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Abstract. Performance bounds for criteria for model selection are devel-
oped using recent theory for sieves. The model selection criteria are based
on an empirical loss or contrast function with an added penalty term moti-
vated by empirical process theory and roughly proportional to the number
of parameters needed to describe the model divided by the number of ob-
servations. Most of our examples involve density or regression estimation
settings and we focus on the problem of estimating the unknown density or
regression function. We show that the quadratic risk of the minimum penal-
ized empirical contrast estimatasr bounded by an index of the accuracy of
the sieve. This accuracy index quantifies the trade-off among the candidate
models between the approximation error and parameter dimension relative
to sample size.

If we choose a list of models which exhibit good approximation prop-
erties with respect to different classes of smoothness, the estimator can be
simultaneously minimax rate optimal in each of those classes. This is what
is usually called adaptation The type of classes of smoothness in which one
gets adaptation depends heavily on the list of models. If too many models
are involved in order to get accurate approximation of many wide classes of
functions simultaneously, it may happen that the estimator is only approx-
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imately adaptive (typically up to a slowly varying function of the sample
size).

We shall provide various illustrations of our method such as penalized
maximum likelihood, projection or least squares estimation. The models
will involve commonly used finite dimensional expansions such as piece-
wise polynomials with fixed or variable knots, trigonometric polynomials,
wavelets, neural nets and related nonlinear expansions defined by superpo-
sition of ridge functions.

Mathematics subject classifications (199Rjimary 62G05, 62G07;
secondary 41A25
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1. Introduction
1.1. What is this paper about?

The purpose of this paper is to provide a general method for estimating an
unknown function s on the basis of n observations and a finite or countable
family of modelsS,,, m € .#,,using an empirical model selection criterion
Here, by “model” we have in mind any possible space of finite dimension
D,, (in a sense that will be made precise later on and includes the classical
case where S, is linear). We do not mean that s belongs to any of the models,
although this might be the case. Therefore we shall always think of a model
Sn as an approximate modeir the true s with controlled complexity and
this is the reason why we shall use alternatively the term sieveintroduced
by Grenander (1981) in connection with approximation theory.

For each model S,, we build an estimator §,, , which minimizes some
empirical contrast functiom, over the set S,,,. The precise nature of the sam-
pling model will be discussed later. It suffices for now to think of regression
and density estimation problems in which, for each candidate function ¢,
the empirical contrast y,(¢) is, respectively, the empirical average squared
error or (1/n) times the minus logarithm of likelihood.

Denoting by R, ,(s) = IE; [d? (s, Sm.n)] the risk at s of the estimator
Sm.n (Where d denotes some convenient distance) an ideal modelshould
minimize R,, ,(s) when m varies. Nevertheless, even if s belongs to some
S, this “true” model can be far from being “ideal” (in the preceding sense).
Think of a polynomial fitting of a regression curve with 100 observations
when the true s is a polynomial of degree 50.

Since s is unknown, one cannot determine such an ideal model exactly.
Therefore one would like to find a model selection procedurg, based on
the data, such that the risk of the resulting estimator §; , is equal to the
minimal risk inf,,c 4, Ry, (s). This program is too ambitious and we shall
content ourselves to consider, instead of the minimal risk, some accuracy
index of the form

ay(s) = inf {d*(s, Sw) + pen,,,} = inf {inf,cs,d*(s, ) + pen,,,}

me., me.,
which majorizes the minimal risk and to provide a model selection procedure
m such that the risk of §,;, , achieves the accuracy index up to some constant
independent of n which means that

E, [d*(s, $i.0)] < C(s)an(s) forall n . (1.1)

The procedure m is defined by the minimization over .#, of the penalized
empirical contrast{y, (S,..,) + pen,, ,,}. More precisely it follows from the
analysis of Birgé and Massart (1998) that the risk R, ,(s) is typically of
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order d>(s, S,,) + D,,/n. The penalty term pen,, , then generally takes the
form « L,, D,,/n where « is an absolute constant and L,, > 1 is a weight
that satisfies a condition of the type

The penalty term takes into account both the difficulty to estimate within
the model S, (role of D,,) and the additional noise due to the size of the list
of models (role of L,,) and derives from exponential probability bounds for
the empirical contrast. It follows from (1.1) and our choice of the penalty
that, for any s,

E, [d*(s, $i.0)] < C(s) inf {dz(s,Sm)—i— (1.2)

kL, Dy,

]
Although we emphasized the fact that s need not belong to any S, the
bound (1.2) also makes sense in the parametric case. More precisely, if one
starts from a finite collection of models {S),},c.» which does not depend
on n and fix L, = 1 for all m, one finds, whenever s belongs to some
Smy» that the risk of §; , is of order n~! as expected for this parametric
framework.

More generally, the bound (1.2) permits the reduction of the problem
of investigation of the performance of the estimator (to within certain con-
stant multipliers) to an investigation of the approximation capabilities of the
sieves. Here we have in mind a variety of possible function classes and the
accuracy index will be evaluated for each. Since it is not known to which
subsets of functions the target s belongs, it is a merit of the accuracy index
and indeed a merit of the minimum penalized empirical contrast estimator
S;.» in many cases that the maximum of the accuracy index a, (s) on certain
subclasses of functions is within a constant factor of the minimax optimal
value for the risk on these subclasses. For typical choices of models, the
target function s is a cluster point, that is d(s, S,,) tends to zero for some
subsequence of models, and the accuracy index quantifies the rate of con-
vergence in a way that is naturally tied to the dimension of the models and
the sample size through the penalty term. As a consequence of the accuracy
index, there exists many situations where model selection provides estima-
tors §,; , which are (at least approximately) simultaneously minimax over a
family of classes of functions, usually balls with respect to the seminorms
of the classical spaces of smooth functions. Such estimators are then called
(approximately) adaptive We shall now go further into details to describe
our work and relate our results to the existing literature on model selection
and adaptive estimation.
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1.2. Model selection

Historically, one can consider that model selection begins with the works
of Mallows (1973) and Akaike (1973) although classical ¢ or F tests and
Bayes tests were long used for model selection. Actually, Daniel and Wood
(1971, p. 86) already mention the C, criterion for variable selection in
regression as described by Mallows in a conference dating back to (1964).
Our model selection criteria can be viewed as extensions of Mallows’” and
Akaike’s. In order to describe the heuristics underlying Mallows’ approach,
and more generally model selection based on penalization, let us consider
here a typical and historically meaningful example, namely model selection
for linear regression with fixed design.

Let us consider observations Yi, ..., Y, such that ¥; = s(x;) + W;
where the W;’s are centered independent identically distributed variables
with variance one and the x;’s are deterministic values in some space %
We want to estimate the function s defined on 2" from the Y;’s and measure
the error of estimation in terms of the distance derived from the Euclidean
norm ||t]| = [n='>"7_, #(x;)*]"/?. We consider a family of linear models
{Sm}me.n, (finite dimensional spaces of functions on %), each model S,
being of dimension D,,. Let s,, be the orthogonal projection of s onto S,
and §,, , be the least squares estimator of s relatively to S,,. The risk of §,, ,
is equal to

E; [18m.0 — sII*] = s = swll* + Du/n .

Since [|s—s,,||> = ||s]|>— s, ||, the ideal model is given by the minimization
of = ||+ Dy /n+n=1>"1_ Y2 Letus consider the normalized residual
sumofsquaresn ' Y7 ¥Y?—||5,,,11. Since [|$,. |*— Dy /n is anunbiased
estimator of ||s,,||?, an unbiased estimator of the ideal criterion to minimize
isn 3" Y2 — |I§,.0l1? + 2D, /n which is precisely Mallows’ C,,. If we
set

Iy g
yn(r)—n;m £(x;)]

we notice that §,,, is the minimizer of y, over S,, and that y,(5,.,) =
n~! > Yl.2 — 15,2 11?. Therefore Mallows’ C » 1 @ minimum penalized
empirical contrast criterion in our sense with pen,, , = 2D,,/n. This pro-
cedure is expected to work when the variables |5, , |> concentrate around
their expectations uniformly with respect to m. This is not clear at all when
the cardinality of .#, is large as compared to n. Since the practical use of
Mallow’s C,, criterion is for a fixed sample size it is a natural question to
wonder whether the criterion will work for a given value of the cardinality
of .#, as a function of n.
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This particular problem has been studied by Shibata (1981) for Gaus-
sian errors and Li (1987) under suitable moment assumptions on the errors
(see also Polyak and Tsybakov 1990 for sharper moment conditions in the
Fourier case). One can in particular deduce from these works that if the fam-
ily of models {S,, };1c.#, is nested and each model has a dimension bounded
by n, the heuristics of Mallows C,, is validated in the sense that the se-
lected index m provides an estimator §; , such that asymptotically the risk
E,[||s — 8., 1?1 is equivalent to inf ,c 4, Eg[||s — 8., [|*]. It is worth noticing
that this asymptotic equivalence holds provided that s does not belong to
any of the §,,’s.

Apart from Mallows’ C, classical empirical penalized criteria for model
selection include AIC, BIC, and MDL criteria proposed by Akaike (1973),
Schwarz (1978), and Rissanen (1978 and 1983), respectively. They differ
from the structure of the penalties involved, which are based on asymptotic,
Bayesian or information-theoretic considerations and concern various em-
pirical criteria such as maximum likelihood and least squares.

For our approach to model selection, the penalty term is motivated solely
on the basis of what sorts of statistical risk bounds we can obtain. This con-
ceptual point of view has been previously developed by Barron and Cover
(1991) in their attempt to provide a global approach to model selection.
Using a class of discretized models Barron and Cover (1991) or Barron
(1991) prove risk bounds for complexity regularization criteria which in
some cases include AIC, BIC, and MDL. The work by Barron and Cover is
for criteria that possess a minimum description length interpretation and the
discretization reduces the choice to a countable set of candidate functions
t with penalty L(t)/n satisfying Y, 27® < 1 as required for lengths of
uniquely decodable codes. There these authors developed an approximation
index called the index of resolvability that is a precursor to our accuracy in-
dex a, (s) and they establish comparable risk bounds for Hellinger distance
in density estimation. The main innovation here, as compared to Barron and
Cover (1991), is that we do not require that the models should be discrete.
This supposes a lot of additional work.

The technical approach in this paper is in the spirit of Vapnik (1982).
His method of “empirical minimization of the risk” also heavily relies on
an analysis of the behavior of an empirical contrast based on empirical
process theory and his method of “structural minimization of the risk” is
related to a model selection criterion which parallels ours. We use here the
tools developed in Birgé and Massart (1998). This makes a difference be-
tween Vapnik’s approach and ours both in the formulation of the empirical
process conditions and techniques. In particular, the introduction of recent
isoperimetric inequalities by Talagrand (1994 and 1996) in the case of pro-
jection estimators on linear spaces, which has proved its efficiency in Birgé
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and Massart (1997) and more recently in Baraud (1997), allows to obtain,
in some cases, precise numerical evaluations of the penalty terms and to
justify, even from a non-asymptotic point of view, Mallows’ C,,, relaxing
some restrictions imposed by Shibata (1981) and Li (1987). However, in
general, penalty terms that satisfy our conditions may be different from
those which are used in the familiar criteria. For instance we might have to
consider heavier penalty terms if necessary in order to take into account the
complexity of the family .#,.

As to the implementation of minimum penalized contrast procedures, to
be honest, we feel that this paper is merely a starting point which does not di-
rectly provide practical devices. However it is already possible to make a few
remarks about implementation. The numerical value of the penalty function
can be fixed in some cases as mentioned above. Also, as shown in Birgé and
Massart (1997), the minimization procedure, even if the number of models is
large, can be rather simple in some particular cases of interest since itis partly
explicitly solvable, leading for instance to threshold or related estimators.

1.3. Sieve methods and approximation theory

Let us recall that, for a given sieve S of dimension D, d*(s, S) + D/n typ-
ically represents the order of magnitude of the risk R,(s) of a minimum
contrast estimator §, measured by the mean integrated squared error be-
tween s and §,,. The terms d>(s, S) and D /n correspond to the bias squared
and variance components, respectively. Given some prior information on s
(for instance an upper bound for some smoothness norm) one can, from ap-
proximation theory, choose a family {S,; },,<.~, of finite dimensional sieves
such that s is a cluster point of their union. If we select a sieve S,,, in the
family according to the presumed property of the target function, rather than
adaptively selected on the basis of data, what we study would fall under the
general heading of analysis of sieves for function estimation. The choice of
S, 1s determined by a particular trade-off between the variance and an upper
bound for the bias squared. This method can lead to minimax risk compu-
tations. For instance, let us assume that s belongs to some Sobolev ball Sy
where 0 is some known parameter which characterizes this ball. Approxi-
mation theory provides privileged families of sieves like spaces of piecewise
polynomials with fixed or variable knots or trigonometric polynomials or
wavelet expansions with optimal approximation properties with respect to
those balls. Such a suitable choice of the list of sieves S,,, m € .#, can
typically guarantee that for given n and 6 the minimax risk R, (0) satisfies

: 2 ~ . 2 Dm
R,(9) = inf sup E, [d*(s, 5,)] = C1(6) inf [supd (s, Sm) + —]
Sn SESy mel, SE€Sy n

(1.3)
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where §,, is an arbitrary estimator. Such inequalities can in general be ob-
tained by combining results in approximation theory with classical lower
bounds on the minimax risk available in various contexts (density esti-
mation, regression, white noise). Some references, among many others,
are Bretagnolle and Huber (1979), Ibragimov and Khas’minskii (1980 and
1981), Nemirovskii (1985), Birgé (1983 and 1986), Donoho and Johnstone
(1998). Therefore if m(n, 0) is a value of m which minimizes sup, s, d>(s,
Sm)~+ Dy, /1, the resulting minimum contrast estimator on the sieve S, (, ¢) is
typically minimax (up to some constant independent of ) on Sy. The rates
of convergence for sieves methods, as introduced by Grenander (1981),
have been studied by several authors: Cencov (1982), Grenander and Chow
(1985), Cox (1988), Stone (1990 and 1994), Barron and Sheu (1991), Haus-
sler (1992), McGaffrey and Gallant (1994), Shen and Wong (1994), and
Van de Geer (1995).

The main drawback of the preceding approach is connected with the
prior assumption on the unknown s which is not attractive for practical use
although those estimators are relevant for minimax risk computations. As
a matter of fact, Stone pointed out that his own works on sieves methods
(mainly devoted to splines) were first steps towards data driven methods of
nonparametric estimation. More precisely he had in view to provide some
theoretical justifications for MARS (see Friedman 1991). The mathematical
analysis of sequences of finite-dimensional models is at the heart of the
techniques that we put to use in our study of adaptive methods of model
selection. The point here is that a mere control of the quadratic risk on each
sieve is far from being sufficient for achieving our program, as described in
Section 1.1. Much more will be needed here and we shall have to make use
of the exponential inequalities for the fluctuations of an empirical contrast
on a sieve established in Birgé and Massart (1998).

We wish to allow a general framework of sieves characterized by their
metric dimension and approximation properties. The examples we study
typically involve linear combinations of a family of basis functions {¢; },ca
which are parameterized by an index A that is either discrete or continuous
valued. In the discrete index case we have in mind examples of models based
on Fourier series, wavelets, polynomials and piecewise polynomials with a
discrete set of knot locations. Here the issue is the adaptive selection of the
number of terms including all terms up to some total or the issue may be
which subset of terms provides approximately the best estimate. In the first
case there is only one sieve of each dimension and in the second there may
be exponentially many candidate models as a function of dimension. The
choice of whether subsets are taken has an impact on what types of trade-
offs are possible between bias and variance and on what types of penalty
terms are permitted. In both cases the penalty term will be proportional
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to the number of terms in the models, but in the latter case there is an
additional logarithmic penalty factor that is typically necessary to realize
approximately the best subset among exponentially many choices without
substantial overfit. In contrast the use of fixed sets of terms typically allows
for a penalty term with no logarithmic factors, but as we shall quantify (in
the absence of subset selection) there can be less ability to realize a small
statistical risk.

In the continuous index case we have in mind flexible nonlinear mod-
els including neural nets, trigonometric models with estimated frequencies,
piecewise linear “hinged hyperplane” models and other piecewise polyno-
mials with continuously parameterized knot locations. In these cases we
write ¢,, instead of ¢, for the terms that are linearly combined, where w is
a continuous vector-valued parameter. Not surprisingly, if the terms ¢,, de-
pend smoothly on w, the behavior of these nonlinear models is comparable
to what is achieved in the discretized index set case with subset selection. We
find that these nonlinear models have metric dimension properties that we
can bound, but they lack the homogeneity of metric dimension satisfied by
linear models with a fixed set of terms. The effect is that once again logarith-
mic factors arise in the penalty term and in the risk bounds. The advantage
due to parsimony of the nonlinear models or the subset selection models is
made especially apparent in the case of inference of functions with a high
input dimension. In high dimensions, the exponential number of terms in
linear models without subset selection precludes their practical use.

1.4. From model selection to adaptation

Let us now consider the possible connections between our approach and
adaptive estimation from the minimax point of view. As a matter of fact
the adaptive properties of nonparametric estimators obtained from discrete
model selection were already pointed out and studied by Barron and Cover
(1991) for a number of classes of functions including Sobolev classes of log-
densities without prior knowledge of which orders of smoothness and which
norm bounds are satisfied by the target function. To recover the Barron and
Cover result as a special case of our general density estimation results, set
each model here to be a single function in their countable list. Barron (1991)
extended the discretized model approach to deal also with complexity reg-
ularization for least squares regression and other bounded loss functions
and applied it to artificial neural network models (see Barron 1994) . Let
us also mention that the present paper is a companion to the paper by two
of us (Birgé and Massart 1997) which explores the role of adaptive estima-
tion for projection estimators of densities using linear models. Applications
are given there for wavelet estimation and connections are established with
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thresholding of wavelet coefficients and cross-validation criteria. More re-
cently, Yang and Barron (1998) have got some results similar to ours for the
particular case of log-density models.

Let us now provide a mathematical content to what we mean here by
adaptation. Given a family {Sy}yce of sets of functions we recall that the
minimax risk over Sy is given by

R,(6) = inf sup E, [d*(s, 5,)]

Sns €Sy

where §,, is an arbitrary estimator. We shall call a sequence of estimators
(S,)n>1 adaptive in the minimax sensgfor every 6 € © there exists a
constant C(60) such that

sup I, [d(s, 5,)] < CO)R.(6) .

SESy

If, for instance, one wants to give a precise meaning to the problem of esti-
mating a function s of unknown smoothness, one can assume that s belongs
to one of a large collection of balls such as Sobolev balls of variable index of
smoothness and radius. Our purpose is to point out the connection between
model selection via penalization as described previously and adaptation in
the minimax sense. Starting from (1.2) and assuming that L,, = L for all m
and n and that C(s) is bounded by C,(6) uniformly for s € Sy, one derives
that

2 A . 2 Dm
sup IE; [d (s, Sp ,,)] < C3(0) inf |supd-(s, S,) + —
’ me.l, n

SESy SESy

If the family {S,}me.~, has convenient approximation properties with re-
spect to the family {Sy}pco such that (1.3) holds, it will follow that 5, ,, is
adaptive with respect to the family {Sy}sce in the minimax sense.

We shall actually devote a large part of the paper to the illustration of
this principle on various examples. For most of the illustrations that we
shall consider one can take either L,, as a constant L or as logn. In the
latter case we shall get adaptation up to a slowly varying function of n.
Moreover, in the first case, we shall also discuss the precise dependency
of the ratio C3(6)/C1(0) with respect to 6 and sometimes show that it is
bounded independently of 6.

There is a huge amount of recent literature devoted to adaptive estimation
and we postpone to Section 5 a discussion about the connections between
model selection and adaptive estimation including a comparison between
our approach to adaptation and the already existing methods and results.

The structure of the paper is described in the Table of Contents. Let
us only mention that Sections 4, 7 and 8 are clearly more technical and
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can be skipped at first reading. A first and particularly simple illustration
of what we want to do and of the ideas underlying our approach is given
in Section 2 which provides a self-contained introduction to our method
while Section 3 provides an overview of its application to various situations.
Section 5 does not contain any new result but is devoted to some detailed
discussion, based on the examples of Sections 2 and 3, about the connections
between adaptation and model selection.

2. Aglimpse of the essentials

In order to give an idea of the way our approach to minimum penalized
empirical contrast estimation works, let us describe it in the simplest frame-
work we know, namely Gaussian regression on a fixed design. Its simplicity
allows us to give a short and self-contained proof of an upper bound involv-
ing the accuracy index, for the risk of penalized least squares estimators. The
main issue here is to enlighten the connection between the concentration
of measure phenomenon and the choice of the penalty function for model
selection.

2.1. Model selection in a toy framework

In the Gaussian regression framework we observe n random variables
Yi=s(x)+ W,

where the x;’s are known and the W;’s are independent identically dis-
tributed standard normal. Identifying any function ¢ defined on the set
X ={x1,...,x,)toavectort = (t;,...,t,)7 € R" by setting t; = 1(x;),
we define a scalar product and a norm on IR" by

n n

1 1
tu) = — t(x))u(x;) and - tx,-z. 2.1
<>n;<><> e n;u @.1)
We introduce a countable family {S, }ne.~, of linear models, S, being of
dimension D,, and for each m we consider the least squares estimator &,
on §,, which is a minimizer with respect to ¢t € S, of

ya(t) = It]* = 2(Y, 1) where ¥ = (¥y,..., V)" .

Then we choose a prior family of weights {L,,},,c.», With L,, > 1 for each
m, such that
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> expl—LuDn] < T < +o00 . (2.2)

me,
Our aim is to prove the following

Theorem 1 Letpen(m) be defined on#,, by pen(m) = «L,,D,,/n for a
suitable constant and the weightg.,,, satisfy(2.2). Lets,, be the minimizer
of y,(¢) for ¢t € S,, ands,; be the minimizer among the famil§, },c.», Of
the penalized criteriowy, (5,,) + pen(m). Thens,;, satisfies

Eq [lIs — $4°] <« inf {d*(s, Su) +pen(m)} +«"=n"" |, (2.3)

me,
whered?(s, S,,) = inf,cs, ||s — t]|> and«’, «” are numerical constants

Remark The following proof uses x = 24 leading to «’ = 3 and " = 32,
which is obviously far from optimal as follows from Li (1987) or Baraud
(1997). The result actually holds, for instance, with x = 2 as in Mallow’s
C, but a proof leading to better values of the constants would be longer,
involve additional technicalities and also use more specific properties of the
framework. Since we want here to give a short and intuitive proof, in the
spirit of the subsequent results given in the paper for different frameworks,
we prefer to sacrifice optimality to simplicity and readability and put the
emphasis on the main ideas to be used in the sequel without the specific
tricks which are required for optimizing the constants.

Proof. We start with the identity
It —sl* = yu(t) +2(W, 1) + [Is|> where W = (Wy, ..., W,)"
and notice that, by definition, for any given m € .4,
Ya(Si) + pen(m) < y,(sn) + pen(m)

where s, denotes the orthogonal projection of s onto S,,. Combining these
two formulas we get

Is = 8all> < s — swll* + pen(m) — pen(it) + 2(W, (i — s)) . (2:4)
Let m be fixed. Given some m’ € .#,, we introduce the Gaussian process

{Z(1)}ses,, defined by

W, (- )
Z(1) = W, = sm)) where w(m’, 1) = ||t—s||2—|—||s—sm||2+x£ ,
w(m’, 1) 2n
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X, being some positive number to be chosen later. As a consequence of
Cirel’son, Ibragimov and Sudakov’s inequality (see Cirel’son, Ibragimov
and Sudakov 1976 and, for more details about Gaussian concentration in-
equalities, Ledoux 1996).

)\‘2
P,|supZ(t) = E+ 1| <exp|—=—= forany A >0 (2.5)
tESm/ 202

provided that £ > ]E[sup,esm, Z()] and SUp;¢s, , Var(Z(t)) < o2. Let us
first notice that

, 1 5y Xy X\ 172
won' o) = 3 [l =l + 2] = e =l (£) T @26)

and that for any function u, Var((W, u)) = n~!|u||>. Then Var(Z(t)) =
n |t — s, ||>w™2(m’, t) which immediately yields that we can take 0> =
x,;,l in (2.5). On the other hand, expanding ¢ — s,, on an orthonormal basis
Wi, ..., ¥n) of S+ Sy with N < Dy, + D,,, one gets by Cauchy-Schwarz
inequality that

N
Z20) < Nt = sulPw™20m' 1) Y (W ;)
j=1
and it follows from (2.6) and Jensen’s inequality that we can take £ =
[(D,, + D,)/xw]"? in (2.5). If A is given by A> = 2(x + L,y D) /X
where x is any positive number we derive that

D, + D,y +2x +2L, D,y \'* 1
A+ E < fz( + Dw ox ) =
Xm'

if x,,, = 32(D,, + 2x + 3L, D,,). It then follows that

]Ps [Z(fm’) = 1/4] =< ]PS |:SUP Z(t) > 1/4 =< exp(_Lm’Dm’) exp(_x)

teS,

and therefore summing up those inequalities with respect to m’ that

P, [ qup WG )

1_
—~ > — | < Xexp(—x) . 2.7
m'el, w(m', S,) 4_

This implies from the definitions of w and x,, that except on a set of prob-
ability bounded by Xe™

AW, S — sm))

A

w(n, §7)
A 2 2
s — Sall” + IIs — swll

+16n~'(D,, +2x +3L;Dy,) .

IA
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Coming back to (2.4), this implies that
ls—5 1% < 3lls—smlI*+2pen(m)—2pen(m)+16n"' (D, +2x+3L,; Dyi) .

The choice k = 24 entails the cancellation of pen(s1), showing that, since
Ly >1

Is = $all*> < 3lls — swll* + (8/3)pen(m) + 32n~'x
apart from a set of probability bounded by Xe™. Setting
V= (lls = 8l = 3lls — swll> — (8/3)pen(m)) v 0
we get
E; [lIs — $all] < 3lls — swll” + (8/3)pen(m) + E,[V]

and P;[V > 32x/n] < ¥ exp(—x). Integrating with respect to x implies
that [E;[V] < 32X /n which yields (2.3) since m is arbitrary. O

2.2. Variable selection

We want to provide here a typical application of Theorem 1. Let us assume
that we are given some (large) orthonormal system {¢y, ..., gy} in R" with
respect to the norm (2.1). We want to get an estimate of s of the form
s = erm ﬁk(pk where m is some suitable subset of {1,2,..., N}. Let
us first recall that if m is given, the projection estimator §,, over S,, =
Span{g;, | A € m}, which is the minimizer with respect to ¢ € S, of the
criterion y, (1), is given by

Sm=Y_ Buon with B = (Y. )

rem

and that y,(5,) = — Y, ,BA% Elementary computations show that
Eq [lls = $ull*] = d*(s. Su) + lml/n .

Unfortunately, since s is unknown we do not know how to choose m in an
optimal way in order to minimize d*(s, S,,) + |m|/n. In order to select m
from the data, let us describe two simple strategies (among many others).

i) Ordered variable selectiotin this case we select the “variables” ¢; in
natural order which means that we restrict ourselves tom; = {@; |1 < A <
k}, letting k vary from 1 to N. In such a case one can take L,, = 1, ¥ =
0.6, pen(my) = kk/n and get a penalized least squares estimator §; where
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k is the minimizer of kk/n — Zkemk B% By Theorem 1, the risk of this
estimator is bounded by

B [lls = 8¢1°] < e inf {d*(s, Su) +k/n}

for a suitable numerical constant «. One should notice here that N does not
enter the bound and can therefore be infinite and that we get the optimal risk
among our family apart from the constant factor k. Note that this optimality
is with respect to the best that can be achieved among the class of ordered
variable selection models.

ii) Complete variable selectioilere we take m to be any nonvoid subset
of {1, 2, ..., N}. Since the number of such subsets with a given cardinality

. (N
D is <D> < (eN/D)P by Lemma 6 one can choose L,, = 1 + log N for

all m and ¥ = 1.3. The resulting value m is then obtained by minimizing
k(1 +logN)m|/n =3, ,Bf. It is easily seen that this amounts to select
the values of A such that 87 > « (1 + log N)/n which means that

X { [K(1+1ogN)T/2}
m=at T a

Therefore §,; is a threshold estimator as studied by Donoho and Johnstone
(1994a). Moreover by Theorem 1, there exists a constant k& such that

1Bl >

E, [lls — §;1I°] < & inf {d*(s, S,) + Im|(log N)/n}

If N is independent of n, we only loose a constant as compared to the
ideal estimator; if N grows as a power of n, we only loose a logn factor
as compared to the optimal risk for the class of all subset models, as in
Donoho and Johnstone (1994a). This is the price to pay for complete variable
selection among a large family but what is gained can be vastly superior in
the approximation versus dimension tradeoff in the risk.

Conclusion: The simplicity of treatment of the preceding example is mainly
due to the fact that the centered empirical contrast 2{W, ¢) is a Gaussian
linear process, acting on a finite dimensional linear space. The same treat-
ment could be applied as well to penalized projection estimation for the
white noise setting. Unfortunately the treatment of other empirical contrast
functions or of nonlinear models requires that several technical difficulties
be overcome.
e If we set here ¢,(s, 1) = E;[y,(t) — yu(s)], then £,(s, 1) = ||s — t]2.
In a non-Gaussian framework, one has to deal with a general empirical
contrast function y, and the analogue of (2.4) becomes
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(s, S) < La(s,ys5m) + [v2(sm) — v ()] + pen(m) — pen(it)

where y,? (t) = yu(t) — E4[y,(2)]. Pure ILy-assumptions are not enough
to control the fluctuations of the centered empirical contrast (the brack-
eted term) involved in this inequality. This motivates the introduction of
L.-type assumptions on our models in the next section. Moreover, the
structure of the exponential bounds that we use is connected to Bernstein’s
inequality rather than a subgaussian type inequality. We also would like
to point out the status of the distance d which has to be closely connected
to the empirical contrast and chosen not too small in order to provide an
appropriate control of the fluctuations of y° and not too large in order
that d*(s, t) be controlled by £,,(s, t).

e In the most favorable case of the projection density estimator on linear
models, one can mimic the preceding proof, replacing the concentration
inequality (2.5) by Cirel’son, Ibragimov and Sudakov by an inequality
of Talagrand (1996). The point here is that the linearity of the model and
of ¥0(t) as a function of ¢ allows to use Cauchy-Schwarz inequality as
we did before to control the expectation of the supremum of the process
involved. This point of view is developed in Birgé and Massart (1997)
for projection density estimation and Baraud (1997) for non-Gaussian
regression.

e More generally, in the nonlinear context, one has to deal with suitable
modifications of the entropy methods introduced by Dudley (1978) to
build the required exponential inequalities. Such results are collected in
Proposition 7 below which is mainly based on Theorem 5 and Proposi-
tion 3 of Birgé and Massart (1998). Moreover, in the case of maximum
likelihood estimation, we have to modify the initial empirical process
in order to keep its fluctuations under control at the price of additional
difficulties to get an analogue of inequality (2.4).

3. Main results with some illustrations
3.1. The minimum penalized empirical contrast estimation method

We wish to analyze various functional estimation problems (density es-
timation, regression estimation, ...) that we describe precisely below. A
common statistical framework covering all these examples is as follows.
We observe n random variables, Z;, ..., Z, which, in the context of this
paper, are assumed to be independent. These variables are defined on some
measurable space (€2, .«/) and take their values on some measurable space
(Z,u). The space (€2, /) is equipped with a family of probabilities {IP },c o
where .7 is a subset of some IL,-space, IL, (). Note that both i and & can
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depend on n, the same being true for each probability IP; but we do not make
this dependence appear in the notation for the sake of simplicity since those
quantities will be fixed (independent of n) in most applications. We denote
by IE, the expectation with respect to probability Py, by IP, the empirical
distribution of the Z;’s and by v, = P, — [E; o IP, the centered empirical
measure. The space IL,(u) is equipped with the distance d induced by the
norm || - || = || - |[>. More generally for 1 < p < oo, the normin IL, () is
denoted by || - ||,

Let us now introduce the key elements and notions that we need in the
sequel.

Definition 1 Given some subset of I, () containing.#, an empirical
contrast functiony, on .7 is defined for alk € 7 as the empirical mean
Yo =n"' Y7 ¥(Z:, t) wherey is a function defined o x 7 which
satisfies

Eg[y,(1)] = Es[y,(s)] forall se ¥ and rte g .

We then introduce a countable collection of subsets S, of .7~ (model$ in-
dexed by m € .#,. These models play the role of approximating spaces
(sieve$ for the true unknown value s of the parameter which might or
might not be included in one of them. Typically, S,, is a subset of a finite-
dimensional linear space. In order to make the notations simple we shall
assume that everything which depends on m € .#,, might depend on n but
we omit this second index. We then consider a penalty functionpen(m)
which is a positive function on .#,. We shall see later how to define this
penalty function in order to get a sensible estimator. Let €, > 0 be given, a
minimum penalized empirical contrast estimaioklefined as follows:

Definition 2 Given some nonnegative numhgt an empirical contrast
functiony,, a collection of model§S,,}.<.», and a penalty functiopen(-)
on.#,, an g,-minimum penalized contrast estimator iS any estimatog in
Ume.n, Sm With § € S;; such that

¥.(8) + pen(m) < inf {inf Vu (1) +pen(m)} +e, . (3.1)

medl, |teS,
If &, = 0 we speak of ainimum penalized contrast estimator.

As usual, by estimator we mean a measurable mapping from (2, %)®"
to the metric space (7, d) endowed with its Borel o-algebra. If we omit
the measurability problems, such an estimator is always defined provided
that ¢, > 0 but might not be unique. Nevertheless, the following results
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do apply to any solution of (3.1). In order to simplify the presentation we
shall assume throughout the paper that § is well-defined for &, = 0. It turns
out from our proofs that the choice &, = n~! would lead to the same risk
bounds as those provided in the theorems below for the case ¢, = 0.

Some classical examples of minimum contrast estimation methods
follow.

3.1.1. Maximum likelihood density estimation

We observe n independent identically distributed variables Z, ..., Z, of
density s> with respect to . We define 7 to be the set of nonnegative
elements of norm 1 in IL; (1) (which means that their squares are probability
densities) and take ¥ C 7. The choice of the function y (z, t) = —log?(z)
leads to maximum penalized likelihood estimators

3.1.2. Projection estimators for density estimation

We assume that p is a probability measure and that the unknown density
of the i.i.d. observations Zi, ..., Z, belongs to IL, (). It can therefore be
written 1 + s where s is orthogonal to the constant function 1. We take for
7 the subspace of IL,(u) which is orthogonal to 1 and derive the empirical
contrast from y(z,1) = ||t||> — 2¢(z), & being chosen as any subset of
those t € 7 such that 1 4 ¢ > 0. If S,, is a linear subspace of 7~ with an
orthonormal basis {¢; },ea, » minimizing y, (¢) over S,, leads to the classical
projection estimator $,, on S, given by

. A . Iy
Sm= Y Bun with B, = ” AP
i=1

reA,

3.1.3. Classical least squares regression

Observations are pairs (X;, ¥;) = Z; with ¥; = s(X;) + W; and the vari-
ables X; and W; are all independent with respective distributions R; and Q;
(independent of s) but not necessarily independent identically distributed
since we want to include the fixed design regression in our framework. In
this case ¥ C J = IL, () where u denotes the average distribution of the
Xi’sip=n"" Y!_, R;. This distribution actually depends on n in the case
of a fixed design but not in the case of a random design. We assume that
the errors W; are centered and choose y (z, t) = [y — #(x)]?. The resulting
estimator is a penalized least squares estimator.
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3.1.4. Minimum-IL; regression

We use the same regression framework as before, now assuming that the
W;’s are centered at their median and define y (z, 1) = |y — t(x)].

These frameworks and related empirical contrast functions have been de-
scribed in greater detail in Birgé and Massart (1993) and Birgé and Massart
(1998). We therefore refer the reader to these papers for more information.

3.2. Examples of models

In all our results, the value pen(m) of the penalty function is, in particular,
connected with the number D,, of parameters which are necessary to de-
scribe the elements of the model S,,,. A general definition of D,, will appear
in Section 6 and we shall here content ourselves with the presentation of
two cases which are known to be of practical interest.

3.2.1. Linear models

By a “linear model” we mean a subset S,, of some finite-dimensional linear
subspace Sy of L, N Lo (1) with dimension D,,. In opposition with what
happens for Gaussian situations like the Gaussian regression on fixed design
and the white noise setting, the IL,-structure of the models is not sufficient
to guarantee a good behavior of the empirical contrast function y,,, which is
essential for our purpose as we shall see later. More is needed, specifically
some connections between the IL,- and IL,.-structures of the models. It is
the aim of the two following indices (indeed relative to S,,) to quantify such
connections. Firstly we set

1 12100 (3.2)

sup
LY, Dm 1€8,,\{0} ”t”

®,, =

and denote by .7, the set of all orthonormal bases of S,,. For any finite set

A and any B € R”, we define [Bloc = sup,cn |8l and |,3|% = ZAGA ,Bf.
We then notice that for any orthonormal basis ¢ = {@y}rer, € Fm

12
1 12 5en, Brtilloo 1

= sup =
" Dy g0 |Bl2 v/ D

Ny

> ¢t

LEA,

3.3)

[e¢]

The second equality in (3.3) comes from Lemma 1 of Birgé and Massart
(1998). Secondly we define
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1
Frp = inf {sup 1 2 2cn, Prnllc (3.4)
Dy, 97 u | p2o |Bloo
It follows from (3.3) and this definition that
Dy <Fm <V Dy®u . (3.5)

Let us now detail a few examples of linear models and bound their indices.

Uniformly bounded basis: If one can find an orthonormal system {¢; };ca
such that ||@y ||o < @ forall A € A, if the elements of .#,, are subsets of A
and S, is the linear span of {¢; },.em, then @, < ® by (3.3). Choosing .#,, as
a countable family of subsets of the trigonometric basis in IL, ([0, 2], dx)

provides a typical example of this type.

Wavelet expansionsLet us consider an orthonormal wavelet basis {¢; 1 | j
>0,k € Z7} of L, (RY, dx) (see Meyer 1990 for details) with the following
conventions: ¢ ; are translates of the father wavelet and for j > 1,the ¢; i’s
are affine transforms of the mother wavelet. One will also assume that these
wavelets are compactly supported and have continuous derivatives up to
some order r. Let ¢ € IL,(IRY, dx) be some function with compact support
in (0, A)?. Changing the indexation of the basis if necessary we can write
the expansion of ¢ on the wavelet basis as:

2/ M

t= Z Z Bix®jk

Jj=0 k=1

where M > 1 is a finite integer depending on A and the size of the wavelet’s
supports. For any j € N, we denote by A(j) the set of indices {(j, k) |1 <
k < 2/9M}. The relevant A,,’s will be subsets of the larger sets UJJ.ZOA( 7)
for finite values of J and we shall denote by J,, the smallest J such that this
inclusion is valid. It comes from Bernstein’s inequality (see Meyer 1990,
Chapter 2, Lemma 8) that 7,, < C(29/»/D,,)'/? for some constant C. In
particular, for all A,,’s of the form U]J.”; oA (j), 7 1s uniformly bounded
and so is ®,,. The most relevant applications of such expansions have been
studied extensively in Birgé and Massart (1997).

We also want to deal with wavelet expansions on the interval [0, 1].
Since the general case involves technicalities which are quite irrelevant
to the subject of this paper, we shall content ourselves to deal with the
simplest case of the Haar basis. Then the following expansion holds for any
t € Ly([0, 1], dx):
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27
t=p119-11+ Z Z,Bj,k(/’j,k ) (3.6)

Jj=0 k=1

where ¢_11 = ljo,1), ¥ = ljo,12] — Ij1/2,1 and @; 1 (x) = 272 [2/x —k+
1]. Weset A(—1) = {(—=1, D}andfor j = 0 A(j) ={(J, k) |1 <k <2/}
If A, = Uj’:OA(j) we see from (3.3) that &,, = 1. To bound r,, we first
notice that for j > 0

2i

> Biwoin| <27 sup|Biul - (3.7)

k=1 k
o0

Therefore
- -1,2
n < | D 2D 2 <1++v2.
j=0 j=0

It may also be useful to choose A, = U7__; A(j) and then 7, <2+ V2.

Piecewise polynomialsWe restrict our attention to piecewise polynomial
spaces on a bounded rectangle in IR?, which, without loss of generality,
we take to be [0, 1]9. Hereafter we denote by #; a partition of [0, 1] into
D(i) intervals. A linear space S,, of piecewise polynomials is characterized
by m = (r, 71, ...,%,) where r is the maximal degree with respect to
each variable of the polynomials involved. The elements ¢ of S, are the
functions on [0, 1]¢ which coincide with a polynomial of degree not greater
than r on each element of the product partition #? = ®?_,#;. This results
in D, = (r + D], DG).

Let {Q}jen be the orthogonal basis of the Legendre polynomials in
ILr([—1, 1], dx), then the following properties hold for all j € IN (see
Whittaker and Watson 1927, pp. 302-305 for details):

[Q;(x)| <1 forall xe[-1,1], Q;() =1,

and

1 s 2
1) dt = —— .
/IQJ() 2j +1

Let us consider the hyperrectangle R = ;’zl[a,», bil. For j € ¢ =
{0, ..., r}? we define

q . 1/2
2ji +1 2x; —a; — b;
(pR,j(xl,--.,Xq)zl_[< /i ) jS<;)]11e(x1,...,xq) .

i1 b,‘ — a; bl‘ — a;




Risk bounds for model selection via penalization 323

The family {¢g ;};c , provides an orthonormal basis for the space of poly-
nomials on R with degree bounded by r. If H is a polynomial such that

H=3,Bior;

1H oo < [(r + D@r + D] [VOI(R)] ™2 Bl -
Then taking A,, as the set of those (R, j)’s suchthat R € Z and j € ¢ we
get from (3.4)

2 (r+D¥Q2r 4+ 1)4
" = D,, infges VOI(R)

q -1
=[r+DQ2r+D]? |:inf Vol(R) HD(i):|
Rez

=1

’ (3.8)
In particular, if 2 is a regular partition (all elements R of 2 have the same
volume),

P < [(r + DQ@r+ D] (3.9)

Polynomials on a sphere and other eigenspaces of the Laplaciahet
SY be the unit Euclidean sphere of RY*!, 1 be the uniform distribution
on the sphere and 0 < 6y < --- < 6; < --- be the eigenvalues of the
Laplace-Beltrami operator on S?. Let, for each j > 0, {¢,, L € A(j)} be
an orthonormal system of eigenfunctions associated with the eigenvalue 6;.
Then {1} UU;>o{@sx, A € A(j)} is an orthonormal basis of IL,(xt). Defining,
for any integer m > 0, A, = U_jA(j) and S,, as the linear span of
{@r}ren, ,» we get Dy, = |A,|, for m > 0. Actually these eigenvalues are
given by explicit formulas (see for instance Berger, Gauduchon and Mazet
1971), the corresponding eigenfunctions are known to be harmonic zonal
polynomials and one has (see Stein and Weiss 1971, p. 144)

Z (pf(x) = |A(j)| forall x € S? andall j >0 .
reA())

In such a case it follows from (3.3) that ®,, = 1 for any integer m.

More generally, we can consider, instead of S§7, a compact connected
Riemannian manifold IM of dimension g with its uniform distribution 1. The
eigenfunctions of the Laplace-Beltrami operator provide an orthonormal
basis of IL(u«) which is a multidimensional generalization of the Fourier
basis. Of course no exact formula is available in this full generality but
some asymptotic evaluation holds which is known as Weyl’s formula (see
Chavel 1984, p. 9). Keeping the same notations for the eigenvalues and
eigenfunctions as above, defining A(j), A,, and S,, as in the case of the
sphere and setting D_; = 1, Weyl’s formula ensures that there exists two
positive constants C(IM) and C,(IM) such that for any integer m
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Ci(M)DY4 < 6,, < C,(M)D/4, < C,(M)D?/7 . (3.10)

Moreover one can get the following control of the heat kernel (see Chavel
1984, inequality 55 p. 331):

e (pfx < (3 B .
Sl Y eiw] = i (3.11)
Jj=0 reA())

for any positive ¢, any x € IM and some fixed positive constant Cz(IM).
Applying (3.11) with t = 6! yields

> ¢}

rEA,,

< eC3(IM)04/%

o]

Combining this inequality with (3.10), we can derive from (3.3) that for any
integer m, <I>,%1 < ®2(M) = eC;3(IM)C,(IM)4/? which implies that ®,, is
uniformly bounded as in the case of the sphere.

3.2.2. Nonlinear models

Here we have in mind a variety of models that include single hidden layer
sigmoidal networks (see Barron 1993 and 1994), sparse trigonometric mod-
els, certain multivariate wavelet models as in Hornik et al. (1994) or Yukich
et al. (1995) and piecewise linear “hinged hyperplane” models of Breiman
(1993), for flexibly fitting a function of several variables. We take, for sim-
plicity, the domain of the functions to be [—1, 1]¢. The models involve linear
combinations of functions ¢, (x), continuously parameterized by a vector
w € R?, where the functions ¢,, satisfy the Lipschitz property

| (x) — Py (x)| < |lw—w'|y forallx e[—1,1]7 , (3.12)

| - |1 denoting the I'-norm on IRY". The models S,, are indexed by a triplet
of positive integers m = (D', H, R) and will be suitable modifications (via
some clipping and renormalization) of the basic models

D’ D’

Su=1>_Bidw,x)|> 1B <R and |w; <H

j=1 j=1

for 1<j<D
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In such a case we can take D,, = D’(¢’ + 1), which is the parametric
dimension of S,,. Here the constraints R and H as well as D’ are included
in the model index rather than fixed in advance, so that the metric entropy
of each model can be controlled without advance knowledge of how large
avalue of R, H or D’ is needed for the best model.

Of particular interest are the cases in which the terms in the model are
g-dimensional ridge functions ¢, (x) = ¥ (a’x — b) where ¥ is a fixed
univariate function with Lipschitz constant 1 and w = (a, b) witha € R?
and b € R (then ¢’ = g + 1). Then the Lipschitz property (3.12) holds
for ¢,,. The cases mentioned above are of this ridge expansion form. For
the neural net case v is a sigmoidal function as in Barron (1993) (popular
choices are the logistic, the hyperbolic tangent, and the linear ramp clipped
at magnitude 1); for trigonometric sums 1 is the cosine function and for the
hinged hyperplane model ¥ (z) = z Vv 0 to yield piecewise linear functions
(see Breiman 1993). Hornik et al. (1994) and Yukich et al. (1995) take the
activation function i to be an arbitrary non-zero bounded function that is
zero outside a bounded interval, which includes wavelet functions of ridge
type. The Lipschitz condition used here holds for many (though not all)
of these wavelets. A multivariate version of Proney’s classic model can be
developed with ¥ (z) = e~%, where z = a’ x + b is complex-valued with
aeClbeC, xe]|0,1]7 and all real parts of the coordinates of a and b
taken to be nonnegative.

We are not restricted to ridge expansions here. For instance, radial basis
function models with ¢, (x) = ¥ (b|x — a|;) are also of the required form
when  is a Lipschitz function such as v (z) = exp(—|z|) or exp(—z?) and
b is bounded. This latter case leads to what Donoho calls the bump algebra.
Tensor product expansions of the form ¢, (x) = Yy, (x1) ... Yy, (x4) for
x € [—1, 1]¢ satisfy the Lipschitz condition if the factors are built from a
univariate Lipschitz function that is bounded by one (that is, [y, (x;)| < 1
and |y, (x;) — Ww; (x)| < |w; — wi]; for x; € [—1,1]). For instance,
piecewise multilinear models correspond to 2, (x;) = (x; —w;) Vv 0 (with
w; taken to be bounded by 1) as in the multivariate adaptive regression
spline model of Friedman (1991).

Higher order piecewise polynomial ridge expansions and piecewise poly-
nomial tensor products may also be handled with a slight modification of the
framework, in which the linear combinations in S, are built not just from
one univariate v function, but from several, such as 1, z, z% and (z v 0)°
in the cubic spline case. To simplify the discussion of the nonlinear models
we have focussed attention on the case that ¢ is indexed by a continuous
parameter rather than both discrete and continuous parameters. Multivariate
piecewise polynomials will be explored as a subset selection problem using
a grid rather than a continuum of possible knot locations in the next section.
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3.3. The theorems and their applications

In order to keep the presentation of our results simple, we now concentrate
on linear models and return to the nonlinear models in Section 4.2. We
assume that the situation described at the beginning of Section 3.2 holds,
i.e. S;, is a subset of a linear space S, C Ly(w) of dimension D,, with ®,,
and r,,, defined by (3.2) and (3.4) respectively. We shall also need, from now
on, a number of different constants. Let us recall here that by “constant”
we mean quantities that do not depend on #. In order to make our notations
more transparent we shall hereafter systematically denote by the letter « as
inky, «’, ... numerical constants, which do not depend on the various other
constants involved in the assumptions. On the other hand, C or ¢ denotes
a constant depending on the former ones and possibly of s, the notation
C(,---,-) emphasizing the dependence of C on the other constants. The
same letter may be used for different constants from one section to another.

3.3.1. Maximum likelihood estimators

We observe n independent identically distributed variables Zy, ..., Z, of
density s? with respect to some probability measure 1. The set of possible
parameters . consists of those nonnegative functions ¢ for which ¢ is a
probability density. To each ¢ € . corresponds a probability P; with density
1> with respect to p and d(u, v)/ V2 is the Hellinger distance between the
corresponding probabilities, i.e.

2
dz(u,v):/< 4. /cgzv) dn<2.

We define analogously K (u, v) to be the Kullback-Leibler information di-
vergence between P, and P,, i.e.

K(u,v):{flog(td]_g:)dPu lfPu <L P,
+00 otherwise .

Theorem 2 Let{Sm}me,/,” be a countable family of finite dimensional linear
subspaces af,, (). For anym € .#, we denote byD,, the dimension of
S, by7,, the index defined bi.4) and we ses,, = S,,N.. Let{L,,}ne.s,

be a family of weights such that

L,>1 foral me.#, and Z exp[—LuDp] < T < 400 .

me.,

(3.13)
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Letpen(m) be such that
pen(m) = «ki[Ly +1og(l + 1) 1(Dy /1)

wherex is a suitable positive numerical constant andsiée the maximum
penalized likelihood estimator which is a minimizer with respeci:te
My, andt € S, of —n=' Y1 logl[t(Z;)] + pen(m) if t € S,,. Define
K (s, Sy») = inf,cs, K(s,u) and assume thdt < D, <nforallm e .#,.
Then whatever € ¥

E, [d*(s,$)] < k] [ ieng/ {(K(S,Sm)/\1)+pen(m)}+2n_1i| . (3.14)

The upper bound in (3.14) involves a bias term K (s, S,,) where one would
prefer d*(s, S,,). In many examples a natural way of deriving an approxi-
mation of s by an element s, of S, is to normalize an upper approximation
s> s in S,,. More precisely we shall prove in Section 8 the following
result:

Proposition 1 Assume thas,, is a linear space of functions i, («) and
Sn is the set of nonnegative elements of narim S,,,. If there existsF > s
in S,, then

K(s, Sp) A1 <3d(s,s))
and if u is a probability measure antie S,

K(s,Su) A1 < 12inf ||ls — 12 (3.15)

teSy

Application to adaptive histograms: We consider a family of sieves which
are sets of piecewise polynomials of degree 0, i.e., histograms, on [0, 1]
and take u to be the Lebesgue measure. Here m is a partition of [0, 1]
which is a union of D,, intervals, Sm is the space of piecewise constant
functions on m and S,, is the set of nonnegative elements ¢ of S, such that
lz]l = 1. Let %, be the set of all regular partitions with at most n pieces
(this restriction being necessary since Theorem 2 requires that D,, < n) and
9, .~ be the set of all irregular partitions with at most n pieces and endpoints
belonging to the grid {j/N |0 < j < N}. Noticing that 4, y is empty for
N =1 or 2, we define .#, = %, U (Uy>3%9, n) and choose L,, = 1
whenm € #,, L, =2[1+1log(N/D,,)] when m € 4, y. It follows from
our study of piecewise polynomials that 7, < 1 by (3.9) when m € %,
and is bounded by (N/D,,)'/? otherwise. One observes that the number of
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partitions of %, y with D pieces is bounded by (eN/D)? from Lemma 6

and that necessarily 1 < D < N (to avoid regular partitions). Therefore the
following computations show that (3.13) is satisfied with ¥ = 1:

IR EDNEEDD szl (ﬂ)] =2/ 1+log(N /)]
- J

me., j>1 N=>3 j=2
N-1 —j
1 eN\ ™’
< + E E -
Te—1 : ( J )
N>3 j=2

IA

o

| —
[
N

I |
SN—
]

N

IA
Q

| —

+
. 7N
., I
N———"
|
;\
3

=

N

=

Choosing K > k1, we can apply Theorem 2 with

pen(m) = K (1 + log2)(Dy,/n) if m € #, | (3.16)

pen(m) = K [2 4 210g(N/Dy) 4 log(1 4+ (N/Dw)"?)] (D /n)

it md R, . (3.17)

e If s is Holderian of order «, i.e.
[s(x) —s(¥)| < H|lx —y|* forall x,ye€[0,1],

H > 0 and o € (0, 1] being unknown, for each m € %,, the LLo.-
distance between s and S,, is bounded by H(2D,,)™® and therefore
by (3.15) K(s, S,) A 1 is bounded by 12H?*(2D,,)">*. In that case
(3.14) implies that the quadratic risk of our estimator is bounded by
C(K)H?* Gty —2e/Ca+D) ye shall see in Section 4.1.2 that even if H
and o were known, one couldn’t do better, from the minimax point of
view, apart from the constant C.

e If 5 belongs to some S,, with m € ¥, y, (3.14) implies that the risk is
bounded by C’(K)log(N/D,,)D,,/n, which is of the usual parametric
ordern~!asn — oo foreach such s and, for each given positive integer /,
of order (D /n)log(n/ D) uniformly in models with index in the set {m €
U%\,”I 3%n.N | D,y = D}. On the other hand for a given value of D, 9 <
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D < n/5, it follows from Proposition 2 of Birgé and Massart (1998) that
the minimax risk on this set is of the same order (D/n)log(n/D). This
gives a sense in which the logn factor is a necessary price to pay when
one compares the purely parametric problem of estimating a piecewise
constant density on a known partition with D pieces to the same problem
with a completely unknown partition.

e The main advantage of including the families of irregular partitions in
our construction is to allow spatial adaptationWith a single estimator
we achieve simultaneously the optimal n~! rate for s in the paramet-
ric subfamilies, the optimal rate n=2%/@*+D for the a-Holderian densi-
ties and within a logarithmic factor of this optimal rate for much less
homogeneous functions with smoothness «. This will be illustrated in
Section 4.2.1 below for densities with bounded «-variation.

3.3.2. Projection estimators

The basic result is similar to Theorem 3 of Birgé and Massart (1997) where
a detailed study of some more specific examples involving Besov spaces
is to be found. We recall that here w is a probability measure and that the
observations Zy, ..., Z, have the same unknown density 1 + s with respect
to u. Therefore the space 7 is chosen to be the linear subspace of L, (u)
orthogonal to 1.

Theorem 3 Assume that the familys,, },,c.», is a family of finite dimen-
sional linear subspaces af NIL,, (1) which is totally ordered by inclusion,
that the dimensiom®,, of S, is bounded by and that the inde®,, defined
by (3.2) is bounded by some constabt> 1 for all m € .#,. Lets,, be the
projection estimator o1$,, as defined in Sectiah1.2, «, be a suitable nu-
merical constantpen(m) > x,®>D,,/n ands be the penalized projection
estimator which is a minimizer with respecttoc .#,, of —||5,, ||>+pen(m).
Then whateves € 7 such thatl + s is a density

. . L1+ [IsID]*
E, [IIS — s)*] < &} mlél;;n {d*(s, Sy) + pen(m)} + k) ————— .

(3.18)

Application to ellipsoids with unknown coefficients: We consider some

orthonormal system {; } e in 7 where A = U;enA(j), each A(j) being

a finite set. We limit ourselves here to the study of two cases of particular

interest leaving the general case to Section 4.

e 1 is the uniform distribution on the torus [0, 2], A(j) ={2j;2j + 1}
for j = 0and g2;(x) = V2 cos[(j+Dx1, ¢241(x) = v/2sin[(j+Dx].
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e 1 is the Lebesgue measure on [0, 1], A(j) = {(j,k) |1 < k < 2/}
for j > 0 and the ¢, ; are the elements of the Haar basis described in
Section 3.2.1.

For any non-increasing positive sequence a = {a;};>o converging to
zero we define the ellipsoid &(a) by

E@=1>" > o) a7 D B =1

Jj>0 reA(j) j=0 reA())

Let us define for each m € N, A, = ZT:O A(j) and D, = |A,|.
Then #, = {m > 0 | D, < n}. For the sake of simplicity, we limit
ourselves in this section to the case a;(H,a) = H Dj_"‘ with H > 0 and
o > 0 for the Fourier basis, a € (0, 1] for the Haar basis. This case is of
particular interest since it is well-known that Uy . ¢&(a(H, o)) is the set of
periodic functions orthogonal to 1 belonging to the Sobolev space W5 in
the Fourier case and of functions orthogonal to 1 belonging to the Besov
space By, in the Haar case. For the definition of those spaces, we refer
to DeVore and Lorentz (1993, Chapter 2) and to the proof of Lemma 12
below.

If s is an element of some ellipsoid &(a), it is immediate to see that
d*(s, S,) < ai +1- We also recall that in our examples, ®,, is bounded by
® with ®2 = 2 for the trigonometric basis and ®> = 1 for the Haar basis.
This allows to apply Theorem 3 with pen(m) = K> D,,/n and K, > ®2k,
which implies that

. . _ K> Dy, (1+ls?
a2 ’ 2 2 2 11 4
E; [lls — §1I°] < szlerg/n {H D, + , } + k5D —

and finally whatever the true unknown values of H and «,
2/(142) 1 4
E; [lls = $I°] = C(K2) (—) +rgor CEED
n“ n

The discussion about the optimality properties of such a bound will be
developed in Section 4. Sharp asymptotic results using ellipsoids built on
the Fourier basis are to be found in Efroimovich and Pinsker (1984) (for
the white noise setting) and (1986) (for the spectral density), Efroimovich
(1985) (for density estimation), all the results, except for the first one, being
restricted to Hilbert-Schmidt ellipsoids (i.e. « > 1/2 in the above exam-

ples).
3.3.3. Least squares estimators for smooth regression

We consider a regression framework Y; = s(X;) + W; where the X;’s
are independent identically distributed with common distribution x and the
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W;’s are independent identically distributed and centered (with a distribution
independent of s). The application of the following theorem requires the
prior knowledge of some upper bound £ on ||s||» since £ is involved in
the construction of our estimator. This motivates the introduction of the set

T ¢ ={teg =Lw |t < &}.

Theorem 4 Let& and&’ be two positive numbers, assume thipa!"11/¢'] <
4 and let{L,,}nc.», be a family of weights such that

Lpy>1 forall me.#, and > exp[~LnDn] <% < +oo .

mel,

(3.19)

Assuming thass,, C 7 and recalling thatr,, is defined by3.4) for all
m € .,, there exists a suitable numerical constansuch that whenever

pen(m) > k3(&' + &) [Lyy +log (1 + 7 (D /n)'?)] (D /1)

the penalized least squares estimatevhich is a minimizer with respect to
m € M, andt € S,, of n=! 37| [Y; — t(X;)]* + pen(m) satisfies

E, [d*(s,8)] < x5 [migg {d®(s, Sw) + pen(m)} + S(&' + S)zn_l:|

(3.20)
forall s € 7.

Handling several bases simultaneouslyOne of the advantages of model
selection is to allow competition between various kinds of approximating
spaces. In particular it is possible to use several bases at the same time to
construct the penalized estimator. We now provide an illustration of this idea
in the context of bounded regression. We assume that the regressors X; are
uniformly distributed on [0, 1] and that the errors W; satisfy the assumptions
of Theorem 4 with a known constant &’. We consider simultaneously five
different types of sieves indexed by the sets .#' with 1 < i < 5 and take
My = U1§i55/%i. Let us fix r € IN. We define .#' to be the set of regular
partitions of [0, 1] and /%%V to be the set of all partitions with endpoints
belonging to the grid {j/N|0 < j < N}. Then .#* = UNZ3<%%V. In
both cases, S, is the linear space of piecewise polynomials based on the
partition m with degree not larger than r. The other sieves in our collection
are built from a basis (¢;)yea of ILo([0, 1]) with A = U;>oA(j) and Sy
is the linear span of {;}ica,. We first consider the trigonometric basis
with A(0) = {0}, A(j) ={2j — L1;2j}for j = T and g = 1, ¢ (x) =
ﬁcos(Zﬂjx), Pj—1(x) = «/Esin(271jx). Then .#® = N and A,, =
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Uj<mA(j). Finally we introduce a wavelet basis of regularity r as described
in Section 3.2.1 with ¢ = A = 1. An element m of .#* or .4° is a subset
of the set of indices {(j,k)|1 < k <2/M, j € N} and A,, = m. VARt
the set of all subsets of the form m = UJJ.ZOA(j) for J € N and ./ is the
collection of all finite subsets of A which do not belong to .#*. For each
m € ./° we define J,, to be the smallest integer J such thatm C UIJ.:OA( J).

If we assume that the true regression function s is bounded by L&’
where L is known, it is natural to restrict the sieves to sets of functions
which are uniformly bounded by a constant & = (L + 1)&' for instance
and therefore to choose S,, = S, N {t | ||tllc < &} for each m € .#,. In
order to describe the penalty function, it is enough to bound r,, and choose
L,, for any m in order that condition (3.19) should be satisfied. It follows
from Section 3.2.1 that 7,, is uniformly bounded if m belongs to either ./
or ./*. It follows from (3.5) that 7, < /2D, if m € .#>. Finally for
m e M?*, i, < C(N/D,)"?and form € .43, r,, < C'(27/D,)'/*. As to
L,, itcanbe chosenas 1 form € .#', i = 1,3 or 4 and by Lemma 6 we can
take L,, = 2[1+log(N/D,,)]form € .4*and L,, = 2[1+log(M2’"/D,,)]
for m € ./°. Elementary computations similar to those we performed in
Section 3.3.1 for histograms show that 3 can then be taken as a numerical
constant.

This is a situation where Theorem 4 applies leading to the upper bound
(3.20) for the risk. It is difficult to analyze this bound in general. Moreover
the minimax point of view is especially inadequate here since the interest
of introducing such a rich family of sieves is to have more opportunity to
approximate well a given s by a sieve of low dimension rather than consider
a uniform approximation over some large class of functions, which always
reflects the worst case in the class. Nevertheless one can still evaluate the
maximal risk over some suitable classes of smooth functions. Let us for
instance consider for any positive number @ withoe =a + b, a e N, 0 <
b < 1 the class #, of functions s on [0, 1] with a derivatives and such that

ls@(x) — s (y)|
sup -
x,yel0,1] lx — yl

= 15| < 400 . (3.21)

Recalling that #, is included in the Besov space By oo, it follows from
Lemma 12 below that for any positive € one can find in each of the three
collections .#*, i = 1, 3, 4 an m such that when s € #,, there exists some
point s, € S,, such that ||s — 5 |lec < e/2 and D,, < C;(|s|® /e)'/* (with
the additional assumption that s is periodic when i = 3 or that the support of
s is included in (0, 1) when i = 4 and that » > @ when i = 1 or 4). Setting
Sm = ES/(E + €/2) we see that s, € S), and ||s — s,,,|| < & which implies
that d(s, S,;) < e. Let us denote by r,, the upper bound for 7,, computed
above and choose
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p A\ p
pen(m) = K3(§' +§)* |:L’" log (1 i (7'”) >} 0

n

with K3 > «3. It then follows that for i = 1, 3, 4 the upper bound for the
risk derived from Theorem 4 takes the form

D, \"\| D
C(K3) inf {dz(s, Sy) + (£ +&)? [1 + log (1 + 7, <—’”) )} -m }
men' n n

n —20/2a+1) 2/(1420)
< C'(Ks3,i) inf (—2) (Is])
asr+1 |\ (§ +§&)

where it is required that « > 1/2 if i = 3 because of the influence of 7,,, but
then r = +o0. This means that our estimator achieves the optimal rate of
convergence n~2%/2%+D for functions of smoothness « but that it actually
does more than this since it also optimizes the bound among the possible
values of a. Moreover the introduction of the larger classes .#> and .#° al-
lows to get better approximation for functions s of spatially inhomogeneous
smoothness at the modest price of an additional log n factor. One could even
go further in this direction by including in the model a fixed finite number
of different wavelet bases. Related work (for the white noise setting) deal-
ing with the selection of one among a library of orthonormal basis is to be
found in Donoho and Johnstone (1994b). It is also worth mentioning here
the work by Golubev and Nussbaum (1992) on spline adaptive estimation
for Sobolev classes in a Gaussian regression framework.

4. Further examples

In order to keep the paper to a reasonable size, we shall only develop a few
applications of our methods in various contexts. These particular examples
were chosen because of their ability to illustrate different approaches to
adaptation and model selection and the necessary compromise between the
complexity of the family of sieves and the desire to get low and, in some
sense, optimal rates of convergence if the true underlying density is not too
complicated. Many other examples could be developed along the same lines
but we shall concentrate here on a representative selection.

It should be noted that each particular family of sieves will be given for a
particular type of minimum contrast estimation procedure (maximum like-
lihood and projection for density estimation or least squares for regression
settings) for the sake of simplicity. For instance it is natural to use sieves with
good uniform approximation properties in the case of maximum likelihood
in order to warrant positivity. Pure IL,-approximation is more suited for pro-
jection. For regression our choice of bounded sieves derives naturally from
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the assumptions needed but it is clear that the examples that we introduce
for density estimation could also be used in the regression framework with
an additional restriction of uniform boundedness on the family of sieves.

4.1. Nested families of models and analogues

By this we mean that the family of models is a totally ordered family of
linear spaces which implies that all numbers D,, are different or that a
similar situation holds: D,, is an integer and the number of models with the
same dimension D,, is rather small, at least small enough to ensure that the
series ) c.u, €Xp(—=Dy) < ¥ < +o0 independently of n.

4.1.1. Ellipsoids with unknown coefficients

We give here a detailed account of the properties of projection estima-
tors when s belongs to some ellipsoid &(a) with unknown coefficients
as described in Section 3.3.2. The ellipsoids are given by some orthonor-
mal system {@;},ea of (1) where u is a probability measure and A =
UjenA(j), each A(j) being a finite set. Furthermore f @, du = 0 for all
A € A. We recall from Section 3.3.2 that, for any non-increasing posi-
tive sequence a = {a;};>o converging to zero, &(a) is the set of func-
tions of the form Y, . Biga such that 3~ (3", .y (Br/a;)* < 1, that
A, = U]”.IZOA(j), D,, = |A,,| and (provided that Dy < n) .4, = {m €
N|D,, < n}. We also assume that the ®,,’s are uniformly bounded by some
constant ® and that pen(m) = K, D,,/n with K» > «; ®2. Then Theorem 3
holds with d?(s, S,,) < afl 41 leading to
D
E, [lls — §1I*] < C(Ka, ao) migff,l {a;+1 + 7’”} 4.1
since at least ||s|| < ag. Defining
m(n) = inf {m > Ola, | < D,,/n} (4.2)

we see that, if naé > Dy (which always holds for n large enough) and
the ratios D,,+1/D,, are uniformly bounded (which will be the case in all
the applications below), the following inequality holds for some constant
K >1:

Dy < Kna?,, . (4.3)

m(n)

Therefore the convergence rate of the right-hand side of (4.1) when n —
400 is of the order of D,,,)/n by Lemma 15 of Section 8 below.

Let us try to see what would happen if the sequence (a;) ;> were known.
This would mean that our parameter space would be restricted to the set
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&(a) = {u € &)1 +u > 0} since 1 + u is a density. The following
proposition provides a lower bound for the minimax risk over &(a). We shall
then discuss on specific examples (Fourier, Haar and Sobolev ellipsoids)
how far it is from the upper bound (4.1).

Proposition 2 Letn be given and assume that for all > 1 there exists a
subsets,, of the cubg—1, +1}*» with |%,,| > 2P~ and

sup | > Sign| < Wy, (4.4)
3€bu || ren,, ~
withw? = <nWforalln > 0.If & = sup,,., P, any estimato satisfies
1 A na2 D,,
sup I, [lls — §17] = k10— — sup {— Aa;} . @45)
seé(a) (P*/n) VWV pen | 1

Moreover if one assumes tha} > K/n we get

- . D,
sup IE [||s — s||2] > C(P, Y, Ky) [mlélgn {a,szrl + 7} A 1] . (4.6)

seé&(a)

Before we come to the proof of this Proposition, let us make a few comments
and develop some applications. If the set &(a), because of the positivity
requirement, is substantially smaller than &(a), there is no hope that our
upper bound (4.1) be optimal since in designing it we essentially pretended
that the whole of &(a) was the parameter space. The role of W, is to quantify
this effect. If we take 4,, = {—1, +1}*», W, is bounded by 7,,+/D,, by
(3.4).

Comments about the size ofig: One should first observe that keeping a,
bounded allows to keep C (K>, ap) in (4.1) under control since it is a nonde-
creasing function of a( and therefore under the assumptions of Proposition 2
the bounds (4.1) and (4.6) do match. Then one notices that if naé is too small
one gets into trouble which is not surprising since this means that the di-
ameter of the ellipsoid, which is measured by qy is essentially smaller than
n~!/2 and that the simple estimator § = 0 would perform very well in this
situation. This is then a completely degenerate problem where the optimal
rate of convergence for the quadratic risk is smaller than the parametric rate
n~!. In order to avoid unnecessary complications in the treatment of the
applications below we shall assume from now on that # is large enough to
ensure that naj > Ds.
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Straightforward applications: We first present two examples for which
Gm = {—1,+1}*" and \l’i(n) /n is easily seen to be bounded independently
of n. Subsequently the rate provided by (4.1) is optimal for a given value of
ap. We also assume that the ratios D,,+/D,, are uniformly bounded.

e If r,, is bounded by R which is the case for the Haar ellipsoid (see Sec-
tion 3.3.2), W2 . /n < R* Dy /n < R*Kag by (4.3).

e Since 9, is bounded by P, by (3.5) we can always take ¥,, = ®D,,.
If moreover &(a) is Hilbert-Schmidt, i.e. a is such that > 0 IA()]
ajz = E < +00, then by monotonicity D,,a? < E for any m. Tt follows

from (4.3) that D,,(,) < (K En) 1/2 from which one derives that \Il,i(n) <

O?K En.

Fourier ellipsoids: When the ellipsoid is not Hilbert-Schmidt, the preceding
argument breaks down. We can still apply Proposition 2 with different sets
%n. Recall that, in the case of the Fourier basis defined in Section 3.3.2,
D,, = 2(m + 1). A classical result by Salem and Zygmund on random
Fourier series (see Kahane 1985, Theorem 2 p. 69) implies that there exists
a subset %, of {—1, +1}* of cardinality larger than 2°»~! such that (4.4)
holds with W,, = W[D,, log(D,,)]1"/2. If we assume that a;[log(j +2)]"/? is
bounded (which is clearly a much weaker condition than ) a]g < +00), then
D,y ny log[2(m(n) +1)]/n is bounded via (4.3) and so is \Ilfl(n)/n. Therefore
(4.6) matches (4.1). Note that when a; converges to zero more slowly than
(log j)~'/? the minimax risk, by the preceding arguments, is anyway at least
of order 1/ log n which is dramatically slow. The same kind of results hold
for multidimensional Fourier expansions for the same reasons.

Similar lower bounds under the same restrictions (sup; ajz. log(j + 2)
< 4o00) were found by Efroimovich and Pinsker (1981, 1982). These au-
thors were actually able to compute not only a lower bound for the rate
of convergence but even the exact asymptotic value of the minimax risk
for a given ellipsoid built on the Fourier basis, for the problems of density
estimation and spectral density estimation.

Sobolev ellipsoids on compact Riemannian manifolddVe consider some
compact connected Riemannian manifold IM with dimension g and uniform
distribution p and recall from Section 3.2.1 that {6;|j > 0} is the set of
eigenvalues of the Laplacian operator on IM and {¢; |[» € A(j)} the set of
eigenvectors corresponding to 6;. We shall say thats = =0 D e AG) Broa
belongs to the Sobolev space #,(IM) for some o > 0 if and only if the
coefficients B, satisfy

2 D OB =H <40

=0 reA())
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Therefore estimating the function s of unknown smoothness (in the Sobolev
sense) amounts to estimating s € &(a), where a; = H Q;Q/ % for all j =0,
with H and « unknown. It follows from our computations in Section 3.2.1
that the corresponding family {®,,},,c.», is uniformly bounded by some
constant @ (IM) and therefore that Theorem 3 applies leading to the bound
(3.18). In order to measure the effect of H on the risk we need to derive
from (3.18) a sharper bound than (4.1). Choosing pen(m) = K, D,,/n with
K> > k,®?(IM) we get from Theorem 3

KD, ,
2 } + kD (M)

a2 = 2)—a (14 Is*
IE, [Ils s ]Sszlggzn {H 0,41+ 0,

4.7)
We wish to know under which conditions this upper bound matches the lower
bound (4.6) up to constants. In order to answer this question it is necessary

to control ||s|| when s belongs to the ellipsoid &(a). Such a control is given
in the following

Lemmal Leti+s =1+ ijo erAu) B, be a probability density on

M such that
2 D O =H

J=0 2eA())
Then, there exists some constéaiiiv) (independent af and AH) such that

”5”2 <Cc(IM) (DO Y, HZ(I/(2a+q))

Proof Since 8, = f (1+5s)p, dp and 1+ s is a probability density, Jensen’s
inequality implies that 87 < [(1 + s)¢; du and then by (3.3)

Y B> @3 = ®LD, < PM)D,, .

J<m reA(j) J<m reA(j) o

Since we also know that Y., >, + ;) B < H?6,¢, it follows that

lsI* < inf {®*(M) D,y + H?6,, }

Defining m’ = inf{m € ]N|H29n;j‘_1 < ®>(M)D,,}, we get |s||> <
2®%(IM)D,,. Then, either m’ = 0 and ||s||> < 2&*(M)Dy, or m’ > 0
which implies by (3.10) that

H?0,% > > (M) D,y = O*(IM)(C1(M)/ Co(M))?2 D,y .
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Using (3.10) again we get

H? q/Qa+q) ,
Dy < (QZ(M)) CrM) 12 Cy ()7 /et

and the conclusion follows. O

The next proposition gives a precise evaluation of the quantity
inf e v {H 29,;;’_1 + D,,/n} which appears in both the upper and lower
bounds of the risk. It allows to conclude that if « > ¢ /2 and (4.10) below
holds, these bounds coincide up to some multiplicative constant depending
only on the structure of the manifold IM.

Proposition 3 If H < [C;(IM)/C,(IM)]?*T9/4p%/4 then

H: D, Dy (CaM) v 1\9/? [ Ha\/Fa)
inf +— <2 —+ | = — (4.8)
me., 0:’11_'_1 n n Cl (M) n®

and if H*> > D6 /n then

oD 79\ 2/ a+a) Ci (M K
inf { & +—’”} > (—) 3/21# - (49
medy | O | n ne G (M) v 1

Moreover if we assume that> ¢/2 and that

o (2a+q)/2
Dob% v 1 <H < C1 (M) n2/4 | A\p@Qe=0/CO Ay (4.10)
n G2 (V)

the following inequalities hold for suitable constar@$M) and C’(IM)
depending only on the structure bf:

g\ 2/Qa+q)
inf sup [ [|ls —5]*] = C(M) <—a> 4.11)
5 seé(a) n

for the lower bound on the minimax risk and for our penalized projection
estimators

g\ 2/Qa+q)
sup E, [[I5 — s)?] < C’(]M)( ) . (4.12)

_ a
seé(a) n
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Proof: Let us first observe that it follows from Lemma 15 of Section 8 that

, H?> D, D, H? Dy  H?
I = inf + — ¢ >supyi—A—¢ = AN —— (4.13)

me.l, 0“ n

m+1 m(n)

and

I <2Dyu/n provided that Dy, < n (4.14)
where m(n) defined in (4.2) is given by

m(n) = inf{m € N| H?0,%, < D,/n} . (4.15)

Assuming first that m(rn) > 1 and noticing that (3.10) implies that

C (1M)>"/2
Cr,(IM)

Cr (M)
C (M)

we derive from (4.15) that

/2 ¢
(cl(lM)>" Dt _ 2 S(Cz(IM)> Dy (4.16)
) on SRANCCOV

and Dm = Dm+] (

9m+1 = Unm

Combining this with (3.10) we get
nH2CY (M)Cy > (M) < Dot 4 < nH*Cy P2y c§? ()

Assuming without loss of generality that C,(IM) > 1 we note that

Ci(M) \*/*) ey \? RN S
( = (]M)) z( C%(IM)) and (cf”aw)" T < ¢t

which implies that

(nHZ)"/(z“+")(CI(IM))WSDW(H)g(nHZ)"/@“*‘”(Cz(M))q/z '
C3 (M) Ci(IM)
4.17)

By (4.16) and (4.17) the lower bound in (4.13) becomes

L= Duy (QL@ N (HONTEO coam )
— n \Gm) T \a® cPawy)
2
If H> > Dy07' /n which ensures that m(n) > 1 we get the lower bound
4.9).
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Turning our attention to (4.8), we see thatit follows from (4.14) if m (n) =
0. When m(n) > 1 we derive from (4.17) that D,,,) < n and therefore
m(n) € 4, as soon as H < [C4 (]I\/I)/Cz(ll\/[)](za+q)/4n“/q and (4.8) then
follows from (4.14) and (4.17).

We can now turn to a precise evaluation of the risk. Combining Lemma 1,
(4.8) and (4.10) we see from (4.7) that the upper bound (4.12) holds for the
risk of our estimator. On the other hand it follows from (3.3) that

2
> S

reA,

< ®*(M)D},

o]

sup
SE€EC

and we can choose W,,,(,) = d>2(]M)Dr2n(n). Consequently from (4.17) and
(4.10) W,,,()/n is bounded by a constant C”(IM). Then (4.6) combined with
(4.9) imply the lower bound (4.11). O

Proof of Propositior2: For each m € N such that D,,, > 6 let us define

1
& :{— 5 56(5} with N, =578nv 4wl v D, a2 .
m \/Kaggz; A¢k| m m m mt,y,

Since N,;le < a,i, &n C &(a).Moreover ¥V, < /N,,/2and all elements
u of &,, therefore satisfy

| W

<l+u< (4.18)

N =

which a fortiori implies that &,, C &(a). It also follows from (4.18) that any
pair (u, v) of elements of &, satisfies

WA +u,14+v) = %/(«/ﬂ—i—u—\/ﬂ-i—v)z du < i”u_v”z < %
where / denotes the Hellinger distance and therefore the Kullback-Leibler
information numbers between the probabilities corresponding to the ele-
ments of &, are uniformly bounded (see Inequality 7.6 of Birgé and Mas-
sart 1998) by 4.84D,,/ N,,. A classical combinatorial argument that we shall
prove later for the sake of completeness (see Lemma 8) ensures that there
exists a subset &), of &,, of cardinality larger than (1/2) exp(D,,/3) such
that forall u, v € &),

lu —v? > 2 [1 _ \/2/3] (Dy/Ny) > 0367 (Dy/Ny) . (4.19)

An application of Fano’s Lemma (see Birgé 1986, p. 279 for a suitable
version of it) shows that any estimator i, with values in &/, satisfies
sup,cs Pyt 7# u] > 1/4 provided that
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nD,,
4.84

3 1
+log2 < 7 log <§eD”’/3 — 1>

which is true since D,, > 6 and N,, > 578n. Since

m

~ 12 ~ . 2
sup I, [|lu — it |*] = sup Pyliy # u] inf |lu—v]|
ueé), ues), U, V€S,

one concludes with (4.19) that
0.367 D,, D,,

sup E, [llu — iiw|*] = > .
ues, [ | 4 N, 1IN,

If D,, <5 we simply choose &), = {—(pAN,;UZ, (pAN,;l/z} forsome A € A
with N,, = 162n v 2092 v a; % . Since N, /> < ap, ®(Do/Ny)'/> < 1/2
(recalling that Dy < 5) and ||@s [l < ®+/ Do, &), C &(a) with 1/2 <1+
@3 Np'* < 3/2.1t follows that

2N, ' <k — N2 14+ N2 < N

and Lemma 7 implies that

. 1 2n\'? D,
sup IEu[“M_Mm” ] > — - — >
ueé), 4Nm N 23Nm

since D,, < 5.If i is an arbitrary estimator and #,, its projection on &/, one
gets

~ 1 ~
sup I, [llu — itl|*] = — sup E, [[lu — iiw|?]
uee,, ueé,,
from which one derives in both cases (D,, < 6 or D,, > 6) from the values
of N, that

sup E, [[lu —i|?]
ucé(a)
D,

> .
T 4(6358n v 44W2 v 460D2 v 23a,* Vv 11D,,a,°)

Choosing m = m(n), (4.5) follows from Lemma 15. (4.6) also follows from
Lemma 15 provided that D,,,) < n which implies that m(n) € .#,. The
only delicate situation occurs when D,y > n.If Dy, -1 > n then afn > 1
and the lower bound given by (4.5) is a constant otherwise m(n) — 1 € .4,
and

D
. 2 m 2
inf {amH + — } <2a,,0, -

me,

Therefore (4.6) holds in both cases. m|
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4.1.2. Densities with an unknown modulus of continuity

Let w be a modulus of continuity which means a subadditive continuous
nondecreasing and nonnegative function defined on [0, 1] such that w (0) =
0 (see DeVore and Lorentz 1993, p. 41 for details). Let %, denote the set
of functions s € .% such that

[s(x) —s(¥)| <w(jx —y|) forall x,ye[0,1] .

We assume that the true density s is such that s belongs to %, for some
unknown w. We want to show here that, using a maximum penalized like-
lihood procedure over the family of regular histograms, it is possible to
estimate s without knowing w as well (up to multiplicative constants) as if
w were known.

Let us choose .#,, = {2, ..., n} and define S, to be the set of regular
non-negative histograms with m pieces and IL,(u)-norm equal to one so
that an element of S,, may be written as

m

m
ij]l[(jfl)/m’j/m) with bj >0 for1<j<m and Zb? =m .
j=1 j=1

We want to apply Theorem 2. The family of sieves S,,, m > 2 satisfies
(3.13) with L,, = 1,%X = 1/4 and we have seen in Section 3.2.1 that
Fm < 1. It remains to control the bias term K (s, S,,) A 1. Let 5! be defined
as follows:

Sjn_ = bjﬂ[(j—l)/m,j/m) with bj = sup s(x) .
1 (j—1)/m=<x<j/m

-

J

Then s > s and using the fact that  is nondecreasing one can check that
d(s,s}) < w(1/m). It therefore comes from Proposition 1 and Theorem 2
that if pen(m) = Kym/n with K; > (1 + log2)x; and § denotes the
maximum penalized likelihood estimator,

E, [d*(s, $)] < k| [ inf {30)2 (l) + KI%} + ﬁ]

me, m

Since d*(s, §) is bounded by 2 one can conclude that

E, [d*(s, )] <2 A [C(Kl) inf {a)2 (%) + ﬂ” : (4.20)

mel n

Let us now find a lower bound for the minimax risk over .%,,.
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Proposition 4 The maximal risk of any estimatéiis bounded from below
by

/ 2
5, o~ konw-(1/2) ) ) l m
Sup I [°6. 9] = 1+ nw?(1/2) [mlgf/n {‘” (m) o } a 1}
421)

Proof: It follows the lines of Birgé (1983, pp. 211-212) with the necessary
modifications due to the fact that we work with square-roots of densities
rather than densities. Let m be a positive integer such that w[1/(2m)] < 2,
6 = 1/(4m) and v be the triangular function on [0, 28] given by v(0) =
v(26) = 0 and v(8) = w(26)/2. We define by vy and v; respectively the
functions

vo(x) = nu(x)lj 25 (x) — v(x — 28)125,45)(X) ;

v1(x) = —v(x)1jo,25)(x) + nv(x — 28)125.45)(x) .
where € (1/2, 1) is given by
5 5
(1+n2)f v2(x)dx =2(1 —n)/ v(x)dx .
0 0

Then 1+ vg and 1+ v; are nonnegative functions (since v(6) < 1) of norm 1.
For any ¢ € {0; 1} the function s, defined by

m—1

se() = 14 [ej1v0(x —4j8) + (1 = &j1)v1(x — 4j)]
j=0

is an element of %, because of our choice of v. If all coordinates of ¢ and
¢’ match except for one, a straightforward calculation yields

28
d*(se, se) = 2(1 + n)2/ V2(x) dx = 8*(28)(1 +1n)?/3 .
0

It follows from Assouad’s Lemma (see Birgé 1986, p. 280) that for any
estimator § based on n independent identically distributed observations

2 2
sup B [dGse, 9] 2 1% [1- V2| with p = bey (25)6(1 +n?
| 4.22)

Let us choose m = m(n) with
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1
? (-) 52(@”)}.
2m n
Then w[1/(2m)] < 2 as required and since n € (1/2, 1) then (3/8)8w?(26)
< B < 1/(3n) and therefore one derives from (4.22) that

2w e S o 1 _ 12
Sselglms [d%(s,5)] = g® (2m(n)>[1 2/3)'?] .

m(n) = min {m >1

In order to derive (4.21) it is enough to bound the ratio

(G )

for a suitable my € #,,. If m(n) = 1 taking moy = 2 gives (4.21). Otherwise
m(n) > 2. If w?(1/(2n)) < 2, then m(n) < n, hence m(n) € .#, and we
choose my = m(n). It then follows from the definition of m(n) = my > 2

that
o2 1 - 2(mg — 1) . mo
2(mg — 1) n n

and from the subadditivity and monotonicity of w (see 6.5 p. 41 of DeVore
and Lorentz 1993) that

() = 22 () = 2 (5 =)
1) > —w|l—)>-w
2m(n) 2 \mo 2 \2my—2

which together imply (4.21) again. Finally if m(n) > n 4 1 the same argu-
ment shows that w?(1/(2m(n)) > 2 which concludes the proof. |

Remarks

e Comparing (4.21) with the upper bound in (4.20) one sees that both
bounds match except when nw?(1/2) is very small which means that the
whole of %, is so close to the function 1 that a good procedure would be
to ignore the observations and choose § = 1 as the estimator. This would
result in a minimax risk of order w?(1/2) smaller than n~!. With the num-
ber of observations at hand, the parameter space ¥, essentially behaves
like a single point and the estimation problem is not really meaningful.

e One should keep in mind that although our computations were performed
for s € 7, the upper bound (3.14) makes sense for any s. In particular,
if one can find some fixed mo € .#,, (at least for large values of n) such
that s € S, the rate of convergence of our estimator is the parametric
one, i.e. n~!, since then K (s, Smy) = 0.

e In the Holderian case considered in Section 3.3.1 the modulus of conti-
nuity is given by w(x) = Hx® with 0 < o < 1 resulting in the optimal
rate (H /n®)?/CetD),
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e One usually works with smoothness conditions on the densities them-
selves rather than the square roots of the densities. For instance, if the
densities satisfy a Holder condition of the type

lfx) = fO)I=Hlx —y*, forall x,yel[0,1], (4.23)

the resulting optimal rate of convergence when the loss is the square of

the Hellinger distance is n=2%/?*+1 provided that the family of densities
that we consider is uniformly bounded away from zero, as proved in
Birgé (1986). But under such a restriction, the modulus of continuity of
/ f has the same form (4.23) with a different value of H, and the rate
n—2e/Qa+D) glg0 derives from our results. On the other hand, let us assume
that H is large enough to allow f to be zero on some interval. Then the
modulus of continuity of \/f still takes the form (4.23) with « replaced
by «/2 and H by +/H. The resulting rate is therefore n=*/@+1 which
is the optimal one in this situation as shown in Birgé (1986). If one uses
Hellinger distance (which is the IL,-distance between the square roots
of the densities) as the loss function, it is natural to put the smoothness
restrictions on the set of square roots of densities since one knows that the
optimal rate of convergence will be determined by the entropy properties
of this set with respect to the IL,-distance.

4.1.3. Holderian densities with unknown anisotropic smoothness

For the sake of simplicity we only considered in the preceding section the
classes .7, but one could show, with some additional efforts, that a similar
result holds if one replaces them by the more general classes:

Saw =15 € LIs“x) =5 <o(x -y}

witha € N, a < ay and w as before. The maximum penalized likelihood
estimator reaches again the optimal rate of convergence over the whole
family if one replaces the histograms by piecewise polynomials of degree
at most ag in the preceding arguments.

Rather than pursuing in this direction, let us address the multidimen-
sional case. We take this occasion to show that a prior upper bound on
the smoothness of s is unnecessary although such a restriction is usually
assumed in similar works (see Lepskii, 1991, Donoho, Johnstone, Kerky-
acharian and Picard, 1995 and 1996 or Goldenshluger and Nemirovskii,
1997). For the sake of simplicity we shall only consider densities with re-
spect to Lebesgue measure p on [0, 1] and Holderian moduli of continuity.
For any a = (a1, ...,ay) and H = (Hy, ..., H,) belonging to RY with
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positive coordinates we define (o, H) to be the subset of those s € &
such that the univariate functions y — s(xy, ..., Xi—1, ¥, Xit1, . . . , X4) be-
long to #(H;, «;) forall x € [0,1]2 and 1 < i < g where #(H, a) is
the set of functions s such that |s|®, as defined by (3.21), is bounded by
H.

Following the notations of Section 3.2.1, we characterize a space of
piecewise polynomials by its maximal degree r with respect to each variable
and by a partition of [0, 1]7. Let Z(N) denote the regular partition of [0, 1]
with N pieces. We define .#,, as the set of all m = (r, Z(Ny), ..., Z(N,))
withr € N, N = (Ny, ..., Ny) € [N—{0}]? such that the dimension D,, =
(r + 1)4T]L, N; of the corresponding space S,, of piecewise polynomials
is bounded by n. Then S, = S, N.% which means that we restrict ourselves
to polynomials which are square roots of densities.

Proposition 5 Lets be the maximum penalized likelihood estimator defined
by a penalty functiopen(m) = K;[1 + log(1 + 2r + 1)?)]D,,/n with
K1 > k. Givena and H we definex and H by

1 —Xq: L oand m= |:li[H1/°“‘:|a/q
« O i=1 i
and assume that for any
n®H*% > HI (4.24)

Then there exists a constafitq, sup; «;) such that for alls € ¥ («, H)
1\ 2 Coata) 1
E, [d*(s, )] < C (q, suwi) (—) + -
i n“ n

Proof: We want to apply Theorem 2. In order to show that (3.13) is satisfied
with L,, = 1 we notice that

q q
C+D [Nz +D = 1+][Ni=+DI—1+47" Y N,
i=1 i=1 i=1
which implies that

q
> exp [—(r + 1) HN,} < {Zexp [~ + D7 + 1]}
rnN

i=1 r>0
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q
<[] D2 exp(=Ni/g)

i=1 | N;>1
q
=e| Y exp(—j?) || D_exp(—i/q)
Jj=1 j=1
=2%; < +oo.

It also follows from (3.9) that 7, < (2r 4 1)? which justifies our choice for
pen(m).

In order to bound K (s, S,,,) we shall provide a control of the IL.,-distance
between s and S, and apply (3.15). Let us begin with a bound on the uniform
approximation on a fixed hyperrectangle ?:l[yi, vi + 6;] of a function
f € (a, H) by a polynomial of degree < r = sup,;.,(a;) where g;
is the largest integer smaller than ;. It follows from Dahmen, DeVore and
Scherer (1980, Corollary 3.1) and Schumaker (1981, 13.62 p. 517) that there
exists a polynomial P with degree < r such that

q
If = Pl < C'(g, 1) Y 51 @i(5)

i=1

where C'(q, r) is a constant independent of f and the hyperrectangle and

ai

_aif(xla~"9xi+hi5~-'a-xq)

w; (8;) = sup sup ™

X |hi| <6

9%
o F )

1

i

This implies from the definition of ¥ («, H) that

q
If = Pllow < C'(q,r) Y Hi8}" . (4.25)
i=1
Let us set
o\ /et N .
n=|\— , 6 =|— forl <i<gq
n H;

and let N; be the integer such that 8;1 < N;, < 5;1 + 1. It follows
from (4.24) that §; < 1 and therefore 1 < N; < 2/§;. Given m =
(r, #(N1), ..., #(Ny)) € M,, (4.25) implies that there exists an element
S € S, such that
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q
Is = Sullo < C'(q.7) > Hi8 = qC'(q.r)n .

i=1

Therefore Theorem 2 and (3.15) imply (since N; < 2/4§;) that

E, [d*(s,§)] oy D2
TSK1[1+log(l+(2r+l))] . ]}5—

by
+12qzcl2(6],7’)772+7q

and the conclusion follows from our choice of the §;’s and 7. |

It follows from Ibragimov and Khas’minskii (1981) or Birgé (1986)
that the rate n~2%/+4) jg the optimal rate of convergence for functions of
anisotropic smoothness.

Remark One should notice that our result holds without any restriction on
« and that, given ¢ and H, (4.24) always holds for n large enough. Even
in the one-dimensional case with ¢ = «, the assumptions to be found in
most papers dealing with adaptation are usually more restrictive, of the type
a > 1/2 or o < ag. Apart from the special situation of Fourier expansions
in the white noise setting (Efroimovich and Pinsker 1984), we do not know
of any other result of this type valid for arbitrary values of .

4.1.4. Projection estimators on polynomials with variable degree

Let us assume now that the observations are drawn according to the unknown
density s on [0, 1] belonging to the Besov space B, for some unknown
a > 0 and satisfying ||s]s < ®2? where ®> > 1 is a known constant.
We then define .#, to be the set of positive integers which are bounded by
n(logn)~* and S,, as the linear space of polynomials of degree bounded by
mon [0, 1]. It then follows that D,, = m 4+ 1 and also from Barron and Sheu
(1991, Remark 1 p. 1362) that ®,, < \/D,,. Let us set the penalty function
to be pen(m) = K ®>D,,/n where K is a suitably large constant and let § be
the penalized projection estimator. It then follows from Theorem 9 below,
under the set of conditions ii), that if s,, is the orthogonal projection of s
onto S, the risk of the estimator is bounded by

Eq [I5 —sI?] < C(K, ®) inf {lls —snll* + Du/n} .

If we denote by |s|, the Besov semi-norm of s relative to By 7, it follows
from DeVore and Lorentz (1993, Theorem 6.3 p. 220) that

s = smll < Calslam™
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which implies that

E, [II§ — s11%] < Cla, ®)|s|/ @t~ 20/Catl)

4.1.5. Least squares estimators for binary images

Let us now turn to a quite different situation essentially motivated by image
analysis. The new framework is of the form ¥; = s(X;) + W; where the
W;’s are independent identically distributed with a distribution independent
of s and p denotes the average distribution of the X;’s. We consider some
measure u’ (typically Lebesgue measure on some interval) and some subset
% of IL;(u'). We also consider some one-to-one mapping x : g = X, from
% into IL,(p). Since there is no ambiguity here, we denote by the same
symbol || - ||, the norm in IL, () or in IL,,(1") and by d; the distance in
IL;(1"). The problem is to estimate s = y s for some unknown f € 4. We
have in mind here the case where x is the indicator function of a set the
boundary of which is parametrized by the function f belonging to %. For
such indicator functions, the square of the IL,-distance is identical to the IL; -
distance which is actually the measure of the symmetric difference between
the corresponding sets. In good cases (when those sets are epigraphs for
instance) this symmetric difference corresponds to the IL;-distance between
the functions which parametrize the boundaries. It is therefore natural in
such a situation to take the IL; (it/)-distance d as loss function. We consider
here a collection of models which are images via x of a collection of linear
models in ¥.

Theorem 5 Let¥ = {g ¢ Ly (1) |F~(x) < g(x) < F*(x)forall x} where

F*,F~ e Li(1/) and letx be some non-decreasing mapping frgrmto

{t e Lo(w) | lItlleo < 1}. We assume that, for eaeh e .#,, S,, = x(G,,)

whereG,, C % is a subset of some linear subspagg with dimensionD,,

of IL; (1) and that the following properties are satisfied

o E[cM/] < 4 for someg’ > 0 and {L,,}me., is a family of weights
such that

L,>1 foral me.#, and Z expl—LyDp] < = < +00 ;

me.l,

e there exist two constan®®; < ©, independent of such that for all
h,g €%

Oillh—glh < lxn—xel> and Jlxn—xglh < ©allh—glly ; (4.26)

e for eachm e .4, one can find a linear basi§p;);ca, Of G,, with
leslli = 1forall » € A,, and a constanB;, > 1 such that
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YIBI<BL D Ao

)\EA,,, )\EAm

forall (8,) € R . 4.27)

1
Letx4 be a suitable positive numerical constant

pen(m) > ia(€§' 4+ 1)*[Ly, + log(1 + ©2B,,/01) + log(1 + £)(Dy/n)

and f be the penalized least squares estimator which is a minimizer with
respectton € .#, andg € G,, ofn=' >"_ [V; — x4 (X;)]* +pen(m). Then
forall f € #ands = x,

O1E,[di(f. /)]
< K [migg/ (©2d1(f, G) +pen(m)} +n~ ' 2(1 + s’>2] . (428)

Application to binary images: Here ¥ is the set of all measurable func-
tions g from [0, 1] to [0, 1] and for each g € ¢ we define for (x,y) €
[0, 172, Xg(x,y) = 1if y < g(x) and O otherwise. Following Korostelev
and Tsybakov (1993b) we consider the regression framework ¥; = x s (X;)+
W; and assume that  is uniform on [0, 1]> and y’ is uniform on [0, 1]. The
function f should be understood as the parametrization of a boundary frag-
ment corresponding to some portion of a binary image in the plane. Then
I = Xell> = llxn = Xelli = Ik — gll1 and we may take ©; = @, = 1
in (4.26). Assuming that the errors W; are either bounded by 1 or Gaussian
with variance smaller than 1 we can take & = 1.

Let #(J) denote the regular partition of [0, 1] with J pieces and .#, be
the set {(r, J)|J > 1, r € N}. Following the definition of Section 3.2.1,
we consider G,, to be the space of piecewise polynomials of degree not
larger than r based on the regular partition Z(J) if m = (r, J). Then D,, =
(r + 1)J and choosing L,, = 1 we can take ¥ = 1. Let us now turn to
the verification of (4.27). We consider some orthonormal (with respect to
IL,(u")) basis ¥y, . .., ¥, of the space of polynomials on [0, 1] with degree
< r and we define ¢; = oy with oy > 1 by ||¢y||; = 1. Then for any
(B) € R™*!

r

r r 1/2
DB lwpl < {(HDZMW}
1=0 =0 =0

Zﬁz(ﬂz

=0

=@+ 1"

r

Z By

=0

<2r(r+ D2 (4.29)

1
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where we successively used Cauchy-Schwarz inequality and DeVore and
Lorentz (1993, Theorem 2.6 p. 102) about the relations between norms
of polynomials. Starting from the basis {¢;}o<;<, we build a linear basis
(©1)ren,, of G,, where A,, = {(j,D|1 <j < J,0 <1 < r} such that
lgslli = 1 for A € A, given by

i — 1
j1(x) = Jg [J (X - ]T>]

It then easily follows from (4.29) that (4.27) is satisfied with B = 2r(r +
1)'/2. We finally define G,, = G,, N %.

Assume now that f € % belongs to some Holder space #, as defined
by (3.21) where a > 0 is unknown. Keeping in mind that J#, is a subset
of the Besov space By 0 ([0, 1]), it follows from Lemma 12 in Section 8
that || f — gmllee < & = C(r)|s]“J~* for some g,, € G, withm = (r, J)
and r > o — 1. Changing if necessary g, into (g,, +¢)/(1 + 2¢) and ¢ into
4e we can assume that g,, € G,,. Choosing

pen(m) = K4 [1+1log (1+2r(r + D'?)] (r + DJ/n with Ky > 4ky
we derive from Theorem 5 that if s = x ; then
E, a7 )] = € [l @)/ et

Remarks

e The rates may seem unusual as compared to density estimation. It results
from the fact that || x, — x, I> = d,(h, g) which leads to a risk expressed
as the sum of a bias term and a variance term instead of the classical vari-
ance plus bias squared. It comes from Korostelev and Tsybakov (1993b,
Theorem 3.3.2) that these rates are optimal (in the minimax sense) when
« is known.

e One could consider analogously star-shaped images. In this case we de-
scribe a point of the Euclidean unit disk by its polar coordinates p, ¥
with 0 < p < 1 and ¢ belonging to the one-dimensional torus T.
We then define ¢ as the set of functions g from T to [0, 1] and set
Xg(pcosyr, psinyr) = 2oy (0, ¥). Choosing u as the uniform dis-
tribution on the disk and ' as Lebesgue measure on T we can check that
(4.26) is satisfied with ®; = @, = 1/2.

4.1.6. Estimation of the support of a density

Let u be the restriction to the unit disk D C IR? of the Lebesgue measure
on R? and s = g, be the indicator function of some measurable subset Q;
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of D. We observe n independent identically distributed random variables
Zy, ..., Z, with density fs with respect to . Here s and f are unknown
and we want to estimate s, assuming that f satisfies 0 < a < f(x) < b for
all x € D, a < 1 and b being known constants. This estimation problem
is considered in Korostelev and Tsybakov (1993a) where minimax rates of
convergence on some smoothness classes are given. The novelty here is that,
applying our model selection method, we construct adaptive estimators.

In order to estimate s we define 7 as the set of indicator functions of
measurable subsets of the unit disk ID and consider the contrast function
y(z,t) = —t(z) + (a/2) f t d . Keeping in mind that s and ¢ are indicator
functions and setting u = st = s A t one gets

Eyly (Z1, 1) — y(Z1, 5)] =/(s — O fsdu

+% [/(z—u)du—/(s—u)du]

=/(s—u)(f—a/Z)dMJr%f(t—u)du
and
It —sIP = it — s, =/(s—u)du+/(t—u)du .

We then derive from the bounds on f that

@/2)llt = s> < Byly(Zi, 1) — y(Z1, )] < (b —a/2)|lt —s|* . (4.30)

We also assume that the set €2; is starshaped and that its boundary is
parametrized in polar coordinates (p, ) by p> = g,(¢) for ¥ belong-
ing to the one-dimensional torus T. The reader should notice here that
we introduce an unusual parametrization of the boundary. It is therefore
natural to restrict the models S,, to starshaped subsets of the disk with
a boundary parametrized in polar coordinates. More precisely, given a
function g from the torus T to R we set g(x) = [0V g(x)] A1 and
define the mapping x from RT to 7 by g &> x(g) = Xe given by
Xg(psinyr, pcos ) = 1y,2 5y (0, ¥). Denoting by ' the Lebesgue mea-
sure on T (with u/(T) = 27) and by d, the distance in IL; (), one gets

I Xer — Xeolli = d1 (81, &2) < wdi(g1,82) forall g, g€ Li(n) .
4.31)

In order to define a family of models we start with a family {Gm}mem
of finite dimensional linear subspaces of IL;(x') and denote by D,, the
dimension of G,,. Given some positive constant R we then set G, = {g €
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Gl [ 1gldu’ < R} and define S,, as the image of G,, by the mapping x.
Then the following theorem to be proved in Section 7 holds

Theorem 6 Assume that the family of mod¢k, },.c », is defined as indi-
cated before and thatip,,,. , D, < 25mbnR/2.Let{L,,}nc.4, be afamily
of weights such that

L,>1 foral me.#, and Z expl—Lm D] < & < +00 .
me.ly,

Assume that for eaoh € .#, one can find a consta” > 1 and a linear

1

basis(¢;)sea, 0f G, such thatl|g; ||, = 1 for all » and

S BI<BU Y. Bl forall (B)eRM . (432)

)\.EAm )\EAm

Letks be a suitable positive numerical constant,

_ ks L i ] nB! Rb\'| Dy
pen(m) = ; m + og + m 7
ands be the minimum penalized empirical contrast estimator which is a min-
imizer with respectter € .#, andt € S,, of pen(m) —n~! Y t(Z)+
allt|l1/2. If Q, is starshaped with = x, and0 < g, < 1 then

E, [d*(s, §)] < ! [mlélg {di(gs, G) +a 'pen(m)} + a_22n—1i|

whered; denotes the distance In; (u).

RemarkOne can always take R = 47r.Indeed, since 0 € G,,, d;(gs, G) <
di(gs,0) < 27 which shows that taking R > 4m cannot improve the
distance d,(gs, G ).

A natural basis to be considered in this framework is the Fourier ba-
sis (correctly normalized in order to have ||, ||; = 1) defined by ¢y =
1/(2m), ¢2j—1(x) = cos(jx)/4, ¢2j(x) = sin(jx)/4 for j > 1. Defining
A0) = {0}, A(j) = {2j — 1;2j} for j > Land Ay, = 377_o A(j) we
choose G,, to be the linear span of {ortren, and G,, = {g € Gnllgl <
4m}. Then D,, = 2m + 1 and we take L,, = 1. We can check (4.32) exactly
as we did for (4.29). If agp = 2mw)~"/? and ay, = /7 /4 for A # O then
o, ' < /27 for all A and {a; 1} reh,, 1s an orthonormal basis for G,,. Then
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S IBI=V2T Y lwhil = [27D Z(amx)z]m

rEA,, rEA,, reEA,

= /27D, Z a; B (05;190/\)

AEA,
D 1/2

=< vV 27TDm - Z IBA¢A
27[ AEA,

1

where the last inequality comes from DeVore and Lorentz (1993, inequality
2.15 p. 102) and therefore (4.32) is satisfied with B, = D,,. This leads
to the choice pen(m) = Ksa~'[1 + log(1 + 4mwnba~'/?)](2m + 1)/n with
K5 > k5. If g, belongs to some Besov space By, | « (see the precise definition
in Lemma 12 below) of functions on T, it follows from Lemma 12 that
di(gs, G,) < C(g;)m~* and therefore m = (n/logn)'/1+* gives arate of
convergence of order (logn/n)*/!1*® By standard perturbation arguments
of the type used in Proposition 4 one could show that this rate is optimal in
the minimax sense, up to the log n factor, when « is known.

Remark We considered here the Fourier basis for the sake of simplicity but
one could use periodic wavelets as well (periodic wavelets are defined for
instance in Daubechies 1992, Section 9.3). Such a localized basis would
lead to a bounded family {B;, },uc.4, -

4.2. “Rich” families of models

By this we mean families for which the number of models of a given di-
mension D is so large that the sumability condition

Z exp[—LuDp] < ¥ < 400 (4.33)

me.l,

requires unbounded values of L,,. These families are much bigger than the
preceding ones but we shall see from the examples that a modest increase of
L,, can provide much better approximation properties. A typical example
is given by histograms with arbitrary binwidths compared to the histograms
with equal binwidths considered above. The price to pay for this potentially
better adequation of some of our models to the true value of s is to be found
in the requirement that the series ), u, €XPl—Ly D] should converge.
This is not possible anymore if the L,,’s are bounded and we shall have to
take some of the L,,’s of order log n which will result in the presence of an
extra log n factor in the quadratic risk.
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4.2.1. Histograms with variable binwidths and spatial adaptation

Let’s go back to maximum likelihood estimation with n independent iden-
tically distributed observations from an unknown density s on [0, 1]. We
choose for our family {S,}me~, of approximating spaces the rich fam-
ily described in Section 3.3.1 with .#, = %, U (Uy>3%, n). It has been
mentioned already that the corresponding maximum penalized likelihood
estimator had the right rate of convergence if the true s was «-Holderian
with index « € (0, 1]. Let us now assume that s has a bounded «-variation
with 0 < o < 1 which means that

k
sup  sup Z ls(x;) — s = Ju(s) < 400 (4.34)

k=2 xp<--=xp =2

where the supremum is taken over all increasing sequence x| < - -+ < x; of
points in [0, 1]. It follows from Proposition 8 and Proposition 1 that if 1 <
L < N thereexists somem € %, yUZ, suchthat D,, < 2(N/L)1/(1+2°‘)—|—1
and

K (s, Sn) A1 < 9J5%(s) (L/N)@/CerD

Since one can only assume that L,, < 2[1 4 log(N/D,,)] < 2[1 4 log N]
and 7, < (N/D,,)" 2 Theorem 2 implies that if pen(m) is chosen as in
(3.17),

1\ 2/t
E, [d*(s, )] < C(K) |:inf inf {Jj“(s) (ﬁ>

N>11<L=<N

1 N1 N 1/Qa+1)
*MG) Al
n

Setting J = J2%(s) vV n~! we evaluate the bound at N = [nJ] with L = 1
if N =1and L = (3/2)(nJ)"'Nlog(N + 1) otherwise. Then L satisfies
1 < L < N and we get a risk bound of the form

1 74 1)\ 22/ Qe
C'(K) |:J1/(2°‘+1) (M> Al with J = J2(s)va! .
n

(4.35)

Remarks
e When J(f“ (s) is of the order of n~! or smaller, the risk bound is of order

n~! as in the parametric case. Otherwise the risk is bounded by

C" [~ (logn) Ju ()] **F
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e One should always keep in mind that whatever the true function s the
right-hand side of (3.14) provides the best compromise, among all the
histograms at hand, between K (s, S,,) and n~'D,, log(1 + N/D,,) even
when s does not belong to the particular smoothness classes considered
above.

e Itis worth mentioning here that when s is decreasing on [0, 1], the Grenan-
der estimator, which is the derivative of the least concave majorant of the
empirical distribution function, automatically achieves a bound on the
IL,-risk which is analogous to (4.35) with « = 1 but without the logn
factor (see Birgé 1989).

e In order to get better approximation properties for smoother densities,
one could replace histograms by piecewise polynomials of degree < r.
This is possible and would lead to various rates of convergence for var-
ious smoothness classes (not necessarily homogeneous) at the price of
additional technicalities. For the sake of simplicity we shall not insist on
this here.

4.2.2. Neural nets and related nonlinear models

We assume now the situation described in Section 3.2.2. Risk bounds for
minimum penalized empirical contrast estimators are stated for the models
derived from S, = {37, B¢hu, (x)} where Y0 |8;] < R, |w;|1 < H,
and the index m = (D’, H, R) is taken as a triplet of positive integers. We
recall here that the number of free parameters in S,, which will play the role
of D, is D'(q' + 1).

In keeping with the general framework of Section 3.1, we consider the
case of penalized likelihood density estimation with densities of the form
t2(x) for ¢ in S,,. Here the densities are taken with respect to a given prob-
ability measure p on [—1, 1] and s? is the true probability density. The
set S, is taken to be those functions in S,,, the positive part of which has a
norm at least 1/2, clipped from below to be not smaller than 1/n, with each
divided by its norm in IL, (). We also consider the case of penalized least
squares regression with data of the form Y; = s(X;)+ W; where the W;’s are
independent identically distributed centered errors and with target function
s bounded by a known constant £. We take advantage of this knowledge
by taking the least squares estimates in S,,, where S, consists of the func-
tions in S,,, clipped to the range [—&, £]. Such clipping is done to satisfy a
boundedness condition without adversely affecting the approximation and
metric entropy properties of the models.

In addition to the Lipschitz condition (3.12) we require that |¢,, (x)| <
1 Vv |w]|; for x in [—1, 1]9. This condition is verified in the examples by
noting either that ¢,, is bounded by one (which handles most of the cases of
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interest) or that in some cases ¢ is identically O so that then |¢,, (x)| < |w/|;
by the Lipschitz condition.

Theorem 7 Let{¢,, : w € R} be a parameterized family of functions that
satisfies the Lipschitz conditidig,, — ¢, [lcc < |w —w’|; and suppose that

Pwllooc <1V |wl;.
e For maximum likelihood density estimation we define

S tvn!
" e vt

_ 1
tesS, and ||tVO||Z§}

and take

! 7

q |:1+10g(RH)+log<1+ " )] (4.36)

pen(m) = ke Dq

wherexg is a suitable numerical constant. We defin® be a minimizer
with respectto positive integef¥, H, andR which satisfyD'(¢’+1) < n
and with respectte € S,, of —n=! >""_, log[t(X;)] + pen(m), then

2 A ’ .
E, [d°(s, $)] <« |:D/1’r}{f’R{K(s, Sp) + pen(m)} A 1} 4.37)
< k¢ DjrgR {[dz(s, Sp) V rfz]
x [1 +log(n|s|le)] + pen(m)} . (4.38)

e For the regression casg = s(X;) + W; we assume that is bounded
by a known constarit and thatE,[e!"'1/¥] < 4. We defineS,, = {[t v
(=& AE|t €S,}and choose

D/q/

n

pen(m) > k7 (& +£&)?

|:1+10g(RH)+10g <1+ " )} (4.39)
D/q/

wherexs is a suitable numerical constant. We take be a minimizer with
respect to positive intege®’, H, andR andz € S, of n=' >""_|[¥; —
t(X;))? 4 pen(m), then

2 A /A 2 Q
E, [d°(s, )] < &5 D/l’an’R {d*(s, S») + pen(m)}

Statistical rate bounds using multivariate nonlinear additive ridge mod-
els: We now restrict to the case where the function ¢,, is a ridge function
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on R? : ¢, (x) = ¥ (a’ x + b) where w = (a, b) witha € R? and b € R.
We first state bounds on nonlinear approximation and estimation using lin-
ear combinations of functions of ridge type using Fourier conditions on the
target function (building on the work of Jones 1992, Barron 1993, Breiman
1993, Hornik et al. 1994 and Yukich et al. 1995). The proof will be given
in Section 8.

Proposition 6 Lets(x) be areal-valued function dn-1, 117 with a Fourier
representation

s(x) = / exp [ia”x] F(da)

with respect to a complex-valued measfréor frequency vectors in IR¢.

For anyy > 0, we denote by, , = [ |al{ F(da) the y-absolute moment

of the Fourier magnitude distributiofl = | F|. We assume that for certain

a > 0, ¢4 + c50 Is finite and thatx and the ridge functiony satisfy the

following constraints

1. Trigonometric approximationy (x) = cosx anda > 0;

2. Sigmoidal approximationy(x) — =1 and approaches its limits at
least polynomialy fast as — +oo anda = 1;

3. Wavelet ridge approximationt (x) is a bounded function with compact
support andx > 1;

4. Hinged hyperplanes/(x) = x v 0 anda = 2.

Then in each case, there exists some constdpend R(s) such that

d(s, Sp) < cs.obn + R(s)(D)™1/? (4.40)

provided thatn is such thatR > R(s) and H > Hy, wheresy does not
depend ory and decreases at least polynomialy fast with respedf tas
H goes to infinity.

We now assume that ¢ is a Lipschitz function of one of the forms
mentioned in Proposition 6 and bounded by 1 so that we can combine the
conclusions of Theorem 7 with a value of pen(m) of the order of the lower
bound given by (4.36) or (4.39) and Proposition 6. Let § be the minimum
penalized empirical contrast estimator, taking the minimum over D', H,
and R as in Theorem 7. To bound the accuracy index, under the conditions
of Proposition 6, note that when H is a convenient power of D', d(s, Si)
is of order (D’)~!/2. Then optimizing over D’, we conclude that the risk
IE,[d?(s, §)] is of order n~'/?logn or (logn/n)'/? in each of the two cases
respectively.

Though we are building on previous approximation results, as far as we
are aware these are the first statistical rate bounds of this sort stated for
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the trigonometric, ridge wavelet, and hinged hyperplane cases. Comparable
rate results for the neural network regression case are in Barron (1994)
(under the more stringent assumption that the response Y is bounded and
that optimization is taken over a discretized grid of parameter values) and
in Modha and Masry (1996).

The regularity conditions on s needed for the approximation controls
are given in terms of integrability conditions on its Fourier transform. Since
larger values of « correspond to more stringent conditions, the assumptions
above are more general for the trigonometric model than for the others,
which is natural given that the conditions are imposed on the Fourier spec-
trum. The point in considering the other models is to give some risk bounds
for these popular models under reasonably well understood conditions. We
note that for the classes of functions considered here, the approximation and
estimation rates as exponents of 1/D’ and 1/n are independent of the dimen-
sion ¢g. Actually, the dependence on the dimension is indirect through the
spectral norms c; . Conditions under which these norm are not excessively
large are discussed in Barron (1993).

The key to achieving these advantageous rates for these functions is the
adaptation of the nonlinear parameters w; to fit the target. In contrast linear
approximation would be forced to specify a fixed basis without adaptation
to the target function. Indeed, it is also shown in Barron (1993) that for the
class of functions with a bound on ¢, ; + |s(0)], the best IL,-approximation
by a fixed D term basis is not uniformly smaller than order D~'/4. Thus,
without adaptation, we approximate functions in this class no better than
for the much larger class with a bound on the gradient. Whereas, with
adaptation, we approximate functions in this class atrate D~'/2, comparable
to the approximation rate of the much smaller subclass of functions that have
bounds on all derivatives up to a certain high order.

4.2.3. Model selection with a bounded basis

We want to do density estimation using projection estimators as described
in Section 3.3.2 and assuming that the basis {¢; | A € A,} is a finite subset
of cardinality n’ (I being some fixed positive integer) of the Fourier basis
on the torus T with uniform distribution p. With such a basis (which is
orthonormal and bounded by +/2) we can apply Theorem 9 Case i) to be
stated in Section 6.3 below. We look for a representation of s with a small
number of parameters (as compared to the number of observations). This
looks rather attractive if one thinks of the model selection point of view. Let
us therefore define our family {S,,},c.#, as follows. Assuming that n > 4
we define ./, to be the (finite) collection of nonvoid subsets m of A, of
cardinality bounded by K, where K, is the smallest integer > /n(logn) 2.
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The reason for bounding the cardinality of m in such a way is that Theorem 9

involves in this case a quantity of the type ), c.u, XPl—=x (L Dy A J/n)]

for some small positive number x. In order to bound this quantity, we choose
I

A,, = m and L,, = (logn)?. Since (n ) < n''/i! we can bound the second
i

term of (6.20) by

N

Kn 1
1
Z (n ) exp [—xi(logn)z] < Z - €xp [—ilogn (xlogn — l)]
l l.
i=1 i=1
which is bounded independently of n and the first term of (6.20), using
Lemma 6, by

Kn

3 (’;’) exp (=) < (%) exp (—x V)

. 7
i=1 !

which is also bounded independently of n from our choice of K,,. With the
choice pen(m) = K¢L,, D,,/n for alarge enough constant K¢, the penalized
projection estimator provides (up to a (log n)? factor due to our choice of L,,)
arisk which realizes the best trade-off between bias and variance among our
family of models. Moreover it has the simple expression ) _, .z BMPA where
A is the set of indices corresponding to the at most K,, largest empirical
coefficients B, which are also larger than some threshold C(logn/n)'/2.
This type of procedure could be useful to estimate a density which is known
to have a small number of non-zero Fourier coefficients. It leads (up to a
(log n)? factor) to the right rate of estimation although one ignores what
are the coefficients to be estimated. A much more detailed treatment of
selection of subsets of a basis and its relationship to threshold estimators is
to be found in Birgé and Massart (1997).

5. Adaptation and model selection

Although this terminology is widely used, we do not know of any “univer-
sal” definition of adaptation On the contrary, one can find in the literature
different notions of adaptation. This is one purpose of our discussion to
analyze and compare the various points of view. We assume that the un-
known element s to be estimated is a function belonging to some functional
space & (typically . = IL,(u) for some p > 1) and that a loss function
¢ is given on ¥ x .¢ (typically £ is some power of the IL,-distance). To
be more formal, let us say that we observe X, the distribution of which
depends on an unknown function s. We have here in mind examples such as
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X" =(X,,...,X,isa sample of density s (or sHor X" = {Xtnto<i<t
is given by the white noise setting

dX;, =s(t)dt +n="*aw,

where W, denotes a standard Brownian motion originating from 0, among
other settings (regression function, spectral density estimation, ... ). Given
an estimator §, (X)) depending on the observation, the risk R, (S, s) of
this estimator at point s is given by

Rn(§na S) = ]Ex[g(sv 3:n)] .

The maximal risk of §, over some parameter space S and the minimax risk
over S are respectively defined by

Rn(§nv S) = sup R:1(§n’ u) and Rn (S) - H_lf Rn (§n, S)

ues

where the infimum is taken with respect to all possible estimators §,,. One

can distinguish between two main approaches to adaptation.

e One considers some collection {Sy}gce of subsets of & (typically a col-
lection of balls for some smoothness semi-norms) and we look for esti-
mators which are approximately minimax simultaneously on all the Sy’s.
This is what we shall call adaptation in the minimax sense

e One considers a family of estimators §,, depending on a tuning parameter
m € . (for instance m can be the bandwidth of a kernel estimator or an
arbitrary subset of some finite dimensional basis for a projection estima-
tor) and we look for a data driven choice m € .# such that, whatever the
true s € &, the risk of §,; reaches approximately the minimal risk among
the family of estimators {S,, },nc.,. This is what we shall call adaptation
to the target function
Actually, from a constructive point of view, all the solutions to the first

problem that we know rely on a data driven choice of a tuning parameter

m € ./ for some given family {§,,},,c.» in the situation when for each

0 € O one can find m (@) such that the estimator §,,() is approximately

minimax for Sy (we shall below make precise what we exactly mean by

“approximately”). This points out the close connection between the first

approach and the second.

5.1. Adaptation in the minimax sense

A simple example for density estimation is the following: the unknown
function s belongs to some subset
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Se.n = {s € Ly ([0; 11) ‘/ |s<“>(x)|2dx < H? } ,

with H > 0 and a € N — {0}, of the Sobolev space W3 ([0; 1]). One wants
to estimate s using (for instance) a kernel estimator of a given form with
bandwidth m. If « and H were known, one would now how to choose the
bandwidth m optimally as a function of «, H, n in order to get a quadratic
risk uniformly bounded over S, g by k (Hn=%)*{1+2% where « is a numer-
ical constant (see Bretagnolle and Huber 1979). Apart from the constant «
this is the minimax risk over S, y. If @ and H are unknown m has to be
chosen from the data and the problem is to determine whether it is possible
or not to achieve the same risk (up to some numerical constant) whatever «
and H. Adaptation means that, in a more or less strong sense, one can do
as well not knowing to which S, s belongs that knowing it.

One can consider (at least) three different approaches to adaptation in
the minimax sense. Let us assume that we are given a family {Sy}yce of
parameter spaces and a sequence (S,),>1 of estimators independent of 6.
One considers the ratios

Rn (gn ) SG)
Rn (SG)

e Historically, the first approach to adaptation in the minimax sense was
introduced by Efroimovich and Pinsker (1984). This is an asymptotic
point of view which amounts to show that one can find a suitable sequence
((8)n=1 such that limsup, _, . C,(0) = 1 for any 6 € ©. They proved
such a result for the white noise setting when the family {Sp}gce is the
class of ellipsoids. In Efroimovich (1985) and Efroimovich and Pinsker
(1986) they extended their results to other settings. Further results in this
direction are to be found in Golubev (1992). In this case we shall speak
of exact asymptotic adaptation

e Another point of view introduced by Lepskii (1991) and Donoho and
Johnstone (1995) consists in showing that limsup,_, . . C,(0) = C(0)
for any 6. In this case we shall speak of asymptotic adaptatianOne
can weaken this definition to asymptotic adaptation up t&’(n) when
limsup, , ., C,(0)/ZL(n) = C(0) and £ (n) is a slowly varying func-
tion. In those two directions one can cite the papers by Lepskii (1992),
Golubev and Nussbaum (1992), Goldenshluger and Nemirovskii (1997),
Lepskii, Mammen and Spokoiny (1997), Donoho, Johnstone, Kerky-
acharian and Picard (1995) and the references therein, Lepskii and
Spokoiny (1995), Juditsky (1997), among many recent results.

e A third approach is to show that C,(0) < Z£(n)C(0) where £ (n) is a
slowly varying function. When #(n) = 1 we shall speak of nonasymp-
totic adaptatiorand this point of view has been extensively developed in

=C,0) .
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the preceding sections with some examples where C (6) does not depend
on 0 and in Birgé and Massart (1997) as well. When % (n) goes to infinity
with n we shall speak of adaptation up to#(n) and various results in
this direction are to be found in Donoho, Johnstone, Kerkyacharian and
Picard (1996).
One should first notice that nonasymptotic adaptation implies asymptotic
adaptation while the converse (even in the case of exact asymptotic adapta-
tion) does not hold since nothing warrants that the convergence is uniform
with respect to 6. The presence of the function .Z(n) (typically some power
of logn) is sometimes necessary (see for instance Lepskii 1992 for point-
wise estimation) and is sometimes connected to the choice of the estimation
procedure.

The difficulty of finding adaptive estimators (in any sense) is partly
connected to the difficulty of finding minimax estimators (up to constants)
on each parameter space Sy. It is now well-known that if we choose, for
instance, the loss function £(s, t) as ||s — ¢]|*> where || - || denotes the norm
in IL, ([0, 1], dx), it is more difficult to estimate a function in a ball of the
Sobolev space W with p < 2 than in W3'. In W5, linear estimators based
on any optimal linear approximation procedure will do the job while no
linear estimator can achieve the optimal rate of convergence in the spaces
WZ‘ for p < 2, as shown in Donoho and Johnstone (1994c). Nemirovskii
(1985) was the first to provide estimation procedures achieving the minimax
risk (up to constants) over the balls of those spaces. It is a merit of wavelets
to produce simple estimation methods based on thresholding or shrinkage
of the coefficients that also achieve these optimal rates of convergence. The
introduction of wavelets to construct optimal estimators in this context is due
to Johnstone, Kerkyacharian and Picard (1992) and Donoho and Johnstone
(1998). The functions in WI‘;‘ for p < 2have anonhomogeneous smoothness
(relatively to the IL,-norm) and this is the reason why Donoho and Johnstone
introduced the term of spatially adaptivefor the optimal estimators in those
spaces. Another attractive feature of wavelets comes from the fact that mild
modifications of the preceding estimators lead to adaptive procedures in
various senses as mentioned above.

Adaptation in the minimax sense requires the introduction of some ‘“‘a
priori” class of compact sets Sy (in most cases balls with respect to a family
of semi-norms defining some smoothness restriction for s). This presenta-
tion clearly leads to various questions:

— What happens if the true s does not belong to S = UyceSy?
— How should one choose the family {Sy}yce if only S is given (think of

S = %([0, 1]))? Clearly there is not only one choice.

— What type of property is required on the family {Sy}pce in order to
get adaptation in any of the above senses? Not all families will do as
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shown by the following example: the observations X1, ..., X,, are in-

dependent identically distributed with unknown density s belonging to

S = %([0, 1]) and Sy is any regular (in the usual sense) parametric sub-

model with parameter space [0, 1] and Fisher information bounded away

from zero. If the loss function is the square of the Hellinger distance
between densities, the minimax risk over Sy will be of order 1/n. The
set of Sy’s, which is the set of all such parametric submodels, will cover

S and there is no hope to get an adaptive estimator in such a situation

since the family {Sy}yce is too large.

As we already mentioned at the beginning of Section 5, when one wants
to construct an adaptive estimator in the minimax sense relative to some
family {Sp}sce, one is lead to introduce some collection of estimators de-
pending on a tuning parameter m € .# and then perform a data-driven
choice of m. On the other hand, the real object of interest is the true func-
tion s itself and the introduction of the family {Sy}sco can be viewed as
rather artificial. This motivates the second approach to adaptation.

5.2. Adaptation with respect to the target function and model selection

The idea now is to forget about the introduction of a reference family {Sy }yco
and rather introduce a collection of estimators {5,, },nc.»,. The choice of such
a family is in some sense arbitrary and plays the same role as the choice
of the prior in Bayesian theory. In any case it is not more artificial than the
choice of the family {Sy}sce. The gain is that one focuses only on the target
function and tries to select the tuning parameter / in order to minimize the
risk at 5. More precisely, if the data driven selection procedure is given by
1, one wants to optimize in some sense the ratio

( ) Rn (§Ih7 S)
Pn(S) = P :
inf e Ry (S, S)

Once again, one can consider various types of controls for p, (s).

e One can try to get lim,_ 1 0,(s) = 1. Such a program can be carried
out for the quadratic risk by using methods related to cross-validation or
Mallows’ C,,. Among many such results let us cite for kernel estimation
Hall (1983) and Stone (1984), Hall (1987) for projection estimation and
for regression on fixed design Li (1987) and Polyak and Tsybakov (1990).

e One can alternatively look for results of the form lim sup,_, , ., pa(s) <
~+00. Such a point of view appears in the numerous works on maximum
penalized likelihood or penalized least squares estimators as described
in Silverman (1982) or Wahba (1990).

e Finally, one can try to define 7 in such a way that sup, [p,(s)/Z(n)] =
p(s) < +oo where Z(n) is a slowly varying function. This is the type of
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results that one can find in Donoho and Johnstone (1994a) for estimators
based on thresholding of empirical wavelet coefficients in the Gaussian
regression with fixed design. In this case the function #(n) is a power
of logn.
Apart from kernel cross-validation the methods of adaptation to the target
function studied by these authors can be viewed as occurences of model
selection by minimization of a penalized empirical criterion. One should
nevertheless distinguish between infinite dimensional and finite dimensional
model selection which involve penalty terms of very different natures.

The approach to penalization which is developed at length in the mono-
graph by Wahba (1990) represents another way of penalizing which is rather
connected with the calculus of variation on infinite dimensional spaces and
can be seen as a penalized version of the infinite dimensional sieve method
of Chow and Grenander (1985). The interested reader can consult the im-
pressive list of references in Wahba (1990). Another illustration is to be
found in Van de Geer (1990) who introduces empirical process techniques
for studying those estimators. Typically one considers a function s belong-
ing to Sy i where H is unknown (but « is given!) and derives the optimal
rate of convergence n 2%/ 2+ (with respect to the quadratic loss function).
The estimator is obtained by minimizing some empirical contrast function
(least squares for fixed design regression as in Wahba, 1990 or maximum
likelihood as in Silverman, 1982) with respect to ¢ belonging to the whole
Sobolev space W with a penalty term proportional to || ||*. The penalty
is used there to avoid a compactness assumption but this method requires
« to be known. From this point of view it cannot achieve one of the main
issues of this paper which is to estimate a function of unknown smoothness.

The other methods are all based on model selection over a family of finite
dimensional spaces via the minimization of an empirical criterion involving
a penalty term which is roughly proportional to the dimension. This is
clearly the case in Li (1987) and Polyak and Tsybakov (1990 and 1993)
who study penalized least squares estimators closely related to Mallows’
C, as described in the introduction. This is also true for projection cross-
validation (see Hall, 1987) which can be viewed as a (randomly) penalized
projection estimation method as shown in Birgé and Massart (1997).

Even if this is not apparent at first sight, the method of hard thresholding
used in Donoho and Johnstone (1994a) can actually be viewed as a penalized
least squares method (this has been shown at least in the context of density
estimation by Birgé and Massart, 1997).

We would finally like to emphasize an important fact concerning the
connection between model selection methods and adaptation in the mini-
max sense. While all the methods we just described can potentially lead to
adaptive estimators in the minimax sense on some collections of smooth-
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ness classes, such results cannot directly be derived from the asymptotic
risk bounds given by the previous authors because of the lack of uniformity
with respect to s. On the contrary, the nonasymptotic bounds such as those
obtained by Polyak and Tsybakov (1993) or Donoho and Johnstone (1994a)
naturally lead to adaptation in the minimax sense (up to a slowly varying
factor in the last case) by using the device described in the introduction.

5.3. Comparison with other adaptive methods

There is some difficulty to compare directly our results with the existing
literature since many of the results which are connected to ours are developed
in the context of the white noise setting, or regression with fixed design
or more general regression settings. This is in particular the case of Li
(1987), Lepskii (1991) and Donoho and Johnstone (1994a) that we are
analyzing below. On the other hand we do not study here the white noise
setting at all and we study only very partially the regression on fixed design.
On the contrary we have developed many results for density estimation
using penalized projection (see also Birgé and Massart, 1997) or maximum
likelihood estimators. Therefore, in our comparisons with other works, we
are putting the emphasis on the methods and comment on the types of results
which are obtained, taking for granted that the reader is aware of the analogy
between those different settings. Anyway, the reader can look at Section 2
in order to find an illustration of our way of thinking of this analogy.

The main issue of our approach is to define a proper penalty term for
general collections of models and various empirical contrast functions and
to derive an upper bound for the resulting minimum penalized empirical
contrast estimator 5. As we have seen this penalty can typically be written
as k L,, D,,/n with

> exp(—LnDy) < T (5.1)
me,
for some ¥ < 400 and independent of n and the resulting risk is bounded
by

E, [lIs — $I*] <« inf {d*(s, Sy) + LuDw/n} +ZC(s)/n . (5.2)
me.,

5.3.1. Adaptation to the target function

This type of penalty covers two particular cases that we just mentioned
above and which are both related to least squares estimation. If the number
of models having a given dimension D is subexponential, which typically
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occurs when the models are nested, one can choose L,, = L and get a
penalty which only differs from the penalty in Mallows’ C,, by a constant
factor. From that point of view, our results are non-asymptotic analogues
of those by Li (1987). One can even, in this case, using our approach, go
further in the analogy by identifying exactly the constants involved in the
penalty term and get nonasymptotic risk bounds for Mallows’ C, as in
Baraud (1997).

If one considers a “rich” family of models in the sense that there are many
models of the same dimension, one is lead, in order to satisfy the constraint
(5.1) which is essential to prove that our method works, to take larger values
for the L,,’s (at least for some of them). A typical situation of that type is
the “variable selection” example that we give in Section 2 where we take
L,, = Llogn. We also show there that the resulting penalized estimator is
a threshold estimator as introduced in Donoho and Johnstone (1994a). Our
risk bound, which includes an extra log n factor (as compared to the minimal
risk among the family of models), due to the choice of L,,, is consistent with
that of Donoho and Johnstone. More generally, the interest of considering
a “rich” family of models is to get better approximation properties.

5.3.2. Adaptation in the minimax sense

Indeed, if one wants to approximate an arbitrary function s in W for p < 2
one cannot content oneself with one single linear model per dimension (see
for instance Pinkus, 1985). One is therefore led to introduce many linear
models of the same dimension. This strategy is especially relevant when the
sieves are linear spans of finite subsets of a localized basis (piecewise poly-
nomials or wavelets, for instance). Such a point of view has been developed
by Donoho, Johnstone, Kerkyacharian and Picard and an interesting review
is to be found in their 1995 paper.

In the recent literature devoted to adaptive estimation in the minimax
sense one can distinguish between two main methods: thresholding from
empirical coefficients and what is now known as “Lepskii’s method”. They
both rely on the data-driven selection of some tuning parameter for a family
of estimators and have been developed for various loss functions. The idea
introduced by Efroimovich and Pinsker (1984) and developed by Donoho,
Johnstone, Kerkyacharian and Picard in various works is to use various
strategies of thresholding in order to select a subset of some given basis.
As quoted in Birgé and Massart (1997), the adaptive procedures based on
“hard thresholding” can be viewed as penalized projection estimators and
another illustration of this idea is given in Section 2. This interpretation
can be of some help, for instance it allowed Birgé and Massart (1997) to
avoid the dependence of the estimator with respect to unpleasant quantities
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like the radius of the Sobolev balls which appear in Donoho, Johnstone,
Kerkyacharian and Picard (1996).

“Lepskii’s method” was first introduced in Lepskii’s seminal works of
1991 and 1992 and applied to adaptive estimation for Sobolev or Holderian
balls in the white noise setting and Gaussian regression. It is rather difficult
to describe it in a few lines. Let us only recall here that it is based on two
main assumptions. Given some (almost) arbitrary loss function, one starts
with a family of parameter sets {Sy}ocr+ for which one knows that the
corresponding family of minimax rates of convergence is totally ordered.
Moreover one postulates the a priori existence of a family of estimators
with adequate convergence properties (involving not only the rates of con-
vergence but also specific shapes for the probability tails of the deviations)
which have to be constructed in each particular case. The method uses an
ordering of the rates which, at first glance, implies adaptation with respect to
areal parameter rather than a multidimensional one. It should be mentioned
however that subsequent elaborations of this method are to be found in
Lepskii and Spokoiny (1995) and Lepskii, Mammen and Spokoiny (1997)
where they relax this monotonicity restriction by using a local version of
Lepskii’s method for kernel estimators.

5.3.3. What’s new here?

Let us first mention that one serious drawback of our approach, as compared
to some of the other adaptation results described above, is that it forces us to
use a particular loss function which is naturally connected to the empirical
contrast function we choose. More precisely we mean that we can derive
the risk of the estimator for powers of some particular distance (which is
typically some IL,-distance) and we do not know how to bound the risk for
other loss functions.

We now want to emphasize the novelties brought by our approach from
two points of view: the risk bounds and the estimation procedures. First, let
us recall that all our risk bounds are systematically “nonasymptotic”. As we
already mentioned, the typical risk bound takes the form (5.2) and expresses
the performance of our estimator at the target function. From this point of
view, our results are quite different from results on cross-validation like
those of Hall (1987) and Li (1987). In particular we do not require that the
true function does not belong to any of the models and therefore our result
is also valid for model selection in a parametric setting. There is actually no
difference, in our approach, between the parametric and the nonparametric
points of view.

Another advantage of nonasymptotic bounds like (5.2) is that they natu-
rally lead to adaptation in the minimax sense on various families of compact
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sets and in particular classical smoothness classes, via an adequate choice
of the family of sieves. Moreover, given such a family, the resulting upper
bound for the maximal risk over any set in the family is in many cases
comparable (up to a universal constant) with the minimax risk over this set.
Several such examples are given in Section 4.1 (see in particular Proposi-
tion 3 and inequalities 4.20 and 4.21). This makes a substantial difference
with most of the typical results in this direction. Many results similar to
some of ours are well-known from an asymptotic point of view for instance
those concerning adaptation with respect to Holder classes (Lepskii, 1991)
or with respect to ellipsoids (Efroimovitch and Pinsker, 1984) . But as far as
we know, the results which are stated here are new, as they are stated, since
we systematically provide inequalities for a given number n of observa-
tions which not only describe the rate of convergence but also make explicit
the dependence of the constants with respect to the smoothness parameters
or some feature of the unknown function to be estimated, up to universal
numerical constants.

Let us now turn to the advantages of our method of estimation using
model selection. We see two advantages of this method as compared to
Lepskii’s: first, our approach does not impose any ordering on the rates
of convergence and therefore can handle adaptation in multivariate estima-
tion problems where the smoothness is not homogeneous with respect to
directions. Secondly our method does not rely on the existence of prelimi-
nary estimators but automatically provides the estimators and the adaptation
procedure simultaneously.

May be that the main quality of our method is its considerable flexibility
since we have the choice of both the family of models and the weights
(provided that they satisfy 5.1). In our examples, we mainly discussed the
situation of constants weights, either equal to L or to L log n. This strategy of
penalization proportional to the dimension includes the “hard thresholding
methods” as illustrated in Section 2 but more sophisticated choices of the
weights are interesting. To illustrate this point of view let us assume that
we have at our disposal a “very large” family of models {S,,},;c.», in the
sense that ) exp(—D,,) = 400 but the number of m’s with D,, < j is
finite for any integer j. It is clear that there exist many choices of weights
L,, satisfying the condition (5.1). In particular, it is always possible, in a list
of models with a given dimension D,, = D, to take L,, = 1 for a bounded
number of them. If we denote by m, (s) the best model for estimating s
with n observations, that is the model leading to the minimal risk at s, it
follows from our evaluations of the risk of the minimum penalized empirical
contrast estimators that the smaller L,, (), the better this risk which means
that L,, ) should ideally be 1. Since m, (s) is unknown, for each given
dimension D we tend to put small values of L,, on the models of dimension
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D,, = D which we believe to be more accurate and large values of L,, for
those that we consider as unlikely. This is very similar to the choice of a prior
distribution on the family of models. Actually both the choice of the family
{Sm}me.n, and of the family of weights {L,,}me 4, reflect our “a priori”
information about s or our “belief” about the true state of nature, to put it in
a Bayesian language. This idea has been illustrated in Section 3.3.1 where
we have introduced a mixture of histograms based on regular or irregular
partitions, the first ones being suitable for estimation of Holderian densities
and the second ones for densities with bounded «-variation. More generally,
if we have at hand several lists of models .7, ; for j € J, one could just
mix all the models in a larger list by a suitable modification of the weights.

6. A general theorem in an abstract framework

The purpose of this section is to establish risk bounds for minimum penalized
contrast estimators, that is an analogue of Theorem 1, in a general setting.
We then show in the next section that this theorem implies all the results that
we have stated in Section 3 for each particular empirical contrast function.
This research of generality leads us to introduce some assumptions which
will probably appear rather obscure and very technical at the first reading.
As quoted in the conclusion of Section 2 the main task here is to control the
fluctuations of some empirical process connected to y. A natural candidate
is the centered empirical process v,[y (-, s,,) — ¥ (, t)]. Unfortunately the
unboundedness of the function y defining the empirical contrast y,, leads to
difficulties for the control of this process and to overcome these difficulties
we introduce a suitable modification ¥, of y (which might be equal to y it-
self) on each model S, . In most situations, this is a minor modification which
leaves the centered empirical process invariant, but it can be more compli-
cated as required for the treatment of maximum likelihood estimation.

The main issue is then to control a weighted version of the empirical
process V[V (5 Sm) — Y (-, )] for t € S,,» by exponential bounds similar
to (2.7). Unfortunately, there is not a single and canonical way to do that
and the multiplicity of our assumptions reflects the many cases we want to
handle and the variety of techniques which have been developed in the re-
cent years. These assumptions describe in different ways the “massiveness”
of the models which directly influences the size of the fluctuations of the
empirical process.

6.1. Exponential bounds for the fluctuations of empirical processes

In what follows, as we already mentioned at the beginning of Section 3.1,
the unknown parameter s is supposed to belong to some subset % of the
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set 7 on which the function y (z, ) is defined. We recall that % and every
quantity which is indexed by some element m or m’ in .#, can depend on
n although this is not emphasized by our notations. On the contrary, all the
constants involved in the following assumptions (unless otherwise stated)
are independent of n and of s € . but may depend on our choice of #. Those
constants are supposed to be known to the statistician and can therefore be
used in the construction of estimators of s. The statistical framework that
we use is the one described in Section 3.1.

For each m € .#, we associate some number D,, > 1 (referred to as
the dimensiorof S,,) and we introduce a function 7,,, defined on Z x S,,
and measurable with respect to the first variable. In some situations we
shall take y,, = y, otherwise the reader should think of y,, as a suitable
modification of y with improved boundedness properties. It will be the
role of Assumption C below to specify what kinds of modifications of y are
allowed. The following assumptions are related to such a family of functions.

Lip (Lipschitz) Foranys € #,the observedrandomvariabl&s,, ..., Z,,
under the distributiornPy, can be written asZ; = f (s, X;, W;) for some
known functionf. The random variableX, ..., X, take their values in
2, Wy, ..., W, take their values in/", they are all independent and the
distributions of theW;’s are free with respect te. Moreover there ex-
ists a nonnegative measurable functidf(-) defined ony” and for each
(m,m’) € M, x 4, and each paifu, v) € S,, x S, a nonnegative mea-
surable functiom,, (-, u, v) defined onz such that

|)7m(zv l/t) - );m’(z9 U)l =< M(w)Am,m’(Xa u, U) for = (X, U)) .

Furthermore one can find positive constaatsB, E such thatforallj > 2,
any(m,m’yin .4, x #,,uin S,,vin S, either

i)
IM(W)llew <A forall i=1,...,n (6.1)

and

| , i D,V D,
=Y KA, (Xiu,v)] < ’331—2 [dz(u, v+ E uﬂ{m;ém/}}
n ’ n

i=1

(6.2)
or

i)
E[M(W)] < %AJ forall i=1,....n (6.3)
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and

1 n
—§ E (A2 (Xi u,v)] <d*w,v), [|Apwle<B and E=0
. ,

i=1

(6.4)
holds.

Remarks
1. Aswe already noticed in Birgé and Massart (1998), (6.2) can be deduced
from IL,- and IL,,-controls on A.
2. If m = m’ (6.2) is merely (5.3) of Birgé and Massart (1998).
The Assumption M (Metric) takes one of the two following forms cor-
responding to controls of covering numbers either related to IL,- and IL-
norms or to IL; with bracketing.

M (Metric) For eachm € .#, one can find constant8, > 1 such that for
eachs > 0 and each balk c S,, with radiuso > 58 v (D,,/n)'/? (with
respect to thdl,-distance, there exists a finite st = T (m, §, 4) C %
with

IT| < (B,0/8)"" (6.5)

and a mappingr = n(m, §, %) from % to T such that one of the two

following sets of properties is satisfied:

e Mj o (ILy/ILLs metric): AssumptiorLip (i) or (i) holds,d(u, mu) < &
for all u in # and there exists som¢ > 0 independent of and# such
that

sup  [[Apm (o, oo <r,,8 foral teT . (6.6)

uer=1(t)

e M, (IL; metric with bracketing): AssumptiorLip (ii) holds and for
all r € T one can find a measurable functidp , such thatforalk € T,
allx e zandalls € ¥

1 n
SUD A (X, u, 1) < Vo () and =Y [V (X)] < 87
uen=(1) n i=1

(6.7)

RemarkOne should notice here that M combines an assumption concerning
the metric structure of each sieve viewed separately and Assumption Lip
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which is also supposed to handle the correspondances between different
sieves.

In the case of projection estimation one can substantially simplify these
assumptions provided that the family of models satisfy the following lin-
earity property:

L (Linear) We assume that each modglfor m € .#, is a subset of some
D,,-dimensional linear subspac®, of IL, (1) N Ly ().

We are now in a position to state an exponential inequality for a weighted
empirical process related to y,, which, except under Assumption M [j, has
been proved in Theorem 5 and Proposition 3 of Birgé and Massart (1998) .

Proposition 7 Let the family of subsetsS,,}.c.», of L,(1) be given and
for eachm a functiony,, be defined o x S,, which is measurable with
respect to the first variable. We assume that either

e M holds
or

e we observen independent identically distributed random variables
Zy, ..., Z, with densitys € IL,(u), Yn(z,t) = —2t(z) andL holds.

The following exponential inequality is then satisfied for ang .#,,,
anyt € S,, and anyr > 0

|: viz[);m('a t) - J;m(‘v M)] j|
P | sup >T
UES,,

d?(t,u) v x?
<3.lexp[—nh,(x)] forallx > o, (6.8)
where
e underM:
D,, 2
oy =[c22, v1]—" and h,(x)= ()1)

n ¢

with
20
2 2
{* = @[32A + 6ABT]

and

' =2.510g[14B,(1+ rl,(Dy/m)"?)]
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whenever Assumptidvl, , holds or
7, = 2log[B,,(vVB Vv 4[A/(30)]'? v 5)]

wheneveM |, holds
e underL:

on =06
T n

1/2 1/2
Dy A 5|2 (Dm>/

and

B ) ,|: ™ 72x? ]
(X)) =K
D/ Dy (Poun/DilIsID) A llslloo

whered®,, is given by(3.2) and«’ is a positive constant.

Remarks

e It should be noticed that, since the bound (6.8) involves a single function
Vm» We do not use in Proposition 7 the full power of Assumption Lip
(which deals with all pairs (m, m")).

e In the statement of Proposition 7, the notation IP; in bound (6.8) can be
abusive since our sets of assumptions do not always warrant (we espe-
cially think of M ;) that the supremum involved in (6.8) is measurable. If
some measurability problems occur, IP; should be understood as an outer
probability which does not destroy anything in the proof of Proposition 7
since it only uses the subadditivity properties of IP;.

e It is noticeable that, under Assumption M [y, the proof of (6.8) does
not involve any chaining argument (while such an argument is necessary
for the proof under Assumption M; ). Such a device has been used
by Pollard (1985) for providing simple proofs of uniform central limit
theorems following an original idea by Huber (1967).

Proof. Let us begin with Assumption M 7. We first want to prove that if %
denotes the ball of radius o and center ¢, whatever t € S,

IP [SUPV (VG 1) = V(- w)] > 702i| < 2exp |:— no” i| (6.9)
“lues e - 10p%(7) '

provided that no? > D, [Z(t)p?*(t) Vv 1] where p(7) and #(7) are defined
by
16A> 4AB

72 T

p* (1) =

and
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(1) =5log(B.0) withe =~/Bv2(A/T) > V5 .

Letusset p = p(1), & = L(t), § =a/6 and f, = P, (-, 1) — P, u).
Since 0 > D,,/n, by (6.5) and M [; we can assume the existence of T
with cardinality e, H < D,, log(B,,0) and for each v € T there exists a
random variable V,, , with

1 s
SUD Ay (8,11, 0) = V() and - — Y [V o (X0)] < 8
i=1

uer—1(v)
(6.10)
Since by (6.4) | Apm.mlloc < B we can assume without loss of generality that
”Vm,v”oo <B.Ifv= 7[(”)» |fu - fv| =< MVm,v and we get

2 n
Un(fu) € =D B IM W) Vi o (X1 4 va (fo) + va (M Vi)
n i=1
=< 2A52 + v, (fo) + Vn(MVm,U) (6.11)

by the independence of W; and X;, (6.10), (6.3) and Cauchy-Schwarz in-
equality.
Control of vy, (fy): From the independence of W; and X;, (6.3) and (6.4)

with d?(t, v) < o2 we get

E[|7n(Zi 1) — Yu(Zi, ) | < B[ M (W) Eg[A], (X, 1, 0)]

2
< %AJB/*ZIES[A;,m(Xi, rv)]

and

Iy . : 1
S (A2 ) =z ) | = To?B
i=1
Therefore Bernstein’s inequality (see Birgé and Massart 1998, Lemma 8)
implies that, if n = 04/2x + Bx

Py[v,(fo) > An] < exp(—nx) . (6.12)

Control of v, (M V,,..,): We use again the independence between W; and
X; and (6.10) to get since ||V ylloo < B

I o TR
S B [ATMI W)Y (X)) = S BB
- ,

i=1
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Therefore, since B§> < o’ Bernstein’s inequality implies that
P [v, (M Vp,0) > Anl < exp(—nx) . (6.13)

It follows from (6.11), (6.12) and (6.13) that

PP, |:sup va(fu) > 2A(n + 52)] <2exp(H —nx) .

UeH

Since no? > p?[5D,, log(B,,0)] > 5p*H, choosing x = 0%/(2p?) we get
H < 2nx/5 and therefore

) 3no?
Py | supv,(fy,) > 2A(n+67) | <2exp|—
UeRB 10,02

In order to get (6.9) it remains to check that 2A(n + 8?) < to?. This
follows from our choices of  and p which imply that § < 102/(4A) and
n < 10?/(4A).

Setting # = £(371/4) and observing that # > 8 which implies that
no?/p? > 8 we can derive from (6.9) that if no? > [Zp?(31/4) V 11D,

Vn[];m(-’ t) B )7m(-’ u)] 2710'2
B [5:5; O ”}f“’“’[‘m] o

exactly as (5.8) isderived from (7.16) in Birgé and Massart (1998), following
the last lines of the proof of their Theorem 5.

We now want to derive (6.8) with the corresponding values of 0,,, ),
and ¢. For Assumption M we use either (6.14) (under M 1) or (5.8) of
Theorem 5 of Birgé and Massart (1998), following their notations (under
M> ). In both cases one can choose for o, any number such that

[ () )

We therefore choose _{2 as an upper bound for (5/2)p%(37/4) and_ff;n as
an upper bound for 2.#/5. In the case of M, o, we use the value of £ given
in Theorem 5 of Birgé and Massart (1998) to get

2 < 6.131og[14B),(1 + 7}, (D/m)'?)] .

To derive the result in the linear case it is enough to apply Proposition 3
of Birgé and Massart (1998), noticing that y,,(z,t) — P (2, u) = 2(u —
(). O
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6.2. A general theorem

From the previous exponential bounds, one can now derive the main theorem
of this paper which is at the origin of all our developments and examples
apart from those concerning projection estimators on linear sieves to be
treated in the next section. In order to connect the fluctuation of some em-
pirical process to the distance between the estimator and the true function
s, we need an inequality similar to (2.4). This is precisely the role of the as-
sumption which we call Closing argumenind which is relative to a family
of functions {¥,, }me.~, Where y,, is defined on 2 x S, and measurable with
respect to the first variable.

C (Closing argument) For eachs € ¥ andm € .#, there exists a point
sm € S, and a nonnegative random variablg, (depending on, s,, and
D,,/n but not ory) with finite second moment such that for adl m’ € .#,,
and all 7 € S, satisfyingy,, (t) + pen(m’) < v,(s») + pen(m) the follow-
ing holds with suitable constants> 0 andk; > 0 independent ofi andn :

Vul P G $m) — Vo (- )1 = 2k(d* (s, 1) — Uy, — k1 Dy /1)
—pen(m) + pen(m’) . (6.15)

Since y,(t) = n~! Y i v(Z;, 1), anatural candidate for being a proper 7,
is the function y itself. Indeed y satisfies (6.15) as soon as it satisfies the
next assumption

C’ There exists two positive constaitsk” such that for alls € & and
te 7,

1 n
Kd*(s.1) < =Y Byly(Zi.t) — y(Zi.$)] < K'd>(s.1) .
n i=1

Actually, under Assumption C’, not only y but also any function y of
the form y (z, 1) = y(z,t) + ¥1(t) + ¥ (z) satisfies C. More precisely

Lemma 2 Assume tha€’ holds and defing’(z, 1) = y(z,t) + ¥ (t) +
¥ (z), then Assumptio® holds withy,, = y, s,, an arbitrary pointins,,,
k=k/2, ki =0andU2 = (kK" /k)d*(s, spm)-

Proof: From C’ one derives that foralls € &, t € 7 andm € .,

1 n
= Ely(Ziot) = v (Zisa)] = Kd* (s, 1) — K'd>(s. )
n

i=1
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Then (6.15) follows since

vn[);m (', sm) - ?m’('v Z)]
= Yu(Sm) + Y1(5p) — V(@) — Y1 (1)
—E[yn(sm) + Y1(sm) — vu(t) — Y1 (1)]

4 1 <
> pen(m’) — pen(m) + ~ 3 | Tly (Zi, 1) = ¥ (Zir sm)] - u

i=1

At this stage one should have in mind that in the sequel, the functions ¥,
will be required to satisfy Assumption Lip . This motivates the introduction
of modifications y,, of y even when C’ is satisfied.

We can now state our main result.

Theorem 8 (Main Theorem) Let y, be some empirical contrast function
according to Definition 1 and assume that we are given a family of models
{Sm }me.«, and afamily of functiongy,, } ..., satisfyingC andM simultane-
ously. Moreover, consider a family of weights,, },.c.», and some constant

¥ such that

Ly>1 forall me.#, and Y exp[-LyDu]<Z . (6.16)

me,

LetA, B, E, k, k; be the constants coming from AssumpticrasdM andx
be a suitable numerical constant. Set (A% + ABk)/(kk?), T = k/8 and
o} =[¢2¢ Vv1VE](D,/n)where and.# are defined in Proposition.
Consider some penalty functipan(-) defined on the set,, satisfying

L,D D
i ’”+2k1—’”) ,
n

pen(m) > k (o,fl VA (6.17)

n

forallm € .,. Then forany > 0 and anys € ., the risk of the minimum
penalized contrast estimatéras defined by Definition is bounded by

!
E, [d*(s,§)] < C1(1) inf {]ES (U] + [pen(m)}

me., k

(2] +xen ]
+ +2C() | - , (6.18)
2 n

wheres,, comes from Assumptidl.
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6.3. Penalized projection estimators on linear models

The preceding theorem is an all purpose one, but it can be substantially
improved in the particular situation of projection estimation. If we want to
apply Theorem 8 to this situation, we have to assume, in order to check As-
sumption Lip, that all the models be included in some ball of known radius
of IL (w). This requires, in order that the models have good approximation
properties with respect to s € & that an upper bound on the IL,-norm of the
elements of . be known as in the regression setting. We already mentioned
that it is an unpleasant restriction. Fortunately, if the models are linear, this
restriction can be relaxed in the case of projection estimation methods. Then
we get the following

Theorem 9 Let Zy, ..., Z, ben independent identically distributed ran-
dom variables with density € IL, () and{S,, }mc.», be a family of models
with the linearity property. . Define the projection empirical contragt as

n

2
@ = lel* = =3 1z forall 1€ Mau)
i=1

and consider a family of weigh{€.,,},,<.», and a penalty functiopen(-)
satisfying

pen(m) > k' (®>Vv L,)D,,/n forall m e .4, , (6.19)
wherex’ is a suitable numerical constant andelis defined below. We also

assume that one of the three following sets of conditions hold

) # C Lo, there exists a constadtand for eacls,, an orthonormal ba-
sis {¢i}rea, Of S, such thatsup,., ll¢illc < @. Moreover
sup,,c., Dm < n(I")~? for somel” > 0, L,, > 1forall m € .4, and
for anyx > 0 one can find a constari (x) such that

|ty exp[—xv/n] + Y expl—xL, Dyl < T(x) ; (6.20)

mely

i) there exists a constadt such thaf|s| . < ®*foralls € &, L,, = 1
for all m € .#, and one can find positive constaritsI'’, I'; andT", such
that ®,, < I'/D,, forall m € .#,, sup,,c, Dw < n(I’)"*(logn)~* and

{m € M, D, = j} <Tyj™ for j e N\ {0} ;
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iii) there exists a positive constafit such that®,, < @ for all m,
L, = 1forall m € .4, and one can find some positive constantsl™;
andT; such thatup,,. , D, <n(I")"*and

{m € 4, | D, = j} <T1j™ for jeN\{0} .

Then for any > 0 the risk of the minimum penalized projection estimator
is bounded by

E, [d%(s. )] < Co() inf {[pen(m))' +d¥ (s, S,) + Cin~'} . (6.21)

e Underi) C;, dependsonlyoh I'', ®, ||s]lo and X[k /(P V Is]l)] Where
x denotes some fixed numerical constant.

e Underii) C;, only depends oh @, I', I'", I'; andT';.

e Underiii), C} can be written as

]2(1+F2+1)

C,=14+TC5A, T [(Isl v ® (6.22)

6.4. Proof of Theorems 8 and 9

Since both theorems have a similar structure and both proofs follow essen-
tially the same lines, it is more convenient to give them together. In order
to distinguish the different sets of assumptions we shall speak of the metric
situation for the assumptions of Theorem 8 and of the linear situation, or
more precisely of case i), ii) or iii) for the assumptions of Theorem 9.

In the linear situation we first make the following remarks:

e the function y which defines the projection empirical contrastis y (z, t) =
l£]|> — 2¢(z) which immediately implies that it satisfies C' with k' =
K" =1.

e In order to choose the value of o, in Proposition 7 we note that
D Alls| < @ (6.23)

which is clear for cases ii) and iii) and follows from (3.3) in case i) since
then ®,, is bounded by &.

o If = S, + S,  has a dimension D’ < D,, + D,, and an index &’
defined by (3.2), it then follows from (3.3) that

(@)D" < ®2 D, + D2, D,y . (6.24)
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It follows from the first remark that if, for each m € .#,, we define
Ym(z,1) = —2t(z) and choose s, such that d(s, s,,) < 2d(s, S,), then
C holds with k = 1/2, k; = 0 and U,,, = 2d (s, S;,) according to Lemma 2.
This means that C holds and that one can define T = k/8 for both theorems.
In order to apply Proposition 7 we observe that in the linear situation one
can always choose 0, = 96®(D,,/n)'/?* since then T = 1/16 and (6.23)
holds.

We first want to show that whatever m, m’ € .#, and x > o,, V o, the
following exponential inequality is valid:

V[ Pon (s Sm) = P (- 10)]
" [s Pls, W)V Py )V K k} < 4l exp [ —nhym (x)]
(6.25)

with A, v to be specified below. Given some point ¢ in S,,,/, we start by an
application of Proposition 7 with m replaced by m’ and S,, by S, and get

Vn[J;m’('a t) - )7111’(" M)]
P, |:sup TR > rj| <3.lexp[—nh,(x)] (6.26)

Uues,,

with &, given by Proposition 7. We now set d = d(s,,, t).

In the metric case, Assumption Lip holds and a suitable version of Bern-
stein’s inequality (see Birgé and Massart 1998, Lemma 8) leads to a bound
of the form

5 (. (- (2 2., .2\2
P, |:Vn[ym(asm) Y (-, )] >Ti|§eXP( (nt</2)(d \/x)>

d? v x? v2 + ct(d? Vv x?)

provided that for all integers j > 2

1 n . i '
= B [17(Zisw) — P (Ze DP ] < L% 2
n— 2
We only have to identify v> and c. From (6.1) and (6.2) or (6.3) and (6.4)
it can be seen that v> = A?[d*> + n~'E(D,, vV D,,)] and ¢ = AB. Since
x> >n"'E(D, v D,), v> <2A*(d* Vv x?) and finally

P V[V G5 Sm) — Y (5 1)] < —I’l‘l,'z(d2 \% xz)
s 2V 12 T =P\ AT 1 27 AB

In order to handle the linear cases we first notice that

IPs |:Vn[)7m('a Sm) - )7m’('a t)] > T] — IPs |:Un[t(') _Sm(‘)] Ti|

> J—
d? v x2

d? v x2 2
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and Bernstein’s inequality implies, since d” \VV x> > dx, that

]Ps |:Vn[J;m('a Sm) - ?m’('s t)] > 'L':|

d? v x?

222
nt*d*x*/8 ] 627)

S (m — 1) + llsm — tlloo Tdx /6
It then follows from (6.24) that

§exp|:

Ism — tlloo < (®2Dp + D2, D)2 d .

Therefore, setting § = (D,, V' D,,)'/? one gets for cases i) and iii) |s,, —
tlloo < +/208d and for case ii) ||s, — tlloo < v/2I'8%d. Asto [ (s, — 1)%s
it can be bounded by d?||s||« for case i), by (d®)? for case ii) and by
d|Is||Ism — tlloo < Dd?8||s]| for case iii). Together with the elementary

inequality (a+b)~! > (1/2)(a~' Ab™"), these bounds lead to the following
upper bounds for (6.27):

exp _—_n ( s N Orx )} in case i) ;
[ 16 \lslle V208 ’
[—n (t2x*  61x , ;
exp _E ( Y A \/§F52):| in case ii) ;
exp '—_n ( s A Orx )i| in case iii)
L 16 \®disll V205 '

Putting these bounds together with inequality (6.26) we get

Vn[);m(,, Sm) - );m’(., M)] k
P 2| =41 - hm m’
|:usel.lS‘m/ d>(t,u) vV x>V d?(sy, t) “ 4= exp [ =/ (¥)]

(6.28)
where h,, , takes the following values:
k*x?

o (X) = /cm in the metric situation ; (6.29)

2 2 .
B (X) = K |~ A V2L ke i) (6.30)

Isllec P35

x? X .

o (X) = K [E A W} in case i) ; (6.31)

2
R (X) = % [||xs_|| A x] in case iii) . (6.32)
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Here « denotes some numerical constant, not necessarily the same in each
case. Now, for any ¢ > 0, since x > 0, one can always choose ¢ in such a
way that

d(s,t) < [(1 +¢) inSf d(s, u)i| VX
uesd,,
and get for any u € S,
du,t) Vd(sm, 1) <d(s, 1)+ [d(u,s) vV d(sm,s)]

<[A+e)du,s)]Vvx+[du,s)Vd(s,,s)]

<Q4+e&)ldu,s)vd(s,sy Vx| .
Substitution of this inequality into (6.28) leads to (6.25), since ¢ is arbitrary.
Now, recalling that o, = 96®(D,,/n)'/? and setting A = 1 in the linear

situation, we fix some element m in .#,, and define x,, for any m’ € .4,
by
m =

2 2 2 A 0 :
X o,Vo, V|=(LyDyV Ly,Dy)|+— with 6 > 1.
n n

We denote by 2(0) the set

9(0) — sup  sup Un[ym(" Sm) - Vm’('a u)g -k
med, ues, d*(s,u)V d>(sp,s)V X,

and we want to bound P,[$2(6)]. Since x,,;, > 0, V 0,y we can use (6.25)
to get

P,[2(0)] <4.1 Z expl—nhy mw (X)) . (6.33)
m'e,

In the metric situation, we get from (6.29)

P[Q(0)] < 4.1 exp[—nx,, /2]

<4.1 Z exp [—(ALyw Dy + 0) /1]

m

0
<4.lexp [_X] Z exp [— L Dyy]

(6.34)

kk?6
< 4.1% exXp —m
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In order to deal with the linear situation we first notice that
1) X = (LwDy V' Ly D) + 672 . (6.35)

e In case i) we get from (6.30)

x2, X ﬁ
P,[Q(0)] < 4.1 — m_A “
RO = ;exp{ "”(nsuw S (D v D)1

and from (6.35) since n > I"*(D,, V D,y) and L,,, > 1 forall m’ € .,

21X (D N Do) ™V% > /i + T'V0. (6.36)

Then, recalling that ¥ (x) is given by (6.20), we derive

lIslloc P

Jeor’ 0
<4.lexp|—« A
@ 15 lloo

LD, \/ﬁ)}
X €X —K N —
2 p[ (usuoo ®

<4.1% (#) exp | —« Jor 6 . (6.37)
Isllee vV @ @ lIslloo

e Under ii) one gets from (6.33) and (6.31)

2

X L
P,[2(0)] < 4.1 ;CXP [—"” (@ A (D, v Dm/)>] '

Using the bound on D,,; we get from (6.35)

iy 1

/ 2
> ["(logn)
22

and therefore, setting

[1+1VvTI'(ogn)*©®/n)"/?]

9 + Dm’ F/(log n)Z / 2 1/2
2= A 1+ 1vIdogn)@/n)'?),
o2 22 ( s /m)
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P [€2(60)]

IA

’ 2
4.1exp [—K (% (F/(log n)2(0/n)1/2 \% 1) A %)}

D,y T’(logn)?
X Zexp |:—K (E AN —Zr‘ﬁ )]

/ 2

(6.38)

IA

where by assumption J < n(I')"2(logn)™* and

5, = XJ: I exp [—K <i A M)} (6.39)
_ . . .
P 2 2ry2

e Under iii) one gets from (6.32)

nK x,zn,
P[Q(0)] <4.1) exp|— S Doy e A

We modify the linear term as before with (6.36) and use the following
inequality

2nx2, > Dy V Dy 4 2[20(Dyy v Dyy)]'?

m’

to deal with the quadratic term. Since n > I'"*(D,, V D,,)) we get, setting

D, Vv D,)'? +226
g = PV Dw) 7+ A (T'V20 + V/2n),

l[s1l2

PIQO)] <41 exp [—KE]

29

<4.lexp [—;—ﬁ (r/ A ||s||—1)i|

XZFljrzexp[—%(F’/\||s||_1)] . (6.40)

j=1
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Assuming that Q¢(0) is true and recalling that C holds we can deduce
that for any m’ and u € S, such that y, (u) + pen(m’) < y,(s,n) + pen(m),

d*(s,u) + d*(sm» 8) + x2 = k7 [P G Sm) — P G, 1)]

D,
>2 (dz(s, u) — U2 — k1—>
n

_ pen(m) — pen(m’)
. .

Therefore any minimum penalized contrast estimator § € S,; satisfies

Dr?z - L
o (5, §) = (5, 50) 205 + 24y 2 4 PO PNE
n

It follows from (6.19) with k¥’ = 96 and our choice of o, that (6.17)
also holds in the linear situation. Therefore one has x% + 2k1Dy/n <
k~'[pen(m) + pen ()] + 6 /n which implies that

e @d (s, §) < 2k 'pen(m) 4+ 2U2 + d*(s, s,m) +60/n . (6.41)
Let us now define
V= [dZ(s, §) — 2k~ pen(m) — 2U2 — d*(s, sm)] Vo .
Then for any m € .#, and any positive number /
E, [d% (s, 9)]

< 410 2, [021] + (26 penn)] + s, 500 + s V1]

It follows from (6.41) that if 6 > 1, P,[V > 6/n] < P,[Q(F)] and
therefore

IE [Vl] =n"'E, [(nV)l] = nl/wIPs [nV > yl/l] dy
0

<! [1 + /lm P, [2 ()] dy]

which, together with (6.34) proves (6.18). It should be noticed here that in
the above computations, according to our remark following Proposition 7,
the quantity IP;[€2(0)] should be understood as an outer probability if nec-
essary. This has no effect in the above proof since V is measurable from our
measurability assumption on §.
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In the linear situation, k = 1/2 and U,, = d(s, s,). One then derives
analogously from (6.41) that

E, [d” (s, §)] < 30-Dv0 [4lpen(m)l + 3% (s, s,) + (1 + 1)] (6.42)

where
0
= / P [2(y')]dy .
1

It therefore remains to bound I in each of the three linear cases. Under i),
by (6.37) I is bounded by some constant depending only on |50, I/, ©, [
and X[k/(® V ||s|ls)]. Under iii) an upper bound for I depends on p =
(I A|Is||~")/ ®. More precisely by (6.40) one gets

2

o0
P, [Q(y'")] < 4.1exp [_%yl/m)] ST exp [_Q[j]
j=1

which implies that (6.22) holds. Finally under ii) one can see from (6.39)
that, due to the bound on J,

[logn
r-'s, < [ 2dogn)4]""" ex [—10 n(K——(F +1)>]
1 &J [ g ] p g 2 /2T 2

o
+ Zexp [—CI)_ZKj + I logj]
j=1
is bounded independently of 7. Then from (6.38)
o
(4.12,)1/ P, [Q(y"")] dy
1

o0 "1
< / exp [—CD_ZKyl/l] dy + exp [— logn (K osn l):|
1

B

+00 2 4.1/21

+/ exp [_KM] d
nl 22 /n

Setting y = n'x in the last integral shows that it is bounded independently
of n and the conclusion follows. m|



388 A. Barron et al.
7. Proofs of the main results
7.1. Maximum likelihood estimation

‘We now want to show how one can apply Theorem 8 to maximum likelihood
estimation. The framework has been given in Section 3.3.1: we observe n
independent identically distributed random variables Zy, ..., Z, of density
s2 with respect to the probability u and we have at hand a family of models
Sn C & where  is the set of nonnegative elements of norm 1 in IL; (). In
order to apply the general theory it is convenient to introduce Assumption
M’ 2,00+

M, Foreachm € .#, one can find constant8;, > 1, D,, > 1 and
r,, such that for eactd¥ > 0 and each ballz c S,, with radiuso >
58 v (D,,/n)'/? there exists a finite s@t = T (m, §, #) C % with

IT| < (B),0/8)"" (7.1)

and a mappingr = w(m, 8, #) from# to T such thai/ (u, mu) < & for all
u in 2 and

sup ||u —t|loo <rpé forall tinT . (7.2)

uer=1(t) B

The following is a generalized version of Theorem 2.

Theorem 10 Assume that is a probability and that the family of models
{Sm}me.u, satisty the assumptiond!’, o, with sup,,. , D,, < n and that
the weightsL,, satisfy(6.16). Definen,, by [(s* V n,)di = 1+ Dy, /n
andpen(m) > «xg(L,, + %) D, /n wWhere

Z.=1log| B [1 Dy \ " 1 ’
m=log| B, (1+7r, - + 1 <log[B,,(1+r,]+1

andkg is a suitable positive numerical constant. lsdie a minimizer with
respectton € .#, andt € S,, of —n=! >""_ log[t(Z;)] + pen(m). Then

E, [d*(s, §)] < kg [ inf {K (s, Sn) + pen(m)} + En_1i| . (7.3)

Remark One could of course get a similar result under the slightly more
general assumption that D,, < Kn. We restrict ourselves to the case K = 1
for the sake of simplicity .
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Proof: Let us first notice that, since u is a probability measure, 7, is well-
defined and larger than D,,/n. We introduce the auxiliary density §2 =
(s> V nn)/(1 + D,,/n). Then

2
N

sm

D D
<1+ <2 and infR2x) =M >2" (74
n X 2 271

[e¢]

Since (1 + x)™"? > 1 — x/2 for x > —1 one derives that [ s5, diu >
1 — D,,/(2n) which implies that

20, = Dy,
d=(s, Sp) < . (7.5)
n

In order to apply Theorem 8 we define for any m € .#, and ¢t € S, the
function

52(2) + tz(z)}

~m , =—1
Y (2, 1) Og[ >

We have to show that these functions satisfy Assumptions M and C. In
order to check M we use the following Lemmas, recalling that the Hellinger
distance (g, g») between two densities is given by 242%(g1, g2) = f(, /81—

V&) dpu.

Lemma 3 Let f, g, g1, g2 be densities with respect to some measguye

then
]}

1
E, '—log (8+81>
2 g+ &

N
%hz(gl,gz)miu /\4‘
8 o

f
1N\ &

<

forall j > 2 .
oo

Proof The bound involving || f/g|le has been proved in Birgé and Mas-
sart (1994, Proposition 2) (see also Van de Geer 1995, Lemma 3.3 for an
analogous result). For the other part we notice that x/ /j! < e* — x — 1 and
x —1—1logx < (x —x~1?/7 to derive that when g, > g»,

1 /1 | J

J'\2 Tgt+g J! &2 53 g
1( [a1 _ /&)2

7 82 81

A
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1 VB + /&)
7(\/_ \/_)< V812 )
_4(E-vE)

T gsiNg

A symmetric result holds when g, > g and integration with respect to f i
gives the result. O

Lemma 4 Assumethaft, g1, g, s12 ands22 are densities with respectto the

probability measurg:. and that||f/s,.2||c,o <2fori =1,2. For any integer
j =2 one has

1 s+ g1 J
£ |:‘Z tog (512 + &
2

Proof: Successive applications of Lemma 3 give

1 s12+g1 /
E |:‘Z log (SZ + 8
2

4 j!
} =72 [h*(g1. 82) + 4h*(s7, 53)]

1 2 1 2 J
<o fpe (Tl o | fome (552)
2 55 + 2 55+ &
14 ) f )
5552 [4h (sl,sz) 2 Oo+h(gl,82) —22 Ooi|
and the result follows since | f /s loo < 2. |

According to the definition of y,, we can choose

(531 (x) + u?(x)
52 (x) + v2(x)

-1

Am,m’(xsusv): )) and M= A .

Then (6.1) is satisfied and
R, 5n) < 4[R2 50) vV P (s%, 50)] = 2[d* (s, 5) v dP(s, 5)]

hence by (7.5) hz(s2 52 ) < 2n~ YD,, vV D,y Mnmy. An application of
Lemma 4, which is Vahd because of (7.4), leads to

; 4 2] D,, v D,
By [ Af, 0 (X, v) | = (Z) =2 |:d2(u v) + 16%]1{,71#1/}]
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The choice A = 4./2/7 gives (6.2) with B = /7/2 and E = 16. Then (7.1)
implies (6.5) and the lower bound on §,, in (7.4) together with Lemma 6 of
Birgé and Massart (1998) imply that whenever ||t — u||oo < 1, fort and u
in S,,, then

”Am,m(x’t’ )]loo < 2Ailrm8 2/Mm

Therefore (6.6) holds with r,, = r,,\/7/(4n,,) < ru/(Tn)/(4D,,) by (7.4).

The value of #,, follows from the value of ¢/, given in Proposition 7 after a
suitable modification of the multiplicative constant which can be included in
kg. It remains to check Assumption C. We proceed as in Birgé and Massart
(1998). If t € S, is such that y,(z) + pen(m’) < y,(s,) + pen(m) by the
concavity of the logarithm

1 n
—Zl [([ +s"1><xi>] > — ) {loglS, (X)] + logls, (X))
n i=1

+ pen(m’) — pen(m)

and since by (7.4) logs,, > logs — (1/2)log(1 + D,,/n) > logs —
Dy /(2n),

Vn[);m(w Sm) - ?m’(-v t)]

" 2sm el 5;,(X)+z2(X)_10 52(X) +52(X)
£ 1y 18T e £ ()

m m

D,, ,
— —— +pen(m’) — pen(m)
2n

252 1 52 D, S +s 172
= [oe g |0 e E‘K(S’[ ]

( [E,i,thz' )
+K |s, + pen(m’) — pen(m) .

s2+t2' ~2,+t2 1/2
d2 , m
(-[57 -
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and d*(u, v) = 2h%(P,, P,), one derives from (7.2) and (7.3) of Lemma 5
of Birgé and Massart (1998), that

) 21/2 2 291/2
d* | s, S 1 z%dz s, ST
2 3 2
s2 277 182, 272
_2d2 , m
(5] 2]

2
> §0.292 d*(s, 1) — d*(s, S) -

Choosing k = 0.028 < 0.29?/3, we deduce from (8.8) below that

52 42 1/2
K <s, [sm; ] > 2kd*(s, 1) — d*(s, Sm) .

It follows from the concavity of the logarithm that

52 +S2 172
2K s7|:m2 m:| SK(S’EH’!)_FK(S?sm)

< (2 +1og2)d*(s,5n) + K (s, 5m)

since (7.4) implies by (8.8) that K (s, §,,) < (2 + log2)d?(s, §,,). Putting
all these bounds together with (7.5) we get

Vn[J;m(-’ Sm) - ?m’(-a t)]

) , 3D, log2\ D,
> 2kd=(s,t) + pen(m’) — pen(m) — -1+ —
2n 2 n

1K( y_p 11 52 | 252
— =K@, 85,) — —log — —log =
2 m n 2 gs’%l gs%—i—srzn
Since

2

| Log £ () — log =2 (x| < Lk s, 50)
— 10g — i) — 108 —>——= i = = S, S
T2 gs,% gsfn%—s,% 2 "

we finally see that C holds with k; = 3/(4k) and
log2

Dy
ZkIEs[U,i] < (1 + T) 7 + K(s,Sm) .

The application of Theorem 8 leads to inequality (7.3) since d>(s, s,,) <
K(s, sy). O
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Proof of Theorem 2We can now derive Theorem 2 from Theorem 10. It is
enough to check the properties (7.1) and (7.2) on S,, rather than S,, since it
is a larger set and they immediately follow from Lemma 9 with B’ = 5 and
Fm = Fp. One can therefore bound #,, by «[1 +log(1 +r,,)] and the result
follows from a suitable modification of the constants since L,, > 1.

7.2. Other penalized minimum contrast estimation procedures

7.2.1. Penalized projection estimation

We have to prove Theorem 3. Its assumptions imply that we can apply the
caseiii) of Theorem 9 withI'/ = I'j = 1 andI', = 0 and Theorem 3 follows.
A complete treatment of penalized projection estimators is contained in
Birgé and Massart (1997).

7.2.2. Penalized least squares and minimum IL; regression

We recall that one observes pairs (X;, ¥;) = Z; with ¥; = s(X;)+ W, where
the variables X; and W; are all independent with respective distributions R;
and Q; independent of s and the X;’s are defined on a compact set Z. Here
s € ¥ CJ C Ly(u) where u denotes the average distribution of the X;’s,
p=n"'3", R;. We shall assume hereafter [although these assumptions
could be weakened as in Birgé and Massart (1993) Section 3.C] that the
W;’s are independent identically distributed with common distribution Q
and that the X;’s are either independent identically distributed with common
distribution p (which is the random design setting) or that the X;’s are given
numbers x; (which is the fixed design setting). In the latter case, u is the
empirical measure of the x;’s and the results, as in Van de Geer (1995), are
given in the form of controls of (s, §) = n=! >"7_ [s(x;) —$§(x;)]*. Givena
penalty function pen(m) to be chosen later, we consider either the penalized
least squares estimator which is a minimizer with respect to m € .#, and
teS,ofn! Z?:] [Y; — t(X:)]*> + pen(m) or the minimum penalized I,
estimator which is a minimizer with respect to m € .#, and t € S,, of
n=1 3 |Yi — t(X;)| + pen(m). Then the following result holds.

Theorem 11 Assume that the famil§s,,, m € .#,} satisfies Assumption
M’ ,. o, that the weightd,, satisfy(6.16) and that||7| . < & foranyr € 7
and some known constaft Assume moreover that the distributighof
the Ws has one of the following properties

e the errorsW; are centered at their expectation atitde!"'/¢'] < 4 for
somet’ > 0 in the case of least squares estimation
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e the errorsW; are centered at their median and have a distribut@mith

a density which is positive and continuous around the median in the case

of minimumlL; estimation
Define the penalty function gen(m) > koC (&, Q)(Lyy + L) Dwm/n
where

L =log[B,, (1 +ru(Dy/m)"*)]+1 |

k9 IS @ nhumerical constant and'(¢, Q) is a suitable constant which
takes two different forms in the two cases considered abové.Hesthe
minimum penalized empirical contrast estimatDnen in both cases

Es[d*(s, )] < kg inf {d*(s. Su) + C'(6. Q)pen(m)}

+C'E, 0Tn! . (7.6)

In the case of least squares estimation one can ch66ge Q) = 1 and
CE Q) =C'E Q) =(E+8)

Proof We shall actually prove a more general result. Following the frame-
work given in Birgé and Massart (1993) Section 3.C we assume that y is
given by y(z,t) = F[y — t(x)] where F is a convex function with suitable
properties connected to the distribution Q of the W'i’s, provided that s and
all the elements ¢ of the models are uniformly bounded, which is our as-
sumption. The required conditions on F are given by Assumptions Ca, Cc,
Cd and Ce of Birgé and Massart (1993) and it is also proved there that the
two functions [y — #(x)]? and |y — #(x)| satisfy these assumptions under
the conditions of Theorem 11. We set ¥, = y and apply Proposition 1 of
Birgé and Massart (1993) which implies that (6.3) and (6.4) are satisfied
with Ay, (x, t,u) = |t(x) — u(x)| and suitable constants A, B depending
on Q and &. In the particular case of F(x) = x2, one has

ly(z. 1) =y, w)| = [t(x) —ux)| 2w + 25 (x) — [1(x) + u(x)]]

= 2[t(x) —u@)|[lw] + 28] .

We can therefore take B = 2& and M(w) = 2(Jw| + 2£). Our moment
condition on the W;’s implies that for every j > 2,

E, [2/ (W] +26) ] < 297 (B, [IW1] + 2'¢)

j
=

[4)1¢" +27¢7]

| £
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and one can choose A = 8(&'+£&). If the metric assumption (7.2) holds then
(6.6) is fulfilled with r;, = r,, since here A, ,, (x, 1, u) = |t(x) —u(x)| and
therefore M’ ; o, implies M, .. In order to apply Theorem 8 it comes from
Lemma 2 that it is enough to check C’. But, according to the notations and
arguments of Birgé and Massart (1993) Section 3.C, there exists a function
G such that

Esly (Zi, 1) — vy (Zi, s)] = E{[G(W;, s(X;) — 1(Xi))]
and that for suitable positive constants C;, C, and & € R,
Cih* < E[G(W;, h)] < Coh* for || <2f .

In view of the independence between X; and W;, these relations imply C’. In
the quadratic case (F (1) = u?), G(w, h) = h* and therefore C; = C, = 1
and C’ is satisfied with k' = k” = 1. The choice of C, C’" and C” is justified
by Theorem 8 and our computations of A, B, k' and k”. O

Proof of Theorend: By Lemma 9 assumptions (6.5) and (6.6) are satisfied
with B, = 5 and r,, = r,,. Therefore Theorem 11 implies Theorem 4 via
some elementary computations since L,, > 1. m|

Proof of Theoren: We want to derive it from Theorem 8. As we already
checked in the proof of Theorem 11, the Assumption Lip ii) is satisfied for
the function y (z, t) = [y — t(x)]? by setting y,, = y and Ay (X, 1, u) =
[t(x) —ux)], M(w) =2(|lw| +2&), E=0, A=8(§+&)and B = 2¢
where now & = 1. Moreover C’ (and therefore C) is also satisfied with
k' = k" = 1. There only remains to check the Assumption M (. Let us
consider some ball 4 of radius o in §,, and some § < ¢/5. From inequality
(4.26), %4 is included in the image via 6 of some IL;(u')-ball of radius
R = 02?/0©,. Applying Lemma 11 with ¢ = §2/ ®, we can cover this ball by
afamily .# of intervals of IL; (i')-diameter < ¢ with cardinality bounded by

(3eB! @,/ 0,)Pn (5% /8%)Pn (1.7)

Truncating the intervals if necessary, we can assume, without loss of gener-
ality that these intervals are included in ¢. Therefore the images of the ele-
ments of .7 via x are covering %. Since x is non-decreasing, for each interval
[¢7.¢%1 € 7, x([g”. &™) C [x(g7). x(g")] and by (4.26) the IL;(u)-
diameter of [x(g7), x(g")] is bounded by 2. Choosing ¢ as any point in
[x(g7), x(g"]N # and defining V,,, = x(g") — x(g~) we take for T the
setof all those #’s when [g~, g™ ] varies in.#. We then define 7 to be the pro-

jection mapping [x (g7), x(g")INZonthepointr € TN[x(g7), x (g7)].
Since A,y pm(x,t,u) = |t(x) — u(x)|, (6.7) is fulfilled and (7.7) implies
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(6.5) with D,, replaced by 2D,, and B/, = (3¢ B!/ ®,/®;)/2. We can there-
fore apply Theorem 8. Elementary transformations of the constants (since
®, > O)) justify the choice of pen(m) and we get

Es[d*(s, x )] < g inf {d*(s. S,) + pen(m) + (&' + 1)*En "}

Using (4.26) and the fact that x, < 1 we derive (4.28).

7.2.3. Estimating the support of a density

Proof of Theorem 6The proof is based on the version of Theorem 8 in-
volving the Assumption M ;. Let us check the relevant assumptions: first
setting y,, (¢, z) = —t(z) we see that Lipii) issatisfied with A, ,(x, 1, u) =
[t(x) —u(x)|, M = A =1and B = 1. Moreover C’ is also satisfied with
k' =a/2and k" = b—a/2 by (4.30). We now want to check M with M ;.
Given some m € .#,, some ball % of radius 0 > /D,,/n in S,, and some
positive § < /5 we set ¢ = 82/(rb) and apply Lemma 11 to the space G,
which implies, since G, is a ball of radius R in G,,, that we can cover G,,
by a family .#, of intervals of d;-diameter & with

3eB/R " , { Rwb D
el < | —2 | =|3eB, (— V2 . (18)
e A (R/2) 5

The images of the elements of .#, via yx are therefore covering S,,. Since x
is non-decreasing, for each interval [g~, g*] € .#., x maps [g~, g*] into
[x(g7), x(g™)] and by (4.31) the [|x (g) — x(g)Ili < me = §?/b. One
can then build from yx(.#.) a partition ¢ of 4 into sets J such that each
J C[x(g7), x(g™)] for some pair[g~, g7] € F, and | #| < |.#,|. We now
have to define the set T'(m, §, %), the mapping 7 (m, §, #) and the family
of functions {V,, ;};cr. Given some J € ¢ with J C [x(g7), x(g1)] we
define 7(J) = t as any point in J, V,,, = x(g7) — x(g~) and we take
for T the set of all those #’s when J varies in _#. It then follows from (7.8),
since 62 > (D,,/n) V (258%) and D,, < 25wbnR/2 that

, ( Rmh D 3¢B/ Rnb 1P 02\ 7"
IT| < |3eB” [ =22 v 2 < |22 TRT7 >
- "\ 82 - D, 82

which implies (6.5) with D,, replaced by 2D,, and B,, = [3eB, Rnwb/
D, 1'2. Since Ay (x,u, t) = |t(x) — u(x)| and |V, |1 < 8%/b, (6.7) is
fulfilled. We can therefore apply Theorem 8 and get the result via elementary
transformations of the constants since a < 1. O
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7.3. Analysis of nonlinear models

Here we use Theorems 10 and 11 to prove the risk bounds for nonlinear
models stated in Theorem 7. Unlike linear models, the models treated here
do not have homogeneous control of their IL,-local metric entropy properties
of the sort that condition M or M’ , , is designed to handle best. In these
inhomogeneous cases we will be content to check global IL.,-entropy which
implies the presence of a logarithmic factor in the penalty term and therefore
in the risk bounds because of the resulting large value of B;,. A similar
phenomenon occurs when one covers the unit ball in IR? by balls of radius
8. The logarithm of the number of balls that are needed is, for small &, of
order —¢g log 8 4 C instead of ¢ log A + C which is needed for the covering
of a ball of radius A§. This makes a serious difference when A is not large.

Proof of Theorem 7We can apply either Theorem 10 or Theorem 11
to get our conclusion provided that we are able to check (6.16) and As-
sumption M’ ; . Recalling that we have set D,, = D’(¢’ 4+ 1) we choose
L, =142log(RH).Then, D,,L,, > D’+21log H+2log R which implies
(6.16). We now have to check M’ , o, in each case. In order to do this we first
investigate the metric properties of S,, which are described by the following

Lemma 5 Given three positive integer®’, H, R, the family {¢,, | w €
RY'} satisfying the assumptions of Theorérand the space,, = {21 |
Bjdw,} with Z,:1 IBjl < R and|w;|; < H, one can find for any > 0
a subsef’(8) of §,, with cardinality bounded by2e(2RH /8 + 1)]P @+
and such that for each < S, there exists € T(8) with ||u — t]ls < 8.

Proof. Because of the Lipschitz condition on {¢,}, an LL-covering of
{dw | |lw|i < H} follows from a covering of the /;-ball {w | |w|; < H}.
In RY the number of disjoint cubes spaced at width & /¢’ that cover this
ball is bounded by Ze(H /e1 + N by Lemma 10. Then for each w with
|lw|; < H there is a w’ in the grid with [|¢, — dw o < |w — w'|; < &y.

In the same way in ]RD we cover {8 | Zf 1 18j1 < R} using not more
than [2e(R /e, + 1)]°" cubes spaced at width e,/D’. Set &; = §/2R and
&, = 8/2H and use the cubical grids intersecting the /'-balls as indicated
above. Restricting vectors w’;, j = 1,..., D" and B’ to these grids pro-

vides a finite set 7' (8) of functions 2511 ,B} ¢w_/7_ of cardinality not more than
[2¢(2RH /8 4+ 1)]?@*D_ Then for each u = Zj’zl Bjdw, in S, there is a
t =37, By in T(8) with

/

+1D (B = B}) bu, (x)

j=1

lu(x) —1(x)| <

i Bi [¢w, (xX) = du, (x)]
=1
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D’ D’
< 3 1B |, @) — by @) + 18 — B1H
j=1 j=1

<Re +He =56,

uniformly for x in [—1, 1]¢ which proves the lemma. |

Returning to the proof of Theorem 7, let us first consider the regression
setting. In this case, Lemma 5 applies to S, as well as S, since the clipping
operation which maps S, onto S, is a contraction with respect to the IL-
norm. Then M’ ; o, holds with dimension D,, = D’(¢" + 1) equal to the
parameter dimension, r,, = 1 and B, = 8¢RH (n/D,, + IR

For maximum likelihood density estimation, the situation is slightly
more subtle. Define the norming operator g from Sy to S, by g(u) =
@ va Y vae ! fix 8 = [§/(ORH)] A 1/6 and define T C S,,
to be the image by g of {t € T(8") | ||z v 0] > 1/3}. Now, given u € S,
there exists u’ € S,, and t' € T(8') withu = g@’), |u’ v 0] > 1/2 and
lu' — ']l < & < 1/6. As a consequence ||’ v 0| > 1/3 since u is a
probability, g(t') € T and ||’ v n™") — (¢’ vV n™ 1) || < 8. Moreover

@' v D@ v ™) = (v ") oo
lw' v =t e v et

lg@") — g)llo =

" v n~ ool llu” v n = = 1" v ]|
lu v =t e v =t

u —t u' vno!
< [ lloo 1+ I ll oo
7 v Ol |u" v O

Since ||u’ V0| > 1/2, then ||u’Vr~ || < ||l < RH and one concludes

that ||u — t]leo < (6RH + 3)§’ < 8. Since by Lemma 5

IT| < [2e@RH /8 + 1D]1POHD < [2e(18R*H?/8 + 13RH)|P 7V,

we can again check that M’ o, holds with D,, = D'(¢" + 1),r, = 1
and B/, = 62¢R*H*(n/D,, + 1)!/2. It follows that we can apply either
Theorem 10 or Theorem 11 and that in both cases

(L + Zn)Dy/n < i1 [1 +1og(RH) +log[1 +n/(D'q"1] D'q’/n

which justifies our choices of the penalty terms. We finally notice that (4.37)
implies (4.38). Indeed, we can restrict ourselves to the case d (s, S,,) < 1/2.
Choose s, € S,, with d(s, s,,) < 1/2 then 5,, = (s, V=) /(s V 171
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belongs to S, and by (8.7) below

Is =Sl <25 = (sw v )| <2 (lIs = sl +1n7")

d*(s, 5,), and therefore (4.38). o

Since |5 /Smlloc < nllsloc, (8.8) implies that K (s, ) < 2[1+log(n]sleo)]

Remarks The metric entropy calculations in the Proof of Theorem 7 are
similar to those used in Barron (1993) in the special case of the sigmoids.
But the risk bounds given there were for penalized least squares restricted
to discretizations of the parameters and with less general error distributions
than we permit here.

8. Appendix
8.1. Combinatorial and covering lemmas

The following inequality appears without proof in Haussler (1991). Itis very
similar but not identical to Proposition 9.1.5 of Dudley (1984). Since we did
not find a proof in the literature we include it for the sake of completeness.

Lemma6 Foralln > 1and1l < D < n one has
D (n) en\D
> <(5)
j=o \/

Proof: Since the bound is larger than 2" if D > n/2 we can assume that
x = D/n € (0,1/2). Let us denote by X the sum to be bounded. Since
Y. =2"IP[N < D] where N is a binomial random variable with parameter
1/2, the Cramér-Chernoff inequality for the binomial implies that

log¥ <nlogn — (n — D)log(n — D) — Dlog D

= D[log(n/D) + (1 — x Hlog(l — x)]

and it follows from elementary calculus that (1 —x ") log(1 —x) < 1. O

Lemma 7 Let S, be a finite set of densities with respectitondexed by
% = {0; 1} and such that there exists a positive constasatisfying

D
W2 (sy, sy) =10 Zﬂxi;ﬁyi forall x,ye® .
i=1
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Lets be any estimator with values 8§y based om independent identically
distributed observations with densityThen

sup I, [2(s, §)] = %9 [1 — \/2n9]

sESy

The proof is given in Birgé (1986) following the original treatment of As-
souad (1983).

The following lemma is similar to what is usually called the Varshamov-
Gilbert bound in information theory (see Gallager 1968).

Lemma 8 Let % be a subset of cardinalitg2? of the cube{0; 1}? with
0 <6 < 1.Foranyn € (0, 1) one can find a subset of ¥ with cardinality
larger thané exp(Dn?/2) such that for any two distinct points y € ¢’

Zﬂx‘;ﬁy’ > Dl;)7 .

Proof. Let D(1 — n)/2 = d and ¥’ be a maximal subset of ¥ such that
ZiD: 1 1y, 2y, > d for any pair x, y € ¢'. For each x € %', the number of

D
points z € % such that Y7 1, ... < k is bounded by ZI;ZO ( i ) It then
J

D
follows from a covering argument that |%’| 25'1:]0 ( . > > 62P . Let Bp be
J

a binomial random variable with parameters D and 1/2, then

1—n -1
o= 5)

and the result follows from Hoeffding’s inequality. O

Lemma 9 Let{g; },ca be afinite orthonormal systemii, N Lo (1) with
|[A| = D andS be the linear span ofy; }. Let

1
sup ” ZAEA ﬂ)\@)\”OO )
«/E,B;AO |IB|oo

For any positives one can find a countable s&t C S and a mappingr
from S to T with the following properties
o for any ball# with radiuso > 56

P =

T N%| < (B'a/8)P? with B <5 . (8.1)
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o |lu—mu| <éforall uin S and

sup |lu —tlleo <78 forall zinT . (8.2)

uer~1(t)

Proof. Using the natural isometry between S and the Euclidean space R?
corresponding to the basis {¢; } one defines T as the image of T =[(25 / VD)
Z)P. Considering the partition of R into cubes of vertices with length
28/~/D centered on the points of T we define the mapping 7 from IR” onto
T such that 7 (u) and u belong to the same cube. Then 7 is the image of
7 by the natural isometry and clearly ||u — wu| < §. The definition of r
implies (8.2). It follows from Lemma 2 of Birgé and Massart (1998) that
(8.1) holds with B’ = 1.14/2me. O

Lemma 10 In R?, the number of disjoint cubes of vertice&D that inter-
sect an/!-ball of radiusR is bounded by2e(R /e + 1)]°.

Proof. An elementary computation (see Lemma 4.16 of Pisier 1989) shows
that the volume of a D-dimensional /! -ball of radius p isequalto2? p? /(D!).
Since all the cubes of vertices &/ D that intersect an ['-ball of radius R are
included in an /!-ball of radius R + &, the required number is bounded by
(2D)P(R/e + 1)P /D! and the result follows easily. O

Lemma 11 Let us consider -dimensional linear subspadé of IL; (1).
We assume that there exists some b@sis.c, of V with ||, ||; = 1 for all
A € A and some consta®” > 1 such that

Z 1Bl < B” Zﬂx%

rEA rEA

forall (B,) € R" .

1

Givene and R with0 < ¢ < R/2, any ball# € V of radius R may be
covered by intervals[ f~, f™] C IL;(u) with diameter| f* — || < e
andN < (3eB")P(R/e)P.

Proof. Without loss of generality we take A = {1;...; D} and consider
some ball % in V centered at the origin and defined by

B = {Z,BA‘/)A Y B < R}
1

AEA reA
Using the standard linear isomorphism between V and R? we may identify
(Brea With D, 4 B, Since the coefficients S, of any point in 4 satisfy
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SB//R
1

Z|,3A| < B’

rEA

Z B

rEA

% can be identified to a subset 4’ of the /;-ball with radius RB” centered
at the origin of R?. By Lemma 10 we can cover this ball by N cubes with
vertices of length /D with N < (3eB”Re~")P. Let % be the set of the N
centers of these cubes. For each ¢ = (8;).ca € € we consider the interval

=T (0= s0). 5 (b i)

For any («),ca € %' there exists some ¢ = (B3),ca € € such that |« —
Byl <e/(@2D) forall A € A. It follows that

Y w@) =Y B (x)

rEA reEA

=Yl =Bl < 55 Y les @)l -
reEA reA

Therefore ) _, ca @.95 € I and the intervals (I.).c¢ cover #. Moreover the
IL;-diameter of each 1. is bounded by e D! Yosen lloall = e. O

8.2. Some results in approximation theory

Proposition 8 Let s be a function of bounded-variation on[0, 1] with
0 < a < 1 which means that

k
sup  sup Z s (x;) — s(xj—)|'* = Jo(s) < +o00

k>2 xp<--<xg =

where the supremum is taken over all increasing sequences - - < x; of
pointsin[0, 1]. LetL be any number betwedrand some positive integaf.
There exists a partitioee of [0, 1] into D intervals with endpoints belonging
tothe grid{i/N |0 < i < N} and a functions™ > s which is constant on
the elements o such that

D <2(N/L)Y1+2 4|
and

Is™ —slI* < J2%(s) [2(L/N)C/CHD L L/N] . (8.3)
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Proof: Let J = J,(s) and for any interval / define J (1) = J ! [supyel s(y)—
inf ¢/ s(y)]"/%. Consider a partition £ of [0, 1] into D intervals I, ..., Ip.
Ifst(x) = supye;, s(y) for x € I;, one gets

o

D
2:2/1‘[s+(x)—s(x)]2dx Z JJUNP . (8.4)
j=17h

Let us now build by induction a partition 2 from an increasing sequence
x0 =0 < --- < xp = 1 in the following way. Starting with xo = 0, define

xjpi=N'sup{i <N |L>(G—Nx)J*(x;,i/N))}

and stop the process whenx ;| = 1.Then /; = [x;_1, x;) isalways nonvoid
since L > 1 and J(/) < 1 for all /. By construction |Ij|J2°‘(Ij) <L/N
for 1 < j < D and, if we set Ij+ = [xj_1,x; + 1/N), then for j <

|I+|12°‘(I+) > L/N. Moreover Y.~ ' |I}| < 2 and by the definition
of J, Z J (I ) < 2. It then follows from Lemma 2.2 of Birman and
Solomjak(1967) that 2=**+D /N < (D — 1)~?+D _Therefore it follows
from (8.4) that

I I 1/Qa+1)
IsT =s|I>? < DJ>*= < J*= [2 <E> +1] . O

2

N L

Corollary 1 Lets be a function of bounded-variation on [0, 1] with

0 < a < 1, N a positive integer and) an integer such that < D <

2N/0+20) 1 1 Then one can find a partitiog of [0, 1] into D intervals
with endpoints belonging to the grid/N |0 < i < N} and a function
sT > s which is constant on the elements®uch that

2D 200
Ist —s)* <3 <ﬁ> J2(s)D* < 27J2%(s)D ™ .

Proof: Let L be defined by D = 2(N/L)"/®**D + 1. Then1 < L < N
and the preceding proposition applies showing that one can find a piecewise
constant function s* based on a partition with D’ < D intervals and such
that (8.3) holds. Clearly s can also be viewed as a piecewise constant
function based on a partition with D intervals. Moreover

) ) 1\ 20/ QD) ) 2 2a
st —sl* < 3J,%(s) (ﬁ) =3J,%(s) (ﬁ)

and the result follows since 2D/(2D — 1) < 3. O
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Lemma 12 Let.«# be either the intervdl0, 1] or the one-dimensional torus
T. Lets belong to the Besov spadg , () Withe > 0, 1 < p < ocoand
let D be a positive integer.

o If v =[0,11andr € N > a — 1, let S; be the space of piecewise
polynomials of degree bounded bpased on the regular partition with
D pieces

o if o/ =T, let S, be the space of trigonometric polynomials Brwith
degree< D;

e if o7 = [0, 1], s has a compact support i(0, 1) andr € N > a — 1,
let S5 be the linear span of the s, | » € UJ A(j)} and D = 2/ where
{¢s}ren IS @ wavelet basis of regularity:.

Then there exists positive constan@s(«) such that

dy(5. ) < Ci(, p)lsla, D~ for i =1,2,3

whered, denotes th&. ,-distance with respect to the uniform distribution
on . and|s|y , the semi-norm of in By, , o0 (7).

RemarkWe recall that the Holder space #,, defined in Section 3.3.3 satisfies
H o C Byoooo([0, 1]) with equality when « is not an integer.

Proof. We recall, following DeVore and Lorentz (1993), that a function
s belongs to the Besov space By poo(7) if its r-modulus of smoothness
defined by w, (s, y), = supg_;, <, lI1A}(s, )|, where A} (s, -) denotes the
r-th order differences given by

Aj(s,x) =Y (lr{) (=1 Fs(x + kh)

k=0
satisfies

supy “wr(s,¥)p = Islap < +00 with r =[a]+1 .
y>0

The required approximation properties are proved in DeVore and Lorentz
(1993) page 359 for piecewise polynomials and page 205 for trigonometric
polynomials; this gives the result for i = 1 or 2. If i = 3, it follows from
Meyer (1990) Chapter 6, Section 10 that s = Y ;.o > _; ca(j) Br¥s belongs
to the Besov space B, , oo (/) if and only if

1/p

. 1_1
sup2/ 2T L NP | = sl < +o0
j=0 reA())
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with a semi-norm ||s||, , equivalent to |s|, ,. Let s; be the orthogonal pro-
jection of s onto S3. It follows from Bernstein’s inequality [see Meyer (1990)
Chapter 2, Lemma 8] that

Is — s, < C! 212017 < C Is|I2 2 ipe
P P P P

j>J reA(j) j>J
hence the result. O

Next we recall a simple approximation property of convex combinations
of functions in IL, (1) which may be proved either by a random sampling or a
greedy selection method (see Jones 1992 and Barron 1993). For convenience
we restate it here with a slight modification obtained by application of the
triangle inequality. Improvements in the approximation bound of the lemma
are possible (see Makovoz 1996). These improvements become negligible
in high dimensional settings so we shall stick with the simpler order 1/+/D
bounds here.

Lemma 13 Suppose and: are given functions ifiL,(u) with 7/ R in the
closure of the convex hull of a class of functi¢itg,, } in IL, (i) bounded by
one for some constark depending on. Then there exists an approximation
sp equal toR times the convex combinationBffunctions in the class such
that

Is —spll < R/~D +|ls —t|| .

Several authors have recently put this lemma to use to prove approximation
properties in some interesting contexts, especially in multivariate settings
where it gives conditions for approximation at a dimension independent rate
(see Jones 1992, Barron 1993, Breiman 1993, Girosi and Anzellotti 1992,
Hornik et al. 1994, Yukich et al. 1995 for approximation based on Fourier
analysis in the ridge function case and Girosi and Anzellotti 1992 for similar
conclusions for approximation using radial basis functions). However, more
is needed to ensure that accurate approximations can be achieved using a
control H on the parameters w; that is bounded by a polynomial in D or n.
Such a control is needed to prove Proposition 6.

Proof of Proposition 6Our strategy is to give conditions for the existence
of a function sy that is close to s and such that for some R(s) the function
sg/R(s) is in co{x¢, | |w|; < H} where co{A} denotes the closure of

the convex hull of tf_le set A. Then Lemma 13 with t = sy provides some
Sm = S(D',H,R(s)) in S,, with

s — smll < lls —sall + R(s)/VD’ . (8.5)
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Let F (da) = e’ F(da) denote the phase and magnitude factorization of
the complex-valued measure F with phase |b,| < 7. We recall that s (x) =
f exp{ia’ x} F (da), hence since s is real valued

s(x) :fcos(a7x+ba)F(da) ) (8.6)

For trigonometric approximation we assume that H > 2w and consider
sgx) = f cos(a’ x +b4)1{ja), <H /2 F (da) for which the error is bounded by
[s(x)—sg(x)| < f Lap >/ F (da) < c;4(2/H)* by Markov’s inequality.
We recognize sy as an element of co{cos(a’x + b) | |a|; < H/2,|b| <
H /2} multiplied by a constant not greater than ¢ g, so that we get from (8.5)
d(s, Sp) < 5.2/ H)*+c5.0/~/D withm = (D', H, c;.9) and (4.40) holds.

In the neural net case the Fourier components are related to convex
combinations of sigmoids as shown in Barron (1993). The approximation
bounds stated in the proposition are given there.

In the case of ridge wavelets the assumption is that ||/ | = ¥ < +00
and v is zero outside a finite interval. For simplicity we take here the interval
to be [—1, 1]. We use an integral representation in Hornik et al. (1994) and
Yukich et al. (1995) to show that we may control H. First we pick any
scalar value A for which v (h) = f_ll e "2y (z) dz is nonzero. Multiplying
and dividing by v/ (h) in the definition of s and making a change in variables
we get the integral representation

= — F(hda) Y@ x +bye " dp .
W(h) aeRY [b+aTx|<1

s(x)

Here we assume that H > 4 and let sy (x) be the real part of the same
quantity with integration with respect to the vector a restricted to |a|; <
H' = H/2 — 1. Since |a’x| < |a|; the value of |b| in the integral is
bounded by < H/2 and |a|; + |b| < H. By assumption H > 1 and the
error |s(x) — sy (x)| is bounded by

1 T —ihb ;
- =|=— +b F(hda)db
5 = sn @] =| o / . /Mlqw(a x +b)e ™" F(hda)

L / (1 + [al) F(h da)
= WG] Ja-n 1

4\
<

— laliF(hda)
()| /mw Al

4y , , 4Wc o
< — la’l1 F(da’) < ——
| (W) > nia || ()| H !
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by the change of variable a’ = ha and Markov’s inequality since o > 1. In
a similar manner we see that sy (x) is in co{y (a”x + b) | |a|, + |b| < H}
multiplied by a constant not greater than [2/ &(h)][cs’o + ¢5.1/|h1]. It then
follows from (8.5) that d(s, S,,) < Cylcsa/H* ™" + (c5.0+¢s.1)/+/D'] and
then (4.40) holds.

For the hinged hyperplanes of Breiman (1993) approximation bounds
similar to what we need are in his paper. Here we give an integral repre-
sentation that makes explicit that the approximation bound holds with H
as small as 2. We use Taylor’s theorem with remainder to characterize each
Fourier component cos(a’ x + b,). Recalling that |a” x| < |a|; we have

T

cos(b + aTx) = cos(b) — a’x sin(b) — / " cos(t + by(aTx — 1) di
0
lal
= cos(b) — a’ x sin(b) —/ cos(r + b)[(a"x — 1) v 0]dt
0

0
— / cos(t + b)[(t —a’x) v 0ldt

—lali

= cos(b) — a’ x sin(b)

1 T

—|a|%f cos(lalju + b) [(Q—u>\/0i| du
0 laly
0 T

—|a|%/ cos(|alu + b) [(u—%>\/0i| du
-1 ajl

where we have written separately the contributions from ¢ positive and ¢
negative and then changed variables from ¢ to u = ¢/|a|;. Note that the
functions in the last two integrals are in the closure of the convex hull of the
functions of plus or minus bounded multiples of hinge functions. Integrating
over the frequency vector a according to F'(da) with b = b, equal to the
phase, we get from (8.6) that s(x) is equal to s(0) + (Vs(0))"x plus a
function in co{%[(a’x +b) v 0]| |a|; < 1, |b| < 1} times a constant which
is not greater than 2¢; . We note that trivially the constant 1 is a particular
hinged hyperplane and that

T, _ l T _l T
ax_2[2(a x\/O) 2[( ax)\/O]i|

It follows that s/R(s) is in co{[(@’x + b) v 01| |a|; < 1, |b| < 1} for
R(s) < |s(0)| +2[|Vs(0)|l1 + 2cs,2. The approximation bound (4.40) then
follows from (8.5) for all H > 2 with §y = 0. This completes the proof of
Proposition 6. o



408 A. Barron et al.
8.3. Further technical results

We first give a proof for Proposition 1. It derives easily from the following

Lemma 14 Let s> be a probability density with respect jo and: be a
function inlL, (). Then ift’ = ¢/|¢|

s =l < lls —tll + (1= [lt]) VO < 2|ls — ]| 5 (8.7)
if 2 is a density then

d*(s, 1) < K(s,1) < 2[1 + log(lls/lloc)1d* (s, 1) (8.8)
consequently if* is such thattt > 5, s’ = s /||sT|| ande = ||s — s ||

then

K(s,s") <2[1+log(l +¢)]e* . (8.9)

Proof. If ||¢]| > 1, then
Is — 21> = lls = £'I> = (Jlz]] — 1) (Iltll +1- 2/8t/lltll)
and Cauchy-Schwarz inequality yields ||s — ¢'|| < |ls —¢||. If ||| < 1, then

Is =2/l < lls = el + " = el = lls — ¢l + Nell L/ Nzl = 1)

which gives (8.7). Inequalities (8.8) follow from (7.6) of Lemma 5 of Birgé
and Massart (1998) since d/+/2 is the Hellinger distance. Noticing that
ls*] > 1and ||s/s'[lcc < |IsT|| < 1+ &, one concludes that (8.7) and (8.8)

imply (8.9). m|

Proof of Propositionl: The first inequality is an immediate consequence
of (8.9), considering separately the cases ¢ < 0.6 and ¢ > 0.6. In order
to derive (3.15) one notices that if § is such that ||§ — s||oc = € and u is a
probability one can define s* = (§ + &) > s and apply the preceding recipe
since ||sT — s|| < 2. O

The next lemma is elementary but very useful to deal with ellipsoids:

Lemma 15 Let(a;) ;>0 and(b;) j>o two sequences of numberg ) +oo]
which are respectively nonincreasing and nondecreasing and satisty
b; for j large enough. Therdefiningm = inf{j > 0|a;; < b;} < 400
andé = by/ay (with the convention that = 1 if ag = by = 0 or +00),
one getsup;{a; Ab;} = ay A by and

sup{a;Ab;} < inf{a;, 1 +b;} < inf {a;11+b;} <2(1VvO)sup{a;Ab;} .
j=0 | jz0 - 0<j<m : 150 :
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Proof: Notice first that when 0 < j < m one has a; > a,, > b, > b;
which implies that a; A b; < a,, A b, and that a similar result holds
for j > m. Considering separately the cases j < k and j > k + 1 one
checks thata; Ab; < a1+ by and the left-hand side inequality follows. If
m > 1, apy1+by < 2b, and a,, +b,,—1 < 2a,,, thereforeinfo< <, {a; 1+
bj} <2(ay A by). If m =0 one gets a; + by < 2by = 2(0 Vv 1)(ag A by)
and the result follows in both cases. |
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