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Abstract— Sparse superposition codes with a fast adaptive
successive decoder for the additive white Gaussian noise channel
were introduced last year by the authors, along with presentation
of reliability at rates approaching capacity. The present work
presents ingredients of the distributional analysis of the decoder.

I. INTRODUCTION

The framework for superposition codes is the formation of
specific forms of linear combinations of a given set of vectors.
We have a dictionary X1, X2, . . . , XN of vectors, each with
n coordinates, for which the codeword vectors take the form
of superpositions β1X1 + β2X2 + . . . + βNXN . The vectors
Xj provide the terms or components of the codewords with
coefficients βj . By design, each entry of these vectors Xj

is independent standard normal. The choice of codeword is
conveyed through the coefficients, with sum of squares chosen
to match a power requirement P . In brief, a codeword takes
the form Xβ where X is the matrix whose columns are the
vectors X1, X2, . . . , XN , with a constraint ‖β‖2 = P imposed
on the coefficient vector β. For a channel with additive white
Gaussian noise (AWGN), with superposition coding, what is
received is

Y = Xβ + ε,

a vector of length n, where ε is the noise vector with
distribution N(0, σ2I).

For a sparse superposition code the message is conveyed by
a choice of L terms for which the coefficients are non-zero,
with L/N a small fraction of the dictionary size. Attention is
focussed on the case of partitioned codes, in which the dictio-
nary is split into B = N/L sections, with one term from each
section chosen to be non-zero. Thus there are BL codewords.
With B a power of 2, the encoding from an input bit-string
u1, u2, . . . , uK , with K = L log B, consists of partitioning
the string into L substrings of length log B which index the
terms from the dictionary which are chosen to be included in
the codeword. Denote these indices sent = {j1, j2, . . . , jL}.
The coefficient value for the term from section ` takes the
form βj`

=
√

P` with
∑

` P` = P . All terms not in sent are
assigned zero coefficient value.

The rate of the code is R = (L log B)/n equal to the ratio of
the number of input bits to the number of uses of the channel.
The capacity of the AWGN channel is C = (1/2) log(1+snr)
where snr = P/σ2 is the signal-to-noise ratio.

These sparse superposition codes with partitioning and a fast
adaptive successive decoder were introduced by the authors in
[3], constituting the first practical code for the AWGN with
rate arbitrarily close to capacity and error probability proven
to be exponentially small.

Analogous models and algorithms have been used in sparse
signal recovery and compressed sensing. Among much work
that can be cited, we call attention to [9] where such sparse
models are previously considered for communication for the
AWGN, and a positive rate is established. However, the rate
there and in other previous sparse signal recovery analyses
does not approach capacity.

Our treatment in [3] also included a description of ingre-
dients of the fit formed by the decoder, plus definition of
an update function that tracts the accumulation of correct
decodings for rates below capacity, as well as a statement of
the reliability bounds. A fuller version of the story is in the
extended manuscript [4].

The purpose of the current conference presentation is to
focus on the distributional properties of components of the fit
that underly that analysis. It is anticipated that this technique
may be useful for examination of other related problems of
iterative decoding or stepwise regression, including analysis
of greedy algorithms and matching pursuit, originating in [7]
and [8] and most recently studied in [10].

To review design and performance aspects of our fast
decoder, to get rates approaching capacity, a variable power
allocation is used. The P` is chosen to be proportional to
e−2 C `/L, or to slight variants thereof. Such variable power
originates with [5] in achieving sum-rate capacity of multi-
user Gaussian channels and a recent use of it is in [6].

Our scheme provides reliable communication for rates R up
to a value CB for any B ≥ 2. This CB is near the capacity
for B sufficiently large compared to 1 + snr, as needed to
make small expressions of the form C/ log B that arise in the
bounds on the gap from capacity.

The probability of more than a small fraction of section
mistakes is shown to be exponentially small, with exponent
of the order (CB−R)2 L or, with worse constants, of order
(CB−R)2 L

√
log B. Here L = nR/ log B. This exponent is

within a logarithmic factor of the optimal Shannon-Gallager
form of order (C−R)2n/V for fixed R near C.

The first step of the decoder is to compute the inner
product of the received string Y with each of the terms in the
dictionary, and see which of these inner products are above
a threshold. Such a set of inner products for a step of the
decoder is performed in parallel by a computational unit, e.g.
a signal-processing chip with N = LB parallel accumulators,
each of which has pipelined computation, so that the inner
product is updated as the elements of the string arrive.

In this basic step, the terms that it decodes are those for
which the test statistic is above threshold. The size of the
threshold is specified to keep the fraction of incorrect terms



above threshold negligible, while allowing a moderate fraction
of correct terms to be found above threshold each step. A fit
is formed at the end of a step by adding the terms selected.

Additional steps are used to bring the total fraction decoded
up near 1. Each step of the decoder computes updated test
statistics, taking inner products of the remaining terms with
a vector determined using Y and the previous fit, and sees
which are above threshold.

The decoding algorithm adapts the choice of which sections
of terms will be decoded on each step in accordance with
which sections have a term with an inner product observed
to be above threshold. Thus we have called our class of
procedures adaptive successive decoding.

Analysis involves weighted proportions of events, which are
sums across the terms of indicators of events multiplied by
weights πj . For terms j in section ` this weight is set to πj =
P`/P . With bounded ratio of maximum to minimum power
across the sections, such weighted proportions agree with un-
weighted proportions to within constant factors.

The analysis leads us to a function g on [0, 1], called
the update function, which depends on the power allocation
distribution π and the parameters L, B, snr and R. The idea
of this function is that if at the previous step the weighted
fraction of correct detections minus the weighted fraction of
false alarms is x then the corresponding weighted fraction of
correct detections expected for the next step is at least g(x).

For suitable rates, the function g(x) stays sufficiently above
x over most of [0, 1] and, consequently, the decoder has a high
chance of not more than a small fraction of section mistakes.

An incorrect term above threshold is a false alarm, while
failure of the correct term to provide a statistic value above
threshold after a suitable number of steps is a failed detection.
Let δ̂mis refer to the failed detection rate plus the false alarm
rate. It is this δ̂mis that our technique controls, providing a
small bound δmis that holds with high probability.

A section mistake is counted as an error if it arises from
a single incorrectly selected term. It is an erasure if no
term is selected or more than one term is selected. Let
δ̂error be the fraction of section errors and δ̂erase be the
fraction of section erasures. In each section the event indicators
satisfy the property that 1erase + 2 1error is not more than
1failed detection + 1false alarm. Accordingly, 2δ̂error + δ̂erase

is not more than δ̂mis, the failed detection rate plus the false
alarm rate.

Candidate subsets of terms sent could differ from each other
in only a few sections. When that is so, the subsets could be
difficult to distinguish, so that it would be natural to expect a
few section mistakes.

To permit completion of the task of identifying the terms,
arrange sufficient distance between the subsets using composi-
tion with an outer Reed-Solomon (RS) code of rate near one.
The alphabet of the Reed-Solomon code of size B, a power
of 2, is taken to correspond to the indices of the selected
terms in each section. Suppose the likely event δ̂mis < δmis

holds from the output of the inner superposition code. Then the
outer Reed-Solomon corrects the small fraction of remaining

mistakes so that we end up not only with small section mistake
rate but also with small block error probability. If 1−δ is the
rate of the RS code, then the section errors and erasures can
be corrected, provided δmis ≤ δ. Furthermore, if R is the rate
associated with our inner superposition code, then the total
rate after correcting for the remaining mistakes is given by
Rtotal = (1−δ)R, using δ = δmis. So, if ∆ is the relative rate
drop from capacity of the inner code, then the relative rate
drop of the composite code ∆total is not more than δmis +∆.

The end result, using our theory for the distribution of
the fraction of mistakes of the superposition code, is that
for suitable rate up to a value near capacity the block error
probability is exponentially small.

One may regard the composite code as a superposition
code in which the subsets are forced to maintain at least a
certain minimal separation, so that decoding to within a certain
distance from the true subset implies exact decoding.

A limitation of these practical results is the slow approach
of CB to the capacity C, with gap of order C/ log B. Nev-
ertheless, a case can be made that the sparse superposition
code with adaptive successive decoder is the first scheme for
the Gaussian noise channel with a practical decoder proven
to have exponentially small error probability at any fixed rate
below capacity. Recently, in work coauthored by one of us [1],
a competing method based on polar codes is adapted to the
AWGN, to achieve any rate below capacity, albeit with an error
probability exponentially small in

√
n rather than n/ log n.

As desired we turn our focus in the next section to distri-
butional analysis of the contributions to the fit formed by the
adaptive successive decoder.

The full manuscript [4] includes in addition to these matters
of distributional analysis, discussion of relationship to past
work, variants of the algorithm, computational analysis, proof
of reliability bounds, tools for analyzing the update function
g(x), determination of CB , quantification of the contributions
of its drop from capacity, quantification of the error exponent,
and a more complete list of references.

II. FRAMEWORK FOR ANALYSIS OF THE DECODER

As we have said, from the received Y , the first step of the
decoder forms for each term Xj of the dictionary, the test
statistic Z1,j = XT

j Y /‖Y ‖, and compares it to a threshold
τ =

√
2 log B(1+ δa). The distribution of this test statistic

will be seen to be that of a standard normal plus a shift by a
nearly deterministic amount, where the presence of the shift
depends on whether j is one of the terms sent. The threshold
is set such that very few of the terms not sent will be above
threshold. Yet a positive fraction of the terms sent, determined
by the size of the shift, will be above threshold and hence will
be correctly decoded on this first step.

The output of the first step consists of the set dec1 of
terms above threshold and the vector F1 =

∑
j∈dec1

√
Pj Xj

which forms the first part of the fit. The set of terms J1 =
J investigated in step 1 is the set of all columns of the
dictionary, while the set J2 = J − dec1 remains for second
step consideration.



In starting an adaptive Gram-Schmidt orthogonalization, we
let G1 = Y and let G2 be the part of the vector F1 orthogonal
to Y . That is G2 = F1 − b̂2,1Y where b̂2,1 = FT

1 Y/‖Y ‖2.
Various vectors of interest have representation in terms of such
orthogonal vectors. For instance the first step residual r1 =
Y −F1 is a linear combination of G1 and G2. Moreover, each
Xj has representation as

Xj = Z1,jG1/‖G1‖+ Z2,jG2/‖G2‖+ V3,j

where Zk,j = XT
j Gk/‖Gk‖ and V3,j is a vector orthogonal

to G1 and G2. Here Z1,j = XT
j Y/‖Y ‖ is our first step test

statistic.
The second step test statistic Zcomb

2,j is assumed to be formed
from Z1,j and Z2,j . For instance the inner product with the
residuals XT

j r1/‖r1‖ is a linear combination of Z1,j and
Z2,j with empirically determined weights of combination. The
focus of attention in [4] is test statistics Zcomb

2,j that take
the form

√
λ1Z1,j −

√
λ2Z2,j with λ1 > 0, λ2 > 0 and

λ1+λ2 = 1. The distributional properties of Z1,j and Z2,j are
used to determine estimates of values of such λ1 and λ2 which
will maximize the separation between the distributions for
terms sent and terms not sent. These weights of combination
are advocated as possibly simpler to analyze than the use of
the weights associated with inner products with the residuals.

The second step decoding set dec2 is a subset of J2 formed
in a similar manner as for the first step, by comparing Zcomb

2,j

to a threshold. This leads to an additional contribution to the
fit F2 =

∑
j∈dec2

√
PjXj , from which one forms G3, the part

of this fit orthogonal to G1 and G2, and so on.
Proceed in this manner to perform the following loop of

calculations, for k ≥ 2. From the output of previous steps,
there is the vectors Fk′ and Gk′ and statistics Zk′,j for k′ < k.
Plus there is a set dec1,k−1 = dec1 ∪ . . . ∪ deck−1 already
decoded and a set Jk = J − dec1,k−1 of terms for us to test
at step k. Determine the part Gk of Fk−1 orthogonal to the
previous Gk′ and for each j not in deck−1 compute

Zk,j = XT
j Gk/‖Gk‖

and a combined statistic

Zcomb
k,j =

√
λ1,k Z1,j −

√
λ2,k Z2,j − . . .−

√
λk,k Zk,j .

To maximize the separation between the distributions that arise
for terms sent and terms not sent, these positive weights are
taken of the form λk′,k = wk′/sk, with w1 = 1, and sk =
1 + w2 + . . . wk, with wk to be specified. Accordingly, the
combined statistic may be computed by the update

Zcomb
k,j =

√
1− λk Zcomb

k−1,j −
√

λk Zk,j ,

where λk = wk/sk. For terms j in Jk these statistics are
compared to a threshold, leading to events {Zcomb

k,j ≥ τ}. As
quantified by an analysis of the distribution of the Zk,j , for
successive steps there is an increasing separation between the
distribution for terms j sent and the others.

With deck taken to be {j ∈ Jk : Zcomb
k,j ≥ τk} the output of

step k consists of the vectors Gk and Fk =
∑

j∈deck

√
Pj Xj

and the statistics Zk,j . Moreover one updates to the set of
decoded terms dec1,k = deck−1 ∪ deck and the set Jk+1 =
Jk−deck of terms remaining for consideration. This completes
the actions of step k of the loop.

On each step k we decode a substantial part of what
remains, because of growth of the mean separation between
terms sent and the others.

The algorithm stops when either L terms have been decoded
or no terms from Jk are found to have statistic above threshold,
so that Fk is zero and the statistics would remain thereafter
unchanged. Analytical stopping conditions are also available.
Our best bounds on the closeness of the rate target CB to
capacity occur with a total number of steps m not more than
an integer part of 2 + snr log B.

Up to step k, the total fit fitk is
∑

j∈dec1,k

√
Pj Xj which is

the sum of the pieces from each step fitk = F1+F2+. . .+Fk.
As to the part Gk of Fk−1 orthogonal to previous Gk′ ,

take advantage of two ways to view it, one emphasizing
computation and the other analysis.

For computation of Gk from Fk−1 apply a standard Gram-
Schmidt step. The G1, G2, . . . , Gk−1 are orthogonal vectors,
so the parts of Fk−1 in these directions are b̂k,k′Gk′ with
b̂k,k′ = FT

k Gk′/‖Gk′‖2 for k′ < k, where if ‖Gk′‖ = 0 use
b̂k,k′ = 0. Accordingly, the new Gk is computed by Gk =
Fk−1 −

∑k−1
k′=1 b̂k,k′ Gk′ . This computation entails the n−fold

sums of products FT
k Gk′ for determination of the b̂k,k′ . Then

from this computed Gk we obtain the inner products with the
Xj to yield Zk,j = XT

j Gk/‖Gk‖ for j in Jk.
For analysis, look at what happens to the representation of

the individual terms. Each term Xj for j ∈ Jk−1 has the
decomposition

Xj = Z1,j
G1

‖G1‖
+Z2,j

G2

‖G2‖
+ . . . +Zk−1,j

Gk−1

‖Gk−1‖
+ Vk,j ,

where Vk,j is the part of Xj orthogonal to G1, G2, . . . , Gk−1.
Since Fk−1 =

∑
j∈deck−1

√
Pj Xj it follows that Gk has

the representation Gk =
∑

j∈deck−1

√
Pj Vk,j , from which

Zk,j = V T
k,jGk /‖Gk‖, with which the above representation

of Xj updates. With the initialization V0,j = Xj , these
Vk+1,j may be thought of as iteratively obtained from the
corresponding vectors at the previous step, that is, Vk+1,j is
Vk,j − Zk,j Gk/‖Gk‖. These V do not actually need to be
computed, nor do we need to compute its components detailed
below, but this representation of the terms Xj is used in the
proof of the distributional properties of the Zk,j .

The πj = Pj/P sum to 1 across j in sent, and sum to B−1
across j in other. Define in general q̂k =

∑
j∈sent∩deck

πj for
the step k correct detections and f̂k =

∑
j∈other∩deck

πj for
the false alarms.

The total weighted fraction of correct detections up to step k
is q̂tot

k =
∑

j∈sent∩dec1,k
πj which may be written as the sum

q̂1+q̂2+. . .+q̂k. This total may be regarded as the same as the
π weighted measure of the union

∑
j sent πj1{H1,j∪...∪Hk,j}.

Likewise the weighted count of false alarms f̂ tot
k =∑

j∈other∩dec1,k
πj may be written as f̂1+ f̂2+ . . .+ f̂k which

may be expressed as
∑

j other πj1{H1,j∪...∪Hk,j}.



III. DISTRIBUTIONAL ANALYSIS OF THE DECODER:

In this section we describe the distributional properties of
the random variables Zk = (Zk,j : j ∈ Jk) for each k =
1, 2, . . . , n. In particular we show for each k that Zk,j are
location shifted normal random variables with variance near
one for j ∈ sent ∩ Jk and are independent standard normal
random variables for j ∈ other ∩ Jk.

Define
Cj,R = πj Lν/(2R),

where πj = Pj/P and ν =ν1 =P/(σ2+P ). Likewise define
Cj,R,B = (Cj,R) 2 log B, which is also C ′

j,R τ2 with C ′
j,R =

Cj,R/(1 + δa)2. It also simplifies to Cj,R,B = n πj ν.
Each step of the decoder will derive benefit from looking

at all sections. Nevertheless, it will be seen that Cj,R needs
to be at least 1 for some sections, to get the decoder to begin
successfully, and then not taper too rapidly to allow decodings
to accumulate on successive steps.

For the case of power Pj proportional to e−2C`/L, we have
πj = e−2C(`−1)/L(1−e−2C/L)/(1−e−2C) for each j in section
`, for ` from 1 to L. Define C̃ = (L/2)[1 − e−2C/L], which
is essentially identical to C, for L large compared to C. Then
for j in section ` we have that

Cj,R = (C̃/R) e−2C(`−1)/L.

For rates R not more than C, this Cj,R is at least 1 in some
sections and it tapers at the fastest rate at which we can still
accumulate decoding successes.

We now are in a position to give the lemma for the
distribution of Z1. Recall J1 =J is the set of all N indices.

Lemma 1: Distributional analysis of the first step. For each
j ∈ J1, the statistic Z1,j can be represented as√

Cj,R,B [Xn/
√

n]1j sent + Z1,j ,

where Z1 = (Z1,j : j ∈ J1) is multivariate normal N(0,Σ1)
and X 2

n = ‖Y ‖2/σ2
Y is a Chi-square n random variable that

is independent of Z1. Here recall that σ2
Y = P + σ2 is the

variance of each coordinate of Y .
The covariance matrix Σ1 can be expressed as I − b1b

T
1 ,

where b1 = (b1,1, b1,2, . . . , b1,N ) with each b1,j = βj/σY .

Proof of Lemma 1: Recall that the Xj for j in J are inde-
pendent N(0, I) random vectors and that Y =

∑
j βjXj + ε,

where the sum of squares of the βj is equal to P .
Consider first the decomposition of each random vector Xj

of the dictionary into a vector in the direction of the received
Y and a vector Uj uncorrelated with Y . That is

Xj = b1,j Y/σY + Uj ,

where the coefficient is b1,j = E[Xi,jYi]/σY = βj/σY , which
indeed makes each coordinate of Uj uncorrelated with each
coordinate of Y . These coefficients collect into a vector b1 =
β/σY in RN . In the case that the magnitude of the non-zero
coefficients is

√
P/L, then for terms j sent, the square of b1,j

is equal to ν/L. In any case, since ‖β‖2 = P , the sum of
squares ‖b1‖2 is equal to

ν = P/(σ2+P ).

The subscript 1 on first step quantities such as b1,j is to
distinguish them from corresponding values that will arise on
the subsequent steps. Likewise, Uj = U1,j .

These first step vectors Uj = Xj − b1,jY/σY along with Y
are linear combinations of joint normal random variables and
so are also joint normal, with zero correlation implying that Y
is independent of the collection of Uj . The independence of
Y and Uj facilitates development of distributional properties
of the UT

j Y . For these purposes we need the characteristics
of the joint distribution of the Uj across terms j (clearly there
is independence for distinct time indices i).

The coordinates of Uj and Uj′ have mean zero and expected
product 1{j=j′} − b1,jb1,j′ . For the constant power allocation
case, this value is 1 − (ν/L) 1j sent when j′ = j and it is a
small covariance −(ν/L) 1j,j′ sent when j′ 6= j. In general,
the covariances (E[Ui,jUj,j′ ] : j, j′∈J) organize into a matrix

Σ1 = Σ = I −∆ = I − b1b
T
1 .

For any constant vector α 6= 0, consider UT
j α/‖α‖ Its joint

normal distribution across terms j is the same for any such α.
Specifically, it is a normal N(0,Σ), with mean zero and the
indicated covariances.

Likewise define the random variables Zj = UT
j Y/‖Y ‖, also

denoted Z1,j when making explicit that it is for the first step.
Jointly across j, these Zj have the normal N(0,Σ) distribu-
tion, independent of Y . Indeed, since the Uj are independent
of Y , when we condition on Y = α we get the same N(0,Σ)
distribution, and since this conditional distribution does not
depend on Y , it is the unconditional distribution as well.

Where this gets us is revealed via the representation of the
inner product XT

j Y as b1,j‖Y ‖2/σY + UT
j Y , which can be

written as

XT
j Y = βj

‖Y ‖2

σ2
Y

+ ‖Y ‖Zj .

This identifies the distribution of the XT
j Y as that obtained as

a mixture of the normal Zj with scale and location shifts de-
termined by an independent random variable X 2

n = ‖Y ‖2/σ2
Y ,

distributed as Chi-square with n degrees of freedom.
Divide through by ‖Y ‖ to normalize these inner products

to a helpful scale and to simplify the distribution of the result
to be only that of a location mixture of normals. The resulting
random variables Z1,j = XT

j Y /‖Y ‖ take the form

Z1,j =
√

n b1,j |Y |/σY + Zj ,

where |Y |/σY = Xn/
√

n is near 1. Note that
√

nb1,j =√
nβj/σY which is √nπjν or

√
Cj,R,B . This completes the

proof of Lemma 1.
We next present the corresponding result for k ≥ 2. The

distribution of Zk,j with j ∈ Jk can also be expressed in
a manner similar to that above, that is, each Zk,j can be



expressed as a normal random variable Zk,j plus a location
shift depending on whether j is in sent or not.

We maintain the pattern used in Lemma 1 and use the cali-
graphic font Zk,j to denote the test statistics that incorporate
the shift for j in sent and the standard font Zk,j to denote
their counterpart mean zero normal random variables before
the shift.

We provide in the lemma below characterization of the
sequence of conditional distributions of the Zk = (Zk,j : j ∈
Jk) and ‖Gk‖, given Fk−1, for k = 1, 2, . . . n, where

Fk−1 = (‖Gk′‖, Zk′ : k′ = 1, . . . , k−1).

This determines also the distribution of Zk = (Zk,j : j ∈ Jk)
conditional on Fk−1. Initializing with the distribution of Z1

derived in Lemma 1, we provide the conditional distributions
for all 2≤k≤n. The algorithm will stop at a k much less than
n. The Jk is never empty because we decode at most L, so
there must always be at least (B−1)L remaining. For an index
set which may depend on the conditioning variables, we let
NJk

(0,Σ) denote a mean zero multivariate normal distribution
with index set Jk and the indicated covariance matrix.

Lemma 2: Distributional analysis for subsequent steps. For
k ≥ 2, given Fk−1, the conditional distribution PZk,Jk

|Fk−1

of Zk,Jk
= (Zk,j : j ∈ Jk) is normal NJk

(0,Σk); the random
variable X 2

dk
= ‖Gk‖2/σ2

k is a Chi-square distributed, with
dk = n−k+1 degrees of freedom, conditionally independent
of the Zk, where σ2

k are positive values depending on Fk−1;
and, moreover, Zk,j has the representation

−
√

ŵk Cj,R,B

[
Xdk

/
√

n
]
1j sent + Zk,j .

The shift increment from this statistic is ŵk = ŝk−ŝk−1, which
are increments of a series with total

1 + ŵ2 + . . . + ŵk = ŝk =
1

1− (q̂adj
1 + . . . + q̂adj

k−1) ν

where q̂adj
j = q̂j/(1+f̂j/q̂j), obtained from weighted fractions

of correct detections and false alarms on previous steps. Here
ŝ1 = ŵ1 =1. The covariance Σk has the representation

Σk = I − δkδT
k = I − νk ββT /P

where νk = ŝk ν. That is (Σk)j,j′ = 1j=j′ − δk,jδk,j′ , for
j, j′ in Jk, where the vector δk is in the direction β, with
δk,j =

√
νkPj/P 1j sent for j in Jk.

The proof of this lemma follows the same pattern as the
proof of Lemma 1. For details of the proof see [4].

To summarize its use, it yields weights λk′ = ŵk′/ŝk that
provide the ideal combination Zcomb

k,j =
∑k

k′=1

√
λk′Zk′,j . In

the analysis the chi-square random variables divided by their
degrees of freedom are bounded by constants near 1 (excepting
events of exponentially small probability) and this combined
test statistic takes the approximate form√

ŝk Cj,R,B 1j sent + Zcomb
k,j ,

where Zcomb
k,j =

∑k
k′=1

√
λk′Zk′,j . Likewise, it is inductively

demonstrated that, with very high probability, the ŝk in the

lemma above are not less than a sequence of deterministic
values sk = 1/(1 − νxk−1) with xk−1 = qadj

1,k−1, where the
q1,k is a target correct detection rate obtained from k fold
application of the function g as specified below.

This analysis allows for the λk′ to be replaced by cor-
responding deterministic wk′/sk for k′ = 1, 2, . . . , k where
wk = sk − sk−1, with which Zcomb

k,j is jointly normal across
terms j. Using the covariance from the above lemma, analysis
of the joint normal density of the Zk,j , shows that it has
a bounded ratio with respect to the independent standard
normal joint density. Accordingly, for determination of events
of exponentially small probability, there is no loss to analyze
the Zcomb

k,j as being independent standard normal. With the
distribution shifted for j in sent as given above, the probability
of Zcomb

k,j being above threshold is given by

gj(x) = Φ
((√

C ′
j,R/(1− xν)− 1

)
τ
)
,

evaluated at x=xk−1. It yields the expected weighted fraction
above threshold at step k given by g(x) =

∑
j sent πjgj(x).

To examine the behavior of this update function g(x),
consider what it would be, denoted gideal(x), in the case
that each gj(x) is replaced by a corresponding indicator
1{C′

j,R/(1−xν)>1)}. The use of the recommended variable power
allocation with rate R < C ′ with C ′ = C̃/(1+δa)2, leads to
gideal(x) being at least the minimum of xC ′/R and 1, which
stays above x for most of the interval [0, 1]. An approximate
odd symmetry of the difference between gj(x) and its indicator
approximation, leads to g(x) behaving similarly, also above x
for most of the interval [0, 1].

This is the way in which the distributional properties of the
inner product test statistics determine the ingredients of the
analysis detailed in [4].
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