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1 Introduction

Let n be a fixed integer and X1, X2, . . . , Xn be independent real–valued random
variables with distribution function F . Let Fn be the empirical distribution function
Fn(t) = 1

n

∑n
i=1 1{Xi≤t} (here 1C is the indicator function of the setC) and, with F an

hypothesized distribution, let Yn(t) = √
n(Fn(t) − F(t)), t ∈ T , be the empirical

process evaluated at a set of points T ⊂ R. The covariance of the empirical process
takes the form E[Yn(t)Yn(s)] = F(t)(1− F(s)) for t ≤ s (see e.g. Vaart and Wellner
1996; Shorack and Wellner 2009).

Certain functions of Fn − F correspond to familiar test statistics. Indeed, the max-
imum of the absolute value is the Kolmogorov–Smirnov test statistic, the average
square is the Cramer–Von Mises test statistic, and the average square with marginal
standardization using the variance function F(t)(1 − F(t)) produces the Anderson–
Darling statistics (average with the distribution F) (see Anderson and Darling 1952).
These statistics use the whole empirical process with T = R.

For finiteT , letV denote the corresponding symmetric covariancematrix of the col-
umnvector

√
n(Fn−F)with entries

√
n(Fn(t)−F(t)), t ∈ T . FiniteT counterparts to

the Kolmogorov–Smirnov, Cramer–Von Mises, and Anderson–Darling statistics have
been considered in Henze (1996) and Choulakian et al. (1994). In particular, a finite T
counterpart to the Anderson–Darling statistic is n(Fn − F)T (Diag(V ))−1(Fn − F),
which uses only the diagonal entries of V .

Here we focus on the complete standardization of the empirical distribution
restricted to T = {t1, . . . , tk} leading to the squared distance

n(Fn − F)T V−1(Fn − F) (1)

and to estimation procedures that minimize it. This quadratic form is the squared
Mahalanobis distance between the vectors Fn and F. The motivation, familiar from
regression, is that the complete standardization produces more efficient estimators.

Such estimators are usually named “weighted least squares” (e.g. Swain et al.
1988) or “generalized least squares” (e.g. Benšić 2014, 2015). However, as we shall
see, the tridiagonal form of the matrix V−1 (see e.g. Barrett and Feinsilver 1978;
Barrett 1979) puts them in the minimum chi-square context. Indeed, the norm square
of the standardized empirical distribution given in expression (1) is in fact equal to the
chi-square statistic

n
∑

A∈π

(Pn(A) − P(A))2

P(A)
, (2)

where π is the partition of R into the k + 1 intervals A j , j = 1, . . . , k + 1, formed
by consecutive values T = {t1, . . . , tk} with t1 < t2 < · · · < tk , where A1 =
(−∞, t1], A2 = (t1, t2], . . . , Ak = (tk−1, tk] and Ak+1 = (tk,∞). Here Pn(A j ) =
Fn(t j )−Fn(t j−1) = 1

n

∑n
i=1 1{Xi∈A j } and P(A j ) = F(t j )−F(t j−1)with F(−∞) =

Fn(−∞) = 0 and F(∞) = Fn(∞) = 1.
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We provide a simple explicit standardization. Indeed (1) and (2) are shown to be
equal to the sum of squares

k∑

j=1

Z2
j (3)

of convenient choice of uncorrelated zero mean and unit variance random variables
Z j which are proportional to

Fn(t j+1)F(t j ) − F(t j+1)Fn(t j ).

As we shall show, the equivalence of the formulas (1), (2) and (3) holds also for the
case of random sets T with cut-points based on empirical quantiles. This extends and
amplifies a result credited to Kulldorff in Hartley and Pfaffenberger (1972) showing
equivalence of analogous expressions (1) and (2) in the empirical quantile case.

In this note we address the relationship between the standardized cumulative distri-
bution and the chi-square statistic by using the tridiagonal form of the matrix V−1 as
well as the projection perspective. It enables us to give the uncorrelated components
of the chi-square statistic and to discuss asymptotic properties of the estimators that
minimize (1) for random and fixed choices of points in the finite set T .

In Sect. 2 we explain the framework which we use in this note. In Sect. 3 we address
two ways in which the relationship between the standardized cumulative distribution
and the chi-square statistic can be seen. In Sect. 4 we present uncorrelated compo-
nents of the chi-square statistic and provide interpretation of these components as
innovations standardizing the cumulative distribution values.

In the last section we discuss a difference in large sample properties for estimators
that minimize (1) for fixed and random choices of points in T . Some of these estima-
tors have interpretation as regression procedures based on discrepancies between the
empirical distribution function and its theoretical counterpart. Minimizing (1) is often
used for estimating distributional parameters. Examples include research concerning
parameterized distributions, for which the maximum likelihood estimate sometimes
doesn’t exist. We can find them in some textbooks (see e.g. Johnson et al. 1994; Rinne
2009) as well as scientific papers which discuss and compare different estimation
methods especially in reliability and survival analysis (e.g. Torres 2014; Kundu and
Raqab 2005; Benšić 2014; Dey 2014; Bdair 2012; Kantar 2015). As they are mainly
applied to continuous distributions, the set of points T in which the empirical and
theoretical distributions will be evaluated is obviously very important. It is natural
to set T to be random using empirical quantiles. That leads us to the distribution of
uniform-order statistics and, in case of the distance (1), to the conventional weighted
least squares estimator that seeks to minimize the distance between the vector of “uni-
formized” order statistics and the corresponding vector of expected values, proposed
by Swain et al. (1988). However, it was mentioned in Swain et al. (1988), based on
practice, that this method, based on ordered statistics, failed to achieve the quality
that had been expected and they suggested a different weighting matrix in Johnson’s
translation system. In contrast, the fixed choice of T leads us directly to the classical
Pearson minimum chi-square estimator for which best asymptotically normal (BAN)
distribution properties are well known (see e.g. Hsiao 2006 for its BAN properties and
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see also Amemiya 1976; Berkson 1949, 1980; Bhapkar 1966; Fisher 1924; Taylor
1953 for more about minimum chi-square estimation). However, the fixed choice is
more naturally made with discrete distributions than with continuous. At the end of
the last section we give an iterative procedure which does produce a BAN estimator
through the minimization of (1) and random T , based on ordered statistics, which can
be naturally applied to continuous distributions.

2 Common framework

Fix k ∈ N and n ∈ N and let r1, r2, . . . , rk+1 be random variables with sum 1, let
ρ1, ρ2, . . . , ρk+1 be their expectations, and for j ≤ k + 1 let

R j =
j∑

i=1

ri and R j =
j∑

i=1

ρi

be their cumulative sums. We are interested in the differences R j −R j . Suppose that
there is a constant c = cn such that

Cov(R j , Rl) = 1

c
R j (1 − Rl) = 1

c
Vjl (4)

for j ≤ l. Let
R = (R1, . . . , Rk)

T and R = (R1, . . . ,Rk)
T . (5)

In this paper we highlight the relationship between the quadratic forms (R −
R)T V−1(R−R) and

∑k+1
j=1

(r j−ρ j )
2

ρ j
.We show they are equal and examine properties

of ingredients of these statistics by matrix decompositions and by geometrical projec-
tion properties. In particular, we confirm the tridiagonal form of V−1 and decompose
it as V−1 = WTW with W bidiagonal. Furthermore, we show the factor W(R −R)

of the quadratic form has uncorrelated entries proportional to R j+1R j − R jR j+1.
We have the following cases for X1, . . . , Xn i.i.d. with distribution function F .

Case 1 With fixed t1 < · · · < tk and t0 = −∞, tk+1 = ∞ we set

R j = Fn(t j ) = 1

n

n∑

i=1

1{Xi≤t j },

with expectations R j = F(t j ). These R j and R j have increments

r j = Fn(t j ) − Fn(t j−1) = Pn(A j ) = 1

n

n∑

i=1

1{Xi∈A j }

and ρ j = F(t j ) − F(t j−1) = P(A j ), respectively. Now the covariance is 1/n times
the covariance in a single draw, so the expression (4) holds with c = n.
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Case 2 With fixed integers 1 ≤ n1 < n2 < · · · < nk ≤ n and ordered statistics

X(n1) ≤ X(n2) ≤ · · · ≤ X(nk )

we set t j = X(n j ) and
R j = F(X(n j ))

with expectation R j = n j/(n + 1). These have increments r j = P(A j ) and ρ j =
(n j − n j−1)/(n + 1). Now, when F is continuous the joint distribution of the R j is
the Dirichlet distribution of uniform quantiles and the covariance expression (4) holds
for c = n + 2.

In both cases we are examining distribution properties of R j − R j . It is Fn(t j ) −
F(t j ) in Case 1 and F(t j ) − Fn(t j )n/(n + 1) in Case 2. Thus, the difference R − R
is a vector of centered cumulative distributions. In Case 1 it is the centering of the
empirical distribution at t1, . . . , tk and in Case 2 it is the centering of the hypothesized
distribution function evaluated at the quantiles X(n1), X(n2), . . . , X(nk ).

3 Relationship between the standardized cumulative distribution and
the chi-square statistic

We have two approaches to appreciating the relationship between the standardized
cumulative distribution and the chi-square statistic. Firstly, we use matrix calculations
to obtain the following identity:

(R − R)T V−1(R − R) =
k+1∑

j=1

(r j − ρ j )
2

ρ j
. (6)

After that, we revisit the matter from the geometrical perspective of orthogonal pro-
jection.

The first approach uses the form of the covariance matrix

V =

⎡

⎢
⎢
⎢
⎣

R1(1 − R1) R1(1 − R2) · · · R1(1 − Rk)

R1(1 − R2) R2(1 − R2) · · · R2(1 − Rk)
...

...
...

...

R1(1 − Rk) R2(1 − Rk) · · · Rk(1 − Rk)

⎤

⎥
⎥
⎥
⎦

.

Amatrix of this form is said to have the triangle property (Barrett and Feinsilver 1978).
General characterization of the inverses of positive definite symmetric tridiagonal
matrices (see Barrett and Feinsilver 1978; Barrett 1979) enable expression of V−1 in
the following tridiagonal form:
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V−1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
ρ1

+ 1
ρ2

− 1
ρ2

0 · · · 0 0

− 1
ρ2

1
ρ2

+ 1
ρ3

− 1
ρ3

· · · 0 0

0 − 1
ρ3

1
ρ3

+ 1
ρ4

· · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1
ρk−1

+ 1
ρk

− 1
ρk

0 0 0 · · · − 1
ρk

1
ρk

+ 1
ρk+1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Also, as a consequence of the QR decomposition of a symmetric tridiagonal matrix
(see e.g. Bar-On et al. 1997), we can see that V−1 = WTW , where

W =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

− R2√
R1R2ρ2

R1√
R1R2ρ2

0 · · · 0 0

0 − R3√
R2R3ρ3

R2√
R2R3ρ3

· · · 0 0

0 0 − R4√
R3R4ρ4

· · · 0 0

...
...

...
. . .

...
...

0 0 0 · · · − Rk√
Rk−1Rkρk

Rk−1√
Rk−1Rkρk

0 0 0 · · · 0 − 1√
Rkρk+1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

These formsof thematricesV−1 andW are verifiedbymatrixmultiplication:V−1V =
I and V−1 = WTW (see “Appendix A”).

In order to show Eq. (6), note that the nonzero elements of the matrix V−1 can be
written in the following way:

1
ρ1

+ 1
ρ2

= 1
R1

+ 1
R2−R1

, − 1
ρ2

= − 1
R2−R1

,
1
ρ2

+ 1
ρ3

= 1
R2−R1

+ 1
R3−R2

, − 1
ρ3

= − 1
R3−R2

,

...
...

− 1
ρk

= − 1
Rk−Rk−1

, 1
ρk

+ 1
ρk+1

= 1
1−Rk

+ 1
Rk−Rk−1

.

Consequently, observing a number of cancellations in computation of the quadratic
form, we obtain

(R − R)T V−1(R − R) = 1

R1
(R1 − R1)

2 + 1

1 − Rk
(Rk − Rk)

2

+
k∑

j=2

1

R j − R j−1
(R j−1 − R j − R j−1 + R j )

2

=
k+1∑

j=1

(r j − ρ j )
2

ρ j
.
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Equation (6) can be also reached from examination of projection properties. First
note that there is an invertible linear relationship between the cumulative R j and
individual r j values via

R j =
j∑

i=1

ri and r j = R j − R j−1, j = 1, 2, . . . , k + 1.

Accordingly, we will have the same norm squares

cn(R − R)T V−1(R − R) and cn(r − ρ)TC−1(r − ρ)

for standardized version of the vectors R and r where C/cn is the covariance matrix
of the vector r with C i, j = ρiδi j −ρiρ j . (Here δi j = 1{i= j}.) Per Eq. (5) these vectors
R and R are in R

k with the understanding that Rk+1 = 1. Likewise we take r and
ρ to be vectors in R

k because the value rk+1 = 1 − ∑k
j=1 r j is linearly determined

from the others. Correspondingly, V and C are k × k covariance matrices. It is known
(and easily checked) that the matrix C−1 has entries (C−1)i, j = 1

ρi
δi j − 1

ρk+1
for

i, j = 1, 2, . . . , k (matching the Fisher information of the multinomial) and one finds
from this form that (r − ρ)TC−1(r − ρ) is algebraically the same as

k+1∑

j=1

(r j − ρ j )
2

ρ j

as stated in Neyman (1949). So this is another way to see (6).
Furthermore, using suitable orthogonal vectors one can see how the chi-square

statistic arises as the norm square of the fully standardized cumulative distributions.

The chi-square value
∑k+1

j=1
(r j−ρ j )

2

ρ j
is the norm square ‖ ξ −u ‖2 of the difference

between the vector with entries ξ j = r j√
ρ j

and the unit vector u with entries
√

ρ j ,

for j = 1, . . . , k + 1. Here we examine the geometry of the situation in R
k+1. The

projection of ξ in the direction of the unit vector u has length ξ T u = ∑k+1
j=1

(
r j√
ρ j

) √
ρ j

equal to 1. The difference ξ−u is the error of this projection.Workwith an orthonormal
basis ofRk+1, in which one of the basis vectors is u (and hence the k other orthonormal
vectors are orthogonal to u). In particular, let q1, q2, . . . , qk and qk+1 = u be any such
orthonormal vectors inRk+1. The chi-square value ‖ ξ −u ‖2 is the squared length of
the projection of ξ onto the space orthogonal to u, spanned by q1, . . . , qk . So it is given
by

∑k
j=1 Z

2
j where Z j = ξ T q j , j = 1, 2, . . . , k, or equivalently Z j = (ξ − u)T q j .

This sort of analysis is familiar in linear regression theory. A difference here is that
the entries of ξ are not uncorrelated. Nevertheless, the covariance E(ξ − u)(ξ − u)T

reduces to 1
cn

[I − uuT ] since it has entries

E
(r j − ρ j )(rl − ρl)√

ρ jρl
= 1

cn

ρ j1 j=l − ρ jρl√
ρ jρl
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which simplifies to
1

cn
(δ jl − √

ρ j
√

ρl).

Accordingly, EZ j Zl = EqTj (ξ −u)(ξ −u)T ql = 1
cn
qTj (I −uuT )ql is

1
cn
qTj ql equal

to 0 for j �= l. Thus the Z j are indeed uncorrelated and have constant variance 1
cn
.

This is a standard way in which we know that the chi-square statistic with k + 1
cells is a sum of k uncorrelated and standardized random variables (c.f. Cramer 1962,
pp. 416–420).

4 A convenient choice of orthogonal vectors

Here we wish to benefit from an explicit choice of the orthonormal vectors q1, . . . , qk
orthogonal to qk+1 = u. We are motivated in this by the analysis in Stigler (1984).
For an i.i.d. sample Y1 . . . Yn fromN (μ, σ 2), the statistic

∑n
j=1(Y j − Ȳn)2 is the sum

of squares
∑n

j=2
j−1
j (Y j − Ȳ j−1)

2 of the independent N (0, σ 2) innovations (also

known as standardized prediction errors) Z j = Y j−Ȳ j−1√
1+1/( j−1)

and, accordingly, this sum

of squares is explicitly σ 2 times a chi-square distributed random variable with n − 1
degrees of freedom. These innovations decorrelate the vector of (Yi −Ȳn) using q j like

those below, with ρi replaced with 1
n . According to Stigler (1984) and Kruskal (1946),

analysis of this type originates with Helmert (1986) (cf. Rao 1973, pp. 182–183).
The analogous choice for our setting is to let Z j = ξ T q j , where the

q1, . . . , qk, qk+1 are the normalizations of the following orthogonal vectors in Rk+1:

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−√
ρ1 −√

ρ1 −√
ρ1 · · · −√

ρ1
√

ρ1
R1√
ρ2

−√
ρ2 −√

ρ2 · · · −√
ρ2

√
ρ2

0 R2√
ρ3

−√
ρ3 · · · −√

ρ3
√

ρ3

0 0 R3√
ρ4

· · · −√
ρ4

√
ρ4

...
...

...
...

...

0 0 0 · · · −√
ρk

√
ρk

0 0 0 · · · Rk√
ρk+1

√
ρk+1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (7)

Essentially the same choices of orthogonal q j for determination of uncorrelated com-
ponents Z j of ξ − u are found in Irwin (1949). See also Irwin (1942), as well as
Lancaster (1949, 1965) where the matrix from Irwin (1949) is explained as a partic-
ular member of a class of generalizations of the Helmert matrix.
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The norm of the j-th such column for j = 1, . . . , k equals

√

R j + R2
j

ρ j+1
which is

√
R jR j+1

ρ j+1
, so that, for j = 1, . . . , k,

q j = 1
√

R jR j+1
ρ j+1

[

−√
ρ1, . . . ,−√

ρ j ,
R j√
ρ j+1

, 0, . . . , 0

]T

and
Z j = ξ T q j with ξi = ri√

ρi

becomes

Z j =
−r1 − · · · − r j + r j+1R j

ρ j+1
√

R jR j+1
ρ j+1

.

This is

Z j = r j+1R j − R jρ j+1
√
R jR j+1ρ j+1

or, equivalently, for j = 1, 2, . . . , k

Z j = R j+1R j − R jR j+1
√
R jR j+1ρ j+1

which are the innovations of the cumulative values R j+1 (the standardized error of
linear prediction of R j+1 using R1, . . . , R j ). As a consequence of the above properties
of the q j , these Z j are mean zero, uncorrelated, and of constant variance 1/cn . Each
of these facts also can be checked directly using ER j = R j and using the specified
form of the covariance Cov(R j , Rl) = 1

cn
[min(R j ,Rl) − R jRl ].

As we have said, any choice of orthogonal vectors q1, . . . , qk , orthogonal to the
vector u, may be used in showing the identity (6). The advantage of the choice (7) is the
simplicity of the resulting components Z1, . . . , Zk and their direct relationship to the
cumulative distribution. Furthermore, this choice makes these Z j match the entries of
W(R−R)whenW is chosen to be the bidiagonal factor in the representation V−1 =
WTW of the tridiagonal V−1. We remark that the matrix inverse and orthonormal
projection proofs of the equivalence of the weighted norm squares of (1), (2) and (3)
may also be seen as specialization of Lemma 2 in “Appendix A” concerning weighted
inner products of vectors built from partial sums.

To summarize this section, specialized to Case 1, let us point out that we find an
explicit standardization

Z j = Fn(t j+1)F(t j ) − Fn(t j )F(t j+1)

cn, j
, j = 1, . . . , k, (8)
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with c2n, j = F(t j )F(t j+1)P(A j+1)/n. These random variables Z1, Z2, . . . , Zk have
mean 0 and variance 1 and they are uncorrelated. Moreover, the sum of squares

k∑

j=1

Z2
j

is precisely equal to the statistics given in expressions (1) and (2). It corresponds to a
bidiagonal Cholesky decomposition of V−1 asWTW with B given by−F(t j+1)/cn, j

for the ( j, j) entries, F(t j )/cn, j for the ( j, j +1) entries and 0 otherwise, yielding the
vector Z = W(Fn − F), where F = (F(t1), . . . , F(tk))T , as a full standardization
of the vector Fn = (Fn(t1), . . . , Fn(tk))T .

The Z j may also be written as

Z j = Pn(A j+1)F(t j ) − Fn(t j )P(A j+1)

cn, j
(9)

so its marginal distribution (with an hypothesized F) comes from the trinomial dis-
tribution of (nFn(t j ), nPn(A j+1)). These uncorrelated Z j , though not independent,
suggest finite-sample approximation to the distribution of

∑
j Z

2
j from convolution of

the distributions of Z2
j rather than the asymptotic chi-square.

Nevertheless, when t1, . . . , tk are fixed, it is clear by the multivariate central limit
theorem (for the standardized sum of the i.i.d. random variables comprising Pn(A j+1)

and Fn(t j ) from (9)) that the joint distribution of Z = (Z1, . . . , Zk)
T is asymptotically

N (0, I), providing a direct path to the asymptotic chi-square(k) distribution of the
statistic given equivalently in (1), (2) and (3).

A reviewer has suggested to consider a limiting analogue of our decomposition
into uncorrelated variables (9). By empirical process theory (Vaart and Wellner 1996
or Shorack and Wellner 2009) Yn(t) = √

n(Fn(t) − F(t)) has the same means and
covariances as the limiting Gaussian process B(t) = W (F(t)) − F(t)W (1) which is
a Brownian bridge W (τ ) − τW (1) evaluated at τ = F(t). Accordingly, our statistics√
n[Fn(t j+1)F(t j ) − F(t j+1)Fn(t j )], j = 1, . . . , k, which equal Yn(t j+1)F(t j ) −

F(t j+1)Yn(t j ), converge in distribution to that of

B(t j+1)F(t j ) − F(t j+1)B(t j ), j = 1, . . . , k

which analogously whitens the Brownian bridge.

5 Large sample estimation properties

The results of previous sections will be used to discuss asymptotic efficiency of
weighted least squares estimators related to Case 1 and Case 2 of Sect. 2.

In the previous sections the distribution F was regarded as a fixed hypothesized
distribution. This made the choice of the matrix V for standardization especially clear.
Now, for estimation, the distribution will be regarded as a member of a parametric
family, and the choice of V is accordingly more delicate.
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We consider the case of i.i.d. random sample X1, . . . , Xn with distribution function
from a parametric family Fθ , θ ∈ � ⊆ R

p, t1 < · · · < tk , and let Rn = R and
Rn = R be as in Sect. 2. The vector Rn −Rn , which we denote by (Rn −Rn)(θ),
can be considered as a vector depending on the data and the parameter. Let θ0 denote
the true parameter value. If (Rn −Rn)(θ0) converges to zero in probability Pθ0 , it is
natural to use the weighted least squares procedure for parameter estimation, so that
we minimize the objective function

Qn,V (θ) = [(Rn − Rn)(θ)]T V−1[(Rn − Rn)(θ)] (10)

for θ ∈ �. The matrix V for complete standardization is the covariance matrix of√
cn(Rn −Rn) with entries Vi j = Ri (1−R j ) for i ≤ j . How we deal with possible

dependence of V on the parameter θ is discussed below. In some situations wemay use
a known value of V at the true θ0 (as in Case 2, where Vi j = (ni/n)(1−n j/n)) or we
may either use a consistent estimate of θ0 or use the current parameter θ . Implications
of these choices for asymptotic efficiency are discussed.

Both cases from Sect. 2, i.e. fixed and random t1, . . . , tk , are considered in the
estimation context. Indeed, for Case 2 (random t1 < · · · < tk , t j = X(n j )) we have:

Rn(θ) = [Fθ (X(n1)), . . . , Fθ (X(nk))]T

Rn = [Fn(X(n1)), . . . , Fn(X(nk ))]T
n

n + 1
.

The estimator in this case coincides with the estimator proposed in Swain et al. (1988).
Here only the Rn(θ)depends on θ and Fθ0(X(n j ))has aBeta(n j , n+1−n j )distribution

and Eθ0 [Fθ0(X(n j ))] = n j
n+1 = Fn(X(n j ))

n
n+1 so that

Rn =
[

n1
n + 1

, . . . ,
nk

n + 1

]T

.

For Case 1 (fixed t1 < · · · < tk) we have

Rn = [Fn(t1), . . . , Fn(tk)]T , Fn(x) = 1

n

n∑

i=1

1{Xi≤x}

and
Rn(θ) = Eθ Rn = [Fθ (t1), . . . , Fθ (tk)]T .

The estimator in this case coincides with the estimator considered in Benšić (2015).
Here only the expectation Rn(θ) depends on θ .

In both cases, the convergence in probability Pθ0 of (Rn − Rn)(θ0) to zero is a
consequence of the form of the variances of the mean zero differences, which are
(1/n)R j (1 − R j ) in Case 1 and (1/(n + 2))R j (1 − R j ) in Case 2, in accordance
with expression (4).
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In both cases we will assume that Fθ (t) and its gradient ∂
∂θ

Fθ (t) are continuous.
Additional regularity assumptions from cited literature may arise in the discussion
below.

There are some differences in the analysis of estimation properties for the two
mentioned cases. Let us discuss them separately.
Case 1 For the fixed t1 < · · · < tk , Fθ = (Fθ (t1), . . . , Fθ (tk))T and Fn =
(Fn(t1), . . . , Fn(tk))T we can express the function (10) as

Qn,V (θ) = (Fn − Fθ )
T V−1(Fn − Fθ ).

Denote by V θ the covariance matrix of
√
n(Fn − Fθ ) which, as we know, has entries

Fθ (ti )(1− Fθ (t j )) for i ≤ j . Note here that V θ depends on the parameter. This leads
first to the objective function Qn(θ) = Qn,V θ

(θ). Equation (6) from Sect. 3 then guar-
antees that minimizing this function Qn,V θ

(θ) leads to the classical Pearson minimum
chi-square estimator (see e.g. Hsiao 2006 for its best asymptotically normal (BAN)
distribution properties and see also Amemiya 1976; Berkson 1949, 1980; Bhapkar
1966; Fisher 1924; Taylor 1953 for more about minimum chi-square estimation).

Estimation in this case can also be set in the framework of the generalized method
of moments (GMM), with alternative choices of the covariance for standardization.
Indeed, if we use a fixed V or we use V θ
 where θ
 is a consistent estimator of the
true parameter value instead of V θ in the function Qn,V (θ), then, as shown in Benšić
(2015), this estimation procedure can be seen as a GMM procedure.

Let θ̂k,n denote the estimator obtained by minimization of the function Qn,V θ� (θ).
Refining the notation from Sect. 2:

Ai = (ti−1, ti ], i = 1, . . . , k, Ak+1 = (tk,∞),
Pn(Ai ) = Fn(ti ) − Fn(ti−1),
P
(Ai ) = Fθ
 (ti ) − Fθ
 (ti−1),
P(Ai ; θ) = Fθ (ti ) − Fθ (ti−1)

Pθ0(Ai ) = Fθ0(ti ) − Fθ0(ti−1),

from the tridiagonal form of the weighting matrix and Eq. (6) we see that

θ̂k,n = argmin
θ∈�

k+1∑

i=1

(Pn(Ai ) − P(Ai ; θ))2

P
(Ai )
. (11)

If classical regularity assumptions of the generalized method of moments theory are
fulfilled (see e.g. Newey and McFadden 1994; Harris and Matyas 1999) it is shown in
Benšić (2015) that lim

n
[nVar(θ̂k,n)] has inverse GT

θ0
V−1

θ0
Gθ0 where Gθ0 and V θ0 are,

respectively, the Jacobian matrix ∂
∂θ

[Fθ (t1), . . . , Fθ (tk)]T and the covariance matrix
of

√
n[Fn(t1), . . . , Fn(tk)]T evaluated at the true parameter value θ0.

It is fruitful to examine the quantityGT
θ V

−1
θ Gθ and how it simplifies. Using Lemma

2 in “Appendix A”, with A and B chosen as columns of Gθ and ρi = Pθ (Ai ) =
Fθ (ti )− Fθ (ti−1), the tridiagonal form of V−1

θ allows simplification of GT
θ V

−1
θ Gθ to

see that it equals
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IT (θ) =
k+1∑

j=1

1

Pθ (A j )

[
∂

∂θ
Pθ (A j )

] [
∂

∂θ
Pθ (A j )

]T

(12)

which one recognize to be the Fisher information of a multinomial with probabilities
Pθ (A j ), j = 1, . . . , k+1. The interpretation is that, when restricted to themultinomial
counts in the partition formed by T , the GMM procedure (here shown to be related
to the minimum chi-square) inherits the asymptotic efficiency for that multinomial
setting. The relative efficiency using a fixed partition T compared to the full data
situation is given, in the scalar parameter case, by the ratio of IT (θ)/I (θ) where
I (θ) = ∫ 1

f (x,θ)
( ∂
∂θ

f (x, θ))2 dx is the full Fisher information.

For additional understanding of the inverse of lim
n

[nVar(θ̂k,n)] suppose the model

has a differentiable density f (x, θ) satisfying the classical regularity, and let S(x) =
∂
∂θ

log f (x, θ)|θ0 be the population score function evaluated at the true parameter
value. Now we have

Gθ0 =
⎡

⎢
⎣

[Eθ0(S1(−∞,t1])]T
...

[Eθ0(S1(−∞,tk ])]T

⎤

⎥
⎦

and

GT
θ0
V−1

θ0
Gθ0 =

k+1∑

i=1

1

Pθ0(Ai )

ti∫

ti−1

S(x) f (x; θ0) dx

ti∫

ti−1

ST (x) f (x; θ0) dx

=
k+1∑

i=1

Pθ0(Ai )

∫ ti
ti−1

S(x) f (x; θ0) dx

Pθ0(Ai )

∫ ti
ti−1

ST (x) f (x; θ0) dx

Pθ0(Ai )

=
k+1∑

i=1

Pθ0(Ai )Eθ0 [S(X)|Ai ]Eθ0 [S(X)|Ai ]T .

This can be interpreted as a Riemann-Stieltjes discretization of the Fisher informa-
tion which arises in the limit of large k. So the GMM in this deterministic partition
procedure is fully efficient in the limit as first n → ∞ and then k → ∞.

Let us note the similarity of θ̂k,n and the minimum chi-square estimator. From (11),
we see that they differ only in the denominator, so we can interpret θ̂k,n as a modified
minimum chi-square. It is well known that various minimum chi-square estimators are
in fact generalized least squares (see e.g. Amemiya 1976;Harris andKanji 1983;Hsiao
2006) and BAN estimators. Likewise, the norm square of standardizing the empirical
distribution has been known to also provide a generalized least squares estimator. Here
we give a clear and simple way that summarize these findings through the complete
standardization of the empirical distribution.
Case 2 In this case we have t j = X(n j ) so that the value R j = Fn(t j ) = n j/n is
predetermined. The random part within Qn,V (θ) is R j (θ) = Fθ (X(n j )) which we
note depends on the parameter. Nevertheless, the covariance matrix V in this case has
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constant entries Vjl = (n j/n)(1 − nl/n) for j ≤ l. Now, the results summarized in
Sect. 3 (see also Swain et al. 1988) enable us to represent the minimizer of the function
Qn,V (θ) as

θ̂ = argmin
θ∈�

k+1∑

i=1

((Fθ (X(ni )) − Fθ (X(ni−1))) − ni−ni−1
n+1 )2

ni−ni−1
n+1

. (13)

As it was mentioned in Swain et al. (1988, p. 276) based on practice, there is “a weight
matrix which yields fits to empirical CDFs that are usually superior in many respects”
to the estimator (13). Nowadays, this can be explained in the view of the generalized
spacing estimator (GSE) (see Ghosh and Jammalamadaka 2001; Cheng and Amin
1983; Ranneby 1984). To discuss this, let us suppose for simplicity that all data are
different and k = n so that the estimator can be easily recognized as the GSE. Namely,
if ni − ni−1 = 1 then

Qn(θ) = (n + 2)(n + 1)
n+1∑

i=1

(

(Fθ (X(ni )) − Fθ (X(ni−1))) − 1

n + 1

)2

.

Obviously,

θ̂n = argmin
θ∈�

n+1∑

i=1

(Fθ (X(ni ))−Fθ (X(ni−1)))
2 =

n+1∑

i=1

h(Fθ (X(ni ))−Fθ (X(ni−1))), (14)

where h(t) = t2. Detailed discussion about conditions for consistency and asymp-
totic normality for this type of estimator the interested reader can find in Ghosh and
Jammalamadaka (2001). If we apply these results with h(t) = t2 it comes out that we
face a lack of BAN distribution properties with θ̂n . To illustrate this, let us suppose,
for simplicity, that θ = θ is a scalar. Theorem 3.2 from Ghosh and Jammalamadaka
(2001) gives necessary and sufficient condition on h to generate a GSE with minimum
variance for a given class of functions which includes h(t) = t2. It is stated there that
the asymptotic variance of a GSE is minimized with h(t) = a log t + bt + c where
a, b and c are constants. Based on the results formulated in Theorem 3.1 from the
same paper, it is also possible to calculate the asymptotic variance of the GSE for the
given function h under some regular conditions on the population density. Thus, for
h(t) = t2, the expression (9) in Theorem 3.1 fromGhosh and Jammalamadaka (2001)
is equal to 2. This means that asymptotic variance of our estimator (under mild condi-
tions on the population density) is 2

I (θ0)
, where I (θ0) denotes the Fisher information.

So, for these cases, θ̂n from (14) is not BAN. It is only 50% efficient asymptotically.
However, it is possible to reach the BAN distribution property for Case 2 and k = n

through an iterative procedure which includes a modification of the denominator in
(13) each step. For simplicity let us discuss the one-dimensional parameter case. Also
assume that the density function fθ (x) exists and has Fisher information I (θ) =∫

fθ (x)(
∂
∂θ

log fθ (x))2 dx that is a bounded function of θ .
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1. Let

Qn(θ, θ ′) =
n+1∑

i=1

(Fθ (X(i)) − Fθ (X(i−1)) − 1
n+1 )

2

Fθ ′(X(i)) − Fθ ′(X(i−1))
. (15)

2. Let θ
 be a consistent estimator for real θ .
3.

θ1 = θ


θ j+1 = argmin
θ

Qn(θ, θ j ), j = 1, 2, . . .

The use of the denominator Fθ ′(X(i)) − Fθ ′(X(i−1)) in (15) rather than the expected
value (ni − ni−1)/(n + 1) at the true parameter value is a hybrid that allows to adapt
to distribution variability at the most recent parameter value.

To show the desired properties, let us fix the data set x1, . . . , xn for a given sample
size n and denote here:

Fθ = [Fθ (x(1)), . . . , Fθ (x(n))]T , Gθ = ∂

∂θ
[Fθ (x(1)), . . . , Fθ (x(n))]T ,

and

V θ =

⎡

⎢
⎢
⎢
⎣

Fθ (x(1))(1 − Fθ (x(1))) Fθ (x(1))(1 − Fθ (x(2))) · · · Fθ (x(1))(1 − Fθ (x(n)))

Fθ (x(1))(1 − Fθ (x(2))) Fθ (x(2))(1 − Fθ (x(2))) · · · Fθ (x(2))(1 − Fθ (x(n)))
...

...
...

...

Fθ (x(1))(1 − Fθ (x(n))) Fθ (x(2))(1 − Fθ (x(n))) · · · Fθ (x(n))(1 − Fθ (x(n)))

⎤

⎥
⎥
⎥
⎦

.

We take advantage of the fact that the Qn(θ, θ ′) can also be expressed by the tools
we have developed. The 1

n+1 in the definition of Qn(θ, θ ′) provides the difference in
consecutive entries of the vector R with entries R j = j

n+1 , j = 1, . . . , n. Thus, it
holds that

Qn(θ, θ ′) = (Fθ − R)T V−1
θ ′ (Fθ − R) .

As in the Gauss–Newton method for nonlinear least squares, here we consider the
following quadratic approximation θ �→ Q̂n(θ, θ j ),

Q̂n(θ, θ j ) = (
Fθ j + Gθ j (θ − θ j ) − R)T V−1

θ j

(
Fθ j + Gθ j (θ − θ j ) − R)

,

of the function θ �→ Qn(θ, θ j ) = (Fθ − R)T V−1
θ j

(Fθ − R) about the point θ j .
Instead of solving the nonlinear optimization problem minθ Qn(θ, θ j ), in every

iteration j = 1, 2, . . . we solve the simpler quadratic minimization problem
minθ Q̂n(θ, θ j ), that has explicit solution

argmin
θ

Q̂n(θ, θ j ) = θ j +
(
GT

θ j
V−1

θ j
Gθ j

)−1
GT

θ j
V−1

θ j

(R − Fθ j

)
.
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Then the corresponding iterative procedure is given by

θ j+1 = θ j +
(
GT

θ j
V−1

θ j
Gθ j

)−1
GT

θ j
V−1

θ j

(R − Fθ j

)
, j = 1, 2, . . . . (16)

This is an iterative algorithm for computation of the estimate.
Generally, it is not easy to obtain conditions that guarantee, for given data, the

convergenceof the sequence (θ j ), indexedby the iterationnumber j .Nevertheless, if θ j

converges, the differences θ j+1−θ j converge to zero, and then, provided GT
θ j
V−1

θ j
Gθ j

is bounded, it follows that

GT
θ j
V−1

θ j

(R − Fθ j

) → 0.

Since the function θ �→ GT
θ V

−1
θ (R − Fθ ) is continuous, the limit of the sequence

(θ j ) is a solution of the equation

GT
θ V

−1
θ (R − Fθ ) = 0. (17)

As for the matter of the boundedness of GT
θ V

−1
θ Gθ (used in the identification of

this algorithmic limit) we again find that it equals

n+1∑

i=1

(
∂
∂θ

(Fθ (x(i)) − Fθ (x(i−1)))
)2

Fθ (x(i)) − Fθ (x(i−1))

which is the Fisher information IT (θ) as in (12) but now it is based on the partition
T = {x(1), x(2), . . . , x(n)} formed by the data. In general, IT (θ) ≤ I (θ) (as confirmed
in “AppendixB”) and this bound holds uniformly over all data x1, . . . , xn .We assumed
I (θ) to be a bounded function of θ . Thus, GT

θ j
V−1

θ j
Gθ j is bounded and hence, if (θ j )

is convergent, the limit of the algorithm satisfies (17).
On the other hand, let us consider the function

S(θ) =
n+1∑

i=1

h(Fθ (x(i)) − Fθ (x(i−1))), (18)

where h(t) = log t . It has gradient

S ′(θ) =
n+1∑

i=1

∂
∂(θ)

Fθ (x(i)) − ∂
∂(θ)

Fθ (x(i−1))

Fθ (x(i)) − Fθ (x(i−1))
,

which is the same as

n+1∑

i=1

∂
∂(θ)

Fθ (x(i)) − ∂
∂(θ)

Fθ (x(i−1))

Fθ (x(i)) − Fθ (x(i−1))

[
1

n + 1
− (Fθ (x(i)) − Fθ (x(i−1)))

]

.
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Using the form of V−1
θ we find (again using Lemma 2 in “Appendix A”) this is the

same as
S ′(θ) = GT

θ V
−1
θ (R − Fθ ) ,

i.e. the condition S ′(θ) = 0 is exactly the same as Eq. (17).
Finally, for arbitrary data, this argument shows the following: if the sequence (θ j )

given by (16) is convergent, then it converges to a stationary point of the function
θ �→ ∑n+1

i=1 h(Fθ (x(ni )) − Fθ (x(ni−1))), where h(t) = log t . In the case of a unique
stationary point, this estimator is same as the generalized spacings estimator with the
statistically efficient choice of h. The analysis here may be interpreted as linking the
iterative algorithm (16) with the iteratively reweighed least squares interpretation of
optimization of the log-probability criterion.

Here, Qn(θ, θ
) and the choice of V θ
 are algebraically the same functions as
described in Case 1 if we intentionally chose fixed t j to be the same as x(n j ) and
behave as if we were in Case 1.

Thus, for both the fixed and empirical quantile choices of partition, we have
estimation motivated by minimizing of the norm square of standardized empirical
discrepancies between empirical and theoretical distributions, which have the same
asymptotic efficiencies as optimization of log-probability criteria motivated by likeli-
hood.

6 Conclusion

In previous work Benšić (2014) showed by simulations that fully standardizing the
cumulative distribution produces estimators that are superior to those thatminimize the
Cramer-Von Mises and Anderson–Darling statistics. Now, as a result of the presented
perspective, we make it easy to understand that this means advocacy of minimum
chi-square estimators as superior to estimators based on minimum distance between
(unstandardized) cumulative distributions.

We gave here the common framework in which, for both fixed t1, . . . , tk and
quantiles ti = X(ni ), the form of the covariance of (Fn(ti ) − F(ti ), i = 1, . . . , k)
assures a simple relationship to chi-square statistics. However, we caution that, when
using all the empirical quantiles (k = n, ni = i, ti = X(i)), the standardized
(F(X(i)) − i

n+1 , i = 1, . . . , n) is not shown to have an effective norm square for
estimation, being only 50% efficient, when the standardization is based on the covari-
ance at the true parameter value. A modified chi-square like formulation is given for
the empirical quantiles that is fully efficient.

As noted in Sect. 4, the fully standardized cumulative distribution statistic Z =
(Z1, . . . , Zk) is asymptotically N (0, I). Thus the asymptotic distribution of Z does
not depend on the hypothesized distribution F (that is, it is asymptotically distribution
free), unlike the vector of k + 1 components

√
n(Pn(A) − P(A))/

√
P(A) whose

(asymptotic) distribution depends in particular on the vector of components
√
P(A)

to which it is orthogonal. As Z is asymptotically distribution-free, it is akin to the
test statistic components studied in Khmaladze (2013). A difference is that there the
objective was to provide a class of such asymptotically distribution-free statistics
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for discrete settings whereas our objective is to clarify understanding of the fully
standardized cumulative distribution for improved efficiency of estimation.

Acknowledgements Weare very grateful to anonymous reviewers for providingmany excellent comments,
which enhanced the quality of this article.

Appendix A

Lemma 1 Let k be a fixed integer and ρ be vector in R
k+1, such that ρi > 0 for

1 ≤ i ≤ k + 1 and
∑k+1

i=1 ρi = 1. Let R be the vector in R
k with entries R j =

∑ j
i=1 ρi , j = 1, . . . , k. Let V be the symmetric k × k matrix with entries

Vjl = R j (1 − Rl), j ≤ l.

Then V−1 has the tridiagonal form

V−1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
ρ1

+ 1
ρ2

− 1
ρ2

0 · · · 0 0

− 1
ρ2

1
ρ2

+ 1
ρ3

− 1
ρ3

· · · 0 0

0 − 1
ρ3

1
ρ3

+ 1
ρ4

· · · 0 0
...

...
...

. . .
...

...

0 0 0 · · · 1
ρk−1

+ 1
ρk

− 1
ρk

0 0 0 · · · − 1
ρk

1
ρk

+ 1
ρk+1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

Proof Firstly, let us show that VV−1 = V−1V = I . Since V is symmetric, it is
enough to show VV−1 = I . In order to do this, note that for j = 1, . . . , k we have

(
VV−1

)

j, j
=

k∑

s=1

Vj,sV
−1
s, j

= −R j−1(1 − R j−1)
1

ρ j
+ R j (1 − R j )

(
1

ρ j
+ 1

ρ j+1

)

− R j (1 − R j+1)
1

ρ j+1
= 1,

where R0 = 0 and Rk+1 = 1. Similarly, for 1 ≤ j < l ≤ k, we have

(
VV−1

)

j,l
=

k∑

s=1

Vj,sV
−1
s,l

= −Rl−1(1 − Rl)
1

ρl
+ Rl−1(1 − Rl−1)

(
1

ρl
+ 1

ρl+1

)

− Rl(1 − Rl+1)
1

ρl+1
= 0.

�
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Lemma 2 Let k be a fixed integer and a, b and ρ be vectors in Rk+1, with entries a j ,
b j and ρ j , j = 1, . . . , k + 1 respectively, such that:

1.
∑k+1

i=1 ai = 0,
2.

∑k+1
i=1 bi = 0,

3. ρi > 0 for 1 ≤ i ≤ k + 1 and
∑k+1

i=1 ρi = 1.

Let A, B and R be the vectors in R
k with entries

A j =
j∑

i=1

ai , Bj =
j∑

i=1

bi , R j =
j∑

i=1

ρi , j = 1, . . . , k.

Let V be the symmetric k × k matrix with entries

Vjl = R j (1 − Rl), j ≤ l.

Then

AT V−1B =
k+1∑

i=1

aibi
ρi

. (19)

Proof Similar as in Sect. 3, the proof can be done by matrix manipulation as well as
from the geometrical perspective of orthogonal projection. Here we show the second
approach.

Let us denote

α = [a1/√ρ1, . . . , ak+1/
√

ρk+1]T ,
β = [b1/√ρ1, . . . , bk+1/

√
ρk+1]T and

u = [√ρ1, . . . ,
√

ρk+1]T .
These have αT u = ∑

i (ai/
√

ρi )
√

ρi = ∑
i ai = 0 and likewise βT u = ∑

i βi = 0
so they are orthogonal to u. Accordingly αTβ = ∑k

j=1 α̃ j β̃ j where α̃ j = αT q j

and β̃ j = βT q j where q1, . . . , qk are orthonormal vectors in R
k+1, orthogonal to u.

Using the choice of these q j as in Sect. 4 we find

α̃ j = −A j + α j+1R j/ρ j+1
√
R jR j+1/ρ j+1

and

β̃ j = −Bj + β j+1R j/ρ j+1
√
R jR j+1/ρ j+1

.

Now, using α j+1 = A j+1 − A j for j < K and αk+1 = 0 − Ak , we see that α̃ =
WT A and β̃ = WT B with bidiagonal W . The result then follows upon confirming
WWT = V−1.

In order to show that WWT = V−1, let us point out that, for j = 1, . . . , k,

(
WTW

)

j, j
= R2

j−1

R j−1R jρ j
+ R2

j+1

R jR j+1ρ j+1
= 1

ρ j
+ 1

ρ j+1
,
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for j = 1, . . . , k − 1 we have

(
WTW

)

j, j+1
= − R j+1R j

√
R jR j+1ρ j+1

√
R jR j+1ρ j+1

= − 1

ρ j+1
,

and, finally, for l ≥ j + 2,
(
WTW

)
j,l = 0. Since both of matrices WTW and V−1

are symmetric, the identity WTW = V−1 holds. �

Appendix B

Here we discuss the Fisher information result IT (θ) ≤ I (θ) for the partition formed
by any T . This can be seen as a consequences of the general chain rule of the Fisher
information IX,Y (θ) = IY (θ) + IX |Y (θ) by specializing to the case that Y = g(X)

is a function of X . Indeed, then IY (θ) ≤ IX,Y (θ) = IX (θ). In our case, where T =
{t1, . . . , tk} with t1 < t2 < · · · < tk , the function g is given by g(x) = j for t j−1 <

x ≤ t j . This function provides the membership label of x in the partition formed by
T . It is recognized that, to handle this case, one needs IX,Y (θ) for jointly distributed
X,Y even when X is continuous and Y is discrete. The inequality IT (θ) ≤ I (θ) is
seen to hold for any partition T , including the case that T is based on a data set (via
empirical quantiles).

Concerning the chain rule of Fisher information in the twice differentiable case, it
is an immediate consequence of the factorization fθ (x, y) = fθ (y) fθ (x |y) by taking
expectation of

∂2

∂θ2
log fθ (x, y) = ∂2

∂θ2
log fθ (y) + ∂2

∂θ2
log fθ (x |y),

taking advantage of representation of the respective Fisher informations IX,Y (θ), IY (θ)

and IX |Y (θ) as minus the expected values of the terms in this identity.
Alternatively, in the squared first derivative representation, the chain rule is seen as

the Pythagorean identity associated with the L2 projection property

∂

∂θ
log fθ (y) = Eθ

[
∂

∂θ
log fθ (X,Y )|Y = y

]

. (20)

Indeed, the right side is

∫
fθ (x, y)

fθ (y)

[
∂

∂θ
log fθ (x, y)

]

dx = 1

fθ (y)

∫
∂

∂θ
fθ (x, y) dx =

∂
∂θ

fθ (y)

fθ (y)

provided the derivative can be exchanged with the integral as indicated. Then the chain
rule is the expected value in expansion of the square of

∂

∂θ
log fθ (x, y) = ∂

∂θ
log fθ (y) + ∂

∂θ
log fθ (x |y),
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as in Zamir (1998). Thus IX,Y (θ) = IY (θ) + IX |Y (θ) and hence IY (θ) ≤ IX,Y (θ).

When Y is a function of X we have IX,Y (θ) = IX (θ) and hence one has the “data
processing” inequality IY (θ) ≤ IX (θ), as claimed. It is also Jensen’s inequality applied
to (20), as in Ibragimov and Has’minskii (1981, Theorem I.7.2).
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