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Abstract— We provide a new approach to stochastic opti-
mization of smooth functions and give attention in particular
to the optimization of superpositions of ridge functions.

I. INTRODUCTION

Let L(w) be a bounded and smooth function of w in R
d

that we seek to optimize. Of particular interest is the case that

such functions are built by composition of simpler functions.

Indeed, let univariate functions f1, . . . , fn be given along

with vectors x1, . . . , xn in R
d. Motivated by problems of

function estimation for statistical learning, our interest is in

optimization of superpositions of ridge functions, which take

the form

L(w) =
1
n

n∑
i=1

fi(xi · w) (1)

for w in R
d with dimension d possibly large. We require

the fi to be bounded and to have at least two bounded

derivatives. It is sufficient for our purposes to find a ŵ
producing a value L(ŵ) within a constant factor of the

maximum value of L(w). Moreover, to avoid an overly large

magnitude w we are content with a small λ > 0 to optimize

the Lagrangian

L(w) − λ‖w‖2. (2)

Our motivation for objective functions of the form (1)

comes from statistical regression and classification. The data

are xi, yi, for i = 1, . . . , n, where for case i, the vectors

xi are observed values of d input variables and the yi are

observed response values yi, which for the classification

problem are labels in {−1, +1}. We have a parameterized

family of predictors, called discriminant functions in the

classification setting, which take the ridge form ψ(x · w),
such as a sigmoid, a sinusoid, or a ridgelet. Here the w is a

parameter vector of internal weights with which the inputs

are linearly combined. First, for a single such predictor, to

obtain an empirically driven choice of w, consider the least

squares problem of optimization of
∑n

i=1(yi−ψ(xi ·w))2 or

the closely related problem of maximization of
∑n

i=1 yiψ(xi·
w). We recognize both of these objective functions to be

superpositions of ridge functions.

These problems are known to be computationally diffi-

cult. Even for smooth sigmoidal functions such as ψ(z) =
tanh(z), it is known that

∑n
i=1(yi − ψ(xi · w))2 can

have exponentially (in d) many minima. Moreover, with

the step sigmoid ψ(z) = signum(z), except in the special
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case of linear separability, exact optimization is known to

be NP-complete. Indeed, minimizing the squared error is

for the signum function the same as the maximization of∑n
i=1 yiψ(xi · w). This discriminant optimization problem

is also called the weighted hemisphere problem and it is

known to be NP-complete as shown in [1] and discussed

further in [2]. This problem is also the single neuron case of

multi-neuron perception optimization. Indeed, one can more

flexibly consider fitting functions which take the form of a

linear combination of ridge terms. In such a setting, NP-

completeness results are available both for the step sigmoid

[3] and for a ramp sigmoid (a bounded piecewise linear

function) provided ‖w‖ is unconstrained [4], see also [5].

For the logistic sigmoid as arises in classification by

logistic regression, a likelihood-based formulation of the

objective function is concave and hence readily maximized.

However, this concavity is lost when one seeks multi-term

discriminant functions as arise in a mixture model.

Altogether, computation of parameter estimates for fitting

ridge terms is a tricky task. Nevertheless, with a fixed smooth

function ψ, approximate optimization to achieve within a

constant factor of the maximum (1/n)
∑

yiψ(xi ·w) (with a

λ‖w‖2 penalty) and a similar optimization for the multi-term

case developed further below are the sorts of optimization

problems for which we seek additional attention. In particular

we explore what may be possible by stochastic optimization

algorithms.

Most of what we have to say in this paper is for general

smooth objective functions. We develop a class of algorithms

we call adaptive annealing. In general, implementation of

adaptive annealing requires solving a differential equation

for what we call a modifier. We do not expect this solution

to be readily available for general optimization tasks. We ini-

tiate exploration of whether solution is possible for specific

forms of objective functions such as superpositions of ridge

functions, perhaps with a suitable enlargement of the state

space.

We follow a familiar tactic of stochastic search, seeking to

sample from the distribution with density pγ(w) proportional

to

eγL(w)p0(w) (3)

where p0(w) is a normal reference density. Though the de-

velopment is readily adjusted to allow any normal density for

p0, for simplicity now we take it to be a standard multivariate

Normal(0, I). Then the mode of the density pγ(w) is the

maximizer of L(w) − λ‖w‖2 for λ = 1/2γ. An additional

benefit of such sampling is that it provides for Monte Carlo

evaluation of the Bayes estimate (the posterior mean of ψ(x ·

Forty-Fifth Annual Allerton Conference
Allerton House, UIUC, Illinois, USA
September 26-28, 2007

ThB2.3

665



w)) with pγ(w) as the posterior distribution. For instance,

with real-valued yi modeled as Normal(ψ(xi ·w), σ2I) with

the normal prior p0, we have that the posterior takes the

indicated form with L(w) = − 1
n

∑n
i=1(yi −ψ(xi ·w))2 and

γ = n/(2σ2).
For optimization, the idea of sampling from such a density

is that, if γ is large then the distribution of w is highly likely

to have L(w)− λ‖w‖2 near the maximum. An information-

theoretic characterization of that property is given in Lemma

1 below, showing that γ of order not smaller than d log d
is sufficiently large for our purposes. Such joint densities

pγ(w) vary on an exponential scale, that is, the ratio of

values of pγ(w) at two distinct w of the same norm ‖w‖
can be of order eCγ which is exponentially large in γ and

hence superexponentially large in d. Consequently, direct

acceptance/rejection sampling from a reference distribution

is highly unlikely to succeed.

For sampling from distributions of several variables,

classical strategies consist of Markov chain methods with

time-homogeneous transition rules, including the Metropolis

algorithm [6], [7] and the Gibbs sampler [8], [9], and

time-inhomogeneous Markov chain methods, including Kirk-

patrick’s simulated annealing [10] and more recently devel-

oped particle filters [11] and population Monte Carlo [12].

As we shall discuss, Markov chain strategies may also use a

discrete-time approximation to stochastic diffusion [13], [14]

designed to produce the desired distribution.

The general idea of all these stochastic strategies is to

produce values w0, w1, w2, . . . , wT in succession by drawing

from the sequence of transition distributions of the Markov

chain. One initializes with a density p0 (such as a multivariate

normal) that readily permits direct sampling of w0. This

p0 may be far from the ultimate target pγ . To be success-

ful in a computationally manageable time T , one needs

the distribution of wT sufficiently close to that of pγ(w).
Likewise, for Monte-Carlo estimates one needs the perhaps

weaker property that 1
T

∑T
t=1 ψ(x·wt) be close to the desired

expectation using pγ(w).
The basis of the above-mentioned Markov chain methods

in the time-homogeneous transition case is an invariance

property: namely, if the distribution of wt−1 were the tar-

geted pγ(w) then so would be the distribution of wt (and

the targeted distribution is the unique one for which this

invariance holds). With arbitrary initial distribution p0(w),
the distribution of wt will evolve in some manner. The main

conclusion known in this case is that the target distribution

is the large t limit. This convergence however can be

excruciatingly slow for multi-modal target densities. Existing

positive results providing polynomial (in d) bounds on the

number of time steps sufficient to produce suitably accurate

distributions are limited to log-concave (strongly unimodal)

target densities [15], [16], [17] (or to sampling from chains

on discrete graphs with limited bottleneck [18], [19]) and

are based on demonstration that the second largest magnitude

eigenvalue is less than 1 by a not exponentially small amount.

The problem for multi-modal densities is the extreme

time it can take for w to move from one mode to another

if it needs to go down through a valley of exponentially

lower density. As we shall recall, time-homogenous Markov

Chains, designed to be invariant for a specified density, have

a bias toward uphill moves which is the source of some of

this difficulty in moving from one mode to another. Simply

inspecting the derivative of the log-density at the current

position is enough to build an invariant transition, but as

we shall see, it does not give what is needed to produce a

specified sequence of distributions approaching the target.

To overcome these difficulties, multiple paths of time-

inhomogeneous Markov chains deserve further consideration

and further development. These developments should include

incorporation of drift or bias terms designed to be whatever

it takes to track the changing distribution. In particular, this

means a mean direction of move that is not necessarily in

the gradient (uphill) direction.

The idea of simulated annealing is to evolve the distribu-

tion of wt toward the target. Starting with a broad distribution

p0(w) at time t = 0, the aim is for the distribution of wt to

track pγt(w) where γt is scheduled to increase (hopefully

not too slowly) in t. We argue that the Markov chain

associated with traditional simulated annealing falls short

in these objectives. In particular, heretofore, the basic step

of simulated annealing is to use a transition distribution

pγt
(wt|wt−1) formulated (as in one step of the Metropolis

algorithm) in a somewhat peculiar way, such that if somehow

wt−1, ideally distributed accords to pγt−1 , did on the contrary

manage already to have the distribution pγt
, then so would

wt. However, as we show in Lemma 3 in our setting, such

transition rules, if wt−1 were distributed as pγt−1 , actually

lead to a wt whose marginal density differs from what we

want by a factor which is the exponential of a differential

expression that we identify. For this differential expression to

be close to what we want, one needs γt very close to γt−1 or

one needs to modify the transition distribution as we discuss

below. Accordingly, for traditional similated annealling one

needs a scheduling of γt in which it changes very slowly to

have the distribution track pγt . Indeed, [20], [14] show that a

logarithmic growth of γt is sufficient and such slow growth

is known to be necessary in some cases. To reach a targeted

γ of at least d, logarithmic scheduling requires a number of

time steps which is exponential in d. Thus existing simulated

annealing results point toward its failure to track pγt closely

enough to allow the polynomial growth of γt necessary for

practical use.

Nevertheless, the general idea of annealing is on track,

provided suitable transition distributions can be identified.

Here we introduce what we call adaptive annealing in which

by solving the appropriate differential expression one finds

a transition density (as a modification of traditional choices)

such that to greater accuracy the sequence of densities for

wt track the targeted pγt
(w).

Markov chain methods tend to be either of a local move

type (as in the original Metropolis formulation or approxi-

mate diffusion) or of the Gibbs type (in which one defines

transitions via auxiliary variables which augment the state

space). We provide versions of adaptive annealing for both
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cases. For local move chains a discrete time approxima-

tion to a diffusion with time-homogeneous transitions sets

p(wt|wt−1) to have mean wt−1 + δ2

2 ∇ log pγ(wt−1) and

covariance δ2I . Instead, to evolve the distribution (starting

from p0(w0)), our adaptive annealing sets the transition to

have mean wt−1+δ2[(1/2)∇ log pγt
(wt−1)+Gt(wt−1)] with

Gt designed to produce the desired evolution of the density

pγt
. This is a time-inhomogeneous Markov Chain in discrete-

time for which the distribution approximates a continuous-

time stochastic diffusion with corresponding time-varying

drifts, see section IV. Thus a Kolmogorov forward equation

(also called the Fokker-Planck equation) specifies how pγt

evolves in terms of the choice of Gt. We turn the idea around,

using the specified pγt
in this equation to seek a suitable

choice for Gt. This is a simple and interesting idea, though

direct evaluation of G from the differential equation is elusive

for the types of optimization of interest to us.

Adaptive annealing of Gibbs-type chains is explored pre-

liminarily in section VI. For Gibbs chains the idea is that one

introduces an auxiliary variable z and joint density pγ(w, z)
for which the desired pγ(w) is its marginal and for which

the conditionals pγ(w|z) and pγ(z|w) take special forms that

allow for more direct sampling. When such conditionals are

available, repeated alternate sampling from these pairs of

conditionals provides a Markov chain for which pγ(w, z)
is the invariant target. Once again, unmodified convergence

can be slow when the distribution of w0 or z0 is initialized,

naturally, with other than the target pγ . Recognizing the

discrepancy between the initial distribution and the target

we again aim to take control of the path of distributions to

take us to that target.

Thus we advocate Gibbs annealing in which we track the

sequence of densities pγt
(w, z) for t = 0, 1, 2, . . . , T . Again,

if at best wt−1 is distributed with density pγt−1(w), then un-

fortunately the transition pγt
(z|w) of a naive Gibbs annealing

does not make the marginal for the resulting z be what we

want. Accordingly, we introduce adaptive Gibbs annealing in

which the transition density is designed to achieve our aims.

In particular we introduce a factor by which to modify the

transition pγt
(z|w) in acceptance/rejection sampling. This

leads once again to a new density for zt, wt that differs

from what we want by a factor that is the exponential

of a differential expression. The aim then is to solve this

differential expression to provide such a modifying function

that will produce indeed the desired pγt
(zt, wt) to greater

precision.

After developing these ideas in the indicated sections we

explore in particular the ridge function case. This provides

a natural setting for introduction of the auxiliary variable z.

Finally, we point toward possibilities to solve for the tran-

sitions that would provide practical stochastic optimization

for the problems of interest.

II. IMPLICATIONS FOR FUNCTION FITTING

The classical statistical function estimation problem is to

seek a function f̂(x) to estimate the unknown underlying

function f(x) of which we have (possibly noisy) observa-

tions y1, . . . , yn at corresponding inputs x1, . . . , xn in R
d.

A widely studied class of estimators f̂(x) takes the form

of a composition of finitely many terms chosen from a dictio-

nary of candidate terms. Whereas in low-dimensional (small

d) settings, one may arrange for a manageable size dictionary

(e.g. the union of various wavelet bases of interest); in

high-dimensional cases one tends to have an intrinsically

exponential number of candidate terms (dictionaries with

minimal δ-covering numbers of order (1/δ)d). The dictionary

of candidate terms may take a parametric form {ψ(x · w) :
w ∈ R

d} with a continuous parameter w. For instance this

includes sinusoidal and sigmoidal models [21], [22] and

ridgelets [23].

Function fits take the form

f̂m(x) =
m∑

j=1

βjψ(x · wj). (4)

The computationally difficult full least squares solution seeks

β1, . . . , βm (each in R) and w1, . . . , wm (each in R
d) to

minimize
n∑

i=1

(yi −
m∑

j=1

βjψ(xi · wj))2.

Fortunately a well-studied computational shortcut [24], [22],

[25], [26] shows that statistically accurate fits can be obtained

iteratively by setting

f̂k(x) = (1 − α)f̂k−1(x) + βψk(x · w), (5)

with f̂0(x) = 0. Here α and β are fit by least squares and

the internal parameter vector w = wk is chosen to make

1
n

n∑
i=1

Riψ(xi · w) ≥ 1
C

max
w

{ 1
n

n∑
i=1

Riψ(xi · w)}. (6)

for given C ≥ 1, where Ri = Ri,k−1 = yi − f̂k−1(x) and

where penalties on ‖w‖2 may be incorporated. We recognize

this optimization to be of the desired form with L(w) =
1
n

∑n
i=1 fi(xi · w) with fi(z) = Riψ(z).

With a suitable definition of the variation V (f) of f with

respect to the dictionary, the resulting f̂m(x) is proved in

[26] to satisfy

1
n

n∑
i=1

(yi−f̂m(xi))2 ≤ min
f

{ 1
n

n∑
i=1

(yi−f(xi))2+
4C2V 2(f)

m
}.

(7)

with similar conclusion given for the risk quantifying the

accuracy with which f̂ generalizes.

Thus development of an algorithm to approximately op-

timize objective functions of ridge superposition form as

expressed in (6) will provide a means to produce accurate

fits of the ridge superposition form (4). Note the duality.

The functions we fit are ridge superpositions in x while the

objective function is a ridge superposition in w. The greedy

shortcut expressed in (5) is what reduces what would be a

much more complicated optimization with multiple w’s into

the simpler objective function with a single w.
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III. HOW BIG SHOULD BE THE GAIN γ?

We show for objective functions with bounded gradient

that for w drawn from pγ , the expected value of L(w) is

nearly maximal. In particular, compared to the value L(w∗)
achieved by any particular w∗, the expectation

Lmean =
∫

L(w)pγ(w)dw (8)

is not less than L(w∗) by more than d
γ log Aγ

d , where A de-

pends on ‖w∗‖ and the maximal gradient of L. Consequently,

γ slightly larger than d by a log factor is sufficient to obtain

usefully accurate samples for approximate maximization.

Let L(w) be our objective function for w ∈ R
d. Let

∇L(w) be its gradient, let ‖∇L(w)‖ be its Euclidean

norm, and let ‖∇L‖max = supw‖∇L‖ be the maxi-

mum gradient norm. We have pγ(w) = eγL(w)p0(w)/cγ

where cγ =
∫

eγL(w)p0(w)dw and we choose p0(w) =
e−‖w‖2/2/(2π)d/2.

Lemma 1: L(w) has nearly maximal expectation: for any

w∗ and any γ > 0,

Lmean ≥ L(w∗) −
{

d

γ
log(

γa‖∇L‖max

d
)

+
1
2γ

(‖w∗‖ +
d

γ‖∇L‖max
)2

} (9)

where a = eV
1/d
d /

√
2π with Vd the volume of the unit ball

in R
d.

Remark 1: Consequently

Lmax ≥ L(w∗) − d
γ log γA

d , (10)

with A near a‖∇L‖maxe
1
2d‖w∗‖2

. Hence we find γ ≥
2ed

L(w∗) max{e, log 2Ad
L(w∗)} is sufficient to have

Lmean ≥ 1
2L(w∗). (11)

So we see that, on the average for w drawn from pγ , the

value of L(w) can be arranged to be within a constant factor

of the maximum. The reference w∗ may be taken to be

have maximum L(w∗)−λ||w∗||2. Moreover, using a Markov

inequalities we can see that L(w) is within a constant factor

of the maximum with high probability.

Proof: First we find that

Lmean ≥ 1
γ log cγ . (12)

This can be seen either by noting that log cγ has a derivative

Lγ =
∫

L(w)pγ(w)dw which is increasing in γ, so 1
γ log cγ

which is an average from 0 to γ of that derivative, is less

than the value of the derivative at the upper endpoint γ, which

is Lγ = Lmean. Alternatively, one finds that the Kullback

divergence between pγ and p0 is equal to the difference

γLγ − log cγ which also shows (12) by the non-negativity

of divergence. Next, adding and subtracting L∗ = L(w∗) in

the exponent of the integral defining cγ , we then have

Lγ ≥ L∗ +
1
γ

log
∫

eγ(L(w)−L∗)p0(w)dw. (13)

We lower bound this further by restricting the integral to the

ball B centered at w∗ with radius ε and by using

|L(w) − L(w∗)| ≤ ‖w − w∗‖‖∇L‖max. (14)

Hence

Lγ ≥ L∗ − ε‖∇L‖max +
1
γ

log
∫

B

p0(w)dw. (15)

Moreover∫
B

p0(w)dw ≥ (
1√
2π

)de−
1
2 (‖w∗‖+ε)2εdVd. (16)

Thus

Lγ ≥ L∗ −
{

ε‖∇L‖max − d

γ
log ε +

1
2
(‖w∗‖ + ε)2

+
1
γ

log(
√

2π)d/Vd

}
.

(17)

Picking ε = d/(γ‖∇L‖max) completes the proof.

IV. APPROXIMATE DIFFUSION

In this section we set up the principles of approximate

diffusion including the choice of the ideal drift function to

track a specified sequence of distribution. The terminology

of simulated annealing for optimization arises in analogy

with the physical annealing process of metallurgy. Likewise,

stochastic diffusion models have roots in physical phenom-

ena of particle diffusion. The behavior of these processes

have been modeled by physicists and mathematicians using

partial differential equations that describe time evolutions of

the distributions. A general diffusion wt, 0 ≤ t ≤ T , with

continuous paths is denoted by the stochastic differential

equation

dwt = μ(wt, t)dt + σ(wt, t)dBt (18)

where Bt is the standard Brownian motion process. Here

the vector-valued function μ(w, t) is a possibly time-varying

local drift function and we take σ2(w, t) to be a non-negative

scalar-valued local variance function.

Initialized by a distribution with density p(w, 0) = p0(w),
such processes wt have density functions p(w, t) for t ≥
0. The time evolution of the probability density function is

governed by a PDE named the Fokker-Planck equation after

its first developers [27], also called a Kolmogorov forward

equation, see for instance [14]:

∂p(w, t)
∂t

= −∇·(μ(w, t)p(w, t))+
1
2
∇·∇(σ2(w, t)p(w, t)).

(19)

Here ∇ denotes the gradient operator (the vector of deriva-

tives with respect to w). Its dot product with a vector-

valued function is the divergence and its dot product with

itself is the Laplacian operator. Let (μ(w), σ2(w)) =
(μp,ref (w), σ2

p,ref (w)) be a reference solution for which a

density p is invariant. That is

0 = −∇ · (μ(w)p(w)) +
1
2
∇ · ∇(σ2(w)p(w)). (20)

A traditional choice is (μ(w), σ2(w)) = ( 1
2∇ log p(w), 1) or

any non-negative constant multiple thereof. This is the rule
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that maintains a drift 1
2∇ log p(w) in the gradient direction,

pointing toward higher value of p(w).
Less frequently used, but also possible is (μ(w), σ2(w)) =

(0, 1/p(w)). It makes broader moves where p(w) is low and

narrower moves where p(w) is high, in a manner such that

the transition rule is invariant for p.

These solutions together with (19) may be used in two

ways, in both cases assuming that we start with a density

p0(w). One is to fix such (μ(w), σ2(w)) as a specification

of a time-homogeneous transition (as in standard Markov

chain samplers) and use the PDE

∂p(w, t)
∂t

= −∇ · (μ(w)p(w, t)) +
1
2
∇ · ∇(σ2(w)p(w, t)).

(21)

to study how the density p(w, t) of wt evolves (in partic-

ular how rapidly does it approach the specified p(w) =
pγ(w)). [Associated large deviation properties of the function

L(w) defining the target pγ in the setting of these time-

homogeneous chains were presented by us at a joint Statistics

and Electrical Engineering seminar at the University of

Illinois on February 27, 2007.]

The other tactic, as we advocate here, is to treat the

density p(w, t) = pγt
(w) as given and seek suitable functions

μ(w, t) and σ2(w, t) for which (19) holds (rather than the

other way around). This task simplifies as follows. Write the

general drift function μ(w, t) in the form

μ(w, t) = μγt,ref (w) − G(w, t) (22)

and set the variance function to be σ2(w, t) = σ2
γt,ref (w)

(commonly chosen to be constant as we have said). We

think of G(w, t) as specifying a modification of the naive

choice of drift function μγt,ref (w). Now (19) simplifies to

show that the modifier G(w, t) leads us to achieve the target

distribution p(w, t), here taken to be pγt
(w), if and only if

∂p(w, t)
∂t

= −∇ · (G(w, t)p(w, t)). (23)

So this provides the equation to be satisfied by the appropri-

ate changes G(w, t) to the drift function required to track the

desired pγt
(w). We see thereby that the ideal drift function

for an improved stochastic search relies not only the direction

of higher values of p(w) (uphill), but also, via G(w, t) one

has means to bias movement downhill when necessary to

evolve the distribution as desired.

Recall for our maximization purposes, eventually we want

to the process to provide samples from a density

pγ(w) =
1
cγ

eγL(w)p0(w), (24)

and toward that end we propose to sample from a sequence

of densities with increasing 0 ≤ γt ≤ γ.

A discrete-time Markov chain motivated by the above

consideration sets w0 ∼ p0(w) and

wt = wt−1 + (
δ2

2
∇ log pγt−1(wt−1) − δ2Gt(wt−1)) + δZt

(25)

where the Zt are independent standard normals in R
d and

Gt(w) is a vector-valued function. Here γt = tδ2 for t =
1, . . . , T with T = γ/δ2. If Gt(w) = G(w, t) is chosen to

(approximately) solve the partial differential equation (23)

with the targeted p(w, t) = pγt
(w), we say that this Markov

chain is an (approximate diffusion-based) adaptive anneal-
ing. For densities of the form (24), the required equation for

Gt(w) reduces to

∇ · (Gt(w)pγt−1(w)) = (L(w) − Lγt−1)pγt−1(w) (26)

or equivalently

∇ ·Gt(w) + Gt(w) · ∇ log pγt−1(w) = L(w)−Lγt−1 (27)

where Lγ = Epγ L(w), arising from ∂
∂γ log cγ , and where

∇ log pγ(w) = γ∇L(w) − w.

The idea here is that if δ is small the distribution of wt

in the discrete-time Markov chain should be close to the

target pγt
(w). We use the total variation distance between

distributions which is the L1 distance between the density

functions.

Proposition 2: The density pγt,δ(w) of wt approximately

tracks pγt
(w) in the sense that

‖pγt,δ − pγt‖1 = O(B2d4tδ4) (28)

with γt = tδ2 and hence at T = γ/δ2 we have

‖pγT
− pγ‖1 = O(B2d4γδ2) (29)

where B will be specified momentarily. Thus with δ small

compared to 1/(γd2B) a number of steps T of order γ2d4B2

is sufficient to have pγT ,δ close to pγ .

One sufficient set of conditions is that L is bounded and

has bounded derivatives of all orders, satisfying for some

positive B the requirement that for all indices i1 through ik
in {1, . . . , d}

| ∂k

∂wi1∂wi2 · · · ∂wik

L(w)| ≤ k!Bk. (30)

Moreover, uniformly in t, the absolute moments of the

derivatives of each of the coordinates of Gt(w) is also bound

by k!Bk where k is the sum of the order of the derivatives

and the order of the moment.

One may either require these conditions to hold for all

k (in conjunction with infinite Taylor series expansion), or

with different constants in the bound one may assume only

that they hold for derivatives up to order 4 (though in that

case one needs local domination of the derivatives to have

the moment controls). We save details of such matters to

later writings.

Remark 2: Similarly, the Fokker-Planck equation may be

derived using Taylor expansions on a small step evolution

and taking a limit as step size δ goes to 0 as in [27]. Our

proof shares some general features with that development,

but is customized here for our aims.

The heart of the proof of the proposition is repeated

application of the following key lemma.
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Lemma 3: Let pt(wt|wt−1) be the transition density asso-

ciated with the stochastic move defined in (25) with change

function Gt(w) and let

p̃γt,δ(wt) =
∫

pγt−1(wt−1)pt(wt|wt−1)dwt−1 (31)

be the marginal density function of wt that would arise if

wt−1 were distributed according to pγt−1 . Then except for

w in a set of negligible probability

p̃γt,δ(w) = pγt−1(w)eδ2[Gt(w)·∇ log pγt−1 (w)+∇·Gt(w)]

·eO[δ4d4B2].
(32)

Alternatively, we may write

p̃γt,δ(w) = pγt−1(w) + δ2∇ · (Gt(w)pγt−1(w))

+ O[δ4d4B2].
(33)

Remark 3: According to (32) one sees that even in the

ideal case that the density of wt−1 matched the desired

pγt−1(w), the density after a transition (25) does not match

the desired pγt(w) to suitable order of accuracy, unless Gt is

such that Gt(w) ·∇ log pγt−1(w)+∇·Gt(w) is proportional

to L(w), that is, unless the differential equation (23) is

(approximately) satisfied. As remarked in the introduction,

this is the basis of our concerns leading to the advocacy of

adaptive annealing.

Full proof of the Lemma and proposition are outside the

scope of this conference paper. Nevertheless the following is

suggestive of how it is approached.

Proof: [sketch] The density function at the next step is

p̃γt(wt) =
∫

pγt−1(wt−1)p(wt|wt−1)dwt−1, (34)

and the transition kernel p(wt|wt−1) is normal with mean

wt−1 + ( δ2

2 ∇ log pγt−1(w) + δ2G(wt−1)) and variance δ2I .

Denote ξ = wt−1 −wt. We factor out pγt−1(wt) and rewrite

the whole integral in terms of ξ, to approximate p̃γt(wt) as

pγt−1(wt)
∫

elog pγt−1 (wt+ξ)−log pγt−1 (wt)φ(ξ|wt)dξ (35)

where, using the form of the normal transition density,

φ(ξ|wt) to be a normal density that approximates p(wt|wt +
ξ). The above integral can now be viewed as an expecta-

tion of elog pγt−1 (wt+ξ)−log pγt−1 (wt) respect to the density

function p(ξ|wt). We approximate the logarithm of this ex-

pectation by cumulants and collect dominating terms respect

to δ, then we identify that the leading exponent of the factor

multiplying pγt−1(wt) is Gt(w)T∇ log pγt−1(w)+∇·Gt(w).
Likewise, the exponent needed to boost pγt−1(w) to pγt

(w)
is δ2(L(w) − Lγt−1(w)). Hence we advocate Gt(w) for

which these two match as in (26).

Brief consideration of a naive approximate diffusion is

warranted. By analogy with simulated annealing we could

think to use for the drift function in equation (25) the choice
δ2

2 ∇ log pγt
(wt−1) which would be invariant at the next gain

γt. This corresponds to a modifier Gt which is a small

multiple of −∇L(w). Such a choice leads to the differential

expression −{γ||∇L(w)||2 +∇·∇L(w)} in the exponent of

the factor by which the density is modified. It appears that

with this naive choice the differential expression reduces to

the desired form of a multiple of L(w) minus a constant only

for certain quadratic objective functions. This reinforces our

sense that, except for a trivial setting, use of a modifier other

than the gradient of the log density is essential to track the

sequence of densities pγt
when γt is increasing adequately

fast.

Next we provide some initial discussion on how to solve

for the required Gt(w) from (26). For a given p(w) =
pγt−1(w) we seek G(w) such that

∇ · (G(w)p(w)) = (L(w) − Lmean)p(w) (36)

where Lmean =
∫

L(w)p(w)dw. Consider first the scalar

(d = 1) case for which we may set

G(w) =
1

p(w)

∫ w

−∞
(L(w̃) − Lmean)p(w̃)dw̃. (37)

Note that the integral, if extended to the whole line from −∞
to +∞ becomes 0 by the definition of Lmean, so equivalently

we have

G(w) = − 1
p(w)

∫ +∞

w

(L(w̃) − Lmean)p(w̃)dw̃. (38)

Note that with L bounded and p(w) proportional to

eγL(w)−w2/2, which has Gaussian tails, the integral is seen to

be controlled for large w by the tail integral of the Gaussian,

which is bounded by a constant times 1
we−w2/2, in this one-

dimensional case. Consequently, despite the division by p(w)
this G(w) is seen to taper to 0 at a polynomial rate as w
heads to +∞ or −∞.

For d > 1, defining the coordinates of G(w)p(w) by

integration of 1
d (L(w) − Lmean)p(w) with respect to the

corresponding coordinates of w would satisfy (36) but has the

problem that the integral from −∞ to +∞ with respect to a

coordinate does not give 0 (since Lmean is the overall mean,

not arising from an integration of L(w)p(w) with respect to

just one coordinate) and consequently such solution leads to

divergent G(w) as w → ∞.

Consideration of second order PDE theory suggests an-

other avenue. One seeks H(w) = G(w)p(w) as the gradient

of a function h(w) which solves the Poisson equation

∇ · ∇h(w) = (L(w) − Lmean)p(w),

and for which h(w) tapers to 0 as w → ∞. A solution

for h(w) is known to be the convolution of the right side

(L(w) − Lmean)p(w) by the Green’s function Green(w)
associated with the Laplacian on R

d (it is proportional to

1/‖w‖d−2 for d > 2) and then

G(w) =
1

p(w)

∫
Rd

(∇Green(w−w̃))(L(w̃)−Lmean)p(w̃)dw̃.

(39)

Once again one can show that this G(w) tapers to 0 as

‖w‖ → ∞. However, it has the problem now that it is unclear

how to bound its behavior for moderate values of w due to

the exponential swings in the height of p(w) = eγL(w) with

γ at least d.
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Currently our preferred tactic is to seek formulation of

the problem that makes repeated use of one dimensional

formulations. In the case that L(w) = 1
n

∑n
i=1 fi(xi · w)

this means working with the variable xi · w. This motivates

our considerations in the next section.

V. RIDGE SUPERPOSITION SAMPLING

When the objective function is a ridge superposition

L(w) = 1
n

∑n
i=1 fi(xi · w), the target density pγ(w) is

proportional to

e
γ
n

Pn
i=1 fi(xi·w)p0(w).

Direct evaluation of the modifiers Gγ(w) appears to be

somewhat of a mess. Nevertheless, for a smoothed version of

the problem, variable augmentation appears to considerably

clean things up. The idea is this: for the functions fi(zi)
instead of constraining zi to equal xi · w we relax this

using a narrow Gaussian to keep them close to each other.

Then we have the Markov chain move in the n-dimensional

space of the z rather than the d dimensional space of the w.

Thus we propose the following joint density function for the

augmented variables

pγ(w, z) = 1
cγ

eγ
1
n

Pn
i=1 fi(zi)p0(w)

e−
1

2δ2
Pn

i=1(zi−xi·w)2

(2πδ2)n/2
.

(40)

Integrating out w we see that the density for z is

pγ(z) = 1
cγ

eγ
1
n

Pn
i=1 fi(zi)p0(z),

where the p0 is now a Gaussian with a covariance that

captures that z is near the linear space spanned by the

variables that comprise the x.

We recognize this density to be of the form we have

been studying. It is the exponential of an objective function

with a Gaussian reference initial density. But now there is

the considerable simplification that the objective function

simply takes an additive form. This encourages determination

of whether we can at least approximately solve for the

associated modifiers G(z). The idea being that the product

structure of much of this density may help decouple the

Poisson equation. This question of solving for G(z) as well

as other related questions for Gibbs samplers that we discuss

below remain under continuing consideration.

Before preceding to a discussion of adaptive annealing

of Gibbs samplers we point out some additional proper-

ties of the joint density we have here specified. Note that

the conditional density for z given w is of product form

pγ(z|w) =
∏n

i=1 pγ,i(zi|w), with

pγ,i(zi|w) = e
γ
n [fi(zi)−f̃i(xi·w)]φδ(zi − xi · w) (41)

where φδ(v) = 1√
2πδ

e−v2/2δ2
is the Normal(0, δ2) den-

sity and f̃i(u) is defined via the conditional normalization

e
γ
n f̃i(u) =

∫ +∞
−∞ e

γ
n fi(z)φδ(z−u)dz. This f̃i depends on γ/n

and δ and it is close for small γ/n to
∫

fi(z)φδ(z − u)dz,

the convolution smoothing of fi with the normal of standard

deviation δ. Consequently, in the joint density, when we

integrate out the zi we obtain the following marginal density

for w

pγ(w) = 1
c̃γ

e
γ
n

Pn
i=1 f̃i(xi·w)p0(w). (42)

This density for w is of the form we desire, especially if δ is

small. If we aim to have smooth components f̃i expressible

as a convolution with a normal then one may choose fi as

a precursor that leads to such f̃i. Furthermore we note that

the conditional density for w given z is a fixed Gaussian.

Thus Markov Chain sampling of the z followed by drawing

w given z, produces an outcome w whose density is of the

form we desire.

VI. ADAPTIVE GIBBS ANNEALING

Desiring to sample from a target distribution pγ(w) one

may follow the variable augmentation idea of [9]. One

specifies a vector of hidden variables z which leads to a

augmented state (w, z) and one specifies a joint density

pγ(w, z) for which the desired pγ(w) is the marginal. More-

over for Gibbs sampling one arranges that the conditional

densities pγ(w|z) and pγ(z|w) are convenient for alternating

sampling. Starting from some initial z0, w0, and then drawing

z1, w2, z2, . . . , zT , wT in succession from the indicated con-

ditionals is a version of Gibbs sampling [8], [9]. Once again it

defines a Markov chain with time-homogeneous transitions,

for which pγ(w, z) is invariant, but the exact sequence of

distributions for wt that results (starting from w0 ∼ p0) and

its rate of approach to the target pγ(w) is not clear.

Thus we initiate investigation of the behavior of a time-

inhomogeneous version of Gibbs sampling. As before merely

using pγt
(zt|wt−1) and pγt

(wt|zt) as the transition rules

at time t will not actually track the desired sequence of

distributions pγt with increasing γt. Instead we incorporate

a modifier gt(z, w) and examine the transition densities pro-

portional to pγt
(zt|wt)eεgt(z,w). Thus the transition density

we consider takes the form

p̃γt(zt|wt−1) = pγt(zt|wt−1)eε[gt(zt,wt−1)−g̃t(wt−1)] (43)

where eεg̃t(w) =
∫

pγt
(z|w)eεgt(z,w)dz is the conditional

normalizing factor. When this normalizing factor is finite for

some positive ε, then when ε is small, g̃t(w) is approximately

the conditional mean
∫

pγt(z|w)gt(z, w)dz of the modifier

gt(z, w).
This modified transition rule arises in multiple ways. Most

directly, if eε[gt(z,w)−g̃t(w)] is as a bounded function of z,

with bound Bw, say, then given wt−1 = w, one can draw

zt according to p̃γt
(zt|w) by repeated acceptance/rejection

sampling from pγt(zt|w) (in which we accept zt when

egt(zt−1,w)−g̃t(w) exceeds an independent uniform [0, Bw]
random variable). Note that with ε small, Bw is near 1 and

the acceptance probability is high.

Alternatively, from a candidate zt ∼ pγt
(zt|wt−1),

one may obtain a new point from the desired distribu-

tion (approximately) using the transition zt,new = zt −
εGt(zt|wt−1) or as in approximate diffusion, one may take

zt − ε
2∇ log pγt

(zt|wt−1) − εGt(zt|wt−1) +
√

εNormalε,

where in either of these cases gt(z, w) = ∇ · Gt(z|w) +
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Gt(z|w) · ∇ log pγt
(z|w). Availability the solution Gt(z|w)

depends on the form of pγt
(z|w). The more direct accep-

tance/rejection method is preferred when solution of that

differential equation for Gt is not readily accessible.

The key step of analysis of the modified transition is the

following. We are given a joint distribution p(w, z) with

associated marginals p(w) and p(z) and conditionals p(z|w)
and p(w|z). With w ∼ p(w) a transition using p(z|w) would

yield the marginal p(z). We ask what happens if we instead

use a modified transition.

Lemma 4: With w ∼ p(w) followed by z given w drawn

by the modified transition p̃(z|w) = p(z|w)eε[g(z,w)−g̃(w)],

the resulting marginal p̃(z) =
∫

p(w)p̃(z|w) satisfies the

following small ε approximation

p̃(z) = p(z)eεgmod(z)+O(ε2) (44)

where gmod(z) =
∫

(g(z, w) − g̃(w))p(w|z)dw is the con-

ditional mean of the modifier with respect to p(w|z). This

holds when eεg(z,w) has finite expectation with respect to

p(w, z) for some positive ε.

The general task then is to identify a modifier g(z, w) for

pγ(z|w) such that the expression εgmod(z) in the exponent

approximately matches the desired change in the exponent of

pγ(z) when we increase the gain. Applying such a modifier

for a suitable increasing γt to the transitions from wt−1 to

zt, the sequence of alternating wt and zt, for t = 0, . . . , T
is said to be an adaptive Gibbs annealing with distribution

(approximately) tracking pγt .

We now return our attention to the case of ridge super-

position sampling. The variable augmentation we defined in

the preceding section may facilitate simplification of the task

of finding suitable modifiers for adaptive Gibbs annealing.

Now the density of z given w depends on w only through

the variables ui = xi · w, which may be collected together

as u = Xw where X is the design matrix with rows given

by the xi. We may chose in this case for the modifier to

depend on w through u = Xw and write it as g(z,Xw)
where g(z, u) is a function on Rn × Rn that needs to be

specified. A special case that might be rich enough for our

purposes is to have g(z, u) = g(z) depend only on z. In

either case the aim to to choose g so as achieve the desired

gmod(z), which is a multiple of f(z) minus a constant, where

f(z) = 1
n

∑n
i=1 fi(zi).

Concerning the mechanics of performing adaptive Gibbs

annealing for ridge superposition sampling, we recall that for

joint density given in expression (40), the conditionals for z
given w make the coordinates zi independent with density

as given in expression (41). Sampling from each of these

univariate conditional densities for zi can be performed by

acceptance/rejection sampling using the Gaussian reference

with mean xi · w and variance δ2. With γ/n small, we see

that the factor modifying the Gaussian is close to 1, so

that we will have suitably high acceptance probability for

this scheme. In this manner with w = wt−1 we may draw

(repeatedly if need be) from pγt
(z|w) and hence from the

modified transition pγt(z|w)eε[g(z,Xw)−g̃(Xw)] to obtain the

vector zt = z now using acceptance /rejection of the vector

as discussed earlier, where now the normalizer g̃ depends

only of Xw. Following this draw of zt, we can easily obtain

the suitable wt by a draw from the Gaussian conditional for

w given z, or if we prefer we may bypass wt and directly

draw ut = Xwt given z.

This Gaussian conditional for u = Xw given z is the

familiar posterior that arises in Bayesian regression if the

hidden zi were regarded as observed responses. This distri-

bution is also of interest because approximate evaluation of

gmod(z) requires taking the expectation of the modifier with

respect to this Gaussian. For small δ, the mean of Xw given z
is centered near ẑ = X(XT X)−1XT z = Pz the projection

of z into the column space of X , and the covariance is near

δ2P .

An expansion of gmod for small δ may aid the effort

in designing a suitable modifier g, so as to make gmod(z)
approximately match a multiple of f(z) minus a constant,

so that the distribution of zt approximately tracks pγt
(z).

Toward this aim consider the case that g(z, u) = g(z)
depends only on z so that gmod(z) = g(z) − E[g̃(u)|z],
where g̃(u) is near E[g(z)|u]. Taylor expansion of these

conditional means, by the so-called δ method, yields for

sufficiently smooth g, the following approximation, valid to

order δ4 in probability, for the function gmod(z)

g(z)−g(ẑ)−δ2

[
1
2

trace(I + P )∇∇T g(ẑ) −∇f(ẑ) · ∇g(ẑ)
]

We omit an analogous more elaborate expression that arises

for the case that g(z, u) depends also on u = Xw.

There is potential to use the given expansion in two

ways. One is to approximate the main terms g(z) − g(ẑ) as

(z − ẑ)T∇g(z) valid to accuracy of order δ2 in probability,

and seek choice of g such that (z− ẑ)T∇g(z) matches f(z),
ignoring the order δ2 terms. The second way to use the

expression is to arrange to cancel the g(z) − g(ẑ). Indeed,

suppose g(z) depends on z only through ẑ = Pz. That

is, it takes the form r(Pz) for some function r. In this

case, since P is a projection, evaluating it at either z or

ẑ = Pz leaves it unchanged and hence the leading term

difference g(z) − g(ẑ) is 0. Then the order δ2 expression

becomes the dominant part of the expansion for gmod and

the task becomes to find r for which it is proportional to our

target. For example we can consider the case that r takes

the additive form r(v) =
∑n

i=1 ri(vi) for v in Rn which

permits further simplification of our expression for gmod(z).
It reduces to

gmod(z) = −δ2

[
n∑

i=1

Piir
′′
i (ẑi) − γ

n∑
i=1

(P∇f(ẑ))ir
′
i(ẑ)

]
.

This comes close to permitting a term by term solution.

Suppose in particular that the design X is such that the

projection entries Pii are all strictly positive. Then we

may set the univariate function ri to be a twice integrated

−[fi(zi) − mi]/Pii, that is,

ri(vi) = − 1
Pii

∫ vi

ai

∫ τ

ai

[fi(t) − mi]dtdτ
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where ai is a convenient reference point, such as 0 or a point

where fi(ai) = mi. Here mi is the mean of fi(zi) with

respect to pγ at the current gain γt, which can be estimated

by an average across multiple parallel chains at the current

t.

With this choice for the ri the first term above matches

what we desire and the second term remains. We end the

story for now by calling attention to the following circum-

stance. If the objective function f(z) has a gradient with

zero projection P∇f(z) = 0 into the span of X , this second

term vanishes and gmod(z) matches what we want in order to

track the distribution. This encourages reformulation of the

problem such that the linear part of the objective function is

removed. Such reformulation may be natural for estimating

ridge functions. We encourage its further consideration.

In conclusion we have examined the behavior of Markov

chains with transitions based on specified drifts plus noise

and by Gibbs samplers. Evolution of the density in a desired

manner is shown to require a modification of transition

rules previously dictated by invariance. In particular we have

given preliminary analysis of modification of the drift in the

approximate diffusion case and a multiplicative modification

of the transition density in the Gibbs sampler case. The

ideal modifying functions are solutions to partial differential

equations which we have exhibited here. The hope is to

encourage further research in this path to better understand

Markov Chain evolution, and to determine which situations

permit practical optimization.

REFERENCES

[1] D. S. Johnson and F. P. Preparata, “The densest hemisphere problem,”
Theor. Comp. Sci., vol. 6, pp. 93–107, 1978.

[2] R. Greer, Trees and Hills: Methodology for Maximizing Functions of
Systems of Linear Relations, P. L. Hammer, Ed. North-Holland, 1984.

[3] A. Blum and R. Rivest, “Training a 3-node neural network is np-
complete,” Neural Networks, vol. 5, pp. 117–127, 1992.

[4] B. DasGupta, H. Siegelmann, and E. Sontag, On the Intractability of
Loading Neural Networks. Kluwer Academic Publishers, 1994, ch. X,
pp. 357–389.

[5] V. Vu, “On the infeasibility of training neural networks with small
mean-squared error,” IEEE Trans. on Information Theory, vol. 44,
no. 7, pp. 2892–1900, 1998.

[6] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller,
“Equations of state calculations by fast computing machines,” Journal
of Chemical Physics, vol. 21, no. 6, pp. 1087–1092, 1953.

[7] W. Hasting, “Monte carlo sampling methods using markov chains and
their applications,” Biometrika, vol. 57, pp. 97–109, 1970.

[8] S. Geman and D. Geman, “Stochastic relaxation, gibbs distributions,
and the bayesian restoration of images,” IEEE Trans. on Pattern
Analysis and Machine Intelligence, vol. 6, pp. 721–741, 1984.

[9] M. Tanner and W. Wong, “The calculation of posterior distributions by
data augmentation (with discussion),” Journal of Amer. Stat. Assoc.,
vol. 82, pp. 528–550, 1987.

[10] S. Kirkpatrick, C. D. G. Jr., and M. P. Vecchi, “Optimization by
simulated annealing,” Science, vol. 220, no. 4598, pp. 671–680, 1983.

[11] J. Liu and R. Chen, “Sequential monte carlo methods for dynamic
systems,” Journal of the American Statistical Association, vol. 93, no.
443, pp. 1032–1044, 1998.

[12] Y. Iba, “Population monte carlo algorithms,” Transactions of the
Japanese Society for Artificial Intelligence, vol. 16, p. 279, 2000.

[13] D. Talay, Simulation of Stochastic Differential Systems. Springer-
Verlag, 1995, ch. 3, pp. 63–106.

[14] J. Chang, “Stochastic processes, http://pantheon.yale.edu/ jtc5/251/
stochasticprocesses.pdf.”

[15] M. Dyer, A. Frieze, and R. Kannan, “Random polynomial time
algorithm for estimating volumes of convex bodies,” Proc 21st Annu
ACM Symp Theory Comput, pp. 375–381, 1989.

[16] A. Frieze and R. Kannan, “Log-sobolev inequalities and sampling from
log-concave distributions,” Annals of Applied Probability, vol. 9, no. 1,
pp. 14–26, 1999.

[17] L. Lovasz and S. Vempala, “The geometry of logconcave functions
and sampling algorithms,” Random Structures & Algorithms, vol. 30,
no. 3, pp. 307–358, 2007.

[18] P. Diaconis and D. Strook, “Geometric bounds for eigenvalues of
markov chains,” The Annals of Applied Probability, vol. 1, no. 1, pp.
36–61, 1991.

[19] J. Fill, “Eigenvalue bounds on convergence to stationarity for nonre-
versible markov chains, with an application to the exclusion process,”
The Annals of Applied Probability, vol. 1, no. 1, pp. 62–87, 1991.

[20] B. Hajek, “Cooling schedules for optimal annealing,” Mathematics of
Operations Research, vol. 13, no. 2, pp. 311–329, 1988.

[21] A. R. Barron, “Universal approximation bounds for superpositions
of a sigmoidal function,” IEEE Transactions on Information Theory,
vol. 39, pp. 930–945, 1993.

[22] ——, “Approximation and estimation bounds for artificial neural
networks,” Machine Learning, vol. 14, pp. 113–143, 1994.

[23] E. Candes, “Ridgelets: Estimating with ridge functions,” The Annals
of Statistics, vol. 31, no. 5, pp. 1561–1599, 2003.

[24] L. K. Jones, “A simple lemma on greedy approximation in hilbert
space and convergence rates for projection pursuit regression and
neural network training,” The Annals of Statistics, vol. 20, no. 1, pp.
608–613, 1992.

[25] W. S. Lee, P. L. Bartlett, and R. C. Williamson, “Efficient agnostic
learning of neural networks with bounded fan-in,” IEEE Transactions
of Information Theory, vol. 42, no. 6, pp. 2118–2132, 1996.

[26] A. Barron, A. Cohen, W. Dahmen, and R. DeVore, “Approximation
and learning by greedy algorithms,” Annals of Statistics, vol. 35, 2007.

[27] H. Risken, The Fokker-Planck Equation: Methods of Solutions and
Applications. Springer, 1996.

ThB2.3

673


	--------------------
	Main Menu
	Foreword
	45 Years of Allerton
	Table of Contents
	Author Index
	--------------------

