≤ 4(1 + 1/v)(1/(1 +
v))2

m

. This is a fast decay and one could quantize the obtained
distribution to a dyadic one and estimate the new gap.
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Fig. 1. Plots of Cv − I(Q
(u)
m ; Q

(u)
m + Zv) for the Gaussian quantile

distribution (cf. Definition 2) when m varies from 1 to 6 and for different
values of SNR = 1/v.

Regarding a more involved comparison of the different
polar coding schemes discussed in this paper, the performance
at a finite block length is of particular interest. A project
is currently investigating this with numerical tests. It would
then be interesting to compare the obtained results with other
coding schemes such as LDPC or turbo codes, or the recently
proposed scheme in [4].
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