IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 1, JANUARY 1998 95

An Asymptotic Property of Model Selection Criteria

Yuhong Yang and Andrew R. Barromember, IEEE

Abstract—Probability models are estimated by use of penalized dimension of the parametric families. The penalty term is
log-likelihood criteria related to AIC and MDL. The accuracies proportional to the dimension of the models (in some cases
of the density estimators are shown to be related to the trade- without a logarithmic factor) thereby permitting an improved

off between three terms: the accuracy of approximation, the . . L L
model dimension, and the descriptive complexity of the model 2Ccuracy index and smaller corresponding statistical risk in

classes. The asymptotic risk is determined under conditions on the SOMe Cases.

penalty term, and is shown to be minimax optimal for some cases.  The present paper presents two types of results. First resolv-
As an application, we show that the optimal rate of convergence ability bounds on the statistical risk of penalized likelihood
is_simultaneously achieved for log-densities in Sobolev spacesyansity estimates are given that capture the tradeoff discussed
W3 (U') without knowing the smoothness parameters and norm ) .

parameter U in advance. Applications to neural network models above. These bounds are valid for each dengitgnd each .
and sparse density function estimation are also provided. sample size. Secondly, we show how such bounds provide
a tool for demonstrating nonparametric adaptation properties,
specifically minimax optimal convergence simultaneously for
multiple function classes. We do not attempt to cover all cases
that may be of interest, rather we give representative examples
. INTRODUCTION involving adaptation to unknown order of smoothness and

E consider the estimation of an unknown probabilitporm in L, Sobolev spaces by spline selection and adaptation
density functionf(z) defined on a measurable spate t0 function classes that represent sparseness by Fourier and
with respect to some-finite measure.. Let X; Xy, -+, X, neural net methods. In the remainder of this section, we
be an independent and identically distributed (i.i.d.) sampleview model selection criteria for function estimation, we
drawn according tgf(x). To estimatef, a sequence of finite- discuss the form of the criteria studied here and the separate
dimensional density familie§ fi.(x,6%)), #%*) ¢ ©,} are roles of parameter dimension and model complexity in these
Suggested to approximate the true density_ For examp|e’ (ﬁ'ﬁ@eria, we review issues of IOg-denSity estimation and sieve
might approximate the logarithm of the density function bgstimation, and we discuss other work on adaptive estimation.
a basis function expansion using polynomial, trigonometric, Sequences of exponential models are previously considered
wavelet, or spline series. For a given mo#lelve consider the for density estimation by Barron and Sheu [3], Cencov [14],
maximum-likelihood estimatoé® of 8*). Then a model:  Portnoy [33], and many others (for a detailed review on this
is selected by optimizing a penalized log-likelihood criteriorfopic, see [3]). In [3] it is shown that the relative entropy
As we discuss below, there are a number of criteria of thiKullback—Leibler distance)
type including those proposed by Akaike [1], Rissanen [34],
Schwartz [37], and others, where the penalty involves the / f(z) log <&> dz
parameter dimension and/or the model complexity. Here we fr(z, 68))

:rsfir:]r:teer;sted_ I;A und;gtar,gr;g égfr::;irs%/osgrt?f] ?ﬁgsé%/nverges to zero at the optimal rate2*/(2s+1) for den-
accurac (ca;)nge ’F((eféted tZ). an index of resolvability ex 'ressiﬁities whose logarithms have square-integrable derivatives
y y exp W%en the model sizé: = n!/(2s+1) is chosen according

the tradeoff between the error of approximation as measurgd | presumed degree of smoothnassStone [40] obtains

by ;:Z [ﬁlea?:\(l)?nelnet;)tpyre?é\st:\?gice) R]eew\éﬁ?algdsit?g E?V\'Ilgvesimilar results for log-spline models. Stone [41] later develops
Ji plexity P ' cEOnvergence rates for multidimensional function estimation

|t2§ nl]oi:;elrn rg(]a\til;nrel-?grlgt\?vi (t:?)n(;rigzl?ng\r/gh :n:rZTcr(Ia?]tgl)in ncluding density estimation) using tensor products of splines
Y P : 9 b ith a given order of interaction. The convergence rates are

i
likelihood criteria. We relate the risk of the density estimatofgISO obtained with presumed knowledge of the smoothness

to an accuracy index (or inde>_< of resolvabil_ity) expressingroperty of the target function. More recent results in this
the tradeoff between the relative entropy distance and t fection include [12] on minimum-contrast estimators on
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optimally for each smoothness condition, yet the estimatarwrong model does not vanish as the sample size approaches
does not require the knowledge of true smoothness in ast~ Our interest in this paper is not in determination of a true
vance. For density estimation, [24] considered estimatingfiaite-dimensional model but rather in selection of as accurate
density having a Fourier representation satisfying a certainmodel as permitted in view of the tradeoff with complexity
smoothness assumption with smoothness parameters unkndamnthe given sample size in the case that the true density is not
He proposed certain projection estimators and showed tmaicessarily in any of the finite-dimensional operating models.
the estimators converge at the optimal rates without knowingln a related nonparametric regression setting, an asymptotic
the smoothness parameter in advance. In later years, Donadptjmality property is shown for AIC with fixed design [28]
Johnstone, Kerkyacharian, Picard, and others advocated dhne [36]. Li shows that if the true regression function is not in
use of wavelet subset selection in both nonparametric @y of the finite-dimensional models, then the average squared
gression and density estimation (see, e.g., [22] and [23yror of the selected model is asymptotically the same as
For orthogonal wavelet expansion, subsets are selectedtlgt could be achieved with the knowledge of the size of
thresholding wavelet coefficients to zero out the coefficientse best model to be used in advance. For the above MDL
of small magnitude. They showed that the wavelet-threshatdterion, however, the average squared error of the selected
estimators converge near optimally simultaneously over the&del converges at a slower rate due to the presence of the
Besov spaces also without the knowledge of the smoothnéss » factor in the penalty term. In a density-estimation setting
parameters. We here intend to use a model selection criteriomuing descriptive length criteria, Barron and Cover [4] show
adaptively chose a suitable model so that the density estimatwat the Hellinger distance between the true density and the
based on the selected model converge optimally for varioastimated one converges at a rate within a logarithmic factor
unknown smoothness conditions. We will not restrict attentiasf the optimal rate. As we mentioned before, some recent
to orthogonal expansion nor even to linear models. We needré&sults in this direction are in [8] and [13].
mention that at about the same time of this work, related resultdn this work, we consider comparing models using criteria
are obtained by Birgand Massart [13] and Barron, Bggand related to AIC and MDL in the density estimation setting.
Massart [8] concerning general penalized minimum-contragte demonstrate that the criteria have an asymptotic optimality
estimators. Unlike these works, we focus here on penalizptbperty for certain nonparametric classes of densities, i.e., the
maximum likelihood with expansions for the log densities. optimal rate of convergence for density functions in various
Next we discuss the forms of model selection criterimonparametric classes is simultaneously achieved with the
AIC [1] is widely used in many statistical applications. Thisutomatically selected model without knowing the smoothness
criterion is derived by Akaike from the consideration of thand norm parameters in advance.
asymptotic behavior of the relative entropy between the trueAs opposed to AIC, we allow the bias-correction penalty
density and the estimated one from a model. From his analysexm A, m; to be a multiple of the number of parameters in the
a bias correction term should be added-ttg likelihood as model, and the coefficient;, will depend on a dimensionality
a penalty term to provide an asymptotically unbiased estimatenstant of the model related to the metric entropy. In this
of a certain essential part of the relative entropy loss. Tipaper, the coefficients are specified so that the asymptotic
familiar AIC takes the form results hold. With this consideration, the criteria take the form

AIC (k) = — loglikelihoody, + my _ Z log fi(Xi, %)) + Ay, (1)
i=1

wheremy, is the number of parameters in model and the

likelihood is maximized over each family. Ak . I . .
In addition to AIC, some other criteria have received \évhereq is the maximum-likelihood estimator in model
lot of attention. Schwartz [37] proposed BIC based on somé Let & be the selected model which minimizes the above

Bayesian analysis; Rissanen [34] suggested the minimu%'—tenon value.

description length (MDL) criterion from an information- We evaluate the criteria by comparing the Hellinger distance

theoretic point of view. Usually the MDL criterion takes 2
the form d%{(fv f;;7é(ll)) = / (\/?_ \/f];7é(’:')) dﬂ

MDL (k) = — loglikelihoody, + % log n. with an index of resolvability. The concept of resolvability
was introduced by Barron and Cover [5] in the context of
The term~3= log n is the description length of the parametergdescription length criteria. It naturally captures the capability
with precision of orderl/\/n for each parameter, and theof estimating a function by a sequence of models. In the
likelihood is maximized over the parameters represented wiihesent context, the index of resolvability can be defined as
this precision (addition terms that appear in refinements of
MDL are in [2], [17], [35], [44], and [45]). R, (f) = inf { it D(f||f o) + Ak }
Some asymptotic properties of these criteria have been ko e®eoy ’ n

studied. Itis shown that if the true densifyx) is in one of the
finite-dimensional models, then BIC chooses the correct mo
with probability tending td (see, e.qg., [25] and [38]). For AIC, inf  D(f||fx o))
however, under the same setting, the probability of selecting USSR ’

dl’eI”'e first term
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reflects the approximation capability of the moddb the true It provides the best tradeoff among the approximation error,
density function in the sense of relative entropy distance, aadtimation error, and the model complexity relative to sample
the second termymy, /n reflects the variation of the estimatorsize. We show

in the model due to the estimation of the best parameters in the 2 _

model. The index of resolvability quantifies the best tradeoff Edy(f, fi,a0) = O(Ba(f))-

between the approximation error and the estimation error.Tlhe condition needed for our results is a metric dimension
is shown in this work that for the new criteria, when thés  assumption involving both Hellinger distance ahg, distance
are chosen large enough, the statistical @&, (f, f; ) on the approximating models. This assumption determines how
is bounded by a multiple oR,,(f). large the penalty constant, should be for the above claim

To apply the above results, we can evaluBitg f) for f in  to be valid. For exponential familieg;(z, %)), 89) ¢ 0,
various nonparametric classes of functions, then upper boum@ssatisfy the assumption, it is often necessary to break the
of the convergence rates can be easily obtained. Examples witural parameter spad®; into an increasing sequence of
be given to show these bounds for the maximum penalizedbsets®,; ;, L = 1, 2, - - - according to the sup-norm of
likelihood estimator correspond to optimal or near-optimahe corresponding log density. Then the classes of densities
rates of convergence simultaneously for density functions gyrresponding to these subsets of parameters are treated as
various nonparametric classes. This provides a tool to sh@wodels indexed by: = (j, L) and the sup-norm of the log
adaptivity of the estimator based on model selection. density appears as a factor in determining the penaltyrhus

In statistical applications, due to the lack of knowledggdirectly the criterion chooses parameter estimates for each
on the true function, it is often more flexible to consider gnodel; not to maximize the likelihood for the full model but

large number of models such as the case of subset selectiopaither to maximize a penalized likelihood. For details of that
regression. When exponentially many models are considergdatment, see Section IIl.

significant selection bias might occur with the bias-correction- As an example, we will consider estimating a density
based criteria like AIC and the criteria we just proposed. Th@nction on[0, 1]. We assume that the logarithm of the density
reason is that the criterion value cannot estimate the targeiedn the union of the classes of Sobolev spdsg (U),
quantity (e.g., the relative entropy loss of the density estimatoe N = {1, 2, --.}, U > 0. We approximate the logarithm of
in each model) uniformly_well for exponentially many modelst_.he density by spline functions. If we knel# and s, then by
For such cases, the previously obtained results for the selectigfing suitably predetermined order splines, the optimal rate of
among polynomially many models cannot be applied ampnvergence is achieved. However, this rate of convergence
more. For example, for the nonparametric regression functigp ,,—2s/(2s+1) is saturated for smoother densities. Without
estimation with fixed design, a condition for Li's results is nnowing’ ands, we might consider all the spline models with
longer satisfied. To handle the selection bias in that regressigifierent smoothness orders and let the criterion choose a suit-
setting, one can add a model complexity penalty (see, Yagple one automatically from data. Indeed, from our theorem,
[47]). _ o the optimal rate of convergence is obtained simultaneously
For the density estimation problem, we also take the modgl density functions with logarithms in the classés (U),
complexity into consideration to handle the possible selectigne N, 7 > 0. In other words, the density estimator based
bias when exponentially many or more models are preseniflthe model selection adapts to every clH#§g(U), s € N,
for more flexibility. For each model, a complexity;, is as- ¢ > 0.

signed withL;, = (log, ¢)C}, satisfying the Kraft's inequality: ~ The above example suggests that good model-selection

o 27 <1 that s, criteria can provide us with minimax optimal function esti-
o mation strategies simultaneously for many different classes.
Z e <L For related results on adaptive function estimation, see [8],
k

[13], [22], [24], [30], and [32]. As some other applications of
See [4] and [13] for similar use of a model complexitPUr results, neural network models and sparse density function

term. The complexityL; = Cy log, ¢ can be interpreted €Stimation will be considered.

as the codelength of a uniquely decodable code to describdVe finally comment on the relationship with MDL criteria.
the models. Another interpretation is thatC* is a prior he MDL principle requires that the criterion retains the

probability of modelk. Then the criteria we propose are Kraft's inequality requirement of a uniquely decodable code.
This requirement puts a restriction on the choices of candidate

n A parameter values. For some cases, with suitable restrictions
_Z log fi(Xi, 6%%) + Aymy, + Gy, (2)  on the parameters, the MDL principle can yield a minimax
=1 optimal criterion of the form- loglikelihood, + constant -
wherer is a nonnegative constant. my, whose penalty term is of the same order as that in AIC.

For the above more general criteria, we redefine the indexome results in that direction were presented by Barron,

of resolvability by adding the complexity term as follows: Yang, and Yu [7] for ellipsoidal constraints on parameters). In
contrast to the minimum description length criterion, we do not

. . Memy vCy i ; o
Ro(f)=infd inf D(f||fisw)+ R VOR | discretize thg parameter spaces _aqd the crltgr|a used here do
E |eeco, ’ n n not necessarily have a total description length interpretation. In
(3) addition, here the penalty term can take the formstant - my,
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for a larger class of models than considered in [7]. We shoul¢here

also note that our criteria are not necessarily Bayesian. o O
The paper is organized as follows: in Section Il, we stateR, (f) = inf { inf  D(f||fu o)) + MU TR }
and prove the main theorem; in Section Ill, we provide some kel | etcoy n n

applications of the main results; in Section IV, we give the \te the condition needed for the above conclusion is
proofs of the key lemma and some other lemmas; and finally .y on the operating models. This property is essential for
in the appendix, we prove several useful inequalities. demonstrating adaptivity of the estimator based on model
selection among many function classes (e.g., Sobolev classes
IIl. MAIN RESULTS with unknown smoothness and norm parameters).

We consider a list of parametric families of densities Reémarks:
fr(z, 6%)), %) ¢ Oy, k € I, whereT is the collection 1) The resolvability bound in the theorem is valid for any
of the indices of the models. The model list is assumed to be sample size. So the model listis allowed to change
fixed and independent of sample size unless otherwise stated according to sample size.

(e.g., in Section 11I-B). Lemma 0 in Section IV will be used 2) In R,(f), the estimation error terny,m; /n is allowed
to derive the main theorem. to depend on the dimensionality constalat, which may

In our analysis, we will consider sup-norm distance between  not be uniformly bounded for alt € I'. For an unknown
the logarithms of densities. In this paper, unless stated other- density function in a class, if the sequence of modgls
wise, by aé-net, we mean a@-net in the sense of sup-norm minimizing
requirement for the logarithms of the densities. That is, for a inf
class of densitied3, we say a finite collection of densitids 0k co,

is aé-net if for any densityf € B, there existsf € I such . _
that || log f—log f||-e < 6. For convenience, the index set of 'hsa\:;iAn’;n tg?ggﬁjeioamnd;g’gie_toO(mk”)’ then 1, (f)
F might also be called a-net. ' ymptotically P

For 98’“) € Oy, consider Hellinger balls centered at density inf {D(f||fx e)) +mp/n+ Cr/n}

fi o In family & defined by k6 (%)

D(f||fr, o) +ma/n

and consequently

Bu(8%). 1) = {6® . 9®) c @, d s fr o) < 1) ,
w0 ) =1 b ity o2 Jrow) <73 Ediy(f, fi, qur) = O it {D(f|Ifi0) +mi/n}).
Assumption 1:For eachk € I', there exist a positive ’

constantd,, and an integern;, > 1 such that for anyg(()k) c The best tradeoff between approximation error and es-

timation error often gives the minimax rate of conver-

O, anyr > 0 andé < 0.0056r, there exists é—netFk PR 2 i .
() h , _ 0% gence for full approximation sets of functions (see [48,
for Bi(6y ', r) satisfying the following requirement: Sec. 5]). These conditions that;, is bounded and
A\ ™ Cr, = O(my,,) will be verified in a spline estimation
card (Fk s 0<k>) < <¥> setting in Section Il
.7, 6,84

3) One way to assign the complexities for the models is
Herem,, is called the metric dimension of model by considering only the number of models for each
Remark: This dimensionality assumption necessarily re-  dimension. LetV(m) = card {k € ' : m, = m} be the

quires that the densities in the parametric family share the number of models with dimensiom. If N(m) < oc,
same support. If the support of the true density is not known then we may assign complexitgy, = log N(m) +

to us, we might consider families of densities with different ~ 2log (m + 1) for the models with dimensiom, which
supports and let the model selection criterion decide which one  corresponds to the strategy of describing first and
has a suitable support for the best estimation of the unknown then specifying the model among all the models with
density. the same dimensiom. Then we have

Let & minimize the criterion in (2) over all models if. B, fr ao)
The final density estimatof then is f = f; ;s i.e., the HAD Tk 608

maX|mum—I|keI|hpod density estimator in 'the selegted mode.l. < 2657 inf { inf  D(f]|fr o)
The asymptotic result we present requires a suitable choice kel | ooy ’
of the penalty constants\; (according to the cardinality Avmy  vp(log N(my) + 2 log (my + 1))
constantsA) and v. Let T < n T n )}
A(A) =4.75 log A+ 27.93. 4) If N,, grows more slowly than exponential im,
then[log N(my) + 2 log (my + 1)]/mu goes too, i.e.,
Theorem 1: Assume Assumption 1 is satisfied. Takg > the complexity is essentially negligible compared to
A(Ak) andr > 9.49 in the model selection criterion given in the model dimension. Then the Comp|exity part of the
(2). Then for the density estimatgf, ;,, we have penalty term can be ignored in the model selection

5 . criteria. However, if there are exponentially many or
Edy(f, fi o) < 2657Hn(f) more models iT", then the complexity terr®y /n is not
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negligible compared tan; /n (for related discussions, we have
see [13] and [47]). ). a(k)
4) From the proof of Lemma 0 in Section IV, it can béBex (f, ) C {8 6% € O, du(f; o0, fi,000) < 31}
seen that the requirement in Assumption 1 only needs _ Bk(Hik), 3r).
to be checked for > 5.5\/my, /n for the conclusion of
Theorem 1 to hold. If this weaker requirement is satisfiebhus under Assumption 1, Assumption 0 is satisfied with
with A, ,, (depending also on the sample size) instead = Ay, m = my, and p = 0.0056 (note if
of Az, and we use\, ,, > A(Ay, ,,) in the criterion, the ]
conclusion of Theorem 1 is still valid. e(k,lflef@k di(f; fi,om0)
5) The various constants (e.@657) involved in Theorem
1 and Subsequent results are g|Ven to ensure the ﬂgkaChlevable then ASSUmptlon 0 is satisfied with a better
bounds theoretically. As suggested by a referee, tR@nstantd = 34;). Now by Lemma 0 withé = Ay +
estimator is likely to behave much better in practice. ¥Cr + ¢ (t > 0) if

orenEZT?;’LZZTJ;?EL?TJQ??J'!QZ?JV B om0 los (194401 8/1)
k, 6%) = Z log i 9)@)) )\k:k N % N % with v = 0.039 (which satisfiéso = 0.13y/+/1T = 4), then
P {for somed € O, V(k, %)) < vd3 (f, fr, o)}
by adding . < 15.1 exp <_ ! _847()\kmk +vC, + t)).
n z:: og J{Xs) +/n Sum overk € I

(which does not depend dt) to each criterion value. In our qn(t) =: P*{for somek € I, 8% € @,
analysis, we will concentrate on the above theoretically equiv- V(k 9(’“)) < 2 (. f N
alent criterion. We relate it to the resolvability. Indeed, for each ’ = 0H\S ko

fixed family k, we show thati (k. 617)) > 7a,(f. fy. o) <1513 exp <_ L= s 414G+ t))
for all # except in a set of small probability. Then the e 8
probability bound is summed ovérto obtain a corresponding (1— 4yt
bound uniformly over all the models. < 10-72 exp <—T - Ck)
For a fixedk, let ker
(1—49)t
ok, 60) Z log [£(Xa)/ fu(Xs, 0], =107 exp <‘ s )
Then For the second inequality above, we use
Pr{for somed™®) € Oy, V(k, 0%)) < vd%(f, fi o))} w > log 2
= P*{for somef™) € Oy, 1 ~ Ln(k, o)y > A and
n
vC 8
+ =~ +——’YdH(f7 T, 0(1»))} vz (1—4v)
We now use Lemma 0 in Section IV to give an uppefror the last inequality, we use
bound on the above probability. Fer > 0, let Bg, (f, 7) _e.
be a Hellinger ball in®; around the true density (f may Z ¢ =L
not be in the parametric family) with radiusdefined by kel
Be, (f, r) = {e(k): ok ¢ O, dir(f, fo) < 7). For expectation bounds, it will be helpful to bound the integral

of the tail probabilityq,(¢). From above,
We next show that Assumption O for Lemma O is satisfied for

thg family { fx(z, 6%)), 6% € ©;} under Assumption 1. Let /Oo qn(t) dt < 85.6/(1 — 4y).
o) O satisfy 0
(fo foo) < inf dy(f, fu o) + 7. To obtain the conclusion of the theorem, we next show that
k0577 = gthicey ’ the criterion values for a sequence of nearly best choices of
Then because for ang® ¢ © k, 6%) are not much greater thaR,,(f).

Assume R,.(f) < oo (otherwise, the conclusion of the
theorem is trivially true). Let

du(f; fr,ew) 2 5(du(f; [, gw) +du(f, fr,o0)) —

r

du(fy 0005 i o) = 5 Ry(k, %) = D(f|| fr, o0) +

l\Dlﬁ

)\kmk + I/Ck

v
wl»—kwlr—k

[\)

n
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To bound the last integral involving the tail of an expected
log-likelihood ratio, we apply Lemma 3 in the appendix with
a* = a(et®) = 1.07 and obtain

DU, o)

and let(k,, 951’“”)) be a choice such that
R (kn, 03)) < (14 O)Ra(f)

for some positive constand. (If there is a minimizer of
R.(k, 6®), then we may sek,, 65" to achieve the min-

: o pn(t)dt < -
imum.) For simplicity, denoteL, (k,, #%+)) by L,. Then to an(/gme(kn))
for
2a*D )
t>ty = —410g 2 - (f”ﬁt’i;;;) vCi. to
N 2log2-1+4y D(f”fkn’g(kn))‘i‘%‘i‘Tn
we have <2a* - tp.

pu(t) =: PV ki, 05) > tR, (K, 0%))}

(t — 1))\k mi,
<PLy > n|tD(f|| i piny) 4 2 ks,
<p{Lz o[ 1Dl 000) " B Fy i) SV 6P) < ViR, 60))

n (t— DGy, 3}}

<tRpu(kp, %) < (1+ €)tR,(f)
n n

Now, from the analysis above

nt A, me, Oy with exception probability no bigger thap,(¢) + p,.(¢). That
<PLL, = " (DUfllfe g )+ e | YO )] ption p y no bigger thap,(t) + pa(?)
2 n n IS,
nt , 2
:P{Ln > —Rp(kn 9(’“”))}. dy(f, fi o)
- 2 ’ P ’ >t < qnll) +pnlt).
2 TR, 2 S 0O
For the last inequality above, we use the fact
ey = 4log 2/(1 = 47) et
2 o
for all £k € I'. Note also _ df((f’ fk): 9“")(})
) v 1+ e)R,
ERn(/fn, 9(’“”)) > Ak, M, > 2log 2'
2 2 1—dy then
Let oo
- EZ:/ P{Z >t} dt
Ln = LnI{an%Rn(kn,0<kn>)} 0 ,
and y < [Tatars [ pmas [
_ e (kn) 0 0 to
Sy = {Ln > 5 R, (k,, 0 )}. 85.6 )
< +tg+ 20" — 1o
Then fort > t, 1 —4dy
nt 856 420"
Sy = {Ln > ERn(knv g(kn))}' 11— 4y '
Now Because > 0 is arbitrary, by lettinge — 0, we conclude that
= = 1/ 856
pr(t) dt < Elg, dt 2 A il . .
/to (dt< | Ediy(f. fra0) S 572535 +22)BalD)
=E</ Is, dt) The choicey = 0.039 minimizes
to
i 4 15.4A,/T = 4y
:E#—to 12 10g< )
5 Rn(/fn, g(kn)) Y 8
1 at A;, = 1. The corresponding value @fis 0.0056, which is
=7 o) / - o Lr  used in Assumption 1. This completes the proof of Theorem 1.
b Ry (hon, 00)) L Zton Tt (ko 60000} Remark: In the proof of the theorem, for the (nearly) best
n modelsk,,, we just use the fact thdd(f|| ;. o)) is finite. If
H f(z:) dp = to
= l1og +——lec
Here Fien, 00
4 4log 2 4log 2 . L . : . -
tonRn(ky, 6y > 51 ‘20g1 yo Og4 is bounded (which is satisfied, for instance,ldfg f is in
s Tay i-dy a Sobolev ball, and the approximating models are truncated
> M - 16. polynomial, or trigonometric, or spline series, see [3]), we
~ (log 2)? can use Hoeffding's inequality to obtain exponential bound on
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the tail probability for these models. Then one can show thatFor eachS;, consider the following family of densities with

d3(f, f,;jé(,@) is bounded byR,(f) in all moments, i.e., respect to Lebesgue measuyre
Ed{(f, fr.50) = ORL(f)),  forallj>0. fi(x, 0) = exp <Z bipj i(x) — ¢j(9)>
i=1

The criteria in (2) can yield a criterion very similar to,hare

the familiar MDL criterion when applied to a sequence of m;
candidate densities. Suppose we have a countable collection b:(0) = log / ex 0.0: () | d
of densitiesg € I',,. The description lengths of the indices are vi®) 5 P ; ei.ile) ) dp

L(q) satisfying the Kraft's inequality is the normalizing constant. (If there is no restriction on

Z L@ < | the parameter$f,, -- -, 6,,,,), the above parameterization is

-7 not identifiable. Since the interest is on the risk of density
estimation instead of parameter estimation, identifiability is
Treat each density i, as a model, then Assumption 1not an issue here.) The model selection criterion will be used
is satisfied withA, = 1 and my = 1. Thus \ym; = !0 choose an appropriate model.

4/(1 — 4v) log 2 is a constant independent &f Therefore,  TO apply t.he re;ults in Sectign I, the models need to satisfy
when takingr = 9.49, the criterion in (2) is equivalent to the metric dimension assumption. For that purpose, we cannot

g€l

minimizing directly use the natural parameter spak®s. Instead, we
consider a sequence of compact parameter spaces
= " log fi(Xs, %)) + vL(q) ©;=1{0€R™:~L<log f;(-, 6) < L}
=1

where L = (L, L) takes positive integer values. We treat
overgq € I',,. This criterion is different from the MDL criterion €ach choice of©; ; as a model indexed by = (j, L).
only in thatr # 1. The corresponding resolvability given inThe following lemma gives upper bounds on the cardinality

our expression (3) is essentially the same as the resolvabili@nstantsA; r).
Lemma 1: There exists a constant

. L{q T _
inf {D(fllq) + Q} A(L, Ty Ty) = 28.92=2(2+ L+ L)e™/? +0.18
g€l n ’ T2
and me, Ly = m;.
Note in Lemma 1,A(L, 71, T») does not depend on the
lll. A PPLICATIONS number of parametersy; in the models. Sed; 1), remain
bounded for any fixed.. The proof of Lemma 1 is provided
A. Sequences of Exponential Families in Section V.

As an application of the theorem we develop in Section 1], In practice, we might consider many different “types” of
we consider estimating an unknown density by sequences!@galized basis which satisfy (5) and (6) for each type of
exponential models. The log density is modeled by sequen&é’§i5- For example, different order splines are useful when
of finite-dimensional linear spaces of functions. the §moothness condition _of the true function is unknown.

1) Localized Basis:Let S;, j € J (J is an index set) be a If ¢ is the order of the splines, the constafis, and 7 »
linear function space off), 1]¢. Assume for eachj € .J, there May not be bounded over all choicesfwhich leads to the

is a basisg; 1(x), ¢; 2(x), -+, 5, m,(z) for S; satisfying unboundedness .o\fqy(j, ). It is hoped that through the use of
the following two conditions with constant, and 7 not the model selection criterion, good valuesgofj, and L will
depending onyj: be chosen automatically based on data.
Assume for eacly in an index set?, we have a collection
i of models J; satisfying (5) and (6) withl}, ; and 7 ». Let
> bigg i) <T max |6 | (®) k= (j, ¢, L) be the index of the modelg;(z, §), 6 € ©,; 1,
=1 o0 j € J, g € Q, and letl’ be the collection of the indicek.
%9‘& @l > T 1612 ©) Let_ Ck_, kel be aCcompIexity assigned for the modeldin
v Rk , VT satisfying } ;. 7% < 1. B
Let Mg, L) = A(A(L, Ty 1, Ty,2)). It depends onL

Here ||||c and ||||; denote the sup-norm and.-norm, logarithmically, but basically linearly o, indicating quicker
respectively. This type of conditions was previously used Hfjcrease of penalty when density values may get closer to zero.
Birge and Massart [12]. The first condition is satisfied with ket & be the model minimizing

localized basis. The second one is part of the requirement that n .
@i1(x), i 2(x), -+, @i m,(x) forms a frame (see, e.g., [16, = log fi(Xi, 8M) + Xg, Lym; +9.49Cy.  (7)
ch. 3]) (the other half of the frame property can be used to i=1

bound the approximation error). It is assumed that 5. Then from Theorem 1, we have the following conclusion.
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Corollary 1: For localized basis models for the log densityhe second requirement follows from the frame property of

satisfying (5) and (6), for any underlying densify the B-splines. From Stone [39, eq. (12)]
Edg;(f, fi 500) < 2657Rn(f) il 2 il
| J{0=80)emust@) | oz 20 5 - 2
where i1 mia
Ra(f) = i%fgggjiélf {eei@n_f LD(f||fj,0) for some constant,, depending only ong. Thus the two
! )\](q Lym;  9.49C requirements are satisfied with, ; = 1 and 7, » = 7,.
+ ¢ Z)my 4 2Rk 1. Therefore, Corollary 1 is applicable to the Log-spline models.
n n

Let us index our models by = (m, ¢, L). We specify the
Corollary 1 can yield minimax optimal rates of convergenceodel complexity in a natural way to describe the index as

simultaneously for many nonparametric classes of densitiefows:

when the sup-norms of the log densities in each class are)) describel, = (L, L) usinglog} L + log} L bits

uniformly bounded (with the bound possibly unknown) and 2) describeq usinglog}; ¢ bits

the log densities in each class can be “well” approximated3) describem usinglog} m bits

by the modelsf;, ¢, j € J, for some fixedq. For such a e the functiorlog* is defined by

class of densities, wheh is sufficiently large, a sequence of

densities in®;, .« 1 for somej, and a fixeds* achieves the  log* i =log (i + 1) + 2log log (i + 1), forz > 0.

resolvability. With thesel. and ¢*, the penalty constants,

are bounded for the particular sequence of densities. SuitabRen the total number of bits needed to desciibie

assignment of the complexities might give G = O(my,),

then logs L +logy L+ logy q+logy m.

_ : : . my Thus a natural choice of’;. is
Bn(f) = OC i {, dnf  Dfllfs0)+750)

Cy = logh L +1logh L+1log* g+ log* m.
which usually gives the minimax optimal rate of convergence
for the density in the class. Assume the logarithm of the target density belongs to
Example 1: Univariate Log-spline models. W3 (U*) for somes* > 1 and U* > 0, where W3 (U) is
Let S, 4,(m > ¢) be the linear function space of splineghe Sobolev space of functiomson [0, 1] for which gt*—1) is
of order q (piecewise-polynomial of order less thah with absolute continuous anfj(g(5>(a:))2 dx < U. The parameters
m — g+ 2 equally spaced knots. Let s* and U* are not known.

(z) () (x) Corollary 2: Let f = f; 4z, be the density estimator with
Pm,q,1\T); Pm,q,2\L)y ** 5 Pm,q, m\T ];. selected by the criterion in (7) it

be the B-spline basis. Let . -
Mg, L) = 43.92 + 4.75 log (7(2 + L+ L)ek/?).

m q
fnl,q(xv 9) = €xp <Z eiwnl,q,i(w’) - wnl,q(9)> i B
Then for anyf with log f € W3 (U*)

=1
where Ed%{(f, f;;7é(ﬁ»>) <M- ”_[25*/(28*—'_1)1
Pm, ¢(0) = log / exp <Z 9i<pm7q7i(a;)> dpt. where the constand/ depends only ons*, ||log fl|- and
i=1 [I(log £)¢7]l2.

This corollary guarantees the optimal rate of convergence
for densities with logarithms in Sobolev balls without knowing
af? ands in advance. It shows that with a good model selection
criterion, we could perform asymptotically as well as we knew
the smoothness and norm parameters. This theorem demon-
Op.qr={0€ R": ~L < log fy. (-, 0) <L} strates an example of success of a completely data-driven
strategy for nonparametric density estimation. For similar
where L = (L, L), ¢ > 1, m > q all take positive integer adaptation results, see the references cited in Section I.
values. Each parameter spa#8g,_,  corresponds to a model. Proof of Corollary 2: We examine the resolvability
The B-spline basis is known to satisfy the two conditionsounds for the classes of density functions considered. To
(5) and (6). In fact, the sup-norm of spline expressed by Bo so, we need to upper-bound the approximation error for a
splines is bounded by the sup-norm of the coefficients (semod sequence of models. By [19, Theorems 5.2 and 2.1], for

To make the family identifiable, we assup&” 6, = 0. The
model selection criterion will be used to choose appropri
number of knots and spline order

Consider

[20, p. 155]), that is, log f € W§ (U*) and for eachn > s*, there exists
z; 9i<Pm,q,i(37) S 1I<ni(r?$n |91| g(-’IZ’, /3) = Z ﬁz‘(Prn,s*,i(x)
= o) -~ =1
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such that norm) basisl, ¢;, 1(x), - -, @;, m,(x). The finite dimensional
) families we consider are
log f = gll2 < 75w Il log™ ’ fll2 m;
m— s* 4 2)° .
( , ) fi(z, 0) = exp Z bipji(x) —v;(0) ), €
l1og f = glloe €~ |/ 10g®") fll; =
(m =57 42)770 where
where K and K’ are absolute constants. By Lemma 5 in the mj
appendix P;(0) = log / exp | Y bipji(x) | du
=1
log / ed du‘ =|log /fdu— log / ed du‘ is the normalizing constant.
In [3] (also in [12] and [13]), the supreme of the ratio of sup-
<|[log f = glloo- norm andL»-norm for functions inS; plays an important role

) ) in the analysis. For general linear spaces, we also consider
Let g = g—log [ e9dyu be the normalized log density frominis ratio.

g- Then The linear space§;, j € J we consider have the property
that for eachy, there exists a positive constalit; such that
[og f = glloo <||log f = glloc + ||log / e? duH
oo Alloe < K]R]2 ®)

<2||log [ — 9||co- .
< 2||log f =4l for all h. € S;. This property follows from the boundness and

Therefore, linear independence (undés-norm) assumption on the basis.
For the same reason as in Subsection 1), break the natural
19lloc < [[1og flloo +2[log f — gl parameter space into an increasing sequence of compact spaces
2K’ s* ms T -
< [|10g flloo + 110g®) fll2. O ={0€R™ : =L <log f;(-,0) <L}, L=(L L)

(m — s* +2)s" =05

he relati N ¢ and treat each of them as a model. Then for eaolie have

Eort e Le ative er;\trog)y appro?lrrr:_atlon erro_rr, I;om [3, Lemmg sequence of model§(z, 8), 6 € ©, ;. We index the new
1 (as shown at the bottom of this page). Take models byk = (4, L) and letI' be the collection of:.

Ly =Ly Lemma 2: For each modek = (j, L), Assumption 1 is
’ ’ . satisfied with
= M[log flloo+2K’/(m — 5 +2)* ~*?||log®") f||2] _
Ag, 1) = 28.92K;(2+ L+ L)eY? +0.18
(bounded forlog f € W3 (U*)) and L, = (L1, m, L2 m),
then A(s*, L,,) are bounded. Note also that,, .- r, Is
asymptotically negligible compared ta. Thus

and mg, Ly = m; + 1.
The proof of this lemma is in Section VI.
If an upper bound off log f||~ is known in advance, then

; A(s*, Ly)m  9.49C,, o 1, for eachj, we can consider only, = L = [||log f||s]- Then

R (f) <D(flle?) + n + n from Remark 3 to Theorem 1, the model complexity can be
o cousty | consty -m ignored. However, wher|log f||- is unknown, we would
=2 T n like to consider all integer values fdr and L. Then for each

model size, we have countably many models. To control the
where the two constants depend only o ||log f||e, @nd  gglection bias, we consider the model complexity.

||10g(5*) /ll2. Optimizing overm, we obtain the conclusion et ¢;, k € I’ be any model complexity satisfying
with the choice ofm of ordern!/(2s"+1), —Cr < 1. Let

2) General Linear Spacestnlike the localized basis that .
satisfy (5) and (6), general basis are not as well handled By, y = A(A(j, r)) = 43.92+4.75 log (Kj(2+L+L)C£/2)-
the present theory. Here we show a logarithmic factor arises o
in both the penalty term and in the bound on the convergerle@! # be the model minimizing

rate for polynomial and trigonometric basis. n .
Let S;, j € J be a general linear function spaces[on1]¢ = " log fi(Xi, 6%)) + A(j, yma +9.49C.
spanned by a bounded and linearly independent (udder i=1
: 1
D(f]le?) < 56"‘°g F=dllee s [[ flleo x [[10g f = gll3

K
K2 exp { (o g 108 Sl + 1o 1o
<

- 2(m — s* 4 2)%%

1105 /113
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Since the conditions for Theorem 1 are satisfied, we hal® j for both cases. Recently, Begdnd Massart [13] have
the following result about model selection for a sequence osed a theorem of Talagrand [42] to show that/f <

exponential families with a general linear basis. const /7, then their penalized projection estimator with the
Corollary 3: For the log-density models with basis satisfybias-correction penalty termonst (j/n) converges at the
ing (8), for any underlying density optimal rate. This result is applicable for the trigonometric

basis, but not the polynomial basis. Their argument can also be
2 ~ ~op i . . . . . . .
Edy(f, fk,0<k>) < 2657R(f) used for log-density estimation using a maximume-likelihood
where method with trigonometric basis to derive a criterion giving
} the optimal convergence rate.

A pyme  9.49C
)+ (j, L) k+ k
n n

R(y=int int {  int DU
Lies \0eOsn B. Neural Network Models

To apply the corollary for a density class, the approximation Let f
error infeee, , D(f|/fr,e) should be examined. Then the,, re

resolvability will be determined.

(z) be an unknown density function op-1, ]¢
spect to Lebesgue measure. The traditional methods
X to estimate densities often fail wherns moderately large due
Example 2: Polynomlal2 case. J . tothe “curse of dimensionality.” Neural network models have
Let 5; = span{l, z, z LR @'}, j 2 1. Thenm; = j.  paen shown to be promising in some statistical applications.
From [3, Lemma 6]/; = j+1. Itfollows from Lemma 2 that (a6 we consider the estimation of the log density by neural
A,y = 43.92+4.75log ((j + 1)(2+ L + L)eL/?). nets. _ ,
We approximatey = log f using feedforward neural net-
Take C), = log* L + log" L + log* j. For densities with work models with one layer of sigmoidal nonlinearities, which
logarithms in each of the Sobolev spadds (), s > 1, have the following form:
andU > 0, whenL and L are large enough, sa¥, L > I* N
(depending onJ and s), the relative entropy approximation _ (T ,
error of model(j, L) is bounded byconsty, 4(1/j%) (the gu(, 6) = 2 mig(e] w + by) 0.
examination of relative entropy approximation error is very
similar to that in Example 1 in the previous subsectior.he function is parameterized bg, consisting ofa; €
For details onL, and L., error bounds for polynomial R%, by, m; € R, for j =1, 2, .- k. The normalizing constant

=1

approximation, see [3, Sec. 7]). Thus 7o, 1S
. AG, @ end - 9.49C) k
el | DUl o)+ =0 == o = —log /[ e O {2 mdlafe ) ¢ o
< const L + j—log J o =
nsty s| - . . : i
- v j2s n The integerk > 1 is the number of nodes (or hidden
. . . units). Here¢ is a given sigmoidal function with|¢||.. <1,
Optimizing overj, we obtain that . ;
P 9 J lim, oo ¢(z) = 1, andlim,_._., ¢(z) = 0. Assume also
R, (f) < consty, , x (log n/n)?*/(2s+D) that ¢ satisfies Lipschitz condition
(since the infimum will produce a value at least as small |p(z1) — @(22)] < vi|z1 — 22], 21, 22 € R

atj = (n/logn)Y@*Y and L = (I*, I*). Therefore, the
statistical risk of the density estimator based on the ponnome
basis (without knowing the parametersandl/ in advance) is fu(z, 6) = exp {g(x, 6)}
within a logarithmic factofog n of the minimax risk.
Example 3: Trigonometric case.
Let

§; = span {1’ V2cos(2mz), V2sin(2rz), be the approximating families. The paramefiewill be esti-
\/§sin(27rja;)} j>1. mated and the number of nodes will be automatically selected
’ ’ - based on the sample.

Thenm; = 2j. From [3, eq. (7.6).K,; = v/2j + 1. Again The target class we are interested in here was previously

by examining the resolvability (fof., and L. error bounds Studied by Barron [5], [6], and Modha and Masry [29]. The

for trigonometric approximation, see [3, Sec. 7]), the sam@d densityg(z) is assumed to have a Fourier representation

convergence rates as those using polynomial bases canchéhe form

shown for densities with logarithms in the Sobolev spaces and T

satisfying certain boundary conditions. glx) = /Rd ¢
The risk bounds derived here using the nonlocalized poIXEat

nomial or trigonometric basis have an extiaz n factor

compared to the minimax risk. The extra factor comes in 5 :/ |wl1|d(w)] dw

because the penalty coefficieht in the criteria is of order

f some constant; > 0. Let v = max (v, 1). Let

k
= exp ndlaj x+b;) +no
i=L
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where so foré < pr, we have as-net in By (6*, r) with cardinality
bounded by
d
lwli = Z lw;] <2e(8vg¢k + pT))k(dH) <2(8v§ + pT))k
j=1 6 6

A k(d41) kdot2k
is thel; norm ofw in R?. For the target density, we assume — <w> <M> ( ) " .
sg < 5. Recent work of Barron [5] gives nice approximation r r o

bounds using the network models for the class of functio .

> 5.5/ =
with ¢, bounded and the bounds are applied to obtain gorcll):%r aranie?ter?%g :&?:le’jamfjg i]:):n}jésdtgs number
convergence rates for nonparametric regression. Modha a ind

Masry prove similar convergence results for density estima k(d+1) k

tion. In these works, the parameter spaces are discretized. ©16cucT, 16vc¢ 7 kd+2k
here intend to obtain similar conclusion without discretization T + 2¢ep T 2p (5)
Barron, Birge, and Massart [8] has similar conclusions with\ 5.5,/ - 5.5 7’“

neural net modeling of the density rather than the log density.
Consider the parameter space Notice that in order for the conclusion of Theorem 1 to hold,
the cardinality requirement in Assumption 1 only needs to be
checked forr > 5.5\/ms/n (see the remarks to Theorem 1
Ok, m,, ¢ =4 0 [ax, lajli < 7k, and after the proof of Lemma 0), and the weaker assumption
== is satisfied with

k(d+1)/(kd+2k)
max, |b | < 7% Z In;| < 2
’ 3.0 .
j=1 Apn =3 ST 2ep
i
The constantr, is chosen such that n
K/ (kd+2k)
dis (¢ sgn) = inf (24 sup [p(mz) - sen(2)] RLLLE
1S (@7, S8I) =: 0<1}%1/2 € |S:|lch TRZ) — sgn(z Ty P
1 n

< —.
vk < const X <7’k i—i—l)
\/ m

The compact parameter spaces are used so that the cardln\&%re the constant depends onlyoandc. As shown in [5],

) approaches its limits at least polynomially fast, then
there exist constant§; and 3, such thatr;, < k™. As a

assumption is satisfied. From [5, Theorem 3], for a log dens
g with ¢; <, there exists & € ©_ ,, . such that

4c, consequence,
g = grell- + £ —= 9)
(=72, 172] vk Ap. n < const x k%12 /n
where || - [|[— 31/2) ,1/24 denote theL,-norm for functions with the constant depending an ¢, and ;. By Theorem 1,
defined on[—3, 5]°. when we choose the penalty, = A(Ag ») andry, = 9.49

For simplicity, for the target density class, the upper bourid the model selection criterion given in (2), for the density
¢ on g, is assumed to be known (otherwise, an increasirgtimatorf; 4, we haveEd3(f, f) < 2657R,,(f), where
sequence of values can be considered and let the model
selection criterion choose a suitable one). Ru(f) = mf{ mf D(fl|fx.e) +

Now we want to show that Assumption 1 is satisfied for Or,mps
these models. For any> 0, ¢ > 1, from [6, Proof of Lemma
2], there exists a sé;, . -, such that for any € Oy, -, .,
there isf € Oy, . ,, . satisfying||gr(z, 8) — gr(z, 0)|ce <
8uge with

card (64, o) < (27 E2) e 219Y" o) = 90)| = | [ (7 = 1gte) o
o ) < /RR g do

1 N 1
* <5 [ lhla)a < g
B0, 7) ={0 € Op, ., c : du(fr, 005 fr,0) <7} C Oz s Rd

For the targeted densities, under the assumpgjor< ¢,
the log density is uniformly bounded (see [18, Lemma 5.3]).
Indeed, because

Takee = 6/8vs. Because
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it follows that distance and.; distance, namely||f; — f2||1 < 2du(f1, f2)
for any two densities, we have
19(0)] = ‘_bg / (9@ =9(0) g
3,30 . >
1 Ellg - glh < 2Edg(g, §) < 24/ Ed}; (g, §) < 104/ R,
< lg(x) = 9(0)] < 5¢5-
Let §(x) = §(x)I5x)>1/2) + 51{4(x)<1/23- Then pointwise
Thus we have in z, Ig — 3| < |g = g|. Indeed, they are the same ferwith
. . . 1
< — a0 0V < c.. g(x) > and the |nequal|ty holds whej(z) < § since then
l9(z)] < lg(z) — 9(0)] + [9(0)] < 54 32 = 3 andg(z) > L. Consequeny,

Then by [3, Lemma 1], for the target densities,

D(fl1fos) < consillo — gn ol 4 B / g-ildr < [ lg-gldr < 104/Erla).

for 6 € ©;, 5, .. So from (9) In particular,

1
inf D(f”fk 9) < COIlSt -

oo : F E / Gdr—1<E / g — 3l dz < 104V/R(g).

Note )\ is of orderlog A, = O(log (nk**2~1) = O(log n)

for k£ < n. Therefore, Now we construct a density estimator ffr Note thatf(z) =
2g(x) — 1, let
R, (f) <const <112f1 <% + hd + 2k log n))
= " " 24(z) — 1
) 1/2 flx) = —————.

< const’ C“Oﬂ (=) 2[9(37) de —1

- n
where the constants depend onc, and the choice ofp. Then f(a:) is a nonnegative and randomized probability den-
Together with Theorem 1, we have sity estimate (depending oX;, ¥;, Z;)i.;) and

2 P < e : /2.
Edy(f, f) < const, ¢ 4 (dlog n/n) / o )| do

Note that for the class of functions considered, the rate of

convergencezL is independent of the function dimension as in <E / |f(z) = 2g(z) + 1| dx
[5], [27], and [29]. .
+ FE / |f(z) —2g(z) + 1| dz
C. Estimating a Not Strictly Positive Density

An unpleasant property of the exponential families, log =2E / |9—§|d37+2E</ 9(z) dx — 1)
neural network models, or some other log-density estimation
g y < 416\/R,.(

methods is that each density is bounded away ftoon the

whole spac€0, 1]¢ (or [-1, £]9). If the support of the true _

density is only a subset d, 1]¢, the resolvability bounds Where the equality uses the fact that> 3. To avoid ran-

derived in the above sections are still valid. However, fatomization, one could take conditional expectatlonfomth

such densities, the approximation capability of the exponenttgispect to the randomness¥f, Y, ---, Y,, andZ, ---, Z,.

families may be very poor. Here we present a way to g&hen by convexity, the new estimator has no bigderrisk

around this difficulty. We get the optimal rates Iy with than f. From above, we have the following result.

localized basis while still using the resolvability bound. Theorem 2:Let f be constructed in the above way with
In addition to the observed i.i.d. sampl&,, X5, ---, X,, @ choice of the penalty constants satisfying > A(Ag),

from £, let Y1, Y5, ---, Y,, be a generated i.i.d. sample (in+ > 9.49, k € I, then

dependent ofX ’'s) from U[0, 1]¢. Let Z; be X; or Y; with

probablhty( , +) usingV; ~ Bernoulli (1) mdependently for /Bon(9)-

i=1, 712 T2henZ has densityy(x) = - 5(f +1). Clearly, / (e @)l dv < 416

g is bounded below fron. We will first use the exponential

models fi.(x, 6), # € Oy to estimateg and then construct a Becauseg is bounded below from0, g can be better

suitable estimator forf. approximated by the exponential families. ThegfRz,,(g) can
Let § be the density estimator af based onzy, ---, Z, yield a much faster rate of convergence compared/1,.( f).

using the criterion in (2) from the models I which satisfy We next give an example to show that for some classes
Assumption 1. Then wheh; andy are chosen large enough,of densities, with the modifications, the modified estimator
by Theorem 1 and the familiar relationship between Hellingachieves the optimal rates of convergencd.in
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Example 1 (continued)We now assume that Using linear approximation with the firgt basis functions,
the tradeoff between the (squared) approximation error of order
/(f(s Nx))? dz < 0o m~2s/4 and estimation error (say, under squatesgl norm)

of order m/n due to estimatingn parameters is optimized
for some unknown integes*. Note that the densities considwhen m is of order n%/(2s+4d) |t results in an order of

ered here are not necessarily strictly positive[@i]. n—[2s/Zs+d)] gn the total error. On the other hand, nonlinear
Let / be the estimator constructed according to the abogpproximations can be used. Here we consider the use of
procedure. Then we have sparse-terms approximation. Let
B [ I1(e) - f(@) do < 416v/Eo{o). oz, 6) =Y 01
il
From . . . S . .
where [ is a finite subset of integers indicating which basis
/(f(s*)(a;))Q dzr < 50 functions are used. Assume the coefficients in
it can be shown that log f=Y_ bii
¢ i=1
/((log 9 N2 dz < .
satisfy
Then from previous resuli,,(g) = O(n~=(%"/25"+1)). Thus ~
: D716 < o2 < 0.
B [ 1f(e) = f(@) o < euote 20 =

Then from [5], one can show that for eagh> 1, there exists

where the constant depends only ons*, ||f|l-= and %subset[(m, 4) of sizem such that

[ (f©¢)(x))? dz. Therefore, the density estimator converges i

Lq-norm to the true density at the optimal rate simultaneously ] Jé;

for the classes of densitieS(s, U), s > 1, U > 0, where 011(ng> [[log f = g1(, O16m,g))ll2 < T

G(s, U) is defined to be the collection of densities Wil||. ’

and the square integral of th¢h derivative bounded by/. for some constanfs depending only onc; and a uniform

bound on the basis functions. If one knd{m, g) and use

D. Complete Models versus Sparse Subset Models the corresponding basis functions to estimidg f, again

As in Section IlI-A, we consider the estimation btfg f by balancing the approximation error of ordfm and the

; . " timation error of ordem /n, one seems to get ordey+/n
n 4 usin n f linear . Traditionally, tf X .
on [0, 1]* using a sequence of linear spaces. Traditionally, to% the total error. This rate is much smaller thar{2s/(2s+d)]

linear spaces are chosen by spanning the basis functions ha = . ) o
. : : hens is small compared witldl. For applications, of course,

series expansion up to certain orders. Then use a model se 8— Lestion is how to find or a nearlv aood subset

tion criterion to select the order for good statistical estimatio "sq robably realistic to eiﬂgcg)that a ricg Should be a.1id

When the true function is sparse in the sense that only a s Ir'l sF()aIectin y such a s arsFe) subset Aps will be seen plater

fraction of the basis functions in the linear spaces are nee |8dthe analgsis when p can be I}nearl approximated

to provide a nearly as good approximation as that using a ysIS, og f y app

the basis functions, then a subset model might dramz;uioa'ﬂmynomIally well by the system, search_lng _for a goc_)d
%Xarse subset causes only an extra logarithmic factor in the

outperform the complete models, because excluding m P¥ ; ; .
(nearly) unnecessary terms significantly reduces the variabﬁf{xal risk bound compared to_that could be obtained with the
owledge of a best subset in advance.

of the function estimate. Analogous conclusions are in [21] using the idea of un-
We first illustrate heuristically possible advantages of sparse 9 9

subset models. Formal results are given afterwards conditional bases and sparsity indices. However, unlike the
Let & — {(}) é } be g chosen collect.ion of present analysis, Donoho’s treatment requires the basis pro-
= {1, -, Pr, -

uniformly bounded basis functions dfvariables. Assume that viding sparse apprpximatiqns to_ be orthonprmgl. Re"f""‘”g or-
thonormaility permits consideration of multivariai& splines,

log f = Z s trigonometric expansions with fractional frequencies, and neu-

i>1 ral net models.

Now let us give a formal analysis. For simplicity, assume

e linear spaces are nested, i§,.,C 5; for ¢ < j. Let S;

be spanned by a bounded and linearly independent (ubgler

norm) basisl, ¢; 1(x), @, 2(x), -+ @, L,(z). Let

can be linearly approximated polynomially well in the sensg
that there exist constants> 0 and¢; such that

: o e —s/d
Helf ||log f Z Bipillz < exm
=1 Lj
for all m > 1. Heres is possibly very small compared ty fi(z, ) = exp Oipj,i(x) —;(0) |
which implies that the linear approximation error may decay i=1
very slowly. 6 =(01, --0L,)€0;
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where overj € I',.Then from Theorem 1, the squared HeIIinger risk
of the density estimatoy; ;:;, from the selected model is

L; .
;(8) = log / exp Z@%,i(x) Ay bounded by a multiple of
=1 Ru(f)

is the normalizing constant. Including all of tlg terms, we — inf { inf DI o) + AL I 9.491log" j }
have dimensionn; = L;. We call such a model a complete Jeln (00)eo; ” n n
one (with respect to the given linear spaces) because it u]s_%§j be the optimal model which minimize&,(f)

Z:LéhgoajéiZZflthur;itl;c;r; :rr:sc;ﬁe?sn the other hand, we can Now consider the subset models. We have exponentially

many @77 to be exact) subset models from the complete model

4. To apply the model selection results, we consider choosing

f1,(z, 0) = exp Z iy, i(x) — 1, (0) |, teOr, an appropriate model complexity. A natural way to describe a
icl; subset model is that first descriethen describe the number
of termsmy; in the model, and finally describe which one it

is among(nf;'_) possibilities. This strategy suggests the choice

of complexity:

where

¢Ij(9)=10g/exp > bigj i) | dp I
el Cr, =log" j+log L; +log <m] )
and I; C {1,2,..-, L;} is a subset. We next show the B o ’
possible advantage of considering these subset models throligke Ar, = A(Ay,). Let j and ] = I5 be the minimizer of
the comparison of the resolvability for the complete models "
with that for the subset r_nodelfs. o _ _ _ _ _ Z log f1,(Xi, é(fj)) + ALmy, +9.49C),
Suppose that Assumption 1 is satisfied with dimensionality P
constant4; and dimensionL; for the complete models and .
with A7, andm;, for the subset models, where;, = |I;| over (4, I;) € I'n. Again from Theorem 1, the risk of the
is the number of parameters in modgl We also assume density estimatof; ;7 from subset selection is bounded by
that there exist two positive constants and 3, such that a multiple of

Ap, < /Jle"’z for all the subset models. To satisfy this
requirement, we may need to restrict the parameters to compact g, (f) = inf {inf inf  D(fIIf, 4on)
spaces i€l | L | eWeer, I
O1,.1 = {61 B [log 1 (- )| < L} L Aumi 9490, }}
n n

for a fixed valueL. Then from Lemma 2, this condition is
satisfied ifX; in (8) is bounded by a polynomial df;, which A related quantity is

is the case for polynomial, spline, and trigonometric basis.
(When ||10g floo < oo but no upper bound offi log f]|ec ro(f) = inf inf max it DI, ). mr;
is known, increasing sequences of compact parameter spaces Jjeln I o coy, > n

could be considered and the condition could be replaced b}/]_ ] ]

Ap < /31,LLj’82: wherep,  is allowed to grow inL. Then w |c_h is roughly the |deal_ be;t tradeoff between the approx-
similar asymptotic results hold.) imation error and the estimation e;r_or among all the subset
For a sequence of positive integeds, T oo, let I, = Mmodels. Lety,, I* = IJ* andd, = 6" be the minimizer of

{j: Ly < NyandT, = {(4,;): L; < N, and 7.(f).deally, we wish the density estimatgy ,-, converges

I  {1,2,---, L;}}. For each sample size, the list of atthe same rate ag(f). But this may not be possible because
the models we consider is eithEf, (complete models) aoF,, so many models are present that it is too much to hope that the
(subset models). In our analysis, we need the condition thi&elihood processes behave well uniformly for all the models.
N,, grows no faster than polynomially in to have a good We compareR,(f), R.(f), andr,(f) in the next proposition.
control of the model complexities for the subset models. This Proposition:

restriction is also reasonable for the complete models becausg) The resolvability for the subset models is at least as good

usually a model with the number of parameters bigger than  as that for the complete models asymptotically. That is,
the number of observations cannot be estimated well. -
For the complete models, the model complexity can be Tm, oo Ba(f) <1
taken asC; = log* j. Let \; = A(4;). Let j be the model Ro(f) ~
minimizing 2) Let N,, < n* for some positive constant. Then the
n - resolvability for the subset models is withinlag »
= log £;(Xi, 69)) + N L; +9.49C; factor of the ideal convergence rate(f). That is,

i=1 Ro(f) = O(rn(f) log n).
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3) With the above choice oWN,,, the improvement of the is large because exponentially many coefficients need to be
subset models over the complete models in terms eétimated even if is small. The subset models are
resolvability is characterized by how small the optimal
subset model size is compared to the optimal complete

model size as suggested by the inequality f1;(z, 8) = exp Z Oipi(x) =11, (6)
i€l
Ra(f) <mz* )
=0 —1logn]}.
Ro(f) L, g where
The proof of the proposition is straightforward and is
omitted here. ¢Ij(9):10g/exp Z%@(@ dp
The ratio o, = 7~ describes how small the (ideally) el

optimal (in the sense that it gives the resolvability) SubSghqr,  {i : |i| < j}. Assume Assumption 1 is satisfied with

model size is compared to the optimal size of the comple}f < 3 N d di . — i for th let

models. We call it a sparsity index for sample sizeThe 7 = pu(5) _ and dimensiofve; = j= for e compliete
parsity P models and withd;, < 31(;4)% and dimensiomny, = |I;]

obtained mequaht;i for the subset models for some positive constahtand 32
R.(f) (as stated before, satisfaction of this condition may require
R.(f) suitable compactification of natural parameter spaces).

- <
shows that ignoring the logarithmic factrg n, the sparsity Assumel|log flloo < M,

index characterizes the improvement of the index of resolvabil- log f(z) = Z 07 ¢i(x)
ity bound using the subset models over the complete models. .

Even for one-dimensional function estimation, the sparse )
subset models also turn out to be advantageous in sevé@ng the coefficients satisfy the following two conditions for
related settings such as the estimation of a function wig®me positive constantl, M3, and s:
bounded variation using variable bin histograms, and the

< O(ay, log n)

estimation of a function in some Besov spaces using wavelets Z 61 < Mo (10)
(see [8] and [23]). For high-dimensional function estimation, L
there are even more advantages in considering the sparse
subset models.
Example 4: Sparse multi-index series. Z 0 pi(x)|| < VMsj?, forall j > 1. (11)

Let: = (71, ---, 14) be a vector of integers. Consider a li]>j
multi-indexed basis

{ei(w): i = (i1, -+, ia) €{0, 1,2, - 1%}

on [0, 1]¢ with ¢;(x) uniformly bounded. Here the basis could

2

If the basis is orthonormal, then (11) is

> (65) < Msj=.

be a tensor product basis lé1>
d Let F(M;, My, M3, s) be the collection of the densities
oi(z) = H% (x) satisfying the above conditions.
B =1 Let
produced from a one-dimensional basis gj(x) = Z 07 pi(x)
{800(37)7 901(37)7 <P2($)7 t } li1<d
Another multi-indexed basis is be a good approximator dbg f in the modelj. Then the

. . . . d complete modej has an approximation err¢idog f—g;|3 <

{sin (27(¢ - 2)), cos (2m(¢ - 2)), 2 € {0, 1, 2, -} Msj5~25. Using the same technique used in Section IlI-A ([3,
Let |i| = max;<q ;. The complete models are Lemma 1] is still applicable becausy,||. is bounded), it
- can be shown that the resolvability for the complete models
is of order (log n/n)?*/(25+d),

Jila, ) =exp | Y bigi(x) —1,;(6) Now consider the approximation error for the subset models
lil<J from the complete model. From [5, Lemma 1] we know that
where there exists a constarft; > 0 (depending only onl{; and

Ms5) such that for anyl < m < j — 1, there is a subset*

AN T o (depending onf) of size m and some parameter valué_s
05(6) =1os [ exp > i) | o (dependr
=
5 B3
and the model dimension i&; = j¢. These models often |lg; = Z Oipill3 < m

encounter a great difficulty when the function dimensifn el
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Then the approximation error af;- = > 9;% is number of hidden layers and estimating the discretized values
el of the nonlinear parameters is equivalent to selecting the basis
functions among exponentially many possibilities.
llog f — gr-|3 < 2l[log f — g;l13 + 2llgr- — 9513 g &p y many p
2M3 = 20
< 2 + et IV. PROOFS OF THEMAIN LEMMAS

We now state and prove Lemma 0, which is used to prove
Take j of ordern!/4 andm of ordermin (n'/**, n'/2), we Theorem 1 in the main section.
have [|log f — gr+|[3 < const - n~1/2, where the constant |et f be the true density function, anf{z, #), 6 € © be
depends only orl/;, M», andM3. The corresponding modela parametric family of densities. For> 0, let Bo(f, ) be a
complexity is Hellinger ball in©® aroundf (f may not be in the parametric

; j family) with radiusr defined by
log* 7 +log(j log =0 dlogn).
og” j +log(j*) +log <m> (\/7_1 0g ”) Bo(f,7)=1{0:0€ 0, du(f, fo) <7}

Again, with the technique used in Section llI-A, the resolvabil- | et P* denote the outer measure of probability meastire
ity for the sparse subset models is seen to be within a multipga some measurable spaée, G) whereXy, ---, X,, are de-
(depending only oMy, M», Ms, s, 31, B2) of \/d log n/n. fined. Outer measure is used later for p055|bly nonmeasurable
The resulting rate of convergence of the resolvability bourséts of interests.
is independent of the function dimensidnand is better than  Lemma 0 gives an exponential inequality which is used to
(log n/n)?/(2s+4) from the complete models whezs < d  control the probability of selecting a bad model. The inequality
(when 2s > d, the resolvabilities of complete models andequires a dimensionality assumption on the parametric family.
subset models are of the same order). This type of assumptions were previously used by Le Cam
To achieve the rat@(«/dlogn/n) suggested by the re-[26], Birgé [10], and others.
solvability of the sparse subset models, we use the followingAssumption 0:For a fixed density/, there exist constants
criterion to select a suitable subset. Choose the médel A > 0, m > 1, andp > 0 with p < A (4, m, andp are

(7, _77,) minimizing allowed to depend orf) such that for any > 0 andé < pr,
there exists &-net Fs for Bg(f, r) satisfying the following
-3 log 1 (X, 699) + A, requirement N
i=1 p card (Fy) < <%)
9.49 <10g* j +1og (5¢) + log < J ))
+ mi; Lemma 0: Assume Assumption O is satisfied with >
n 0.13v//T =4y for some0 < v < 1. If
where () is the maximum-likelihood estimator ang, = i3 .4 Lo <15.4A\/1 - 47)
A(Ar). Denote_f; by I andé %) by é for short. The density m~— 1—4dy 5
estimator is thery; 4. By Theorem 1, we have the followinghan
conclusion. N
Theorem 3:For f € F(Ml’ My, M3, s), f[he der_15|ty esti- P+ for somed € ©, 1 Z log f(X,0)
mator f = f; 5 converges in squared Hellinger distance at a p} JF(Xe)

rate bounded above by/d log n/n uniformly. That is, ¢
2 =i (f. fo) + 5}

(1—47)5)_

where the constan{ depend only onMy, M, Ms, s, (1, 8

and fs. Proof of Lemma 0:We use a “chaining” argument sim-
Note the model selection criterion does not depend dar to that used in Birg’and Massart [11], [12]. For related

M., M,, M3, s. Therefore, the procedure is adaptive for thtéechniques, see [43] and [46].

families F'(M;, My, M3, s), M1 >0, My >0, M3>0, s>0. We consider dividing the parameter space into rings as
The subset models considered here naturally correspondatows:

the choices of the basis functions in the linear spaces to include ) 13

in the models. The problem of estimating nonlinear parametéPs = ¢ € ©: di;(f, fo) < ﬁ}

can also be changed into the problem of subset selection. In { oi— 15

0 € 6:

dlog n

sup By (f, ) <[ —
FEF(My,Ms,Ms,s) < 15.1exp <_

Section IlI-B, we estimated linear and nonlinear parameters ,; =
the neural-network models. A different treatment is as follows.
First suitably discretize the parameter spaces for the nonlindden®; is a Hellinger ring with inner radius;_1, outer radius
parametersz and b. Treat ¢(a”x + b) as a basis function r;, wherer; = 2¥/2rq for i > 0, r_; = 0, andry = \/¢/n.
for all the discretized values af and b. Then selecting the We first concentrate o®;.

< dy(f. fo) < 215}, i=1,2, ..
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Let a sequenced; | 0 be given withéy < pro, then so we have
by the assumption, there is a sequengg Iy, Iy, --- of

60/2, 61, - -- nets in©; satisfying the cardinality bounds. For =~ _ . ‘ — oy g
eachd € ©;, let g <P for somed € ©;, £o(6) + ; (£;(0) — E¢;(0))

7;(#) = arg min |[log(fe/ fe')lleo
oSk vy, fo) S
be the nearest representoréin the net#;. Denote
1 & X, 10(6
() = — > log L% @) f()?)( ) L
i=1 ‘
+ P{for somef € ©;, £,(0) — E£;(8) > n;
g/,(e):l Zlog f(Xi,Tj(e)) Jz::l { J( ) J( )_771}
J n im1 f(Xi,Tj_l(e)) oo
- =4y o,
Then becausim; ... f(z, 7;(0)) = f(z, 8), it follows that =1

< P*{for somed € ©;, £(0) > —2yr? + & 6}
n

1 & X;. 0 0 wheren;, 7 > 1 are positive numbers satisfying
- > log f}(X{)) =Lo(8) + > 4;(6) ! -
= = > oy i (12)
Let i=1
- ‘ . f(Xi, 0) To bound qfl), we use a familiar exponential inequality as
=P {for somef € ©;, (1/”);1% F(X)) follows (see, e.g., [4] and [15]).
¢ = Fact: Let g; and g be two probability density functions
—vd%(f, fa) + —} with respect to some-finite measure, then iK; X,, .-+, X,
" is an i.i.d. sample frony,, we have that for every € R

then because

} <e —(n/2)(d% (91, g2)+1)

T, 0(6) { Zl
; EL(0) = —E log =5

From the above fact, we have that for edghe Fj

{ Zl Xi, 0) —2y7 +%—6}
< exp <_§(d%{(f7 f@o) _277224_ % _6}

X 0
> E log % vy (f, fo) + %} < exp <—g (ri_y — 2yr? + % - e}.

we have

qi :P*{fOI' somed € ©,, Zo(ﬁ) + Z (ZJ(H) - EZJ(H))
J=1

For 8 € Fo, considerBs, —: {0: 6 € ©;, mo(8) = fo}. For Note that for every, € Iy, £o(6) is the same for ab € By, .

an arbitrarye > 0, choosef, € By, satisfying Thus by the union bound

E log JXb0) o yp g log I b) | 0" SP( U {fo(%) > =297} + % - e})
(X, 0p) — 6€Bs, f(X1, 0) 8o €Fy
N _ N n 3
Then letFy = {fo: 6o € Fyp}. By triangle inequality,Fy is a <card (£p) exp <—§ <7’3_1 — 291} + o 6))

bo net in ©;. Now replacely by F, and accordingly replace _ _
T by 7. For convenience, we will not distinguisy from r,. Because: > 0 is arbitrary, we know
Notice that foré € By,

) S _ (2)
£ log F(X1, 70(6)) ¢ < card(Fp) exp < 2< i) 277 + )) +Z &
f(lee) N f
_ - f(Xy, 10(8)) - f(X1, 6o) ote for¢ > 1
=F 108 _f(Xl—, 90) + E 108 f()(l7 9) 7)2 277)2 N 5 . 2i—1£ 2,}/21‘5 N 5
f(X1, o) f(X1, o) T n
> — ,mf Elog ———F+—¢c¢+Elog ———~
>_:€ L) f(lee) f(lee) >(L+1)(1—4’7)§
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and fori = 0

£

: (1—47)5

= 2yri 2 = §
n

1-29)=>>
( ’Y)n_
SO

2

¢; < card (Fo) exp <-M) + Z q

2 .
j=1
Now because
- f< - 1<9>>H <H1°g 160l
+ ||log FC, 710 ]| o
<61+ 06
<2651
we have
log f('vTj—l(e)) E log f( TJ N <461 1.

Observe that; () is the same for alb such that
(75-1(0), 75(8)) = (81, 65)

for any pair(8;_1, 6,) € Fj_1x
inequality (see, e.g., [31, pp. 191-192]), we get

Z q(2) < Z card(F;) - card(F;_1) exp <—
() <i—?)’" o (-55)
2(5) G

Given¢, v, A, m, n, we choose the sequenggn; as follows.

First, &, is chosen such that

S Arg\™ (1 —dy)¢
log <60/2> = 2 .

j > 1is chosen such that

Similarly, eaché;,

o <A5—> _ G-

and#n;, y > 1 is defined such that

2 .
ni; o 25+ DI —4y)¢
857, =(log 2)mi + 1

n (i+1)5 (81 —47)5

With these choices, the bound gpbecomes

A2i/2 i+ 1)(1—4
4 < exp <mlog 6/270_ (i + )(2 ’V)ﬁ)

ro loe A2i/27,0
o2 " 51

2i/2

2
+ exp <m log — %)
0

5"

I}, together with Hoeffding's

7177]2»
882,
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& A212, il
+ Z exp | m log "t mlo — 727]
8 8054

j=2
< exp <10§ 2mi i+ 1)(111 - 47)§>

N EEDIE

N i oxp <_(z +1)j(1

Jj=2 8

‘ A2i/27,0
(5j_1

—4v)¢ )

1

o (2T

exp <_(i+1)(;—4’7)£)

V2 i+ 1)1 —4v)¢
(10 ) o (220 02)
For the third inequality, we need

<|1+

which is satisfied if
4 2A
2 i-a) %,
with p < A. The last inequality follows from
(i 4+ 1)1 —4v)¢ S log 2'
8 - 2
From our choices oby, ¢;7;, it follows that

bo =2Arg exp <—%)

GO sy
m

m =241 —4vV/3i + 9% exp <—%) (13)

6; = Arg exp <—

and forj > 2 see the top of the following page. It remains

to check whethep, < pro and whether

o>
> omp <ar?
=1

as required in (12). Indeed,

5 1) <24V T= 5 VATFOE o (~L520%)

4m

201 47)5)

8m

_(A—4v)¢
(1 —<4’Y)§§m )

exp<
+A\/1—4fy\/i+5%

1 —exp

SA\/1—4’V\/'Z+5% exp <—

4dm
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0 =6, Mg(log 2y ™, 2O+ D E (4150~ )¢

n
A DA = dn)E | 225+ DA = 47)E ( 1)j(1 —4v)¢
S0 n n n
<A\/1—4’7\/2L+OJ+LJ+4—6XP< J1_4,7 )
<A\/1—4’V\/L+o\/J+2§exp < %)

<AVI-TVits > e <%(j+1)—‘%)

<A1 -4y +o—exp< %)

1
2V3 +
—exp | —
8m
<23y Y2 Vayimdvitst
V2 - n
- exp Gﬂ)
4m
— 4
<6884 /1= B Vi3S exp <_(147’7)5>_
n m
Thus for
> omp < r?
j=1
to hold, it suffices to have
— 4
6.884/T— 47 vi 155 exp <_(147’V)5>
n m
<rf= ’y2i§.
n

Using 2¢/+/i + 5 > 1/+/5 for 4 > 0, it is enough to require

¢ 4 15.4A
= > : -4
m_1_4fylog 5 V1—4~
e
Tl 4y 8

where p = 2v/15.4\/1 — 4.

Finally, we sum over the rings indexed by

1 « f(X:,0)
P*<{ for somef € O, — log ———=
{ n Z 5 f(Xi)

=1

(14)

> iy, Jo) + %}

= I~ f(X;,6
< Z P {for somed € ©;, - Z log
=1

=0

> iy (f, Jo) + %}

- V2 (i + DA = 47)¢
S ; <1 + ﬁ) exp <—#>
(1- 47)5)

\/5 exp <— 3
1
: < " ﬁ_1>1_exp =y
< 15.1 exp Gﬂ)_
8
From (13) and (14)
o _a-ane B
o = 2A4e < 24 x ﬂ P

as required. This completes the proof of the lemma.
Remark: From the proof of Lemma O, it is seen that the
requirement in Assumption 0 needs only to be checked for

r > /[ilog 2/(1 — 4)](m/n)

for the exponential inequality to be valid.

Proof of Lemma 1:We first show the Hellinger ball is
contained in somé, ball. Then for thel, ball, we provide
a suitableé-net satisfying the cardinality bound. A similar
calculation is in [12].

Becausel € S;, we have

my

1= Z ni¢j,i()
=1

for somen € R™J. Then the log density may be written as

my

=" Bipji(@)

=1
where 3; = 6, — v;(6)n;. For any#, 6* € ©;
fj(xv 9*)

so from Lemma 4 in the appendix

log f,(x, 6)
L+L

L-I—L

Erlfoer o) > / Jor (log fo — log f5)?d

L—|—L



114 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 1, JANUARY 1998

> My, /(log fo —log fo)?da Clearly, s i; a 6—.ne_t for _densities inB, (6%, r). Thus As-
sumption 1 is satisfied with
M T2 rnj .
>= 2Ry (B8 G
7 =1 Ay = 34/ 27e ML IZ +2p% ).
where
oL+T From Lemma 5
My = A L E) - 1
pa(ektr) Mp>——oo
; ; P T (24 L+ L)%k
and for the last inequality, we use the frame assumption in =
(6). Therefore, for any* € Q; 1, SO

N ~ « m;r 2
(0 B 2T
B;(6 77)CBJ</3 ) MLT22> Ap < 34/ 2me? x 51212+\/27r62><2p2
MpT5

2
={B:BeR™, |- < L
{s:erm o= < P
The inclusion above refers to the functions represented by the
parameters) and 3. Now we want to find a suitablé-net With p = 0.0056.

on B(B*, V/m;r?/M; T3 ). We consider a rectangular grid 1Proof O(f Igemm? 2):We COfTSId(EEf )airL %rfhoCeotrm}al _ba—
spaced at widthe > 0 for each coordinate. If3 belongs 0 Pi 1) Pa 200 Py 7 p =

to a cube with at least one elemepit corresponding to l(<€11c;v€2t7h'a;t' }Oernghz/;]é(ezz EFrgm the proof of Lemma 1, we
6 € B;(6*, r), then ’ ik

11 - L
< 28922 (2+ L+ L)e? +0.18
5

18 = B*(1> <2018 - 811> + 2118 - BII? A3 (fo-, fo) > My, /(log fo —log fo)? dz = M||B||>.
< 2m,r? o2
=ML T2 T amger. Therefore,

Thus all the cubes with at least one elemenBiy(6*, r) are . . 1
included in B;(53*, 7) where By(6%, r) CB; </3 ; ET)

_ 2m. 12 _ . m;+1 — 32 < i 2
7= /MLJT22+2mj52_ {/3. B ER B =677 < ML7 }

Therefore, the number of these cubes is bounded by The inclusion above is meant for the functions that the
5k — M5 parameters represent. Similarly to the counting argument in
Vol (Brsf 7)) = (%/f) ! the proof of Lemma 1, a rectangular grid spaced at width

e 1“(71 + 1)5’"3‘ 6/K;+/m; + 1 for each coordinate provides the desifedet.

The cardinality constant

< 1 2mer "
- /T \ /6 ' 2K?
~ ~ Agjpy = 34| 2me? | — +2p?

From (5), for anyg and g corresponding t&@ and @, respec- Mr,

tively, in the same cube, we have < 28.92K;(2 +L+Z)C£/2 +0.18

log fo —log f3lloc £ max Ji—§i§Ts. .
[[og fo 8 Jilleo = 1<i<my; 1B: = i ! for p = 0.0056. This completes the proof Lemma 2.

Takee = ¢/11, then||log fo —log fj]lcc < 6. FOré < pr

APPENDIX
_ 2m;T? 5 . .
TS T2 + 2p°. Lemma 3: Assume f and g are two probability density
L22 functions with respect to somefinite measureu. Lets > 1
Now, for each cube that intersects wih) (5*, 7), choose a be any constant, then
parameter3 that corresponds to a probability density function

and let 5 be the collection of the corresponding densities. / flog idu < a(s)D(fl9)
Then {f/92s} g
2 " where
271'62 <£12 + 2p2>7,
By < — Mrds als) = _ logs
Bl s - . TRt

Also, «f(s) is decreasing irs for s > 1.
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Remark: The best available bound with= 1 is To prove the other inequality, we consider the following parts
f of D(pllg) and d3;(p, q):
/{f/ - flog Edu < D(fllg) + v2D(flg)-
- . D(pIIQ)=/ p<10g£+g—1> dp
Here we avoid the square root with> 1. Note a(s) — 1 {a>p} 9 p
ass — oo. Improved bounds of the forr((c/s?)D(f]|g)) Prooe? 11_PY)y
are possible under the conditienr (log (f/g)) < ¢D(f||g). + T A
L o {a<p}
Here we have chosen to avoid higher order moment conditions 2
on the logarithm of the density_ratio. Hence no uniform talil d%(p,q) = / p< q7_ 1) dp
rate of convergence to zero exists. {g>p} p
Proof of Lemma 3:We consider a familiar expression of D 2
the relative entropy +/ q( — - 1) dp-
. ; {a<p} q
D(fllg)I/ f log Edu Forp < ¢
f g ) P4 < q )2
= log=+=-1}d log=+=-1<2 =—1
/ f< PR : ¢ P
:/ f<10gi+g—1>du SO
{f/gZS} 9 f P q q 2
f g / p<10g—+——1>du§2/ p< ——1) dp.
+ fllog =+ 2% —1)dp. {a>p} q p {z>p} p
(#/9<3) 9 f
Forp > ¢
_Becaqse(log(f/g) + (¢/f) —1) = 0, to prove the lemma, P log 2412
it suffices to show b <Q> g logy p
- 2
q
10g§§a(s)<log§+§—1), f0r£23. (vp/q—l)

This follows from the monotonicity ofx(s), which can be Is increasing inp/g. It follows that

shown from simple calculation. This completes the proof 07 q<£ log Poq_ g) i
{a<p} q

the lemma. q q
Lemma 4: Let p andq be two probability density functions 1
with respect to some-finite measureu. If p(z)/q(z) <V log Vi+ 4 -1 7z 2
for all z, then S T2y / < i 1) dp
, og” V {a<p} q
1 (V) /p<10g g) dp < D(p|lg) < d)g(V)d%{(p,q). Combining the integrals together, we conclude
ViegV +1-V
where D(pllg) < g—g d3(p, q),
¢(V)_logV+(1/V)—1> 1 (\/V_l)
1 - 2 = .
log™ V Z2+logV which completes the proof of Lemma 4.
and Lemma 5: h; and hy are two functions on0, 1] satisfying
h h H
ViegV +1-V JeMdu < oo, [ e*dp < oo, where i is the Lebesgue
$2(V) = 57— < (2+log V). measure. Then
(\/V - 1)
) o log / e dp — log / el du‘ < |1 = h2||so-
The above upper bound on the relative entropy is in [12,
Lemma 5]. Proof of Lemma 5:
Proof of Lemma 4:We note
» . ) e J ) he J ) (e(hl—hz)-l-hz J
D(pIIQ)z/p(logng]—J—l)du- Og’/e " Og/e a Og/ [ edn
h2
It can be shown from calculus that > (eh—he
> [ logehm) T o
log 2+ (1/2) -1
¢1(z) = loa2 > —||h1 = holloo
og” w

by Jensen’s inequality. Similarly,

log/eh1 du—log/ehz dpe < ||h1 = hal|oo

which completes the proof.

is decreasing orj0, oo), which implies

1
IOgV—i-V—l p 2
— v log = ) du < D(p|lg).
oV /p(ogq> 1< D(pllq)
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