
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 1, JANUARY 1998 95

An Asymptotic Property of Model Selection Criteria
Yuhong Yang and Andrew R. Barron,Member, IEEE

Abstract—Probability models are estimated by use of penalized
log-likelihood criteria related to AIC and MDL. The accuracies
of the density estimators are shown to be related to the trade-
off between three terms: the accuracy of approximation, the
model dimension, and the descriptive complexity of the model
classes. The asymptotic risk is determined under conditions on the
penalty term, and is shown to be minimax optimal for some cases.
As an application, we show that the optimal rate of convergence
is simultaneously achieved for log-densities in Sobolev spaces
W

s

2 (U) without knowing the smoothness parameters and norm
parameter U in advance. Applications to neural network models
and sparse density function estimation are also provided.

Index Terms—Complexity penalty, convergence rate, model
selection, nonparametric density estimation, resolvability.

I. INTRODUCTION

W E consider the estimation of an unknown probability
density function defined on a measurable space

with respect to some-finite measure . Let
be an independent and identically distributed (i.i.d.) sample
drawn according to . To estimate , a sequence of finite-
dimensional density families are
suggested to approximate the true density. For example, one
might approximate the logarithm of the density function by
a basis function expansion using polynomial, trigonometric,
wavelet, or spline series. For a given model, we consider the
maximum-likelihood estimator of . Then a model
is selected by optimizing a penalized log-likelihood criterion.
As we discuss below, there are a number of criteria of this
type including those proposed by Akaike [1], Rissanen [34],
Schwartz [37], and others, where the penalty involves the
parameter dimension and/or the model complexity. Here we
are interested in understanding the accuracy of the density
estimate . As in Barron and Cover [4], the
accuracy can be related to an index of resolvability expressing
the tradeoff between the error of approximation as measured
by the relative entropy distance betweenand the family

and the complexity relative to the sample size. However,
the work in [4] is restricted to criteria with a description
length interpretation. Here we consider more general penalized
likelihood criteria. We relate the risk of the density estimator
to an accuracy index (or index of resolvability) expressing
the tradeoff between the relative entropy distance and the
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dimension of the parametric families. The penalty term is
proportional to the dimension of the models (in some cases
without a logarithmic factor) thereby permitting an improved
accuracy index and smaller corresponding statistical risk in
some cases.

The present paper presents two types of results. First resolv-
ability bounds on the statistical risk of penalized likelihood
density estimates are given that capture the tradeoff discussed
above. These bounds are valid for each densityand each
sample size. Secondly, we show how such bounds provide
a tool for demonstrating nonparametric adaptation properties,
specifically minimax optimal convergence simultaneously for
multiple function classes. We do not attempt to cover all cases
that may be of interest, rather we give representative examples
involving adaptation to unknown order of smoothness and
norm in Sobolev spaces by spline selection and adaptation
to function classes that represent sparseness by Fourier and
neural net methods. In the remainder of this section, we
review model selection criteria for function estimation, we
discuss the form of the criteria studied here and the separate
roles of parameter dimension and model complexity in these
criteria, we review issues of log-density estimation and sieve
estimation, and we discuss other work on adaptive estimation.

Sequences of exponential models are previously considered
for density estimation by Barron and Sheu [3], Cencov [14],
Portnoy [33], and many others (for a detailed review on this
topic, see [3]). In [3] it is shown that the relative entropy
(Kullback–Leibler distance)

converges to zero at the optimal rate for den-
sities whose logarithms have square-integrable derivatives
when the model size is chosen according
to a presumed degree of smoothness. Stone [40] obtains
similar results for log-spline models. Stone [41] later develops
convergence rates for multidimensional function estimation
(including density estimation) using tensor products of splines
with a given order of interaction. The convergence rates are
also obtained with presumed knowledge of the smoothness
property of the target function. More recent results in this
direction include [12] on minimum-contrast estimators on
sieves and [46] on convergence rates of sieve MLE’s. These
results are theoretically very useful but are not applicable when
the smoothness condition of the logarithm of the true density
is not known in advance. In practice, with the smoothness
parameters unknown, it is desirable to have a statistical pro-
cedure which can automatically adapt to the true smoothness.
That is, we wish to have a single estimator which behaves
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optimally for each smoothness condition, yet the estimator
does not require the knowledge of true smoothness in ad-
vance. For density estimation, [24] considered estimating a
density having a Fourier representation satisfying a certain
smoothness assumption with smoothness parameters unknown.
He proposed certain projection estimators and showed that
the estimators converge at the optimal rates without knowing
the smoothness parameter in advance. In later years, Donoho,
Johnstone, Kerkyacharian, Picard, and others advocated the
use of wavelet subset selection in both nonparametric re-
gression and density estimation (see, e.g., [22] and [23]).
For orthogonal wavelet expansion, subsets are selected by
thresholding wavelet coefficients to zero out the coefficients
of small magnitude. They showed that the wavelet-threshold
estimators converge near optimally simultaneously over the
Besov spaces also without the knowledge of the smoothness
parameters. We here intend to use a model selection criterion to
adaptively chose a suitable model so that the density estimator
based on the selected model converge optimally for various
unknown smoothness conditions. We will not restrict attention
to orthogonal expansion nor even to linear models. We need to
mention that at about the same time of this work, related results
are obtained by Birǵe and Massart [13] and Barron, Birgé, and
Massart [8] concerning general penalized minimum-contrast
estimators. Unlike these works, we focus here on penalized
maximum likelihood with expansions for the log densities.

Next we discuss the forms of model selection criteria.
AIC [1] is widely used in many statistical applications. This
criterion is derived by Akaike from the consideration of the
asymptotic behavior of the relative entropy between the true
density and the estimated one from a model. From his analysis,
a bias correction term should be added to as
a penalty term to provide an asymptotically unbiased estimate
of a certain essential part of the relative entropy loss. The
familiar AIC takes the form

AIC

where is the number of parameters in model, and the
likelihood is maximized over each family.

In addition to AIC, some other criteria have received a
lot of attention. Schwartz [37] proposed BIC based on some
Bayesian analysis; Rissanen [34] suggested the minimum-
description length (MDL) criterion from an information-
theoretic point of view. Usually the MDL criterion takes
the form

MDL

The term is the description length of the parameters
with precision of order for each parameter, and the
likelihood is maximized over the parameters represented with
this precision (addition terms that appear in refinements of
MDL are in [2], [17], [35], [44], and [45]).

Some asymptotic properties of these criteria have been
studied. It is shown that if the true density is in one of the
finite-dimensional models, then BIC chooses the correct model
with probability tending to (see, e.g., [25] and [38]). For AIC,
however, under the same setting, the probability of selecting

a wrong model does not vanish as the sample size approaches
. Our interest in this paper is not in determination of a true

finite-dimensional model but rather in selection of as accurate
a model as permitted in view of the tradeoff with complexity
for the given sample size in the case that the true density is not
necessarily in any of the finite-dimensional operating models.

In a related nonparametric regression setting, an asymptotic
optimality property is shown for AIC with fixed design [28]
and [36]. Li shows that if the true regression function is not in
any of the finite-dimensional models, then the average squared
error of the selected model is asymptotically the same as
that could be achieved with the knowledge of the size of
the best model to be used in advance. For the above MDL
criterion, however, the average squared error of the selected
model converges at a slower rate due to the presence of the

factor in the penalty term. In a density-estimation setting
using descriptive length criteria, Barron and Cover [4] show
that the Hellinger distance between the true density and the
estimated one converges at a rate within a logarithmic factor
of the optimal rate. As we mentioned before, some recent
results in this direction are in [8] and [13].

In this work, we consider comparing models using criteria
related to AIC and MDL in the density estimation setting.
We demonstrate that the criteria have an asymptotic optimality
property for certain nonparametric classes of densities, i.e., the
optimal rate of convergence for density functions in various
nonparametric classes is simultaneously achieved with the
automatically selected model without knowing the smoothness
and norm parameters in advance.

As opposed to AIC, we allow the bias-correction penalty
term to be a multiple of the number of parameters in the
model, and the coefficient will depend on a dimensionality
constant of the model related to the metric entropy. In this
paper, the coefficients are specified so that the asymptotic
results hold. With this consideration, the criteria take the form

(1)

where is the maximum-likelihood estimator in model
. Let be the selected model which minimizes the above

criterion value.
We evaluate the criteria by comparing the Hellinger distance

with an index of resolvability. The concept of resolvability
was introduced by Barron and Cover [5] in the context of
description length criteria. It naturally captures the capability
of estimating a function by a sequence of models. In the
present context, the index of resolvability can be defined as

The first term



YANG AND BARRON: AN ASYMPTOTIC PROPERTY OF MODEL SELECTION CRITERIA 97

reflects the approximation capability of the modelto the true
density function in the sense of relative entropy distance, and
the second term reflects the variation of the estimator
in the model due to the estimation of the best parameters in the
model. The index of resolvability quantifies the best tradeoff
between the approximation error and the estimation error. It
is shown in this work that for the new criteria, when the’s
are chosen large enough, the statistical risk
is bounded by a multiple of .

To apply the above results, we can evaluate for in
various nonparametric classes of functions, then upper bounds
of the convergence rates can be easily obtained. Examples will
be given to show these bounds for the maximum penalized
likelihood estimator correspond to optimal or near-optimal
rates of convergence simultaneously for density functions in
various nonparametric classes. This provides a tool to show
adaptivity of the estimator based on model selection.

In statistical applications, due to the lack of knowledge
on the true function, it is often more flexible to consider a
large number of models such as the case of subset selection in
regression. When exponentially many models are considered,
significant selection bias might occur with the bias-correction-
based criteria like AIC and the criteria we just proposed. The
reason is that the criterion value cannot estimate the targeted
quantity (e.g., the relative entropy loss of the density estimator
in each model) uniformly well for exponentially many models.
For such cases, the previously obtained results for the selection
among polynomially many models cannot be applied any
more. For example, for the nonparametric regression function
estimation with fixed design, a condition for Li’s results is no
longer satisfied. To handle the selection bias in that regression
setting, one can add a model complexity penalty (see, Yang
[47]).

For the density estimation problem, we also take the model
complexity into consideration to handle the possible selection
bias when exponentially many or more models are presented
for more flexibility. For each model, a complexity is as-
signed with satisfying the Kraft’s inequality:

; that is,

See [4] and [13] for similar use of a model complexity
term. The complexity can be interpreted
as the codelength of a uniquely decodable code to describe
the models. Another interpretation is that is a prior
probability of model . Then the criteria we propose are

(2)

where is a nonnegative constant.
For the above more general criteria, we redefine the index

of resolvability by adding the complexity term as follows:

(3)

It provides the best tradeoff among the approximation error,
estimation error, and the model complexity relative to sample
size. We show

The condition needed for our results is a metric dimension
assumption involving both Hellinger distance and distance
on the approximating models. This assumption determines how
large the penalty constant should be for the above claim
to be valid. For exponential families , ,
to satisfy the assumption, it is often necessary to break the
natural parameter space into an increasing sequence of
subsets according to the sup-norm of
the corresponding log density. Then the classes of densities
corresponding to these subsets of parameters are treated as
models indexed by and the sup-norm of the log
density appears as a factor in determining the penalty. Thus
indirectly the criterion chooses parameter estimates for each
model not to maximize the likelihood for the full model but
rather to maximize a penalized likelihood. For details of that
treatment, see Section III.

As an example, we will consider estimating a density
function on . We assume that the logarithm of the density
is in the union of the classes of Sobolev space

, . We approximate the logarithm of
the density by spline functions. If we knew and , then by
using suitably predetermined order splines, the optimal rate of
convergence is achieved. However, this rate of convergence
of is saturated for smoother densities. Without
knowing and , we might consider all the spline models with
different smoothness orders and let the criterion choose a suit-
able one automatically from data. Indeed, from our theorem,
the optimal rate of convergence is obtained simultaneously
for density functions with logarithms in the classes ,

, . In other words, the density estimator based
on the model selection adapts to every class , ,

.
The above example suggests that good model-selection

criteria can provide us with minimax optimal function esti-
mation strategies simultaneously for many different classes.
For related results on adaptive function estimation, see [8],
[13], [22], [24], [30], and [32]. As some other applications of
our results, neural network models and sparse density function
estimation will be considered.

We finally comment on the relationship with MDL criteria.
The MDL principle requires that the criterion retains the
Kraft’s inequality requirement of a uniquely decodable code.
This requirement puts a restriction on the choices of candidate
parameter values. For some cases, with suitable restrictions
on the parameters, the MDL principle can yield a minimax
optimal criterion of the form

, whose penalty term is of the same order as that in AIC.
(Some results in that direction were presented by Barron,
Yang, and Yu [7] for ellipsoidal constraints on parameters). In
contrast to the minimum description length criterion, we do not
discretize the parameter spaces and the criteria used here do
not necessarily have a total description length interpretation. In
addition, here the penalty term can take the form
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for a larger class of models than considered in [7]. We should
also note that our criteria are not necessarily Bayesian.

The paper is organized as follows: in Section II, we state
and prove the main theorem; in Section III, we provide some
applications of the main results; in Section IV, we give the
proofs of the key lemma and some other lemmas; and finally
in the appendix, we prove several useful inequalities.

II. M AIN RESULTS

We consider a list of parametric families of densities
, where is the collection

of the indices of the models. The model list is assumed to be
fixed and independent of sample size unless otherwise stated
(e.g., in Section III-B). Lemma 0 in Section IV will be used
to derive the main theorem.

In our analysis, we will consider sup-norm distance between
the logarithms of densities. In this paper, unless stated other-
wise, by a -net, we mean a-net in the sense of sup-norm
requirement for the logarithms of the densities. That is, for a
class of densities , we say a finite collection of densities
is a -net if for any density , there exists such
that . For convenience, the index set of

might also be called a-net.
For , consider Hellinger balls centered at density

in family defined by

Assumption 1:For each , there exist a positive
constant and an integer such that for any

, any and , there exists a-net

for satisfying the following requirement:

Here is called the metric dimension of model.
Remark: This dimensionality assumption necessarily re-

quires that the densities in the parametric family share the
same support. If the support of the true density is not known
to us, we might consider families of densities with different
supports and let the model selection criterion decide which one
has a suitable support for the best estimation of the unknown
density.

Let minimize the criterion in (2) over all models in.
The final density estimator then is , i.e., the
maximum-likelihood density estimator in the selected model.

The asymptotic result we present requires a suitable choice
of the penalty constants (according to the cardinality
constants ) and . Let

(4)

Theorem 1: Assume Assumption 1 is satisfied. Take
and in the model selection criterion given in

(2). Then for the density estimator , we have

where

Note the condition needed for the above conclusion is
only on the operating models. This property is essential for
demonstrating adaptivity of the estimator based on model
selection among many function classes (e.g., Sobolev classes
with unknown smoothness and norm parameters).

Remarks:

1) The resolvability bound in the theorem is valid for any
sample size. So the model list is allowed to change
according to sample size.

2) In , the estimation error term is allowed
to depend on the dimensionality constant, which may
not be uniformly bounded for all . For an unknown
density function in a class, if the sequence of models
minimizing

have bounded and if , then
is asymptotically comparable to

and consequently

The best tradeoff between approximation error and es-
timation error often gives the minimax rate of conver-
gence for full approximation sets of functions (see [48,
Sec. 5]). These conditions that is bounded and

will be verified in a spline estimation
setting in Section III.

3) One way to assign the complexities for the models is
by considering only the number of models for each
dimension. Let be the
number of models with dimension . If ,
then we may assign complexity

for the models with dimension , which
corresponds to the strategy of describing first and
then specifying the model among all the models with
the same dimension . Then we have

If grows more slowly than exponential in ,
then goes to , i.e.,
the complexity is essentially negligible compared to
the model dimension. Then the complexity part of the
penalty term can be ignored in the model selection
criteria. However, if there are exponentially many or
more models in , then the complexity term is not
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negligible compared to (for related discussions,
see [13] and [47]).

4) From the proof of Lemma 0 in Section IV, it can be
seen that the requirement in Assumption 1 only needs
to be checked for for the conclusion of
Theorem 1 to hold. If this weaker requirement is satisfied
with (depending also on the sample size) instead
of , and we use in the criterion, the
conclusion of Theorem 1 is still valid.

5) The various constants (e.g., ) involved in Theorem
1 and subsequent results are given to ensure the risk
bounds theoretically. As suggested by a referee, the
estimator is likely to behave much better in practice.

Proof of Theorem 1:Clearly the working criterion is the-
oretically equivalent to selecting and to minimize

by adding

(which does not depend on) to each criterion value. In our
analysis, we will concentrate on the above theoretically equiv-
alent criterion. We relate it to the resolvability. Indeed, for each
fixed family , we show that
for all except in a set of small probability. Then the
probability bound is summed overto obtain a corresponding
bound uniformly over all the models.

For a fixed , let

Then

for some

for some

We now use Lemma 0 in Section IV to give an upper
bound on the above probability. For , let
be a Hellinger ball in around the true density ( may
not be in the parametric family) with radiusdefined by

We next show that Assumption 0 for Lemma 0 is satisfied for
the family under Assumption 1. Let

satisfy

Then because for any

we have

Thus under Assumption 1, Assumption 0 is satisfied with
, , and (note if

is achievable, then Assumption 0 is satisfied with a better
constant ). Now by Lemma 0 with

, if

with (which satisfies ), then

for some

Sum over

for some

For the second inequality above, we use

and

For the last inequality, we use

For expectation bounds, it will be helpful to bound the integral
of the tail probability . From above,

To obtain the conclusion of the theorem, we next show that
the criterion values for a sequence of nearly best choices of

are not much greater than .
Assume (otherwise, the conclusion of the

theorem is trivially true). Let
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and let be a choice such that

for some positive constant. (If there is a minimizer of
, then we may set , to achieve the min-

imum.) For simplicity, denote by . Then
for

we have

For the last inequality above, we use the fact

for all . Note also

Let

and

Then for

Now

Here

To bound the last integral involving the tail of an expected
log-likelihood ratio, we apply Lemma 3 in the appendix with

and obtain

Now, from the analysis above

with exception probability no bigger than . That
is,

Let

then

Because is arbitrary, by letting , we conclude that

The choice minimizes

at . The corresponding value of is , which is
used in Assumption 1. This completes the proof of Theorem 1.

Remark: In the proof of the theorem, for the (nearly) best
models , we just use the fact that is finite. If

is bounded (which is satisfied, for instance, if is in
a Sobolev ball, and the approximating models are truncated
polynomial, or trigonometric, or spline series, see [3]), we
can use Hoeffding’s inequality to obtain exponential bound on
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the tail probability for these models. Then one can show that
is bounded by in all moments, i.e.,

for all

The criteria in (2) can yield a criterion very similar to
the familiar MDL criterion when applied to a sequence of
candidate densities. Suppose we have a countable collection
of densities . The description lengths of the indices are

satisfying the Kraft’s inequality

Treat each density in as a model, then Assumption 1
is satisfied with and . Thus

is a constant independent of. Therefore,
when taking , the criterion in (2) is equivalent to
minimizing

over . This criterion is different from the MDL criterion
only in that . The corresponding resolvability given in
our expression (3) is essentially the same as the resolvability

considered by Barron and Cover [4].

III. A PPLICATIONS

A. Sequences of Exponential Families

As an application of the theorem we develop in Section II,
we consider estimating an unknown density by sequences of
exponential models. The log density is modeled by sequences
of finite-dimensional linear spaces of functions.

1) Localized Basis:Let ( is an index set) be a
linear function space on . Assume for each , there
is a basis for satisfying
the following two conditions with constants and not
depending on :

(5)

(6)

Here and denote the sup-norm and -norm,
respectively. This type of conditions was previously used by
Birgé and Massart [12]. The first condition is satisfied with a
localized basis. The second one is part of the requirement that

forms a frame (see, e.g., [16,
ch. 3]) (the other half of the frame property can be used to
bound the approximation error). It is assumed that .

For each , consider the following family of densities with
respect to Lebesgue measure:

where

is the normalizing constant. (If there is no restriction on
the parameters , the above parameterization is
not identifiable. Since the interest is on the risk of density
estimation instead of parameter estimation, identifiability is
not an issue here.) The model selection criterion will be used
to choose an appropriate model.

To apply the results in Section II, the models need to satisfy
the metric dimension assumption. For that purpose, we cannot
directly use the natural parameter space . Instead, we
consider a sequence of compact parameter spaces

where takes positive integer values. We treat
each choice of as a model indexed by .
The following lemma gives upper bounds on the cardinality
constants .

Lemma 1: There exists a constant

such that Assumption 1 is satisfied with
and .

Note in Lemma 1, does not depend on the
number of parameters in the models. So , remain
bounded for any fixed . The proof of Lemma 1 is provided
in Section V.

In practice, we might consider many different “types” of
localized basis which satisfy (5) and (6) for each type of
basis. For example, different order splines are useful when
the smoothness condition of the true function is unknown.
If is the order of the splines, the constants and
may not be bounded over all choices of, which leads to the
unboundedness of . It is hoped that through the use of
the model selection criterion, good values of, , and will
be chosen automatically based on data.

Assume for each in an index set , we have a collection
of models satisfying (5) and (6) with and . Let

be the index of the models , ,
, , and let be the collection of the indices.

Let , , be a complexity assigned for the models in
satisfying .

Let . It depends on
logarithmically, but basically linearly on, indicating quicker
increase of penalty when density values may get closer to zero.
Let be the model minimizing

(7)

Then from Theorem 1, we have the following conclusion.



102 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 1, JANUARY 1998

Corollary 1: For localized basis models for the log density
satisfying (5) and (6), for any underlying density

where

Corollary 1 can yield minimax optimal rates of convergence
simultaneously for many nonparametric classes of densities
when the sup-norms of the log densities in each class are
uniformly bounded (with the bound possibly unknown) and
the log densities in each class can be “well” approximated
by the models , for some fixed . For such a
class of densities, when is sufficiently large, a sequence of
densities in for some and a fixed achieves the
resolvability. With these and , the penalty constants
are bounded for the particular sequence of densities. Suitable
assignment of the complexities might give us ,
then

which usually gives the minimax optimal rate of convergence
for the density in the class.

Example 1: Univariate Log-spline models.
Let be the linear function space of splines

of order (piecewise-polynomial of order less than) with
equally spaced knots. Let

be the B-spline basis. Let

where

To make the family identifiable, we assume . The
model selection criterion will be used to choose appropriate
number of knots and spline order.

Consider

where , all take positive integer
values. Each parameter space corresponds to a model.

The B-spline basis is known to satisfy the two conditions
(5) and (6). In fact, the sup-norm of spline expressed by B-
splines is bounded by the sup-norm of the coefficients (see,
[20, p. 155]), that is,

The second requirement follows from the frame property of
the B-splines. From Stone [39, eq. (12)]

for some constant depending only on . Thus the two
requirements are satisfied with and .
Therefore, Corollary 1 is applicable to the Log-spline models.

Let us index our models by . We specify the
model complexity in a natural way to describe the index as
follows:

1) describe using bits
2) describe using bits
3) describe using bits

where the function is defined by

for

Then the total number of bits needed to describeis

Thus a natural choice of is

Assume the logarithm of the target density belongs to
for some and , where is

the Sobolev space of functionson for which is
absolute continuous and . The parameters

and are not known.
Corollary 2: Let be the density estimator with

selected by the criterion in (7) with

Then for any with

where the constant depends only on , and
.

This corollary guarantees the optimal rate of convergence
for densities with logarithms in Sobolev balls without knowing

and in advance. It shows that with a good model selection
criterion, we could perform asymptotically as well as we knew
the smoothness and norm parameters. This theorem demon-
strates an example of success of a completely data-driven
strategy for nonparametric density estimation. For similar
adaptation results, see the references cited in Section I.

Proof of Corollary 2: We examine the resolvability
bounds for the classes of density functions considered. To
do so, we need to upper-bound the approximation error for a
good sequence of models. By [19, Theorems 5.2 and 2.1], for

and for each , there exists
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such that

where and are absolute constants. By Lemma 5 in the
appendix

Let be the normalized log density from
. Then

Therefore,

For the relative entropy approximation error, from [3, Lemma
1] (as shown at the bottom of this page). Take

(bounded for ) and ,
then are bounded. Note also that is
asymptotically negligible compared to. Thus

where the two constants depend only on, , and
. Optimizing over , we obtain the conclusion

with the choice of of order .
2) General Linear Spaces:Unlike the localized basis that

satisfy (5) and (6), general basis are not as well handled by
the present theory. Here we show a logarithmic factor arises
in both the penalty term and in the bound on the convergence
rate for polynomial and trigonometric basis.

Let , be a general linear function spaces on
spanned by a bounded and linearly independent (under

norm) basis , , , . The finite dimensional
families we consider are

where

is the normalizing constant.
In [3] (also in [12] and [13]), the supreme of the ratio of sup-

norm and -norm for functions in plays an important role
in the analysis. For general linear spaces, we also consider
this ratio.

The linear spaces we consider have the property
that for each , there exists a positive constant such that

(8)

for all . This property follows from the boundness and
linear independence (under -norm) assumption on the basis.

For the same reason as in Subsection 1), break the natural
parameter space into an increasing sequence of compact spaces

and treat each of them as a model. Then for each, we have
a sequence of models , . We index the new
models by and let be the collection of .

Lemma 2: For each model , Assumption 1 is
satisfied with

and .
The proof of this lemma is in Section VI.
If an upper bound on is known in advance, then

for each , we can consider only . Then
from Remark 3 to Theorem 1, the model complexity can be
ignored. However, when is unknown, we would
like to consider all integer values for and . Then for each
model size, we have countably many models. To control the
selection bias, we consider the model complexity.

Let , be any model complexity satisfying
. Let

Let be the model minimizing
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Since the conditions for Theorem 1 are satisfied, we have
the following result about model selection for a sequence of
exponential families with a general linear basis.

Corollary 3: For the log-density models with basis satisfy-
ing (8), for any underlying density

where

To apply the corollary for a density class, the approximation
error should be examined. Then the
resolvability will be determined.

Example 2: Polynomial case.
Let , . Then .

From [3, Lemma 6], . It follows from Lemma 2 that

Take . For densities with
logarithms in each of the Sobolev spaces , ,
and , when and are large enough, say
(depending on and ), the relative entropy approximation
error of model is bounded by (the
examination of relative entropy approximation error is very
similar to that in Example 1 in the previous subsection.
For details on and error bounds for polynomial
approximation, see [3, Sec. 7]). Thus

Optimizing over , we obtain that

(since the infimum will produce a value at least as small
at and . Therefore, the
statistical risk of the density estimator based on the polynomial
basis (without knowing the parametersand in advance) is
within a logarithmic factor of the minimax risk.

Example 3: Trigonometric case.
Let

Then . From [3, eq. (7.6)], . Again
by examining the resolvability (for and error bounds
for trigonometric approximation, see [3, Sec. 7]), the same
convergence rates as those using polynomial bases can be
shown for densities with logarithms in the Sobolev spaces and
satisfying certain boundary conditions.

The risk bounds derived here using the nonlocalized poly-
nomial or trigonometric basis have an extra factor
compared to the minimax risk. The extra factor comes in
because the penalty coefficient in the criteria is of order

for both cases. Recently, Birg´e and Massart [13] have
used a theorem of Talagrand [42] to show that if

, then their penalized projection estimator with the
bias-correction penalty term converges at the
optimal rate. This result is applicable for the trigonometric
basis, but not the polynomial basis. Their argument can also be
used for log-density estimation using a maximum-likelihood
method with trigonometric basis to derive a criterion giving
the optimal convergence rate.

B. Neural Network Models

Let be an unknown density function on
with respect to Lebesgue measure. The traditional methods
to estimate densities often fail whenis moderately large due
to the “curse of dimensionality.” Neural network models have
been shown to be promising in some statistical applications.
Here we consider the estimation of the log density by neural
nets.

We approximate using feedforward neural net-
work models with one layer of sigmoidal nonlinearities, which
have the following form:

The function is parameterized by, consisting of
, for . The normalizing constant

, is

The integer is the number of nodes (or hidden
units). Here is a given sigmoidal function with ,

, and . Assume also
that satisfies Lipschitz condition

for some constant . Let . Let

be the approximating families. The parameterwill be esti-
mated and the number of nodes will be automatically selected
based on the sample.

The target class we are interested in here was previously
studied by Barron [5], [6], and Modha and Masry [29]. The
log density is assumed to have a Fourier representation
of the form

Let
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where

is the norm of in . For the target density, we assume
. Recent work of Barron [5] gives nice approximation

bounds using the network models for the class of functions
with bounded and the bounds are applied to obtain good
convergence rates for nonparametric regression. Modha and
Masry prove similar convergence results for density estima-
tion. In these works, the parameter spaces are discretized. We
here intend to obtain similar conclusion without discretization.
Barron, Birǵe, and Massart [8] has similar conclusions with
neural net modeling of the density rather than the log density.

Consider the parameter space

The constant is chosen such that

The compact parameter spaces are used so that the cardinality
assumption is satisfied. From [5, Theorem 3], for a log density

with , there exists a such that

(9)

where denote the -norm for functions
defined on .

For simplicity, for the target density class, the upper bound
on is assumed to be known (otherwise, an increasing

sequence of values can be considered and let the model
selection criterion choose a suitable one).

Now we want to show that Assumption 1 is satisfied for
these models. For any , from [6, Proof of Lemma
2], there exists a set such that for any ,
there is satisfying

with

Take . Because

so for , we have a -net in with cardinality
bounded by

For , where is the number
of parameters, the above quantity is bounded by

Notice that in order for the conclusion of Theorem 1 to hold,
the cardinality requirement in Assumption 1 only needs to be
checked for (see the remarks to Theorem 1
and after the proof of Lemma 0), and the weaker assumption
is satisfied with

where the constant depends only onand . As shown in [5],
if approaches its limits at least polynomially fast, then
there exist constants and such that . As a
consequence,

with the constant depending on, , and . By Theorem 1,
when we choose the penalty and
in the model selection criterion given in (2), for the density
estimator , we have , where

For the targeted densities, under the assumption ,
the log density is uniformly bounded (see [18, Lemma 5.3]).
Indeed, because
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it follows that

Thus we have

Then by [3, Lemma 1], for the target densities,

for . So from (9)

Note is of order
for . Therefore,

where the constants depend on, , and the choice of .
Together with Theorem 1, we have

Note that for the class of functions considered, the rate of
convergence is independent of the function dimension as in
[5], [27], and [29].

C. Estimating a Not Strictly Positive Density

An unpleasant property of the exponential families, log
neural network models, or some other log-density estimation
methods is that each density is bounded away fromon the
whole space (or ). If the support of the true
density is only a subset of , the resolvability bounds
derived in the above sections are still valid. However, for
such densities, the approximation capability of the exponential
families may be very poor. Here we present a way to get
around this difficulty. We get the optimal rates in with
localized basis while still using the resolvability bound.

In addition to the observed i.i.d. sample
from , let be a generated i.i.d. sample (in-
dependent of ’s) from . Let be or with
probability using independently for

. Then has density . Clearly,
is bounded below from. We will first use the exponential

models , to estimate and then construct a
suitable estimator for .

Let be the density estimator of based on
using the criterion in (2) from the models in, which satisfy
Assumption 1. Then when and are chosen large enough,
by Theorem 1 and the familiar relationship between Hellinger

distance and distance, namely,
for any two densities, we have

Let . Then pointwise
in , . Indeed, they are the same forwith

, and the inequality holds when since then
and . Consequently,

In particular,

Now we construct a density estimator for. Note that
, let

Then is a nonnegative and randomized probability den-
sity estimate (depending on ) and

where the equality uses the fact that . To avoid ran-
domization, one could take conditional expectation ofwith
respect to the randomness of and .
Then by convexity, the new estimator has no biggerrisk
than . From above, we have the following result.

Theorem 2: Let be constructed in the above way with
a choice of the penalty constants satisfying ,

, , then

Because is bounded below from , can be better
approximated by the exponential families. Then can
yield a much faster rate of convergence compared to .
We next give an example to show that for some classes
of densities, with the modifications, the modified estimator
achieves the optimal rates of convergence in.
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Example 1 (continued):We now assume that

for some unknown integer . Note that the densities consid-
ered here are not necessarily strictly positive on .

Let be the estimator constructed according to the above
procedure. Then we have

From

it can be shown that

Then from previous result, . Thus

where the constant depends only on , and
. Therefore, the density estimator converges in

-norm to the true density at the optimal rate simultaneously
for the classes of densities , , , where

is defined to be the collection of densities with
and the square integral of theth derivative bounded by .

D. Complete Models versus Sparse Subset Models

As in Section III-A, we consider the estimation of
on using a sequence of linear spaces. Traditionally, the
linear spaces are chosen by spanning the basis functions in a
series expansion up to certain orders. Then use a model selec-
tion criterion to select the order for good statistical estimation.
When the true function is sparse in the sense that only a small
fraction of the basis functions in the linear spaces are needed
to provide a nearly as good approximation as that using all
the basis functions, then a subset model might dramatically
outperform the complete models, because excluding many
(nearly) unnecessary terms significantly reduces the variability
of the function estimate.

We first illustrate heuristically possible advantages of sparse
subset models. Formal results are given afterwards.

Let be a chosen collection of
uniformly bounded basis functions ofvariables. Assume that

can be linearly approximated polynomially well in the sense
that there exist constants and such that

for all . Here is possibly very small compared to,
which implies that the linear approximation error may decay
very slowly.

Using linear approximation with the first basis functions,
the tradeoff between the (squared) approximation error of order

and estimation error (say, under squared norm)
of order due to estimating parameters is optimized
when is of order . It results in an order of

on the total error. On the other hand, nonlinear
approximations can be used. Here we consider the use of
sparse-terms approximation. Let

where is a finite subset of integers indicating which basis
functions are used. Assume the coefficients in

satisfy

Then from [5], one can show that for each , there exists
a subset of size such that

for some constant depending only on and a uniform
bound on the basis functions. If one knew and use
the corresponding basis functions to estimate , again
by balancing the approximation error of order and the
estimation error of order , one seems to get order
on the total error. This rate is much smaller than
when is small compared with. For applications, of course,
the question is how to find or a nearly good subset.
It is probably realistic to expect that a price should be paid
for selecting such a sparse subset. As will be seen later
in the analysis, when can be linearly approximated
polynomially well by the system , searching for a good
sparse subset causes only an extra logarithmic factor in the
total risk bound compared to that could be obtained with the
knowledge of a best subset in advance.

Analogous conclusions are in [21] using the idea of un-
conditional bases and sparsity indices. However, unlike the
present analysis, Donoho’s treatment requires the basis pro-
viding sparse approximations to be orthonormal. Relaxing or-
thonormaility permits consideration of multivariate-splines,
trigonometric expansions with fractional frequencies, and neu-
ral net models.

Now let us give a formal analysis. For simplicity, assume
the linear spaces are nested, i.e., for . Let
be spanned by a bounded and linearly independent (under
norm) basis , , , , . Let
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where

is the normalizing constant. Including all of the terms, we
have dimension . We call such a model a complete
one (with respect to the given linear spaces) because it uses
all the basis functions in . On the other hand, we can
also consider the subset models

where

and is a subset. We next show the
possible advantage of considering these subset models through
the comparison of the resolvability for the complete models
with that for the subset models.

Suppose that Assumption 1 is satisfied with dimensionality
constant and dimension for the complete models and
with and for the subset models, where
is the number of parameters in model. We also assume
that there exist two positive constants and such that

for all the subset models. To satisfy this
requirement, we may need to restrict the parameters to compact
spaces

for a fixed value . Then from Lemma 2, this condition is
satisfied if in (8) is bounded by a polynomial of , which
is the case for polynomial, spline, and trigonometric basis.
(When but no upper bound on
is known, increasing sequences of compact parameter spaces
could be considered and the condition could be replaced by

, where is allowed to grow in . Then
similar asymptotic results hold.)

For a sequence of positive integers , let
and and

. For each sample size, the list of
the models we consider is either (complete models) or
(subset models). In our analysis, we need the condition that

grows no faster than polynomially in to have a good
control of the model complexities for the subset models. This
restriction is also reasonable for the complete models because
usually a model with the number of parameters bigger than
the number of observations cannot be estimated well.

For the complete models, the model complexity can be
taken as . Let . Let be the model
minimizing

over Then from Theorem 1, the squared Hellinger risk
of the density estimator from the selected model is
bounded by a multiple of

Let be the optimal model which minimizes .
Now consider the subset models. We have exponentially

many ( to be exact) subset models from the complete model
. To apply the model selection results, we consider choosing

an appropriate model complexity. A natural way to describe a
subset model is that first describe, then describe the number
of terms in the model, and finally describe which one it
is among possibilities. This strategy suggests the choice

of complexity:

Take . Let and be the minimizer of

over . Again from Theorem 1, the risk of the
density estimator from subset selection is bounded by
a multiple of

A related quantity is

which is roughly the ideal best tradeoff between the approx-
imation error and the estimation error among all the subset
models. Let , , and be the minimizer of

. Ideally, we wish the density estimator converges
at the same rate as . But this may not be possible because
so many models are present that it is too much to hope that the
likelihood processes behave well uniformly for all the models.
We compare , , and in the next proposition.

Proposition:

1) The resolvability for the subset models is at least as good
as that for the complete models asymptotically. That is,

2) Let for some positive constant. Then the
resolvability for the subset models is within a
factor of the ideal convergence rate . That is,

.
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3) With the above choice of , the improvement of the
subset models over the complete models in terms of
resolvability is characterized by how small the optimal
subset model size is compared to the optimal complete
model size as suggested by the inequality

The proof of the proposition is straightforward and is
omitted here.

The ratio describes how small the (ideally)
optimal (in the sense that it gives the resolvability) subset
model size is compared to the optimal size of the complete
models. We call it a sparsity index for sample size. The
obtained inequality

shows that ignoring the logarithmic factor , the sparsity
index characterizes the improvement of the index of resolvabil-
ity bound using the subset models over the complete models.

Even for one-dimensional function estimation, the sparse
subset models also turn out to be advantageous in several
related settings such as the estimation of a function with
bounded variation using variable bin histograms, and the
estimation of a function in some Besov spaces using wavelets
(see [8] and [23]). For high-dimensional function estimation,
there are even more advantages in considering the sparse
subset models.

Example 4: Sparse multi-index series.
Let be a vector of integers. Consider a

multi-indexed basis

on with uniformly bounded. Here the basis could
be a tensor product basis

produced from a one-dimensional basis

Another multi-indexed basis is

Let . The complete models are

where

and the model dimension is . These models often
encounter a great difficulty when the function dimension

is large because exponentially many coefficients need to be
estimated even if is small. The subset models are

where

and . Assume Assumption 1 is satisfied with

and dimension for the complete
models and with and dimension
for the subset models for some positive constantsand
(as stated before, satisfaction of this condition may require
suitable compactification of natural parameter spaces).

Assume

and the coefficients satisfy the following two conditions for
some positive constants , and :

(10)

for all (11)

If the basis is orthonormal, then (11) is

Let be the collection of the densities
satisfying the above conditions.

Let

be a good approximator of in the model . Then the
complete model has an approximation error

. Using the same technique used in Section III-A ([3,
Lemma 1] is still applicable because is bounded), it
can be shown that the resolvability for the complete models
is of order .

Now consider the approximation error for the subset models
from the complete model. From [5, Lemma 1] we know that
there exists a constant (depending only on and

) such that for any , there is a subset
(depending on ) of size and some parameter values
such that
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Then the approximation error of is

Take of order and of order , we
have , where the constant
depends only on , , and . The corresponding model
complexity is

Again, with the technique used in Section III-A, the resolvabil-
ity for the sparse subset models is seen to be within a multiple
(depending only on ) of .
The resulting rate of convergence of the resolvability bound
is independent of the function dimensionand is better than

from the complete models when
(when , the resolvabilities of complete models and
subset models are of the same order).

To achieve the rate suggested by the re-
solvability of the sparse subset models, we use the following
criterion to select a suitable subset. Choose the model

minimizing

where is the maximum-likelihood estimator and

. Denote by and by for short. The density
estimator is then . By Theorem 1, we have the following
conclusion.

Theorem 3: For , the density esti-
mator converges in squared Hellinger distance at a

rate bounded above by uniformly. That is,

where the constant depend only on
and

Note the model selection criterion does not depend on
. Therefore, the procedure is adaptive for the

families , , , , .
The subset models considered here naturally correspond to

the choices of the basis functions in the linear spaces to include
in the models. The problem of estimating nonlinear parameters
can also be changed into the problem of subset selection. In
Section III-B, we estimated linear and nonlinear parameters in
the neural-network models. A different treatment is as follows.
First suitably discretize the parameter spaces for the nonlinear
parameters and . Treat as a basis function
for all the discretized values of and . Then selecting the

number of hidden layers and estimating the discretized values
of the nonlinear parameters is equivalent to selecting the basis
functions among exponentially many possibilities.

IV. PROOFS OF THEMAIN LEMMAS

We now state and prove Lemma 0, which is used to prove
Theorem 1 in the main section.

Let be the true density function, and be
a parametric family of densities. For , let be a
Hellinger ball in around ( may not be in the parametric
family) with radius defined by

Let denote the outer measure of probability measure
on some measurable space where are de-
fined. Outer measure is used later for possibly nonmeasurable
sets of interests.

Lemma 0 gives an exponential inequality which is used to
control the probability of selecting a bad model. The inequality
requires a dimensionality assumption on the parametric family.
This type of assumptions were previously used by Le Cam
[26], Birgé [10], and others.

Assumption 0:For a fixed density , there exist constants
, , and with ( , , and are

allowed to depend on) such that for any and ,
there exists a -net for satisfying the following
requirement:

Lemma 0: Assume Assumption 0 is satisfied with
for some . If

then

for some

Proof of Lemma 0:We use a “chaining” argument sim-
ilar to that used in Birg´e and Massart [11], [12]. For related
techniques, see [43] and [46].

We consider dividing the parameter space into rings as
follows:

Then is a Hellinger ring with inner radius , outer radius
, where for , , and .

We first concentrate on .



YANG AND BARRON: AN ASYMPTOTIC PROPERTY OF MODEL SELECTION CRITERIA 111

Let a sequence be given with , then
by the assumption, there is a sequence of

nets in satisfying the cardinality bounds. For
each , let

be the nearest representor ofin the net . Denote

Then because , it follows that

Let

for some

then because

we have

for some

For , consider . For
an arbitrary , choose satisfying

Then let . By triangle inequality, is a
net in . Now replace by and accordingly replace
by . For convenience, we will not distinguish from .

Notice that for

so we have

for some

for some

for some

where are positive numbers satisfying

(12)

To bound , we use a familiar exponential inequality as
follows (see, e.g., [4] and [15]).

Fact: Let and be two probability density functions
with respect to some-finite measure, then if
is an i.i.d. sample from , we have that for every

From the above fact, we have that for each

Note that for every , is the same for all .
Thus by the union bound

Because is arbitrary, we know

card

Note for



112 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 1, JANUARY 1998

and for

so

Now because

we have

Observe that is the same for all such that

for any pair , together with Hoeffding’s
inequality (see, e.g., [31, pp. 191–192]), we get

card card

Given , we choose the sequence as follows.
First, is chosen such that

Similarly, each is chosen such that

and is defined such that

With these choices, the bound on becomes

For the third inequality, we need

which is satisfied if

with . The last inequality follows from

From our choices of it follows that

for

(13)

and for see the top of the following page. It remains
to check whether and whether

as required in (12). Indeed,



YANG AND BARRON: AN ASYMPTOTIC PROPERTY OF MODEL SELECTION CRITERIA 113

Thus for

to hold, it suffices to have

Using for , it is enough to require

(14)

where .
Finally, we sum over the rings indexed by

for some

for some

From (13) and (14)

as required. This completes the proof of the lemma.
Remark: From the proof of Lemma 0, it is seen that the

requirement in Assumption 0 needs only to be checked for

for the exponential inequality to be valid.
Proof of Lemma 1:We first show the Hellinger ball is

contained in some ball. Then for the ball, we provide
a suitable -net satisfying the cardinality bound. A similar
calculation is in [12].

Because , we have

for some . Then the log density may be written as

where For any

so from Lemma 4 in the appendix
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where

and for the last inequality, we use the frame assumption in
(6). Therefore, for any

The inclusion above refers to the functions represented by the
parameters and . Now we want to find a suitable-net

on . We consider a rectangular grid
spaced at width for each coordinate. If belongs
to a cube with at least one element corresponding to

, then

Thus all the cubes with at least one element in are
included in where

Therefore, the number of these cubes is bounded by

From (5), for any and corresponding to and , respec-
tively, in the same cube, we have

Take , then . For

Now, for each cube that intersects with , choose a
parameter that corresponds to a probability density function
and let be the collection of the corresponding densities.
Then

Clearly, is a -net for densities in . Thus As-
sumption 1 is satisfied with

From Lemma 5

so

with .
Proof of Lemma 2:We consider an orthonormal ba-

sis , , , in . Let
. From the proof of Lemma 1, we

know that for any

Therefore,

The inclusion above is meant for the functions that the
parameters represent. Similarly to the counting argument in
the proof of Lemma 1, a rectangular grid spaced at width

for each coordinate provides the desired-net.
The cardinality constant

for . This completes the proof Lemma 2.

APPENDIX

Lemma 3: Assume and are two probability density
functions with respect to some-finite measure . Let
be any constant, then

where

Also, is decreasing in for .
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Remark: The best available bound with is

Here we avoid the square root with . Note
as . Improved bounds of the form
are possible under the condition .
Here we have chosen to avoid higher order moment conditions
on the logarithm of the density ratio. Hence no uniform tail
rate of convergence to zero exists.

Proof of Lemma 3:We consider a familiar expression of
the relative entropy

Because , to prove the lemma,
it suffices to show

for

This follows from the monotonicity of , which can be
shown from simple calculation. This completes the proof of
the lemma.

Lemma 4: Let and be two probability density functions
with respect to some -finite measure . If
for all , then

where

and

The above upper bound on the relative entropy is in [12,
Lemma 5].

Proof of Lemma 4:We note

It can be shown from calculus that

is decreasing on , which implies

To prove the other inequality, we consider the following parts
of and :

For

so

For

is increasing in . It follows that

Combining the integrals together, we conclude

which completes the proof of Lemma 4.
Lemma 5: and are two functions on satisfying

, where is the Lebesgue
measure. Then

Proof of Lemma 5:

by Jensen’s inequality. Similarly,

which completes the proof.
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