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Abstract
In this paper we first show how to compute a combination of as-

sets producing an appropriate index of past performance. The desired
index is equal to Smax

T = maxb ST (b) which is the maximum of T -
period investment return ST (b) =

∏T
t=1 b · xt, where xi is the vector

of returns for the tth investment period, and b is the portfolio vector
specifying the fraction of wealth allocated to each asset. We provide
an iterative algorithm to approximate this index, where at step k the
algorithm produces a portfolio with at most k assets selected among M
available assets. We show that the multi-period wealth factor ST (bk)
converges to the maximum Smax

T as k increases. Furthermore, in the
exponent the wealth factor is within c2/k of the maximum, where c
is determined by the empirical volatility of the stock returns, and we
compare this computation to what is achieved by general procedures
for convex optimization. This Smax

T provides an index of historical
asset performance which corresponds to the best constant rebalanced
portfolio with hindsight. Surprisingly, we find empirically that a small
handful of stocks among hundreds of candidate stocks are sufficient to
have come close to Smax

T .

Universal portfolios are strategies for updating portfolios each pe-
riod to achieve actual wealth with exponent provably close to what
is provided by Smax

T . Not only do we show approximate computation
of Smax

T using subsets of stocks, we also derive new universal port-
folio strategies based on such subsets. Under a volatility condition,
the universal portfolio achieves a wealth exponent that drops from the
maximum not more than order

√
log M

T .
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1 INTRODUCTION

In multi-period investment with a total of M stocks it is important to de-
cide which stocks are to be included in the fund and what fractions of re-
sources are to be allocated to each of them. An investor may choose to
rebalance the portfolio each trading period in accordance with a portfolio
b = (b1, b2, . . . , bM) specifying the fraction of wealth to be invested in each
of the stocks. Price fluctuation leads to new asset values at the end of each
investment period, in which case the investor may trade portions of each as-
set to restore the specified fractions. For a succession of investment periods
t = 1, 2, · · · , T , let xt,i be the return, also called “wealth factor”, for stock
i at time t, which means the ratio of the price plus dividend at the end of
period t to the price at start of period t. It provides a vector of returns
xt = (xt,1, xt,2, · · · , xt,M) for period t. Then with portfolio b the investor
achieves a return of b · xt = b1xt,1 + b2xt,2 + · · · + bMxt,M for that period.
Let x1, x2, · · · , xT be such vectors of returns for a sequence of T investment
periods. Then, with rebalancing to portfolio b each period, the multi-period
return (compounded wealth per dollar initially invested) is,

ST (b) =
T∏

t=1

b · xt. (1)

The study of the wealth surface ST (b) is relevant for examining with hind-
sight what performance would have been achieved for various portfolios. In
particular, there is an interest in the maximum wealth Smax

T = maxb ST (b)
and in the portfolio bmax = (bmax

1 , bmax
2 , · · · , bmax

M ) that would have achieved
it. Characteristics of that maximum wealth portfolio reveal historically im-
portant stocks and the best fraction of wealth to have retained in each.
Moreover, identification of such portfolios from past data may be useful for
speculation as to which stocks to invest for subsequent trading periods. We
will regard Smax

T as an asset index, which refers to the collective performance
of a given set of stocks over a given historical time period. Specifically, this
index corresponds to the best constant rebalanced portfolio with hindsight.

A focus of attention in this paper is an iterative algorithm for the maxi-
mization of ST (b), which constructs the portfolio of historically optimal per-
formance. The hindsight maximum wealth at the end of investment period T
is ST (bmax) =

∏T
t=1 bmax ·xt. We provide an algorithm for this maximization,
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which chooses stocks from the pool of candidates in a greedy fashion. At the
kth step the algorithm either introduces an additional stock to the portfolio
or adjusts the weight given to a stock already in the portfolio so as to best
balance with the weight of other stocks in the proceeding steps.

Thus the algorithm produces a sequence of portfolios bk where at step k
we have included at most k stocks. The multi-period wealth factor ST (bk),
k = 1, 2, · · · achieved by this sequence of portfolios bk is shown to converge
to the maximum Smax

T = maxb ST (b). In practice we see that it rarely re-
quires more than a few stocks to come close to the maximum. Moreover, we
provide theory which shows that an exponent characterizing the wealth at
step k is below the maximum by not more than c2/k for k = 1, 2, · · ·. Thus
with k stocks we reach approximately the same return as that of the opti-
mal portfolio which has the freedom to have allocated wealth in all the stocks.

Writing ST (b) = eTy(b) we find that the wealth exponent y(b) = yT (b) is
concave function of the portfolio b. Thus we may regard the algorithm pro-
vided here as solving a concave optimization problem. We will contrast the
method developed here with a general purpose algorithm for maximizing con-
cave function subject to convex constraint sets (Nesterov and Nemirovski’s
interior point method [3]) for which there are also bounds on the number of
computation steps required for specified accuracy.

In the practice of investment one requires a sequence of portfolios bt up-
dated each period t based on what has been observed up to that time. A
result of Cover [8] (refined further in Cover and Ordentlich [9] and Xie and
Barron [36]) shows that Smax

T is achievable by a universal portfolio updating
strategy, in the sense that the actual wealth exponent drops from what Smax

T

achieves by not more than M−1
2T

log T
2π

+ cM

T
, uniformly over all possible stock

return outcomes, where cM is a constant. The universal portfolios use at each
time t a weighted combination of portfolios b weighted by the wealth St(b)
up to that time. In the present paper, we give related mixture portfolios that

we show achieve a wealth exponent that is within c
√

(log M)/T of the max-
imum where c depends on an empirical relative volatility of the stocks. As
we shall discuss, since the drop depends only logarithmically on the number
of stock M , this new bound is preferable to Cover’s bound when M is large.
Helmbold et al. [16] also showed a similar drop when using their portfolio
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updating rule with learning rate η. However, choosing such a η requires the
knowledge of both the number of trading periods T and a lower bound of
price return xt,i for all t before starting to invest at time t = 1. We devise
mixtures that do not require such knowledge in advance.

In the last section, we explore the use of our mixture portfolios imbedded
in a strategy for updating our stock portfolios every investment period on
actual stock return data. We also provide a strategy, which uses our wealth
maximization algorithm, of selecting past optimal portfolios. In particular,
one may use for each month a portfolio equal to the portfolio that made the
most wealth with hindsight over a suitable number of preceding months. It
shows impressive return compared to other investment strategies, such as the
Standard and Poor 500 Index.

Constant rebalanced portfolios have played an important role in finance
literature in both arbitrary sequence analysis and in stochastic models. As
we have mentioned, their role in analysis of wealth for arbitrary return se-
quences as in Cover [8], Cover & Ordentlich [9] and Helmbold et al. [16]
is to provide a target wealth maxb ST (b) approximately reached by practical
update strategies. In stochastic analysis constant rebalanced portfolios are
shown to be optimal when stock returns are modeled as independent across
time for growth rate optimal portfolios as in Kelly [24], Brieman [4], Algoet
& Cover [2], [3], and for certain utility functions as shown in von Neumann
& Morgenstern [33],[34]. We revisit much of this literature further below.

The purpose of this paper is to provide a provably accurate algorithm for
computation of Smax

T and bmax and to provide a mixture strategy for updat-
ing portfolios which achieve wealth exponent provably close to ymax.

Our analysis uses the arbitrary sequence perspective. We show that the
maximal wealth is nearly realized by our mixture strategy for all return se-
quences with a small drop in the exponent of wealth dependent upon volatil-
ity properties of the sequence. In discussing the wealth ST (b) and its maxi-
mum Smax

T it is equivalent to work with the representation ST (b) = eTy(b) and
ST (b) = (1 + r(b))T where eTy(b) is the T th root of ST (b) (a geometric mean)
and r(b) = eTy(b) − 1 is the corresponding compounding rate of return. The
arbitrary sequence analysis may be regarded as applying to any monotone
increasing function (utility) of the multi-period wealth ST (b) as all such will
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share the same target of performance based on Smax
T and the associated op-

timal bmax. In contrast, expected utility analysis is quite a different matter.
For instance, one can have a dramatically different portfolio maximizing the
expectation of a power of ST (b) compared to maximizing the expected loga-
rithm of ST (b).

There is much previous work in portfolio theory that has focused on the
mean-variance criterion and associated efficient frontier, which was formu-
lated by Markowitz [30] as an optimization problem with quadratic objective
and linear constraints. It seeks the portfolio weights that minimize the vari-
ance for a given value of mean return or equivalently maximize the mean
return for a given variance. In this setting, variance becomes a proxy for risk
and the investor tries to maximize expected return for a given level of risk.
This forms the basis of the Sharpe-Markowitz theory of investment. Sharp
[35] gives an introduction on this topic. Goetzmann [15] discusses and gives
empirical results for this mean-variance criterion using Standard & Poor 500
stocks, corporate and government bonds and other asset classes over the pe-
riod 1970 through 1995. In Section 5 we compare the wealth achieved by
our strategy to that given in Goetzmann. Latane [25], Hakansson [17] and
Elton & Gruber [12] discuss maximization of expected geometric mean re-
turn. Bernstein and Wilkinson [6] modified the mean-variance formalism by
maximizing geometric mean return with a variance constraint.

Generally, the traditional view of finance has been that an investor shall
choose a portfolio by optimizing an expected utility function. Fishburn [14]
and Kreps [23] provide an introduction. In this literature, a utility function is
regarded as resonable if it is both increasing, because more money is better,
and concave, because investors are risk adverse. Quadratic utility and expo-
nential utility are among the most commonly used utility functions. Many
other types of utility functions have been studied, such as the von Neumann-
Morgenstern [33], [34] class of utility functions, which includes the power
utility U(s) = (sα − 1)/α for α < 1 and the logarithmic utility U(s) = log s.
These utilities are distinguished by the property that for X1, X2, . . . , XT

i.i.d. the sequence of portfolio actions best for EU(ST ) is the same as the
choice best for EU(X t · b) each period. The logarithmic utility is shown to
produce the highest growth rate of wealth in probability in Algoet and Cover
(1988), where if the X t are not i.i.d. the optimal action is to maximize the
conditional expected logarithm given the past. In the i.i.d. case one simply
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observes that the exponent yT (b) converge to EP log X · b in probability, so
any b other than b∗ = arg max EP log X · b will have exponentially smaller
growth in probability. Nevertheless, we emphasize that we do not need any
stochastic assumptions for the main conclusions of this thesis. We use as the
standard of comparison Smax

T = maxb(
∏T

t=1 xt · b). We show how to compute
it for a given sequence of returns and we give strategies for updating invest-
ment portfolios which achieve an exponent that matches what Smax

T achieves
with a drop from the maximum explicitly controlled.

2 SUMMARY OF METHODS AND RESULTS

We present our algorithm and theory for maximum wealth portfolio compu-
tation and for mixture portfolios strategies in this section.

2.1 WEALTH MAXIMIZATION THEORY

We first introduce a tool for constructing an asset index, namely the compu-
tation of Smax

T = maxb ST (b). It is an algorithm, which, when given a series of
returns in T periods for M stocks, determines the rebalancing portfolio that
would have made the maximal wealth for these stocks in that time frame.
We will show that the total computations needed to achieve the targeted
accuracy ε by our algorithm is Nnew(ε) = cMT/ε. Here c will depend on the
sequence of returns x1 · · ·xT and is not a universal constant. Nevertheless,
we argue that for moderate accuracies ε the typical computation time is such
that the cMT/ε is much smaller than the computation time TM4.5 log(M/ε)
guaranteed by an interior point method.

Our algorithm is a multi-step stock selection procedure during which
at each step we select one stock from all M stocks. We let Sk

T denote its
multiperiod wealth after k steps. The stock selected at step k may be either
a stock already selected or a previously unselected stock. For k = 1 we put
full weight α1 = 1 on the best single stock. Then for k ≥ 2 the incremental
contribution to the portfolio weight of the selected stock is αk = 2/(k +
2). Correspondingly, the portfolio weight of previously selected stocks is
downweighted by the factor 1 − αk = k/(k + 2). This yields a portfolio bk

and portfolio returns Zt,k = xt · bk for t = 1, . . . , T with contribution to
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the wealth only from the selected stocks. The compounded wealth with this
portfolio is Sk

T = ST (bk). The algorithm is greedy in that at step k the stock
i = ik selected is the one that (given the k−1 previous choices) yields the best
such multiperiod portfolio return

∏T
t=1 [(1 − αk)Zt,k−1 + αkxt,i] that balances

the previous portfolio with the newly chosen stock. Here the portfolio return
is updated by Zt,k = (1 − αk)Zt,k−1 + αkxt,ik and its product Sk

T =
∏T

t=1 Zt,k

is its multiperiod wealth factor. Instead of the prespecified αk = /(k + 2) we
are free alternatively to optimize over choices 0 ≤ αk ≤ 1 for each k ≥ 2.
As we shall see the bound we develop holds in either case. Now we give our
wealth maximization theorem.

Theorem 1 Let a sequence of return vectors x1, . . . , xT be given and let Smax
T

and Sk
T be defined as above. Our k step algorithm provides a portfolio bk for

which

0 ≤ 1

T
log

Smax
T

Sk
T

≤ c2

k + 3
(2)

or equivalently,

Smax
T ≥ Sk

T ≥ Smax
T e−T c2

k+3 , (3)

where c2 = 4I log(2v
√

e). Here I = 1
T

∑T
t=1

∑M
i=1 bmax

i ( xt,i

bmax·xt
)2 and v =

max1≤t≤T,1≤i,j≤M{xt,i/xt,j} are empirical measures of volatility which depend
on the sequence of returns x1, . . . , xT . They are constants in the sense that
they do not depend on the number of iterations k.

Concerning the quantities I and v that arise in the definition of c one may
think of I an average squared empirical relative volatility of only the stocks
that arise in the optimal bmax. Likewise v = maxt,i,j xt,i/xt,j is a worst case
relative volatility over all candidate stocks. The appearance of this v in the
bound is somewhat bothersome but we are pleased that at least it appears
only through a logarithm.

To summarize the conclusion of Theorem 1, the wealth that would have
been achieved at bk has a drop from the maximal wealth exponent by not
more than c2

k+3
. Furthermore, Sk

T converges to Smax
T as k → +∞. We em-

phasize that Smax
T and its approximation Sk

T are indices based on historically
given return sequences. It can also be conceptualized as a target level of
(possibly unachievable) performance for future periods.
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Next we develop portfolios updated each time period and relate their ex-
ponential growth to that of Smax

T . Further details of the algorithm and proof
of Theorem 1 are given in Section 3.

2.2 UNIVERSAL PORTFOLIOS

Cover’s universal portfolio update strategy [8] gives (initially equal) weight to
all portfolios that use all M stocks and each time period updates the weights
given to portfolios by the wealth achieved thus far. For Cover’s universal
portfolio strategy to achieve a nearly maximal wealth exponent, the number
of periods T needs to be large compared to M . Moreover, computation of the
full mixture is a challenge. Now we will develop a universal portfolio strategy,
in which we form a mixture of portfolios involving subsets of the stocks, with
weights determined by the wealth achieved by these subset portfolios. As we
shall see the wealth achieved by certain subsets is nearly maximal. As a con-
sequence our algorithm is shown to achieve wealth near the maximum. This is
possible when T is large compared to log M even if M is large compared to T .

Our strategy is to build a mixture of portfolios involving subsets of all
stocks, with weights determined by wealth achieved by these subset portfo-
lios. Let i1, . . . , ik be the indices of a subcollection of the M stocks in which
repeats are allowed. There are Mk such ordered subcollection and our strat-
egy distributes wealth (initially equally) across all of these subcollection. For
each ordered subcollection we provide portfolios weights to which these as-
sets are rebalanced. The resulting wealth Smix

T,k after T investment periods is
obtained by adding up the multi-period contribution from each subcollection.
Further details on this construction are in Section 4.1.

One may think of there being a portfolio manager for each of the subcol-
lection of stocks, each of whom is contracted to follow a prospectus specifying
particular portfolio weights to which the stocks are to be rebalanced each pe-
riod. Our wealth then is the sum of the wealths achieved by each of these
managers, weighted by the (equal) fraction of our money initially placed in
these funds. The mixture produces at the start of each period a portfolio de-
pending only on the returns up to that time. An alternative implementation
is to compute that portfolio update each period and buy and sell as needed
to achieve it.
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We emphasize the distinction between the wealth Smix
T,k which is achiev-

able (either as a mixture of funds or as an updating rule depending only on
available return history each period) and the unachievable wealths ST,k and
Smax

T which we use as target wealths. The following theorem gives a sense in
which Smix

T,k is near Smax
T for every reasonable return sequence provided the

number of time periods T is large compared to the logarithm of the number
of candidate stocks.

Theorem 2 For our mixture strategy, there are choices of k of order
√

T/ log M

such that at time T we achieve a return Smix
T,k which has a wealth exponent

that drops from Smax
T by not more than order

√
log M

T
. Specifically,

Smix
T,k ≥ Smax

T e−T (a
√

log M
T

) (4)

where a = 2c and c is the function of stock return relative volatility specified
in Theorem 1.

If we have prior knowledge of the value of c determined by the stock re-

turn relative volatility, we could set k = c
√

T/ log M which would optimize

our bound on the drop to be 2c
√

(log M)/T where c is as given in Theorem
1. Prior knowledge of the value of c is generally not available. Thus we

may use k =
√

T/ log M , which also leads to the same order bound (albeit

with a dependence on volatility with c2 in place of c). Alternatively we may
adapt to what is achieved by the best k, by distributing our initial wealth
according to a prior q(k) on the subcollection size k = 1, . . . ,M . That is
Smix

T =
∑M

k=1 q(k)Smix
T,k . For example when q(k) equals 1/M , we distribute

initial wealth evenly across all k. Both the fixed k and this adaptive strategy
are shown to provide the bound in the proof of Theorem 2 which is given in
Section 3. Strengthening of the conclusions is also given there. In particular

we see that in fact Smix
T,k ≥ M2Smax

T e−T (a
√

log M
T

) which is larger by the factor
M2

The Cover and Ordentlich [9] universal portfolio strategy achieves a wealth
exponent that is within

M − 1

2T
log

T

2π
+

cM

T
(5)
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of the maximum wealth exponent ymax. Compared to our mixture, their
universal portfolio achieves an exponent closer to ymax for T large compared
to M . However, an often more realistic setting has M large compared to
T , but T large compared to log M . In this case, our mixture strategy drop√

log M
T

is smaller. A slight refinement of expression (5) is minimax optimal
(as shown in Xie and Barron [36]) where in the minimax formulations the
maximum is taken over all possible return vectors. Indeed we emphasize
that the Cover and Ordentlich (and the Xie and Barron) portfolio strategies
achieve the bound on the drop in wealth exponent relative to the maximum
uniformly over all return sequences. Our improvement (in which the M is
replaced by a log M) is not uniform over all return vectors but rather it de-
pends on the observed volatility. Our analysis is related in that we also use a
mixture based portfolio based on an initial distribution π on the set of par-
tition b in the simplex {b : bi ≥ 0,

∑M
i=1 bi = 1}. The difference is that our π

is discrete with points on faces of the simplex determined by subsets of stocks.

Helmbold et al. [16] showed a similar exponent drop bound when us-
ing the following portfolio updating rule at time t with learning rate η =

2c′
√

2(log M)/T

bt+1,i =
bt,i exp(ηxt,i/bt · xt)∑M

j=1 bt,j exp(ηxt,j/bt · xt)
(6)

where c′ = min xt,i for all t ≥ 1 and i ≥ 1. The choice of proper η requires
the knowledge of both the price relative volatility bound c′ and the number
of trading periods T .

Having outlined above our conclusions for wealth maximization and for
mixture portfolios, we turn in the next two sections, respectively, to develop
these two theories in further detail. A key feature is that one rarely needs
more than a few stocks. We will show experiments in Section 5 based on our
algorithm with real stock market data.

3 WEALTH MAXIMIZATION ANALYSIS

This section focuses on the computational task of wealth maximization, that
is, the computation of Smax

T = maxb ST (b) and the determination of the re-
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balancing portfolio bmax which would achieve this maximum. When given a
series of return in T periods for M stocks, this maximization determines the
portfolio that would have achieved the maximal wealth for these stocks in
that time frame. We relate the computation task to concave optimization,
we give further details of our algorithm, and we prove Theorem 1. The total
computations needed to achieve the targeted accuracy ε by our algorithm
is Nnew = cTM/ε which is typically much smaller than the TM4.5 log(M/ε)
guaranteed by the interior point method.

3.1 CONCAVE OPTIMIZATION AND THE INTE-
RIOR POINT METHOD

For any given sequence of returns xt, our interest is to determine the portfo-
lio which maximizes ST (b), which is equivalent to maximizing the log-wealth
function, given by y(b) = 1

T
log ST (b) = 1

T

∑T
t=1 log(b · xt). We will develop

an optimization of ST (b), taking advantage of the fact that y(b) is a concave
function of b constrained to the (M−1)-dimensioned simplex of values where
bi ≥ 0 and 1 −∑M−1

i=1 bi ≥ 0.

One approach to concave optimization is by existing general purpose
algorithms. Consider optimization problems of the following form: b̂ =
argmax y(b) where the n-dimensional parameter b is constrained to a convex
set. In particular we may have an optimization problem of the form:

maximize y(b)

subject to yi(b) ≥ 0, i = 1, · · · ,M, (7)

where the functions y, y1, · · · , yM : Rn → R are concave.

The interior-point method achieves optimization by going through the
middle of the solid defined by the problem rather than around its surface.
General polynomial algorithm for concave maximization subject to convex
constraints have existed since 1976 by Nemirovski and Yudin [37],[38] (who
developed the ellipsoidal method). Subsequently, Karmarkar [22] announced
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a fast polynomial-time interior method for linear programming which is re-
lated to classical barrier methods. Later, Nesterov and Nemirovski [32] ex-
tended interior-point theory to cover general nonlinear convex optimization
problems. The method of solution involves Newton algorithm steps applied
to the objective function with a logarithmic barrier penalty with a particular
schedule of values of Lagrange multipliers. In [38] they show that for solving
the problem (7) with a specified accuracy ε, the total number of operations
N(ε) satisfies

N(ε) ≤ CM1/2(Mn2 + n3) ln(
2MB

ε
). (8)

where C and B are constants. In their analysis, each call to a subroutine to
evaluate a function y(b) or yi(b) is regarded as one operation. In our stock
setting each evaluation of y(b) requires T times M elementary operations,
where T is the number of time periods and M is the number of stocks. In
this case the dimension n and the number of constraints are both of order M ,
the number of stocks. So the total computation time bound for the interior
point method is of order

N(ε) = CTM4.5 log(M/ε). (9)

We will contrast the computation time with what is achieved by our algorithm
in seeking Smax

T .

3.2 DETAILS OF THE ALGORITHM

As discussed in the introduction, our algorithm is an iterative procedure to
select stocks into the new portfolio. We select only one stock at each step,
where the stock selected may be among the previously selected stocks (but
assigned new weight) or it may be a stock not previously selected by the
algorithm.

Let Sk
T be the wealth of the newly constructed portfolio at the end of kth

step. We know that,

Smax
T = ST (bmax) = eTymax

(10)

where ymax = y(bmax).
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We show that for each sequence of stock wealth factor x1, x2, · · · , xT , there
is a c = c(x1, x2, · · · , xT ), such that,

Sk
T ≥ eT (ymax−c2/(k+3)) (11)

By inequality (11), we see that after k steps, we are assured a wealth
exponent within c2/(k + 3) of the maximum.

Portfolios with one stock correspond to vectors b which are non-zero in
only one of the M -coordinates, where the weight assigned is trivially α1 = 1.
The wealth exponent y1 in the single stock case is equal to 1

T

∑T
t=1 log xt,i.

The first step picks the i = i1 among {1, . . . ,M} at which this is largest.
The initial portfolio returns (with k = 1) are Zt,1 = xt,i1 for t = 1, 2, . . . , T .

Likewise in the second step, given i1, we select stock i2 among {1, . . . , M}
together with a weight α2 ∈ [0, 1] to maximize the resulting y(b) which now
takes the form

1

T

T∑
t=1

log [(1 − α2)xt,i1 + α2xt,i2 ] . (12)

The current portfolio b is now non-zero in at most two coordinates. The
portfolio returns (with k = 2) are now Zt,2 = (1 − α2)xt,i1 + α2xt,i2 for
t = 1, 2, . . . , T . The corresponding stocks in our portfolio after step 2 are i1
and i2 (the two could be the same stock).

In the general step k, we select stock i = ik among {1, . . . ,M} with a
weight αk ∈ [0, 1] to optimize the wealth

yk =
1

T

T∑
t=1

log [(1 − αk)Zt,k−1 + αkxt,ik ] (13)

where Zt,k−1 is the portfolio return for period t at step k − 1. Similarly,

Zt,k = [(1 − αk)Zt,k−1 + αkxt,ik ] . (14)

After k steps the contribution from a previous steps j to the the portfolio
weight for stock ij is αj ·∏k

m=j+1(1−αm) for j = 1, . . . , k− 1. Therefore, our
k-step portfolio αk for the k selected stocks is

αk =

(
α1 ·

k∏
m=2

(1 − αm), . . . , αk−1(1 − αk), αk

)
. (15)
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Recognizing that our procedure permits a stock to be revisited as the selec-
tion, we see that the total weight for stock i in the resulting portfolios bk

is

bi,k =
k∑

j=1

1{ij=i} · αj

k∏
m=j+1

(1 − αm), (16)

where at j = k the empty product is interpreted as equal to 1. The associated
return is Zt,k = bk ·xt =

∑k
i=1 bi,kxt,i and yk = y(bk). Consequently, our multi-

period portfolio return achieved after step k is given by Sk
T = eTy(bk), where

y(bk) =
1

T

T∑
t=1

log bk · xt =
1

T

T∑
t=1

log Zt,k. (17)

We can see that during each step of the iterative procedure, we only con-
sider two components, one of which is the combination of stocks which has
already been selected (with their previously determined relative weights), the
other one is the selected stock from {1, . . . ,M}. The newly selected stock
may be either new or the one which has been already selected. In the latter
case, the optimization steps serves to adjust the weight of the selected stocks
relative to the others. The wealth factor Sk

T after k steps is close to the max-
imum Smax

T in the sense that it has an exponential drop of order c2/(k + 3)
as shown in (2). Consequently with k increasing, our Sk

T converges to the
maximum Smax

T .

As we have now our optimization procedure, the next thing is to know
how close the wealth achieved after k steps is to Smax

T .

3.3 PROOF OF THE WEALTH MAXIMIZATION BOUND

We define Dk as the average logarithm ratio of bmax · xt and bk · xt for t =
1, . . . , T . That is

Dk =
1

T

T∑
t=1

log
bmax · xt

bk · xt

=
1

T
log

Smax
T

ST (bk)
. (18)

Theorem 1 states a bound on Dk of c2/(k + 3). We prove this theorem
through the following lemmas.
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Lemma 1 Suppose a sequence of nonnegative numbers Dk, with k ≥ 1, sat-
isfies

Dk ≤ (1 − α)Dk−1 + α2c2/4 (19)

for all α ∈ (0, 1) and k ≥ 2, for some c which is independent of k. Also
suppose D1 ≤ c2/4, then we have for all k ≥ 1

Dk ≤ c2

k + 3
. (20)

Proof : We proceed by induction. First, the bound holds by assumption
when k = 1. Now suppose Dk−1 ≤ c2

k+2
for k ≥ 2. Then invoking (18) with

α = 2
k+2

Dk ≤ (1 − 2

k + 2
)

c2

k + 2
+

c2

(k + 2)2

= c2 ·
[

k

(k + 2)2
+

1

(k + 2)2

]

=
c2

k + 3
· k2 + 4k + 3

(k + 2)2

≤ c2

k + 3
.

Though the statement of Lemma 1 requires the inequality (20) to hold for
all α ∈ (0, 1), we see from the proof that having (20) hold for α ≤ 1/2 and
indeed for the particular choice αk = 2/(k + 2) with k = 2, 3, . . . is sufficient
for the validity of the claim.

To show Theorem 1 from Lemma 1, we prove that Dk defined as in expres-
sion (18) indeed satisfies the requirement of inequality (19). Demonstration
of this property of Dk is the focus of our remaining efforts in this section.

Here we need some useful inequalities for pairs of nonnegative real num-
bers.

Lemma 2 For all numbers r, r0 with 0 < r0 ≤ r, we have the inequality

− log r ≤ −(r − 1) + [
− log r0 + r0 − 1

(r0 − 1)2
](r − 1)2. (21)
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Lemma 3 For all r > 0, the following inequality holds

2[
− log r + r − 1

r − 1
] ≤ log r. (22)

Lemma 4 For all r > 0, we have

− log r + r − 1

(r − 1)2
≤ 1/2 + max(0,− log r). (23)

Here, in accordance with extension by continuity, the expression − log r+(r−1)
(r−1)2

is taken to be 1/2 at r = 1 and likewise − log r+(r−1)
r−1

is taken to be 0 at r = 1.

Remark Li and Barron [25] use the same inequalities as above but differ-
ent setting in their work on mixture density estimation. Li and Barron [25]
originated the technique we use here. They showed that for mixture den-
sity estimation, a k-component mixture estimated by maximum likelihood
achieves log-likelihood within order 1/k of the log likelihood achievable by
any convex combination.

For our analysis, we define rt as the ratio of our portfolio return to the
optimal portfolio return at time t at step k when stock i is introduced, that
is,

rt =
(1 − α)Zt,k−1 + αxt,i

bmax · xt

. (24)

Also let r0,t =
(1−α)Zt,k

bmax·xt
where 0 < r0,t ≤ rt and 0 ≤ α ≤ 1 and where Zt,k−1

and bmax are as defined in the previous subsection. Now we can start to show
our main result. Plug rt and r0,t into (21) and use (22) to obtain

− log rt ≤ −(rt − 1) + [
− log(r0,t) + r0,t − 1

(r0,t − 1)2
](r0,t − 1 +

αxt,i

bmax · xt

)2

= −(r0,t − 1 +
αxt,i

bmax · xt

) + (− log r0,t + r0,t − 1)

+(
αxt,i

bmax · xt

)2(
− log r0,t + r0,t − 1

(r0, − 1)2
) +

2αxt,i

bmax · xt

(
− log r0,t + r0,t − 1

r0,t − 1
)

≤ − log r0,t − αxt,i

bmax · xt

+ (
αxt,i

bmax · xt

)2(
− log r0,t + r0,t − 1

(r0,t − 1)2
)

+
αxt,i

bmax · xt

log r0,t (25)
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This − log rt appears in our update rule for Dk. Indeed, by the definition
of Dk (equation (18)) with ik is chosen to maximize expression (13). We have
that

Dk ≤ min
i

Dk,i (26)

where

Dk,i =
1

T

T∑
t=1

[
− log

(1 − α)Zt,k−1 + αxt,i

bmax · xt

]
. (27)

This minimum is not less than the weighted average of Dk,i for any weights
that add to 1 for i = 1, 2, . . . , M . In particular, the minimum is smaller than
the average using bmax. Hence a sequence of inequalities can be given as
follows,

Dk ≤
M∑
i=1

bmax
i Dk,i

=
1

T

T∑
t=1

M∑
i=1

bmax
i

[
− log r0,t − αxt,i

bmax · xt

+(
αxt,i

bmax · xt

)2(
− log r0,t + r0,t − 1

(r0,t − 1)2
) +

αxt,i

bmax · xt

log r0,t

]

= − log(1 − α) − α + α log(1 − α) + (1 − α)Dk−1

+
α2

T

T∑
t=1

M∑
i=1

bmax
i (

xt,i

bmax · xt

)2(
− log r0,t + r0,t − 1

(r0,t − 1)2
)

≤ (1 − α)Dk−1 +
α2

T

T∑
t=1

M∑
i=1

bmax
i (

xt,i

bmax · xt

)2(
− log r0,t + r0,t − 1

(r0,t − 1)2
)

where the last inequality is established by noting that (α−1) log(1−α)−α ≤ 0
for α ∈ [0, 1].

Write

I =
1

T

T∑
t=1

M∑
i=1

bmax
i (

xt,i

bmax · xt

)2 (28)

and
v = max

1≤t≤T,1≤i,j≤M
{xt,i/xt,j}. (29)
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Let xt,max = maxi{xt,i} and xt,min = mini{xt,i}. Since
∑M

i=1 bmax
i xt,i ≤ xt,max

and likewise Zt,k−1 ≥ xt,min, we have by Lemma 4 that

− log r0,t + r0,t − 1

(r0,t − 1)2
≤ 1/2 + log−(r0,t)

= 1/2 + log+

∑M
i=1 bmax

i xt,i

(1 − α)
∑M

i=1 bi,k−1xt,i

≤ 1/2 + log 2v

= log 2v
√

e

Thus the inductive inequality Dk ≤ (1−α)Dk−1 +α2c2/4 is obtained, where,

c2 = 4I log 2v
√

e. (30)

As mentioned before, Dk is the normalized log-wealth ratio, so we con-
clude that

Dk =
1

T
log

Smax
T

Sk
T

≤ c2

k + 3
. (31)

That is,

Sk
T ≥ Smax

T e−T c2

k+3 . (32)

So we showed the proof of Theorem 1, which says that Sk
T approximates Smax

T

with an exponent that is less than the maximum by not more than c2/(k+3).

Regarding the quantities I and v we note that

I =
1

T

T∑
t=1

M∑
i=1

bmax
i (

xt,i

bmax · xt

)2

=
1

T

T∑
t=1

∑M
i=1 bmax

i xt,i

bmax · xt

(
xt,i

bmax · xt

)

≤ 1

T

T∑
t=1

max
1≤i≤M

(
xt,i

bmax · xt

)
(33)

which in turn is not more than v. Thus I is the mildest of these volatil-
ity expressions depending only on relative return of stocks in the portfolio
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bmax relative to the portfolio return bmax · xt. In contrast the bound (33)
depends on the maximum relative return over all stocks (though still relative
to bmax · xt) and the coarsest measure of volatility v depends on the worst
case ratio overall.

We complete our discussion of the wealth maximization algorithm by
noting its computation time. The aim is to find a b that achieves a value
for y(b) = 1

T

∑T
t=1 log b · xt that is within ε of the maximum. Our algorithm

after k steps achieves |y(bk) − y(bmax)| ≤ c2/k, that is, k ≥ c2/ε suffices for
the stated aim. During each step, the number of computations equals the
number of periods T times the number of candidate stocks M . Therefore,
the total number of computations needed to reach the accuracy of ε is in the
form of Nnew(ε), where

Nnew(ε) =
c2MT

ε
(34)

When compared with the time bound (9) for the interior-point method,
we see that while (9) has the advantage of logarithmic dependence on 1/ε.
Our algorithm is superior for large M . Also our algorithm time depends
specifically on the volatility quantity c. Our procedure is better when the
number of stock M is large.

4 MIXTURE PORTFOLIO ANALYSIS

We have seen that Cover’s universal portfolio analysis requires the number
of stocks M to be small compared to investment periods T in order to insure
that the wealth exponent achieved is close to ymax. However, when dealing
with thousands of stocks and hundreds of time periods, M is large compared
to T , but log M is reasonably small compared to T . Then our mixture port-
folio strategy provides a better bound.

The Cover [8] and Cover & Ordentlich [9] strategies use a sequences of
Bayes-like portfolio update rules.

b̂t =

∫
bSt−1(b)π(b)db∫
St−1(b)π(b)db

(35)

where π(b)db is a density function on the (M − 1)-dimensional simplex of all
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portfolio b.

A remarkable property they show for these sequences of portfolios is that
the associated actual wealth Suniv

T =
∏T

t=1 b̂t · xt also equals

∫
ST (b)π(b)db (36)

Equivalently, one may think of π with
∫

π(b)db = 1 as providing an initial
distribution of wealth across portfolios for which we subsequently accumulate
the total wealth

∫
ST (b)π(b)db.

Now ST (b) is a highly peaked function of b. Laplace-type approximation
is then used by them in [8] and [9] (with refinement in [36]) to show that
to first order this integral is determined by Smax

T and to quantify the drop
from that maximum associated with the weighted average. The refinements
in [9] and [36] show that for suitable π (close to Dirichlet(1/2, . . . , 1/2)) the
universal portfolio achieves

Suniv
T ≥ eT [ymax−M−1

2T
log(cMT )]. (37)

Our analysis is related in that we also use a mixture based portfolio. The
difference is that our π is discrete with points on faces of the simplex deter-
mined by subsets of stocks. In this section, we bound our mixture strategy
performance.

As we have written in Section 2, we allocate our wealth across all sub-
groups of size k, which are constructed by selecting k stocks (j1, . . . , jk).
There will be a total of Mk subgroups with size k when repeating is allowed.
Let S

(j1,...,jk)
T be the wealth associated with the choice (j1, . . . , jk) where the

portfolio is determined by the following weight vector

αk =

(
6

(k + 1)(k + 2)
,

6

(k + 1)(k + 2)
,

8

(k + 1)(k + 2)
, . . . ,

2

k + 2

)
. (38)

Here the coordinates follow the pattern αi,k = 2(i+1)
(k+1)(k+2)

for i = 2, . . . , k − 1.
These are the weights that arise by initializing α1,1 = 1 and then for k > 1
obtaining αk by multiplying αk−1 by k

k+2
and setting the new coordinate to

2
k+2

. For example for k = 5 this αk is ( 3
21

, 3
21

, 4
21

, 5
21

, 6
21

). These weights give
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more attention to recent iterations than earlier ones. [In contrast if αk were
formed by multiplying αk−1 by k−1

k
and setting the new coordinates to 1

k
then

all k coordinates of αk would be equal.]

We create two types of mixtures, one in which k is prespecified and an-
other in which we mix across k. For the prespecified k, we give equal initial
allocation 1/Mk on each subgroup. Thus after T investment periods, we will
have the wealth Smix,k

T , where

Smix,k
T =

1

Mk

∑
(j1,...,jk)∈{1,...,M}

S
(j1,...,jk)
T . (39)

To explain the idea of this mixture we contrast it with Sk
T = S

(j∗1 ,···,j∗k)

T where
(j∗1 , · · · , j∗k) are the indices of the stocks selected the first k steps of the
greedy algorithm. That choice of j∗1 , · · · , j∗k depends on the entire return
sequence x1, x2, . . . , xT . The mixture overcomes the lack of advanced knowl-
edge of which choice will perform well by giving some weight (1/Mk) to every
(j1, . . . , jk). Accordingly we find that

Smix,k
T ≥ 1

Mk
Sk

T . (40)

Proof of Theorem 2: First we are to show that there is a k such that

Smix,k
T ≥ Smax

T e−T2c
√

log M
T

= eT [ymax−2c
√

log M
T

].

For any k ≥ 1, among the subgroups we mix across it will happen that
one of them will be the particular one (j∗1 , . . . , j

∗
k) that arises by our greedy

algorithm in Theorem 1. Then invoking our bound on its wealth we have

Smix,k
T =

1

Mk

∑
(j1,...,jk)∈{1,...,M}

S
(j1,...,jk)
T

≥ 1

Mk
max

(j1,...,jk)
S

(j1,...,jk)
T

≥ S
(j∗1 ,...,j∗k)

T

1

Mk

≥ Smax
T e

−T

[
c2

k+3
+ k log M

T

]
.

(41)
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Now among real-valued k the best such bound would be at k∗ = c
√

T
log M

− 3

which would yield

Smix,k
T ≥ M3Smax

T e−T2c
√

log M
T . (42)

This is even better than claimed by the factor M3. When that k∗ is not an
integer we take the integer k = k̃∗ between c

√
T

log M
− 3 and c

√
T

log M
− 2 and

achieve
Smix,k

T ≥ M2Smax
T e−T2c

√
log M

T . (43)

When prior knowledge of c is not available, we may use k =
√

T/ log M − 3

(rounding up to an integer if need be), which also results the same order
bound. That is,

Smix,k
T ≥ M2Smax

T e−T (c2+1)
√

log M
T

= M2e
T

[
ymax−(c2+1)

√
log M

T

]

Rather than using a fixed size k, when c is unknown, it is preferrable
to mix across choices of k. We may distribute our initial wealth according
to a prior q(k) on the subcollection size k for k = 1, . . . ,M . This mixing
procedure leads to wealth Smix

T after T investment periods, where

Smix
T =

M∑
k=1

q(k)Smix
T,k . (44)

We can take a uniform prior q(k) = 1
M

yielding

Smix
T =

M∑
k=1

1

Mk+1

∑
j1,...,jk∈{1,...,M}

S
(j1,...,jk)
T (45)

As shown in Section 2.1, we have the inequality 1
T

log
Smax

T

Sk
T

≤ c2

k+3
. Thus

1

T
log

Smax
T

Sk
T

≤ c2

k + 3
. (46)

Equivalently, Sk
T ≥ Smax

T e−T c2

k+3 . Hence using the same argument as above
we have,

Smix
T ≥

M∑
k=1

1

Mk+1
Smax

T e−T c2

k+3
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=
M∑

k=1

Smax
T

M
e−T [ c2

k+3
+ k log M

T
]

≥ Smax
T

M
e
−T [ c2

k̃∗+3
+ k̃∗ log M

T
]

≥ MSmax
T e−T ·2c

√
log M

T (47)

= Me
T

[
ymax−2c

√
log M

T

]
.

This complete our proof of Theorem 2.

In the next section, we apply both our wealth maximization algorithm
and the mixture strategy to real stock data from Wharton Research Data
Services.

5 EXPERIMENTS WITH REAL MARKET

DATA

In this section, we conduct several experiments with real stock data to exam-
ine historical stock performance with our wealth maximizing algorithm and
to test the performance of our mixture portfolio strategy and some other
practical strategies.

5.1 MIXTURE STRATEGY EXPERIMENTS

First for illustrative purpose, we examine investment in Standard and Poor
500 stocks. The stock price information is from the Wharton WRDS on-
line data base. First we examine the consequence of following our mixture
strategy over 10 year period from January 1996 through December 2005.
From Figure 1, we can see that our mixture portfolio multiplies wealth by
the factor Smix

T = 6.10 (e.g. a $1000 initial investment would have be-
come $6, 100). Here we are rebalancing monthly the portfolios of subsets
of these stocks and aggregates them together at the end. The mixture we
form (with k = 3) totals the wealth from all 5003 subsets with repeats al-
lowed. [Thus each of the subsets is given initial weight 1

5003 ]. For this mixture
strategy he wealth factor 6.10 for these ten years coincides with an com-
pounding annual return of about 19.82%. In contrast the S&P 500 index
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Figure 1: Performance of The Mixture Portfolio Strategy Smix
T on S&P500

for T = 1 to 120 months

increased by a factor of 1.96 (equivalent to compounding annual return of
6.9%). Using the weights specified by our mixture strategy the best sub-
set stocks among all are Dell Inc., Jabil Circuit Inc. and Qlogic Corp. which
with weights (0.3, 0.3, 0.4) had wealth factor ST = 125.1. Now a wealth fac-
tor of 125 though large is swamped by the division by 5003, so in this case the
mixture strategy is making its reasonable wealth factor 6.10 by aggregating
the wealth from many good triplets of stocks.

So that the mixture strategy represents an achievable wealth we needed
to incorporate a rule for handing stocks (among the S&P 500) that are ac-
quired or otherwise replaced from the S&P (but still traded). Our rule was
to continue to follow the 500 stocks that comprised the S&P 500 in January
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1996. When a stock i is delisted at month t0, we convert it to cash using the
price after delisting reported in the WRDS database (and thereafter use a
cash wealth factor of xt,i = 1 for t > t0). When a stock i is acquired at some
month t0 we convert it to stocks in the acquiring company (and thereafter
use the return of the acquiring company in place of stock i, where if the
acquiring company was already on of the initial 500, we give it an index i′,
then its return are used for both xi,t and xi′,t for t > t0).

Over the same 10 year time period for stocks listed in NASDAQ-100 In-
dex (We are using all stocks that have been included in the index. For those
delisted, we use delisting price and replace them with new ones), the mixture
strategy achieves a wealth factor of 9.9 corresponding to a compounding an-
nual return of 25%.

Next we examine investment in Standard and Poor 500 stocks over the
26 years period from January 1970 through December 1995 with rebalancing
monthly among subsets of these stocks. This time frame is chosen for com-
parison with result of Goetzmann (1996). Our mixture portfolio multiplies
wealth by a factor of 34.4, which is equivalent to an annual compounding
rate of return of 14.7%. Goetzmann chose hisportfolio according to a mean-
variance criterion. He reports a 12% annual return, which is the average
return for these periods instead of the actual compounding rate. As we
know, the arithmetic mean is always greater than the geometric mean. That
is,

1

T

T∑
t=1

b · xt ≥ (
T∏

t=1

b · xt)
1
T

= ey(b)

= 1 + r(b).

Thus the actual compounding rate of return is less than the empirical aver-
age return. In particular, for Goetzmann’s strategy the actual compounding
rate of return which is not reported must be not more than 12% per year
whereas our rate of 14.7% is higher. In our work we use only those stocks
listed in S&P 500 for the entire period from January 1970 through December
1995. It is not clear how Goetzmann handles those stocks delisted from S&P
500 during this period.
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A critic might complain that maximization of y(b) = 1
T

∑T
t=1 log(b · xt)

does not have a variance constraint. Nevertheless we hasten to point out
that the average logarithm (as arise in maximization of ST (b)) is a more risk
adverse criterion especially for b ·xt near 0 than quadratic utilities. Such risk
adversion in y(b) is necessary for identifying the highest attainable rate of
growth for constant rebalanced portfolios.

Also we point out that the 14.7% return is the return attained by the
mixture strategy which can be regarded as updated each period based only
on preceding performance. In contrast the 12% average return given by
Goetzmann is based on hindsight for the whole 26 year period. We turn
attention next to what would be the best growth rate with hindsight.

5.2 MAXIMUM WEALTH INDEX CALCULATION

Now we compute the maximum constant rebalanced portfolio wealth factor
Smax

T = maxb ST (b) for the ten year period from January 1996 through De-
cember 2005, rebalancing monthly (that is for T = 120 months). We first use
as the pool of stocks those that have been included as Standard and Poor
500 stocks with their monthly return as reported by the Wharton data base.
We find that with 3 or 4 stocks the greedy algorithm comes reasonably close
to the maximum.

Indeed from Table 1, we see that the algorithm only needs k = 4 with
three stocks to achieve a wealth factor Sk

T of 1606.96. Further optimiza-
tion, for instance to k = 16 steps reaches a factor Sk

T of 1618.39 with only
five stocks. These stocks are Biogen Idec Inc. (BIIB), Citrix Systems Inc.
(CTXS), Network Appliance Inc. (NTAP), Apoppo Group Inc. (APOL) and
Dell Inc. (DELL). In this implementation for k > 1 we allowed αk to be freely
adjusted between 0 and 1/2 (here we used a fine grid of spacing 1/10000)
rather than fixed at αk = 2

k+2
(either way is permitted by our theory). Each

step tries every stock for possible new inclusion or tunes an existing stock
weight (relative to the others), whichever is best. For these data, the algo-
rithm found no advantage after step 15 for including any additional stocks
beyond the indicated five. Thus confirming that we were already very close
to the maximum with a handful of steps.
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k Stocks in Portfolio at Each Algorithm Step Wealth Factor Sk
T

1 BIIB 155.97
2 BIIB, CTXS 942.90
3 BIIB, CTXS, NTAP 1585.51
4 BIIB, CTXS, NTAP 1606.96
5 BIIB, CTXS, NTAP 1613.13
6 BIIB, CTXS, NTAP 1615.14
7 BIIB, CTXS, NTAP, APOL 1616.54
8 BIIB, CTXS, NTAP, APOL 1617.17
· · · · ·
· · · · ·
· · · · ·

14 BIIB, CTXS, NTAP, APOL 1618.31
15 BIIB, CTXS, NTAP, APOL, DELL 1618.38
16 BIIB, CTXS, NTAP, APOL, DELL 1618.39
· · · · ·
· · · · ·
· · · · ·

1000 BIIB, CTXS, NTAP, APOL, DELL 1618.41

Table 1: Wealth Maximization Algorithm

The volatility quantities I and log(v) in this This wealth growth of
Smax

T = 1618.4 over the T = 120 months reflects a monthly wealth expo-
nent of ymax = 1

120
log 1618.4 = 0.0615 or equivalently an annualized return

of (1618.4)
1
10 = 2.09, that is, 109% growth per year. Though surprisingly

high, we must emphasize that the tradeoffs required for achievable wealth are
sobering, even in this example. Indeed consider the mixture wealth bound

from Theorem 2. With M = 500 stock,
√

(log M)/T =
√

0.05 = 0.22 so

even if c2 were near I = 1.04 the bound on the drop in exponent swallows
the otherwise spectacular gain of ymax. Over the same 10 year time period
when maximizing on stocks listed in NASDAQ-100 Index the best constant
rebalanced portfolio achieved a wealth factor of 2342.8 (with I = 1.11 and
log(v) = 7.58). This corresponds to a compounding annual return of 217%.

We also computed the maximum constant rebalanced portfolio wealth
with monthly rebalancing for the twenty year period from January 1986
through December 2005 for Standard and Poor 500 stocks. At step k = 4 it
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T and Sk

T for k = 1, . . . , 25

uses the fours stocks, Apple Inc.(AAPL), Countrywide Financial Corp. (C-
FC), Roclwell Automation. (ROK) and RadioShack Corp. (RSH), to achieve
a wealth factor Sk

T of 1667.09. There are five more stocks, MBNA Corp. (KR-
B), Safeway Inc. (SWY), Synovus Financial Corp. (SNV), American Bank-
ers Ins Group Inc. (ABI), and Keyspan Energy Corp.(KSE), when further
optimized to 21 steps and the wealth factor after 1000 steps is 1829.52 cor-
responding to a compounding annual return of 46%. The corresponding
volatility quantities I and log(v) are 1.008 and 2.18 respectively.

Finally, we consider the period from January 1970 through December 1995
and Standard and Poor 500 stocks as in Goetzmann (1996). With monthly
rebalancing the best constant rebalanced portfolios with hindsight achieved a
multiperiod compounding wealth factor of 561.8 running the algorithm up to
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500 steps. The corresponding annual compounding rate of return is 27.5%.
Here we also exclude those stocks that were delisted during this period. At
step k = 7, the portfolio has a wealth factor of 561.08 and uses the five
stocks, Mylan Labs Inc. (MYLN), Southwest Airlines Co. (LUV), St Jude
Medical Inc. (STJM), Home Depot Inc. (HD) and Circuit City Stores Inc.
(CC).

5.3 MOVING-WINDOW GREEDY UPDATING VER-
SUS THE MIXTURE STRATEGY

Here we report a strategy of greedy portfolio selection using what may be
called moving window information. In this strategy at each trading time
(e.g. at the end of each month), the portfolio we set for the next period (e.g.
the next month) is the portfolio which, on the previous Tw time periods,
would have made the most wealth as computed by our greedy algorithm. We
shift this time window (for training the next portfolio) each period so that
it reflects the same window length Tw of past return. Our theory gives no
guarantee that the next period behavior is predicted best by the preceding
time window, nonetheless, it is of interest to see how such a greedy strategy
would have performed. Our wealth maximization algorithm is the key ingre-
dient for computation of this moving-window algorithm.

Here we again use the Standard and Poor 500 Index stocks. For each
month from January 1996 through December 2005, we consider a moving
training window of preceding returns with which we determine the portfolio
to use for the current month. For the length of the training window, 12, 18, 24
and 30 months were tried. The best results as reported here were based on
a 24 month window. There is also the issue of the rapidity of rebalancing
for the portfolio wealth function that we maximize over the preceding years.
For instance, it is unclear whether it is better to use the stock fractions that
are optimal with daily rebalancing or with monthly rebalancing. For ease
of computation we report results in which we tried monthly rebalancing on
each training window here.

Thus at the start of each month we get the portfolio which would (with
monthly rebalancing) have made the most over the preceding two years and
set that to be our portfolio for the start of that month. It is then updated
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Figure 3: Wealth factor for moving-window portfolio updates

(with a moving two years window) at the start of the following month. Over
the January 1996 to December 2005 time frame, the Standard and Poor 500
index had a wealth factor of 2.58 (or an annual return of 9%). During these
10 years our portfolio has a wealth factor over 5.39 (or an annual return of
18%) as shown in Figure 3. Each month it used a small handful of stocks
that evolved across time.

Another result shows a twenty-year result in which our moving-window
portfolio achieves a wealth factor of 23.43 (or an annual return of 17%) dur-
ing this period from January 1986 through December 2005 with a training
window of 24 months for Standard and Poor 500 stocks while the S&P 500
index gained a factor of 5.89 (or a annual return of 9%) during that period.
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We also applied this strategy to the NASDAQ 100 stocks over the Jan-
uary 1997 through December 2005 time frame with daily rebalacing on the
training window. We tried 6, 9, 12, 15, 18, 21 and 24 months as the length
of training window. The best one is with 12 months window. It shows an
impressive result that during these 9 yeas our portfolio has a wealth factor of
58.5 while the NASDAQ 100 index gained a factor of 2.14 in the same period.
For a 24 months training window the wealth factor for these 9 years is about
32.5. It is still better than the result from Standard and Poor stocks. The
NASDAQ companies are relative younger and faster growing companies with
smaller capitalization compared with Standard and Poor companies, which
might be one of the reasons for this phenomenon.

Thus the moving window greedy algorithm has performed quite well on
recent historical data and should be given serious attention as an investment
strategy. However, we caution that the greedy approach can be fooled. Sud-
den changes in best portfolios can lead to a situation in which a portfolio
trained to be best on the past is miserable in the future (compared to appro-
priate targets).

As our Theorem 2 shows, the mixture strategy advocated in this paper
does provides a performance guarantee. It is provably close in exponent to
the best constant rebalanced portfolio (however high or low that might be)

provided c
√

(log M)/T is small compared to that best exponent.

5.4 WEALTH TARGETS WITH PAST DEPENDENT
PORTFOLIOS

In this paper we have presented the algorithm in the context of optimiza-
tion of constant rebalanced portfolios, where we find b such that ΠT

t=1b · xt

is maximized where each xt,i is the return of an available asset. However, it
is possible to incorporate interesting types of past dependence in this frame-
work. The idea is to allow parameterized dependence of the portfolio on past
returns so as to capture the possibility of putting higher or lower attention
on stocks that went up the previous period. Cross & Barron [11] introduce
such past dependent portfolio in a universal portfolio setting. As in [11], if
the dependence of the portfolios on past returns is linear in portfolio weights
then our theory readily adapts to this setting.
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In particular consider vectors such as

x̃+
t = (

(xt,1 − 1)+

s+
t

, . . . ,
(xt,M − 1)+

s+
t

) (48)

and

x̃−
t = (

(xt,1 − 1)−
s−t

, . . . ,
(xt,M − 1)−

s−t
) (49)

which are non-negative, sum to 1, and depend on xt. Here s+
t =

∑M
i=1(xt,i −

1)+ and s−t =
∑M

i=1(xt,i − 1)−. Then for period t, the above vectors x̃+
t−1

or x̃t−1 computed from the preceding period may be thought of as provid-
ing portfolios for new auxiliary assets xt,M+1 = x̃+

t−1 ·xt and xt,M+2 = x̃−
t−1 ·xt.

Now a portfolio b · xt =
∑M+2

i=1 bixt,i in all the assets (including the
two newly created) may be regarded as investing in each stock i a frac-
tion bi + bM+1x̃

+
t−1,i + bM+2x̃

−
t−1,i which depends on the past and is indeed

linear in the weight b. Including this freedom for past dependence (captured
through the auxiliary assets) the wealth target maxb ΠT

t=1b · xt is now higher
than before. It is still available for computation by our wealth maximization
algorithm and for construction of mixture-based or moving window portfolio
updates.

For example, if each month we put weight 1/2 on x̃−
t−1 and weight 1/2

on the moving-window greedy portfolio updates described before, then the
nine-year NASDAQ 100 wealth factor ending December 2005 increases from
58.5 to 116.3.
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