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The Annals of Statistics 
1991, Vol. 19, No. 3, 1347-1369 

APPROXIMATION OF DENSITY FUNCTIONS BY 
SEQUENCES OF EXPONENTIAL FAMILIES' 

BY ANDREW R. BARRON AND CHYONG-HWA SHEU 

University of Illinois at Urbana-Champaign 
Probability density functions are estimated by the method of maxi- 

mum likelihood in sequences of regular exponential families. This method 
is also familiar as entropy maximization subject to empirical constraints. 
The approximating families of log-densities that we consider are polynomi- 
als, splines and trigonometric series. Bounds on the relative entropy 
(Kullback-Leibler distance) between the true density and the estimator are 
obtained and rates of convergence are established for log-density functions 
assumed to have square integrable derivatives. 

1. Introduction. Consider the estimation of a probability density func- 
tion p(x) defined on a bounded interval. We approximate the logarithm of the 
density by a basis function expansion consisting of polynomials, splines or 
trigonometric series. The expansion yields a regular exponential family within 
which we estimate the density by the method of maximum likelihood. This 
method of density estimation arises by application of the principle of maxi- 
mum entropy or minimum relative entropy subject to empirical constraints. 
We show that if the logarithm of the density has r square-integrable deriva- 
tives, f IDr log p12 < ox, then the sequence of density estimators P converges 
to p in the sense of relative entropy (Kullback-Leibler distance) fp log(p/ pn) 
at rate Opr(1/m2r + m/n) as m -X c and m2/n -* 0 in the spline and 
trigonometric cases and m3/n -O 0 in the polynomial case, where m is the 
dimension of the family and n is the sample size. Boundary conditions are 
assumed for the density in the trigonometric case. This convergence rate 
specializes to Op r(n-2r/(2r+ 1)) by setting m = nl/(2r+ 1) when the log-density is 
known to have degree of smoothness at least r. Analogous convergence results 
for the relative entropy are shown to hold in general, for any class of 
log-density functions and sequence of finite-dimensional linear spaces having 
L2 and L. approximation properties. 

The approximation of log-densities using polynomials has previously been 
considered by Neyman (1937) to define alternatives for goodness-of-fit tests, by 
Good (1963) as an application of the method of maximum entropy or minimum 
relative entropy, by Crain (1974, 1976a, b 1977) who demonstrates existence 
and consistency of the maximum likelihood estimator and by Mead and 
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Papanicolaou (1984) who demonstrate the usefulness of the method in some 
physics contexts and discuss some of the computational issues. Log-spline 
estimation was previously considered by Stone and Koo (1986) who address 
the issues of asymptotic normality, confidence intervals for the density and the 
selection of the knots. In work independent of ours, Stone (1989, 1990) obtains 
rates of convergence specifically for the spline case, though it may be possible 
to extend his technique to other exponential families. Some general theory on 
sequences of exponential families is developed in Cencov (1982) and Portnoy 
(1988). Of course, regular exponential family models for probability densities 
are extensively utilized in statistical practice and their finite-dimensional 
properties have been thoroughly studied; see, for example, Brown (1986). 
Other nonparametric estimators of the log-density are examined in Leonard 
(1978) and Silverman (1982). The method of sieves due to Grenander (1981) 
includes the estimators considered here as a special case. Consistency proper- 
ties of sieves are established in Geman and Hwang (1982). 

The use of exponential family density estimation is natural with an entropy 
based loss function. These densities are discovered to have a maximum en- 
tropy property in Shannon (1948) and Jaynes (1957), are shown more gener- 
ally to have a minimum relative entropy (information projection) property in 
Kullback (1959) and Csisz6ar (1975), are identified as limits of conditional 
densities by Van Campenhout and Cover (1981) and Csisza6r (1984) and are 
given axiomatic justification in Shore and Johnson (1980), Jones (1989) and 
Csisz6ar (1989). We mention two applications of density estimation which 
require accuracy in the sense of relative entropy, denoted D(pIIj3). In a stock 
market setup, D(plIp) bounds the difference between the optimal exponential 
growth rate of wealth and the actual growth rate when investment portfolios 
are based on the estimated density instead of the true density [Barron and 
Cover (1988)]. For a data compression problem, D(pIIp) determines the redun- 
dancy (excess average length) of a code based on the estimated density instead 
of the true density [see Davisson (1973)]. Indeed, using results developed here, 
bounds on the redundancy of universal codes can be obtained for some 
nonparametric classes of densities as in Barron and Cover (1991). 

Other traditional methods for nonparametric density estimation, such as 
kernel estimators and orthogonal series expansions (of the density rather than 
the log-density), have received detailed theoretical treatment of their asymp- 
totic properties [see, e.g., Prakasa Rao (1983), Devroye and Gyorfi (1985) and 
Devroye (1987)]. For instance, it is known that for the class of densities with r 
square integrable derivatives, an optimal convergence of the integrated squared 
error at rate n- 2r/(2r+ 1) is achieved by kernel and orthogonal series methods 
[Nadaraya (1974), Bretagnolle and Huber (1979) and Efroimovich and Pinsker 
(1983)]. However, for r > 2 the kernel and orthogonal series estimators which 
achieve this rate have the disconcerting property that they are not necessarily 
strictly positive (indeed they are sometimes negative), so that these estimators 
are not suitable for applications which require accuracy in the Kullback- 
Leibler sense. Density estimators can be modified to force positivity and in 
some cases to permit consistency and convergence rates for the Kullback- 
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Leibler distance. See Barron, Gyorti and van der Meulen (1991) for conver- 
gence properties of the Kullback-Leibler distance for modified histogram 
estimators. Hall (1987) gives a detailed examination of the Kullback-Leibler 
risk of estimators based on positive kernels. However, no positive kernel 
estimator can have a faster rate of convergence than n -4/5. In this paper we 
avoid these difficulties by using estimators which are natural for the informa- 
tion-theoretic loss function. 

For probability density functions having support on the whole real line, the 
methods developed here are not directly applicable, because of the bounded- 
ness requirement of the log-density implicit in the assumption of integrability 
of the derivative. One could map the problem into the unit interval, for 
instance by a transformation based on a cumulative distribution. However, the 
transformed density will have an unbounded logarithm at the boundaries, 
unless the tail behavior of the true density is known and incorporated in the 
choice of the transformation. Nevertheless, exponential family density estima- 
tion on the whole line is plausible using bounded basis functions and a 
reference density po with infinite support. It should be possible to obtain 
consistency for densities for which the relative entropy fp log p/po is finite. It 
is anticipated that the rate of convergence would depend in part on the tail 
behavior of this integral. 

In practice, the dimension m of the exponential family should be chosen 
automatically from the data. The analysis in this paper does not directly 
address this issue. However, the selection of the dimension for expotential 
family models is examined in Barron and Cover (1991) as a special case of 
general model selection theory developed there. It is shown that if the dimen- 
sion is chosen by an information criterion similar to those proposed by 
Schwarz (1978) or Rissanen (1983), then the density estimator converges in 
squared Hellinger distance at rate bounded by an index of resolvability. This 
index is of order (n-1 logn )2r/(2r+ 1) for log-densities with r square integrable 
derivatives; whereas it is of order n-1 log n for densities p in one of the 
countably many exponential families. So whether the true density is in a finite- 
or infinite-dimensional family, we converge at a rate within a logarithmic 
factor of the rate obtainable with true knowledge of the family. Haughton 
(1988) shows that for a bounded number of exponential families, the Schwarz 
criterion chooses the correct family with probability tending to 1. In related 
contexts of regression, Shibata (1981) shows that a criterion proposed by 
Akaike leads to optimal convergence rate properties provided the true regres- 
sion is not finite dimensional. 

Multivariate density estimation on a bounded cube in R d can be directly 
handled by the present theory using the usual product basis functions for 
polynomials and splines and the multi-indexed trigonometric functions. How- 
ever, the use of such expansions in high dimensions is precluded by the 
exponential growth of the number of basis functions as a function of d. Other 
traditional density estimators, such as kernels, suffer from a similar curse of 
dimensionality. Methods of surface estimation in high dimensions which are 
based on composing lower-dimensional relationships into a network have 
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experienced some success; see, for example, Barron and Barron (1988) and 
Barron (1991). 

The outline of the paper is as follows. In section 2 we state the results and 
discuss some of the implications. Some useful tools are developed in Sections 3, 
4 and 5, followed by the proof of the general result in Section 6. Conditions are 
checked in Section 7 for the polynomial, spline and trigonometric cases. In 
Section 8 the estimator is illustrated with a practical example. 

2. Formulation and discussion of results. Let X1, X2, ..., X" be in- 
dependent random variables with an unknown probability density function 
p(x) defined on a bounded interval, which for simplicity is taken to be the unit 
interval [0, 1]. The relative entropy (Kullback-Leibler distance) between proba- 
bility densities is denoted by 

D(pIIP ) (X)log () dx. 

Throughout this paper logarithms are taken with base e. It is well known that 
D is nonnegative and equals 0 if and only if p = pj a.e. Also D(p lp)2 
(1/2XJlp - p1)2 [Csiszar (1967) and Kullback (1967)]. Inequalities in Section 3 
show that D behaves like a squared L2 norm between the logarithms of the 
densities. 

The density estimator APn, m(x) = pb(x) is defined to maximize the likelihood 
in the exponential family 

(2.1) p((x) =P o(x)ex(E6k k(x -1m(6) 

where ifrm(6) = logfpO(x)exp{E o6kk(x)} dx, 6 E R Here we are given a refer- 
ence probability density function po(x) on [0, 1] and a linear space Sm of 
functions spanned by bounded and linearly independent functions 
1, +1(x), .. ., 4m(x). Three choices for the space Sm are polynomials, trigono- 
metric series and splines of order s with equally spaced knots: where the 
degree m of the polynomials, the maximum frequency m/2 of the trigonomet- 
ric functions and the number of interior knots m - s + 1 in the spline case 
are set so as to make the dimension of the family (2.1) be equal to m. For 
simplicity, we assume m is even in the trigonometric case. The reference 
density pO(x) is often taken to be the uniform; nevertheless, the results we 
obtain permit it to be any density satisfying the same smoothness assumptions 
as are required of p. 

We recall several characterizations of the estimator. From the likelihood 
equations, pb is the density in the family (2.1) that satisfies 

(2.2) fkk(x)P(x) dx = ak 

for k = 1,2, .. ., m where ak = (1/n)E=lI1k(Xd). [The maximum likelihood 
solution exists with high probability as shown below; uniqueness is a familiar 
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consequence of the strict convexity of the log-likelihood; see, for example, 
Brown (1986).] Equation (2.2) entails that expectations with respect to p agree 
with empirical expectations for all functions in the linear space Sm. The 
maximum entropy characterization, valid when Po is the uniform density, 
states that the estimator Pnm is the unique maximizer of the entropy 
- Jj log p3 among all density functions which satisfy (2.2). More generally, the 
minimum relative entropy characterization states that given po(x), the esti- 
mator minimizes D(J lipo) among all density functions which satisfy the 
constraint (2.2) [see Kullback (1959) and Csiszar (1975)]. The conditional limit 
characterization of Van Campenhout and Cover (1981) and Csiszar (1984) 
establishes that for large n, Pn m is the asymptotic conditional probability 
density function for X1 given (1/n)Ei=l4k(Xi) = ak when the unconditional 
density is taken to be pO. Thus given an initial guess pO, the estimator Pn,m is 
a natural update based on the sample expectations. 

The parameterization of the family requires a choice of basis functions 
1, 1(x),..., Om(x) for the given linear space Sm. The maximum likelihood 
estimator of the density does not depend on which basis is used for the given 
space. Traditional basis functions are 1, x,. . . , xm in the polynomial case; 
1, cos(2i7x), sin(27rx), ... , cos(27(m/2)x), sin(27T(m/2)x) in the trigonometric 
case; and 1, x, ..., xS-1, ((x - A)?)sl .,((x - kA)+)s-1 in the spline case, 
where (.)+ denotes the positive part, A = 1/(m + 2 - s) is the width between 
the knots and k = m + 1 - s is the number of knots. In each case the 
dimension of Sm is m + 1. Parameterizations based on the Legendre polyno- 
mials as in Crain (1974, 1977) and the B-spline basis as in Stone and Koo 
(1986) are believed to have superior numerical properties in the polynomial 
and spline cases, respectively. 

Let W2r for r ? 1 be the Sobolev space of functions f on [0, 1] for which 
f(r-1) is absolutely continuous and f( f(r)(x))2 dx is finite. The log-density 
function f = log p is assumed to be a member of this Sobolev space. This 
assumption forces the density to be strictly positive and finite on [0, 1]. 

The main result on the asymptotics for the exponential family density 
estimator in the polynomial, spline and trigonometric case is as follows. 

THEOREM 1. If m -x , m2/n -* 0 in the spline and trigonometric cases 
and m -x oo, m3/n -O 0 in the polynomial case, then the Kullback-Leibler 
distance for the sequence of exponential family estimators satisfies 

(2 .3) D( A m 
+ 

(2.3) D(~~~PIjn, m) = Opr(() +nm 

In particular, if m is proportional to nl/(2r+ 1) then 

(2.4) D(pIIfl ) = A 
p( n-2r/(2r+l)) 

The density function p is assumed to satisfy log p E W2r, with r 2 2 in the 
polynomial case, 1 < r < s in the spline case and r 2 1 in the trigonometric 
case. In the trigonometric case the boundary conditions f (i)O) = f(i)(l) for 
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0 < j < r are also required for f = log p. The same requirements are assumed 
for the reference density pO. 

REMARK 1. The convergence in probability is uniform for any set B of 
log-densities having bounded Sobolev norm. In particular, it is seen that 

(2.5) lim lim sup P(D(pII3) 
A 

((1/mn)2r + mn/n)X =0 (2.5) 
n logpe- B+ 

n0 

for any sequence m satisfying m -*00 and m2/n- 0 (m/n - 0in the 
polynomial case) as n -* oo. The requirement on the set B is that there is a 
constant c such that 11 f(r) 12 and 11 fIl11 are less than c for all f E B. (For the 
trigonometric case, B is restricted to functions which also satisfy the indicated 
boundary conditions.) 

REMARK 2. It is anticipated that n -2r/(2r+1) is the optimal minimax rate 
for the Kullback-Leibler distance for the class of log-densities with bounded 
Sobolev norm, in which case the estimators given above possess optimal rate 
properties. In support of this conjecture is the optimality of the same rates 
n 2r/(2r+ 1) for the integrated squared error for density functions with bounded 
Sobolev norm [Bretognolle and Huber (1979) and Efroimovich and Pinsker 
(1983)]. For densities which have a bounded logarithm the Kullback-Leibler 
number is related to the integrated squared error (see Lemma 2). Moreover, 
when the density is bounded away from 0, Sobolev assumptions on the density 
are not too different from Sobolev assumptions on the log-density. See Yu and 
Speed (1990) for a derivation of the minimax rate in a closely related setting. 

REMARK 3. As part of the proof of the theorem, it is shown that the 
maximum likelihood estimate Pn,m = pf exists except in a set of probability 
tending to 0 as n -m co. By other methods, Crain (1976a, b) has shown that for 
n > m, the maximum likelihood estimator exists with probability 1 in the 
polynomial and trigonometric cases (and more generally when a Haar condi- 
tion is satisfied by a basis for the space Sm). However, in the spline case there 
is a small positive probability that 0 in R' does not exist. Indeed, considering 
nonnegative spline basis functions which are 0 except in part of the unit 
interval, it is seen that if there are no observations in the nonzero part of a 
basis function, then (2.2) cannot be satisfied by a density in the family. To 
illustrate, consider the case of splines of order s = 1 (piecewise constants). In 
this case, the maximum likelihood estimator of the density is the histogram 
with m + 1 equally spaced bins. If at least one of the bins is empty, then 0 in 
Rm does not exist and the relative entropy distance for the histogram is 
infinite. As noted by a referee, the probability that at least one of the bins is 
empty is bounded by (m + 1)e-6n/(m+l) where E = inflp(x): 0 < x < 1}. 

REMARK 4. For the histogram estimator (the spline case with s = 1), the 
result of the theorem is that D(piIpn) converges to 0 in probability at rate 
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n- 2/3 when log p has a square integrable derivative and m is proportional 
to n'/3 

REMARK 5. The spline methods saturate at rate 1/M2s + m/n, so that 
even if the log-density is infinitely differentiable, no faster rate of convergence 
than n-2S/(2s+l) can be obtained by choice of m. The rate n-2r/(2r+l) is 
achieved only with s ? r. In contrast, the polynomial method does not have 
such saturation properties and convergence at rates close to n - 1 is possible. In 
particular, if the norm of the derivative of order m grows no faster than a 
factorial, that is, I(log 10Om)I 2 < cm! for some constant c, then with a choice of 
mn proportional to log n, it is seen that D(pII^n) = Opr(log n)/n (see Sec- 
tion 7). 

REMARK 6. Basic to our analysis is a decomposition of the relative entropy 
D(plWp) into the sum of two terms which correspond to approximation error 
and estimation error, respectively (analogous to the familiar bias and variance 
decomposition of mean squared error), and bounds are provided for both 
terms. The density p* in the exponential family which is closest to p in the 
relative entropy sense is called the information projection [Csiszar (1975)]. It is 
characterized as the unique density in the family for which ftbkP* = ak for 
k = 1, .. ., m (where ak = frkP denotes the expectation of the basis functions 
with respect to the true density) and it is also characterized by the 
Pythagorean-like relation D(p lIp,) = D(pllp*) + D(p* lIp6) valid for all densi- 
ties p6 in the exponential family. In particular, we have the decomposition 

(2.6) D(pllj) = D(pllp*) + D(p*11j). 
The first term D(pllp*) is the approximation error: It converges to 0 at rate 
m 2r as m -X oc for log-densities in W2r. The second term D( p*IIp) is the 
estimation error for densities in the family: Under the right conditions, it 
converges to 0 in probability at rate m/n. 

Now we state the general result on sequences of exponential families 
for which Theorem 1 is obtained as a special case. For m > 1, let Sm be a 
linear space spanned by bounded and linearly independent functions 
1, 1(x), ... ., 4m(x) on a measurable space (X, B). A random sample X1, . . ., Xn 
is drawn from a distribution P which has a density p(x) with respect to a 
finite measure v(dx). Let Pn,,m = p6 be the maximum likelihood density 
estimate in the regular exponential family p0(x) = exp{E mkl=1k0k(x) - fm(o)), 

where qim(o) = logfexp{E0k0k(x)}v(dx), 6 E R8m. Let 11- Iloo and 11 ' 112, respec- 
tively, denote the L. and L2 norms with respect to v. The relative entropy is 
D(pIIP) = JP(X)log(p(x )/(x))v(dx). 

THEOREM 2. For Sm, suppose there exists positive numbers Am such that 
11 fm IIx < Am II fmI12 for all fm E Sm . For f = log p let 

(2.7) Am 11 f fm112 
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and 

(2.8) Ym= 11 f fm 11 

be L2 and L,. degrees of approximation of f by some fm E Sm. 
If the sequence ym is bounded and if AmAm - 0 as m -x oo, then for all 

large m the information projection p* exists, achieving the minimum D(pllp*) 
for log-densities in Sm and satisfies 

(2.9) D(pIIp*) =O(2m 

Moreover, if Am in/n -* 0, then with probability tending to 1 as n -x 00, the 
maximum likelihood estimator in the exponential family exists and satisfies 

(2.10) D(p* 11 n, m) < ?pr n) 

(2.11) D(pII3Pn,m) < 0pr( Am + n 

REMARK 7. For the specialization of Theorem 2 to the context of Theorem 
1, it is verified that for log p in W2r, Am = O(m -r) and Ym is bounded, in fact 
Ym -* 0, by appropriate choice of fm in the polynomial, spline and trigonomet- 
ric cases. The condition on Sm is satisfied with Am = 0(m) in the polynomial 
case and Am = 0(f ) in the spline and trigonometric cases (see Section 7). In 
this specialization, we have X = [0, 1], v(dx) = po(x) dx and the density with 
respectto v is p(x)/po(x). If log p and log po are both in W2r, then sois 
log p/po. Also, since po is bounded away from 0 and 00, the rates of approxi- 
mation in L2(p0) are the same as for L2 with respect to Lebesgue measure. 

REMARK 8. We note the relationship of our method for general exponential 
families to those developed by Cencov (1982), Portnoy (1988) and Stone (1989, 
1990). The book by Cencov (1982) has a substantial treatment of sequences of 
exponential families. Cencov (1982), Section 28, examines compact subfamilies 
of the exponential families and shows that the maximum likelihood estimator 
of the density converges at a rate determined by the degree of approximation 
in the relative entropy sense. The compact subfamilies are assumed to satisfy a 
property of quasihomogeneity, meaning that uniformly for densities in the 
sequence of subfamilies, the relative entropy is bounded above and below by a 
constant times the L2 distance between the logarithms of the densities. In 
contrast, we do not restrict the estimation to compact subfamilies and the full 
exponential family is not quasihomogeneous, so the results of Cencov do not 
directly apply to our setting. 

Portnoy (1988) examined the asymptotics in exponential families of the 
Euclidean distance II0 - Oll and the log-likelihood ratio test statistic D(pbllp,) 
under the assumption that the number of parameters tends to 00. However, 
Portnoy assumed that the distribution for the random variables Xi has a 
density function po in the parametric family, that is, the bias term referred to 
above is 0. We prefer to not make such an assumption, since in that case the 
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distribution for the random variables would mysteriously hop from one expo- 
nential family to the next whenever we change m. Nevertheless, a key step in 
the proof, in particular Lemma 5 in Section 4, is based in part on an idea from 
Portnoy (1988), Theorem 2.1. 

In independent work, Stone (1989, 1990) examines log-spline density esti- 
mation and determines rates of convergence of the density in L2 and in La.. 
The relative entropy and the information projection also play a key role in his 
analysis and some of the same inequalities are obtained. A difference is that 
much of his analysis is specific to splines and it is not clear to what extent his 
methods would extend to other linear spaces Sm. 

In the following sections we develop some basic tools needed for the proof of 
the results. 

3. L2 bounds on relative entropy. Let p(x) and q(x) be two probabil- 
ity density functions with respect to a dominating measure v(dx). Some 
quadratic bounds on the relative entropy are easily derived, e.g., f(Jj - ) 
< D(pIIq) < J(p - q)2/q [which follow from the slightly tighter bounds 
- 2log j /4j < D(pIIq) < log fp2/q based on Jensen's inequality]. All integrals 
are understood to be with respect to the dominating measure. We require 
quadratic bounds in terms of the log-density. Such bounds are obtained for the 
case that Illog p/q is finite. 

LEMMA 1. 

(3.1) D(pllq) > 2e -11ogP/qIIfP(log P 

and 

(3.2) D(pllq) < jelllogP/lq-cllp(log-- -C 

where c is any constant. 

REMARK. Since D is an expected value of log p/q, the fact that the bound 
is proportional to a squared norm of log p/q is surprising. The more obvious 
inequality only gives D < Vfp(log p/q )2. 

PROOF OF LEMMA 1. From the Taylor expansion of ez we have 

z 2 z2 

(3.3) 2_ e-z-< ez - 1 - z < 2ez+ (3.3) z x,wheez=mx{z0n2 2 mez+ 

for - oo < z < oo, where z = max{z, 01 and z= max{-z, 0}. 
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To obtain the lower bound, let f(x) = log p(x)/q(x), then 

fplogP = fplogp + q - p) 

= p(ef- 1 + f) 
(3.4) f2e(- 

2 

22e11 f+11x pf2 
2 

which yields inequality (3.1). 
Now to obtain the upper bound, let f(x) = log p(x)/q(x) - c, then 

fPlog-= fp(e-f-1 +f) + 1 + c - ec 

(3.5) ~~~~~~~f2 2e(-f )+ 
(3.5) -I 

2 

< 2 

which yields the desired inequality. o 

We also need the following lemma. 

LEMMA 2. 

(p q) 
< e2(1pf 1-c) logP c 

pq 

for any c, where f = log p/q - c. 

PROOF. Use the fact that lez - 11 < IzIez+ for -oo < z < X to get 

(p - q)2/p = (q/p - 1)2p 

= e -2c(e-f- 1)2p _ (e-c - 1)2 

< e-2cff2e2f p 

< e2(IIf- Ic)fpf2 

4. Information projection. We adopt the framework given in the para- 
graph preceding the statement of Theorem 2. Thus the exponential family 
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takes the form p0(x) e eO +(X)-+(o), where +(x) ( 1(x), . . . , J(x)), 6 * 0 = 
Ekm=lkOk and q#(6)= log feoct(X)v(dx), for 6 E Rm. The function qi(6) is 
clearly finite for all 6 E Rm, since the k(X) are assumed to be bounded and v 
is assumed to be a finite measure. Thus in the terminology of Brown (1986), 
page 2, the natural parameter space is Rm and the exponential family is 
regular. The linear independence of the functions 1, 01, ... ., dm means that if 
E69kk - E 6kOk is constant almost everywhere then 6' = 0. 

Let C = {p: Jfp = a} be the hyperplane of all density functions for which 
the expected value of +(X) is equal to a, where a E Rim. It turns out that the 
set C and the family {p6: 6 E [['} are orthogonal in the sense that all members 
of the family have the same information projection onto C denoted by p*: that 
is, p * achieves min c MD(p lIpo) for each 0 in R8m. The following lemma recalls 
for convenience some of the projection properties [see also Csiszar (1975)]. We 
let fl = {fp: 0 E- R m} and consider the equation 

(4.1) fepo = a. 

LEMMA 3. Suppose a E fl. Then the solution 6* = 6(a) to (4.1) is unique. 
Moreover, for all p E C and 6 E Rim, a Pythagorean-like identity holds 

(4.2) D(pjlpo) = D(pl|p*) + D(p*l1p6), 
where p* = p,*. Consequently, p* is characterized as achieving minp D(pllp0) 
subject to p E C. Also, the parameter 6* uniquely achieves min, D(pllp0) for 
any p E C for which D(pllpo) is finite. Also F(6) = 8 * a - if(o) has a unique 
maximum at 6(a). 

PROOF. Since the densities po are positive we may write 

p(x p(x po*(X) (4.3) log = log - + log 
POWx p0*(x) PO(x 

where 6* is any solution to (4.1). Taking the expected value with respect to p 
establishes the Pythagorean-like identity because the second term on the right 
side of (4.3) has the same expectation with respect to p or p* (indeed this term 
is simply a linear combination of the k so the expectation is the same for all 
densities in C). The remaining facts all immediately follow from this identity, 
since D(pllq) is strictly greater than 0, unless p = q almost everywhere, and 
since maximization of F(6) is the same as the minimization of D(p*llp,) 
F(6*) - F(0), so the proof is complete. O 

Note that no derivatives need be taken to prove these facts. Also note that 
when a is replaced by the empirical average a, then nF(6) is the log-likelihood 
function and 0 = 6(a) is the maximum likelihood estimator. 

5. Bounds within exponential families. Here we give bounds on 
D(pollpo) in terms of the Eucidean distance 1loo - Oil for any Oo, 6 in Rm, and 
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we give bounds on 110(ao) - 0(a)Il in terms of Ilao - all. Since our ultimate 
interest is in the densities rather than the parameters, we are free to choose 
any convenient basis for the space Sm. In particular, for this section it is 
assumed that the functions 1, 1, . .. m are chosen to be an orthonormal 
basis for Sm with respect to a probability density function q. Here q may be 
any density function for which log q is bounded. 

Let Am = Am(q) < 0 be such that for all fm E Sm 

(5.1) 11 fm l1o < Amil fm IIL2(q) 

First we relate distances between the densities in the parametric family to 
distances between the parameters. Let 11 * denote the Euclidean norm on Rm. 

LEMMA 4. For 00, 6 E- Rm, 

(5.2) 11logp,0/p6 1j < 2Am,lG00 - oll 

(5.3) D(po6jlp) < 2eAmIIoOIIIIG0 - 011 
2 

and 

( ) ( 1l ) 1 -~~~~~2A 1100-01111l _ 112) (5.4) D(p001lp0) ?! -~e2AIooIIG 12 
2b 

where b = e Illogq/Poolle 

PROOF. Observe that 

uf(G) - 0(G0) = logfexp{(G - G0) * O(x)}P0O(dx) 

from which it follows that lqi(G) - qi(O)l < IKO - Od) -011X. Now log p,0/p0 = 
(G0 - 6) ^ 4 + 4r(G) - (f1(00) so it follows that Illog p00/poll0 < 21KO - 00) 
(All. < 2Amilo0 - Gll which gives (5.2). Using the assumed orthonormality of 
the Ok, the inequalities (5.3) and (5.4) follow from Lemma 1 with c = 4i(0) - 
+((O), to complete the proof. O 

Now for a key lemma. Recall that 0(a) denotes the unique solution to 
Ep O(X) = a (whenever such a solution exists). We relate distances between 
the parameters 0 to distances between the corresponding parameters a. 

LEMMA 5. Let G0 E Rm, ao = f0p@O and a E Rm be given. Let b = 
ellog q/Plpol. and assume that (5.1) holds. If 

(5.5) Ia - a0112 < 4ebA -4bm' 
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then the solution 6(a) to frpo = a exists and satisfies 
(5.6) 110(a) - 0(ao) || < 2beT7l a - ao 11, 
(5.7) jjlogp,(a0)/p,(a)jI,, < 4beTAmila - aol12 <r 

and 

(5.8) D(PO(aOl1PP(a)) < 2beril a}- ao 112, 

for r satisfying 4ebAmiIa - aoll < r < 1. 

In our application of this lemma, bounds which are adequate for identifying 
asymptotic rates may be obtained with i = 1; however, the smallest choice 
T = 4ebAm Ia - a0 1 yields tighter bounds for each m as well as improved 
constants for the asymptotics. 

PROOF OF LEMMA 5. Suppose a #c ao, since if a = ao the inequalities are 
trivial. Let F(6) = 0 ca - iA(6) as in Section 4. Then since D(poollpo)= 
(60 - 0) * a0 + fi(6) - 11(60), we have that for all 0 E IRm: 

(5.9) 
F(@O) - F(O) =(00 - 0) - a + qi(o) - ,(oo) 

( D(pollpo) - (6o - 6) * (a0 - a). 

It follows by Lemma 4 and the Cauchy-Schwarz inequality that for all 

(5.10) F(60) - F(6) > 2be 2AmI.o11t-l6 oo - 0 112-1160 - 6j|Jjao - a||. 2b _Oll o -a l 

This inequality is seen to be strict for 6 = 00. Consider 6 on the sphere (6: 
116 - 6o11 = r) where r = 2eTblla - a0oll. For all 0 on this sphere 

(5.11) F(6O) - F(6) > (eT-4AmeTbIj-aojj _ 1)2eTbll a - ao 112. 

The right side is nonnegative when 4ebAmlla - a0112 < r < 1. Thus the value 
of F at 00 (inside the sphere) is larger than all the values F(6) on the sphere. 
Consequently, F has an extreme point 0* which is inside the sphere, that is, 
110* - ooll < r. The gradient of F at 0* must be zero which means that 
a - Jfpe* = 0, that is, 6* = 6(a). Therefore 116(a) - 0(a0)112 < r which veri- 
fies (5.6) . Inequality (5.7) follows by applying Lemma 4. To verify (5.8), since 
F(6(a)) ? F(6O) it follows from (5.9) and (5.6) that 

D(pO(a0)IlPO(a)) < (6(ao) - 6(a)) . (a0 - a) 

(5.12) <1I6o - O6lllao - all 
< 2berll a - ao 112. 

This completes the proof of Lemma 5. n 

6. Proof of the main result. Here we give our result in terms of bounds 
for each m and n from which Theorem 2 is easily shown to follow. To yield 
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simpler expressions for the bounds, the result is stated in terms of the L2(p) 
norm instead of the L2(v) norm. The asymptotic equivalence follows from the 
assumed boundedness of log p. 

THEOREM 3. Let Am = Am(P) be such that II fmlt < A m I fmIIL2(P) for all 
fm e Sm. For f = log p let 

(6.1) Am =1 f fmIIL2(p) 

and 

(6.2) Ym=I f fm 11I 

be L2 and L., degrees of approximation of f by some fm E Sm. Set ?m = 

4e4ym+ 'Am Am and m,n =-4e2ym+2Amri/n. 
If Em < 1 the information projection p* exists [achieving the minimum 

D(pllp* ) for log-densities in Sm ] and satisfies 

(6.3) D(pjllp) < Cl? , 

where C, = jeym. Moreover, if 5m,n < 1 then for every A,< 6i2, there is a 
set of probability less than 1/X, such that outside this set, the maximum 
likelihood estimator in the exponential family exists and satisfies 

m 
D(p* IPn m) < C2 n 

(6.4) m 
D(pIIPn,m) < CllAm + C2 n >' 

where C2 = 2e2m?Em+r and r = 8m, n ? 1. 

Taking ym to be a bounded sequence and assuming Am Am 0 and 
Amin/n -* 0(so that 8m and m, n tend to 0), Theorem 2 is readily seen to 
follow from Theorem 3. If also ym -O 0, then asymptotically C, and C2 
approach 1/2 and 2, respectively. 

PROOF OF THEOREM 3. Choose +(x) = (4 ,(x), * ,d?m(x)) so that 
1, 1 k27 . . . , Om is a basis for Sm which is orthonormal with respect to p. We 
divide the proof into two main tasks. The first task is to show that 6* exists 
with f4p,* = Jfp and that log p/po* is bounded by a constant. This po* is the 
information projection achieving the minimum D(pllp0*) for densities in the 
exponential family. The second task involves the examination of the terms 
D(po*IIpH) and D(pllp0*). 

For the first task, let fm(x) = km =O 13k4k(x) be the approximation of f 
which is assumed to satisfy the given L2 and L. bounds on the error f - fm. 
Set aO = f4pq, where ,3 = (t31, ..., 3m) and set a = fop. Then the entries in 
the vector a - ao are given by f((p - PO)/P)4k dP for k = 1, ..., m. These 
entries are seen to be coefficients in the L2(p) orthonormal projection of 
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(p - pp,)/p onto Sm, so by Bessel's inequality and Lemma 3, 

Ia - aoll < 11j(p PS) /P IIL2(P) 

(6.5) < eI1f fmII1 (i9o+q(P))j f - fm 1IL2(P) 

< e2YmA_ 

where we have used the fact that lIf(13) + ,I31 is not greater than 11 f - fmlloo. 
[Indeed qf(Q3) + 130 is seen to equal log fe fm(x)-f(X)P(dx) from which the fact 
follows.] From this same fact it is seen that Illog p/p,6 I is not greater than 
211f-fmIIoo=2ym. Now apply Lemma 5 with 0= =,(, q=p, ao= fop and 
b = ell'ogP/P,Ii1 < e2ym. The condition (5.5) is satisfied if e2ymAm < 1/(4ebAm), 
that is, if cm < 1. In which case we may conclude that 0* = 0(a) exists and 
that Illog p0*/p,6I1? < Em. So by the triangle inequality 

(6.6) jlogp/ppo* 11. < 2'ym + Em. 

Now for the second task, we show that D(p6*llpb) is small with high 
probability. Lemma 5 is applied once more with different choices of the 
parameters. In particular, take 00 to be 6*: The corresponding ao is fip* 
(which is the same as fop). For a take fn = (1/n)ELi lo(Xi). [Whenever a 
solution to fr1pO = 4n exists, we recognize this solution 6 = 0(Gn) as the 
maximum likelihood estimate.] With these choices Ila - ao 112 = Em= (di, k - 

EpOk)2. Lemma 5 requires that this distance between a and a0 be not too 
large. By Chebyshev's inequality Ila - ao 112 ?< .'m/n except in a set of proba- 
bility which satisfies 

(6.7) P( E(4On k - Epk) > ? m< fEp[kE(n k -EPkk)21 

= 1/X, 

where the last identity is due to the fact that X1, .. ., Xn are independent with 
density p and the functions Xk(X) are normalized to have zero mean and unit 
variance with respect to p. Now apply Lemma 5 with q = p and b = 
ell'o9P/P9*11- < e2 m+m If (.;Ym/n)1/2 ? 1/(4ebAm), that is, if 8,n<1/X 
then except in the set above (which has probability less than 1/XY), the 
conditions of the lemma are satisfied, whence the MLE 0 exists and 

(6.8) D(po*||p,) < 2be7-,? 2e2ym+em+T m- 
n n 

Finally, by Lemma 3, the Kullback-Leibler loss decomposes into a sum of 
approximation error and estimation error terms: 

(6.9) D(pIIP ) = D(pIIp*) + D(p*IIP). 
The estimation error D(p* lIp) has just been shown to be less than C2(m/n)K 
except in a set of probability less than 1/IX. By Lemmas 1 and 3, the 
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approximation error satisfies 

(6.10) D(pllp*) < D(pIIp,3) < eIIffmIIXI fefm I2 < -eYmA . 22 

This completes the proof of the theorem. a 

7. Verification of the details. In this section, it is shown how the 
conditions on Am, Am and ym are satisfied in the polynomial, spline and 
trigonometric cases. For the approximations here the L2 space is taken with 
respect to Lebesgue measure on [0, 1]. Bounds for the L2(p) formulation, as 
needed for Theorem 3, then follow using the assumption that p is bounded 
away from 0 and oo. 

Given a class of functions Sm and a density q, we denote Am(q)= 
sup{Ig1L9/IIgIL2(q): g E Sm). Note that Am(p) < IIq/pII1V2Am(q). In this sec- 
tion, when Am is written without an argument q, it is with respect to 
Lesbesgue measure on [0, 11. For polynomials and splines, the following lemma 
is used to bound Am. 

LEMMA 6. If g(x) is a polynomial of degree less than or equal to d on [a, b], 
then 

(7.1) sup [ g(x) I < (d + 1)(b-a )'2(fbg2)' 

and there exist polynomials of degree d on [a, b] for which equality is 
achieved. 

REMARK 1. In the polynomial case, the lemma applies with d = m and 
[a, b] = [0, 1] to show that Am = m + 1 and hence Am(p) < (m + 1)111/p 11V2. 

REMARK 2. In the case of splines g of order s with knots at A, 2A, . . ., 1 - 
A, the lemma applies with d = s - 1 to each of the polynomial pieces to yield 

11/2 A\1/2 
sup Ig(x)I < max si) (f g (x) dx) 

(7.2) X E[O, 1] j 1,. /\A/ (1)/ 

< S( A ) (f1g2(x) dx) 

Setting A = 1/(m - s + 2), this shows that Am < sVm - s +2 and 
Am(p) < s m - s + 2 co/p 1W2 in the spline case. 

PROOF OF LEMMA 6. First note that by scaling the polynomials it suffices to 
prove the result for [a, b] = [0, 1]. Let bk(X), k = 0, 1, . . . , d, be the orthonor- 
mal Legendre polynomials which are bounded in absolute value by v2k + 1. 
This bound is achieved for each k at x = 0 and x = 1 [see Jackson (1930), 
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page 25]. Summing the squares of the bounds yields max Ed=0(q (x))2= 
(d + 1)2. If g is a polynomial of degree d, then g(x) = E =P0k4k(x) for 
some coefficients [pk. By the Cauchy-Schwarz inequality 

(7.3) Ig(X)I ? (4p2~(X))2 ( 2)12 < (d + 1)(fl2)/ 
k-O k-O (O ) 

uniformly for x in [0, 1]. Equality is achieved at x = 0 and x = 1 for polynomi- 
als with coefficients 13k proportional to 12k + 1. This completes the proof of 
Lemma 6. 0 

Now we examine the L2 and L. approximation properties of polynomials, 
splines and trigonometric series. Approximation rate results are available in 
the literature [e.g., Schumaker (1981)], giving the best L2 and Loo rates of 
approximation for functions in the Sobolev spaces. In particular, the Sobolev 
space W2j readily yields L2 bounds on the best L2 approximation. Our 
requirements are slightly complicated by the fact that we also need to bound 
the LW error of the L2 approximation (rather than the best uniform approxi- 
mation) assuming only that the function is in W2r (rather than Wr). Also, in 
the polynomial case, we desire accurate bounds for very smooth functions, 
which permit us to let r = m grow with the dimension of the approximation, 
and thereby obtain faster rates of convergence in this case. 

Polynomials. It is convenient to use a recent result of Cox (1988) which we 
briefly summarize. First we fix r 2 1. Let k(X), k = 0, 1,..., denote the 
normalized Legendre polynomials which are orthonormal with respect to the 
uniform weight function on [0, 1]. The system of derivatives {+(r): k ? r} is 
orthogonal with respect to the weight function (x(1 - X))r on [0, 1] and has 
normalizing constants 

c2 f1(4(r)(X))2(X(1 - X)) dX = (k + r)!/(k - r)!. 

Consequently, if f is in W2r with Legendre coefficients f3k, then the sum 
'k 2rC*13 is equal to the squared norm JfJ(f(r)(x))2(x(j - X))r dx which is 

not greater than (1/4)rf( f(r)(x))2 dx. Let fm(X) = E kM=o0k0k(x). Then for 
m 2 r, 

00 

11 f-fmI= E fk 
k=m+l 

1 00 

(7.4) < c2 E c22 
Cm+1 k=m+1 

(m + r + (m- r +2) () )112 

The first inequality in (7.4) follows from the monotonicity of the sequence 
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C2 = (k + r) * (k - r + 1) with increasing k. Thus 1I f - f,112 = 0(1/m)r for 
f E W2j and explicit constants are identified. Note that since limmE k> mCkfk 
= 0, we in fact have that 11 f - fm 112 = o(1/m )r; however, this improved rate is 
not uniform for densities in a Sobolev ball. 

To bound the Loo error for the Legendre approximation, assuming only that 
f(r)112< oo, we apply the Cauchy-Schwarz inequality to the series Ef3kok(x) 

and use the bound Ib(x)I < V2k + 1. For r > 1, it is seen that the Legendre 
series is absolutely convergent with error bounded for m > r by 

| | ( E~~~~0 2k + l )1/2 00 122) 
If (xY fm(x)I?I _Ea 2 Fa k k3 

k=m+1 Ck k=m 

(7.5) (k e2r- )1/21r f (r)II1 
(h=m+l (k2 + r) )}(2) 

(r- 1/2 (m + r)r1 (1 2 f(2) 

Here we have used the inequality c2 > (k + r)2re -2r (which may be deduced 
by comparing the sum E - log j to the integral f,ti+r log x dx) as well as 
the inequality for the sum Y2km(k + r)-2r+l ? (2(r - 1))'(m + r)2(r-) 
(which is also deduced by comparing the sum to an integral). Consequently, 
Ym = 11If - fmII.o = 0(1/M)r-1 for f E W2r. [An alternative proof of this rate 
can be obtained by deriving that f(r-1) has modulus of continuity w(G) < 
61/211 f(r)112 and then applying bounds from Jackson (1930), page 31, with the 
refinement that Jackson credits to Gronwall (1913).] This completes the details 
for the polynomial case. 

Splines. Let Sm be the space of splines of order s on [0, 1] with knots 
spaced with equal widths A = 1/(m - s + 2). Fix s and consider m ? s. We 
use the results of De Boor and Fix (1973), where the same approximating 
spline function fm is used for both the L2 and L. approximation. It is 
assumed that f is in W2r for some 1 < r < s. By De Boor and Fix (1973), 
Theorem 5.2, 1I f - fm II2 < KArll f (r)l12, where K is an absolute constant. Thus 
11 f - fmIl2 = 0(1/mr). Now f(r-1) is continuous with modulus of continuity 
not greater than A1/211 f (r)112. [Indeed if I x - yl < A, theni f (r- 1)(X) - f (r-1)(y)I = 

(z) dzl which is less than A1/2ij f(r)112 by the Cauchy-Schwarz inequality.] 
So by De Boor and Fix (1973), Theorem 2.1, 1If - fmII, < K Ar-1/211f(r)112, 
where K' is an absolute constant. Thus ym = 0(1/M)r-1/2. This completes 
the details for the spline case. 

Trigonometric series. The m + 1 term truncated Fourier series represents 
functions of the form 

m/2 

fm(X) = o + E (P82kk2k(X) + /2k+1042k+1(X)), 
k=1 
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where '0 = 1, 42k(X) = F/ cos(2rkx) and 42k+I(x) = vfsin(217Tkx) for 0 < 
x ? 1. (For simplicity we focus on the case that m is even.) For functions 
f E W2j which satisfy the boundary conditions, a familiar calculation shows 
that ll f(r)jl2 = E=l(2Wk)2r(pk + 2k+ ), where the f8k are the Fourier coef- 
ficients of f. Consequently, the Fourier series approximation has L2 error 
11 f - fmiI2 < (7r(m + 2))-rII f (r)112. Similarly, applying the Cauchy-Schwarz in- 
equality, it is seen that the Fourier series is absolutely convergent, with error 
If(x) - fm(X)I bounded by (E k > m/2(27Wk2r)1/2(E k > m/22(27Tk)2r(I2+ 

132 +1))1/2 which is not greater than (2r - l)-1/2M-(r-1/ 1r-rl f(r)l 
11 f - fm I. < O(m -(r- 1/2)) for f in WI. [An alternative method of bounding the 
L. error, using the modulus of continuity of f (r- 1) and applying the theorem 
of Jackson (1930), page 22, Corollary 4, yields the slightly worse but also 
satisfactory rate I f - fm,oI ? O(m-(r-1/2)log m).] 

To determine Am for the trigonometric case, we see by the Cauchy-Schwarz 
inequality and the identity cos2 + sin2 = 1, if fm =OE kPkAkk(x), then 

Im 1/21 m 1/2 

(7.6) fm(X) ?( E (m + 1)1/21l fm1l 
k=O k=O 

uniformly in [0, 1]. Given any xo in [0, 1], equality in (7.6) is achieved at 
x = xo when the coefficients f3k are proportional to 4k(Xo). It follows that 
Anm = vm + 1. 

This completes the approximation details needed for the asymptotics stated 
in Theorem 1. Note that by using Theorem 3 and assuming bounds on Illog p II. 
and lIKlog p)(r)'12, explicit bounds are obtained which are applicable for each 
finite value of m and n, subject to fm and 8m,n < 1. 

Approximation of very smooth functions. We return to the polynomial case 
and deduce bounds in the case that f E W2r. By (7.4) and (7.5) with r =m, 

(7.7) 11 f- mII2 < ( (2 ) )1(1)1 f(m)12 

and 

e 
(7.8) 11 f - fm 11. < 11 ~~~~~~~~f(n) 112. 

(7.8) If~fm j~ ~ 2(m - 1)1/2(4m/e)m1 

For instance, if m = 4 and if the fourth derivative of f has L2 norm bounded 
by lOm! = 240, then the Legendre approximation has L2 error not greater 
than 240/(16V9!T) = 0.0000413. 

Suppose f = log p is an infinitely differentiable on [0, 11 and that the 
sequence of derivatives f(m) have L2 norms which do not grow faster than a 
factorial: that is, 11 f(m)112 < cm! for some constant c. From Stirling's formula 
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it is seen that m!/ V(2m + 1)! < (1/2)' and, for m > 1, 

1 m 
(7.9) 11 f fm 112 < (T) 

(7.10) 11 f fm 110 < 4vHm (14 ) 

In this case, a consequence of Theorem 2 is that if mn = (log n)/(log 4) then 
the relative entropy distance converges to 0 in probability at rate 

(7.11) D(pIIpn) = opr(n). 

This verifies the claim in Remark 5 of Section 2. 
The practical implication is that the order of the polynomial need not be 

chosen very large to get an accurate approximation whenever the log-density is 
sufficiently smooth. 

8. Example. The density estimator is illustrated using data on the erup- 
tion lengths (in minutes) of 107 eruptions of the Old Faithful geyser as 
tabulated in Silverman (1986), page 8. Using an exponential family with a 
polynomial of degree 4 on [1, 5], we obtain the density estimate plotted in 
Figure 1. The reference density po is taken to be uniform on [1, 5]. The 
computations were obtained using a program by Gayle Nygaard which per- 

I I 1 1 1 1-1 1 1~3 16 9 1 

. __ E a f_ Ur Od _u Ge _ 
FIG. 1. Exponential family estimate for Old Faithful Geyser data using a polynomial of degree 4. 
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forms Newton's algorithm to maximize the likelihood. To avoid numerical 
overflow problems in the parameter search, we found it advisable to scale the 
data to the interval [-1, 1] and to use the Legendre polynomial basis. The 
answer is then scaled back to the original interval. 

The degree 4 of the polynomial is chosen to capture the bimodal shape of 
the density. Visually, our estimate is somewhat comparable to the kernel 
estimate shown in Silverman (1986), page 17. [For other estimates based on 
the same data see pages 9, 13 and 20 of Silverman (1986).] A difference is that 
the kernel estimate has noticeably broader peaks, due to the spreading of the 
empirical distribution caused by the convolution with a kernel of width 
h = 0.25. In contrast, our estimate agrees with the empirical distribution in 
mean, variance, skew and kurtosis. Other plots illustrating the polynomial and 
spline cases are in Mead and Papanicolaou (1984) and Stone and Koo (1986). 
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