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Abstract: A method to rapidly sample neural net posteriors is provided. Parameters
w are coupled with an auxiliary random vector ξ such that both are fast to sample. The
distribution of w given ξ is log-concave, permiting rapid sampling from this conditional and
rapid computation of the gradient of log density of ξ. Using this gradient as the drift allows
a stochastic diffusion for sampling ξ. The density of ξ is shown to be strictly log-concave
in high dimensions, so it mixes rapidly.

In addition to the posterior sampling, some clarification of the associated statistical risk
is provided in this proceedings extended abstract of the work presented at [1]. It is a
companion to [2],[3] which provide analogous greedy Bayes sampling results.

Function Model: Consider single hidden-layer nets fw(x) = f(x,w) =
∑K

k=1 ckψ(wk ·x)
with K units, with

∑
j |wj,k| ≤ 1, with activation ψ(z) having |ψ(z)| ≤ 1, |ψ′(z)| ≤ 1 and

|ψ′′(z)| ≤ 1 on −1≤ z ≤ 1. Fix positive V and ck = ±V/K, though Bayesian models to
adapt V , K and the ck are possible. Such networks provide accurate approximation [4]
for f(x) with f/V in the convex hull of Ψ = {±ψ(w · x), x ∈ [−1, 1]d : ||w||1 ≤ 1}. A
coordinate of x is −1 to allow shifts. Set the sign of ck to be + when ψ(z) is odd symmetric,
such as a tanh. In general, among the K terms, a number are set positive and a number
negative. An example activation is ψ(z) = 1

2
z2+, a squared rectified linear unit.

Data Model: Stochastic data (Xi, Yi), 1≤ i≤n, are independent from a distribution PX,Y
with marginal PX on [−1, 1]d and conditional PY |X with mean f(X). For statistical risk
bounds the conditional is normal of specified variance σ2, or, more generally, an arbitrary
distribution with finite variance bounded by σ2. For online learning regret bounds, the
data are an arbitrary sequence of bounded inputs and outputs.

Posterior for Computation: Estimation proceeds by sampling from a posterior. The
prior p0(w) on w = (w1, ..., wK) makes each wk independent uniform on the simplex Sd1 =

{w :
∑d

j=1 |wj| ≤ 1}. Let `(w) = 1
2

∑n
i=1(resi(w))2 with resi(w) = yi−

∑K
k=1 ckψ(xi ·wk).

With the normal, the posterior is proportional to p0(w) exp{− 1
σ2 `(w)}. More generally,

we sample from p(w) = pn(w) proportional to p0(w) exp{−β`(w))} with some β > 0
as a computational device, with sum of squared residuals in the exponent, even if the
deviations of Y are not normal. To estimate the function using f̂(x) =

∫
f(x,w)p(w)dw

we draw independent samples from p(w) and average f(x,w).

Non-Logconcavity of p(w): Let H(w) = ∇∇T`(w) be the Hessian of `(w) and consider
the quadratic form aTH(w)a where a in RKd has blocks ak in Rd. It takes the form∑n

i=1

(∑K
k=1 ckψ

′(xi · wk)ak · xi
)2

−
∑n

i=1 resi(w)
∑K

k=1 ckψ
′′(xi · wk)(ak · xi)2.
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The first line is positive, while the second can produce negative depending on the residuals.

Log-Concave Coupling: Let auxiliary ξi,k, one for each pair of observation index i and
neuron index k, be arranged to be conditionally independent with ξi,k given w distributed
normal with mean xi ·wk and variance 1/ρ with ρ = βCV/K, where C = CY,V = maxi |Yi|+
V bounds the |resi(w)| for all w. Then w and ξ are coupled, having a joint density p(w, ξ) =
p(w)p(ξ|w), with a reverse conditional density p(w|ξ) proportional to p0(w) exp{−β`ξ(w)}
where `ξ(w) = `(w) + 1

2
V
K
C
∑n

i=1

∑K
k=1(xi ·wk − ξi,k)2. This `ξ(w) has Hessian Hξ(w) with

a quadratic form aTHξ(w)a taking the same form as above but with a new second term∑n
i=1

∑K
k=1

[
V
K
C − ck resi(w)ψ′′(xi · wk)

]
(ak · xi)2

made positive for w in SK1 , for each ξ in RNK , because |ck| ≤ V/K, |resi(w)| ≤ C, and
|ψ′′| ≤ 1. So p(w|ξ) is log-concave in w for each ξ, implying there are computationally
rapid (low-order polynomial time in N,K, d) samplers of w given ξ, using e.g. [5].

Restrict ξ to the event that the linear combinations
∑

i=1 ξi,kxi,j (for each variable j

and neuron K) are in intervals centered at their mean and extending to
√

2 log(Kd)
standard deviations. Restricting these linear combinations to such intervals provides a
convex polytope in which the auxiliary random vectors ξ reside with high probability.

Density of ξ as a Mixture and its Score: The density of ξ is p(ξ) =
∫
p(w, ξ)dw, the

integral of a log-concave function. We have interest in its score ∇ log 1/p(ξ) and associated
Hessian H̃(ξ) = ∇∇T log 1/p(ξ). By the projection rule for marginal scores ∇ log 1/p(ξ)
is E[∇ log 1/p(ξ|w)|ξ], where the normal conditional score ∂ξi,k log 1/p(ξ|w) has the affine
form ρ ξi,k−ρ xi ·wk. Accordingly ∂ξi,k log 1/p(ξ) equals ρ ξi,k−ρ xi·E[wk|ξ]. Given ξ, these
are efficiently computed by Monte Carlo sampling of w|ξ.
Stochastic Diffusion Sampling of ξ: Armed with the ξ score at each time step, we
have access to (time-discretized versions) of the Langevin diffusion with gradient drift [6]

dξ(τ) = 1
2
∇ log p(ξ(τ))dτ + dB(τ).

Starting with Gaussian ξ(0), the density of ξ(τ) converges, as time τ increases, to the
invariant p(ξ). The rapidity of that convergence is addressed by the log concavity of p(ξ).

Log-Concavity of p(ξ): Hessian H̃(ξ) = ∇∇Tlog 1/p(ξ) = ρ
{
I − ρCov

[
Xw1
XwK
| ξ
]}

so its

quadratic form for unit a in RnK with blocks ak is aTH̃(ξ)a = ρ {1− ρ V ar[ã ·w|ξ]}, where
ã =

[
X′a1
X′aK

]
with ||ã||2 ≤ nd, with variance using the log-concave p(w|ξ). It is conjectured

to be more concentrated, producing smaller variance of linear combinations, than with the
prior p0(w), for which the counterpart is evaluated using Cov0(wk) = 2

(d+2)(d+1)
I. A Hölder

inequality confirms that V ar[ã · w|ξ] is not larger than V ar0[ã · w] by too large a factor.

Toward that end, let ˜̀
ξ(w) = `ξ(w)−E0[`ξ(w)], where we have subtracted the expectation

using the prior. Restricting attention to ξ in the discussed set of high probability, it is
seen that |˜̀ξ(w)| ≤ 9V C where C = CY,V . Let µξ = E[ã · w|ξ]. Then V ar[ã ·w] =

E0[(ã·w − µξ)2 exp{−β ˜̀
ξ(w)−Γξ(β)}] where the exponential is the likelihood factor, with

log normalizer Γξ(β), the cumulant generating function of −˜̀
ξ(w) with respect to the prior.

Lemma: Conditional Variance Concentration. For any r ≥ 1,

V ar[ã · w|ξ] ≤ [E0[(ã · w)2r]]1/r exp{ r−1
r

Γξ(
r
r−1β)− Γξ(β)}

≤ 4nr
(d+2)e

exp{9 β V c n/r},
which is 36β V cn2/(d+2) at the optimal r=9βV cn. Thus ρ V ar[ã·w|ξ] ≤ 36V 2c2β2n2/(Kd),
which is less than 1/2 when the number of parameters Kd exceeds a multiple of (βn)2.
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Proof of Lemma: Summary. The variance is E0[(ã·w−µξ)2 exp{−β ˜̀
ξ(w)−Γξ(β)}], which

is increased by replacing µξ with 0. The first bound is from Hölder’s inequality. The second
follows from evaluation of prior moments together with first-order Taylor expansion of the
cummulant generating function Γξ(β) using the fact that it is 0 at β = 0.

Corollary: High-Dimensional Log-Concavity of p(ξ). Thus, for ξ in the indicated high-
probability set, the density p(ξ) is strictly log-concave, with ∇∇ log 1/p(ξ) ≥ ρ/2 when
the number of parameters Kd exceeds 72V 2c2β2n2.

Thus ξ can be rapidly sampled via the theory for log-concave densities as in [5],[6].

The Neural Net Posterior as a Mixture: Though p(w) is not log-concave, it is p(w) =∫
p(w|ξ)p(ξ)dξ, a mixture of log-concave densities p(w|ξ) using a p(ξ) that is also log-

concave, as long as the parameter dimension is sufficiently large. Accordingly, a draw from
p(w) can be achieved via a draw from p(ξ) followed by a draw from p(w|ξ). This gives the
polynomial-time computational feasibility of sampling from the neural net posterior p(ξ).

Statistical Risk and Arbitrary-Sequence Regret: Consider statistical risk bounds
available via online learning regret. Take the (xt, yt) as ‘time’-ordered for t = 1, 2,...,N .
Prediction at time t is obtained by using the posterior distribution based on the preceding
data (x1, y1), . . . , (xt−1, yt−1) using the posterior density p(w) = pt−1(w) given above with
n = t−1. Its prediction for f(x) at x = xt is ft(x) =

∫
f(x,w)pt−1(w)dw = Ept−1

[
ft(x,w)

]
computed by Monte Carlo sampling from pt−1(w) and averaging the values of f(x,w).
Regret definitions and their relationships are fairly standard. What’s new is the application
to provably computationally-feasible and accurate neural net estimates.

Individual Observation Regret: Compared to an arbitrary g(x), the individual squared
error regret at time t for t = 1, 2, . . . , N is rsquaret = rsquaret,g given by

rsquaret = 1
2
[(yt − ft(xt))2 − (yt − g(xt))

2]

where ft(xt) = Ept−1

[
ft(xt, w)

]
. An obvious bound is to pull the expectation outside the

square. The result is the expected individual squared error regret rrandt = rrandt,g given by

rrandt = 1
2
[Ept−1 [

(
yt − f(xt, w)

)2
]−
(
yt − g(xt)

)2
].

Meanwhile, let p(y|g(x)) be the normal density with mean g(x) and variance 1/β and let
p̂t(y|x) = Ept−1 [p(yt|f(xt, w))] be the Bayes predictive density based on the preceding data.

The individual logarithmic predictive density regret rlogt = rsquaret,g is given by

rlogt = 1
β

[log 1/p̂t(yt|xt)− log 1/p(yt|g(xt))] .

Let us suppose that, like f(x,w), the g(x) are bounded by a constant b. Define the error
of g as εt = εt,g = yt − g(xt) and set ct = cεt,b = |εt|b+ b2, not depending on w.

Lemma: Comparing Individual Regret: rlogt ≤ rrandt and rsquaret ≤ rrandt ≤ rlogt + 2βc2t .

Proof of Lemma: The rlogt ≤ rrandt and rsquaret ≤ rrandt are by Jensen’s inequality. Consider
1
2
[(yt−f(xt, w))2−(yt−g(xt))

2] with w having the density pt−1(w). Then rrandt is its expected

value and rlogt is 1/β times its cumulant generating function at β. By the difference of
squares identity, it is (εt + (f(xt, w) + g(xt))/2)(f(xt, w) − g(xt)) which is less that 2ct.
By second order Taylor expansion the cumulant generating function of a bounded random
variable matches its mean to within half the square of the bound. Hence rrandt ≤ rlogt +2βc2t .

Corresponding time-average regret quantities are Rsquare
N,g = 1

N

∑N
t=1 r

square
t,g and likewise

Rrand
N,g = 1

N

∑N
t=1 r

rand
t,g and Rlog

N,g = 1
N

∑N
t=1 r

log
t,g . Also let c2N = 1

N

∑N
t=1 c

2
εt,b

.

Corollary: Comparing Time-Average Regret: Rsquare
N,g ≤ Rrand

N,g ≤ Rlog
N,g + 2β c2N .
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The product of the computationally feasible predictive densities
∏N

t=1 p̂t(yt|xt) represents
the Bayes factor p(yN |xN) =

∫
p(yN |xN , fw)P0(dw), where P0 is the prior. It is compared

with p(yN |xN , g), the product of normals with means g(xt). By the log product rule, as in
[8],[9],[10],[11], one has the following.

Lemma: Log Bayes Factor Representation of Logarithmic Regret: Rlog
N,g = 1

Nβ
log p(yN |xN ,g)

p(yN |xN )
.

Lemma: Empirical Resolvability Bound on Log Regret: The Rlog
N,g is not more than

ResolveN,β(A, g) =
∫
A

1
Nβ

log p(yN |xN ,g)
p(yN |xN ,fw)

P0(dw|A) + 1
Nβ

log 1
P0(A)

for any measurable subset A = Ag. This empirical resolvability has the representation

ResolveN,β(A, g) = 1
N

∫
A

(`(fw)− `(g))P0(dw|A) + 1
Nβ

log 1
P0(A)

where we recall `(g) = 1
2

∑N
t=1(yi − g(xi))

2 is half the empirical squared error.

Proof : Reduce the Bayes factor integral by restricting it to A and then use Jensen’s
inequality. The squared error representation is from our choice of p(yN |Xn, g).

Implications for the Stochastic Setting: Suppose (xt, yt) are independent from PX,Y
with y|x having mean f(x) and variance bound σ2. Set g = f and take the expected value
to produce two bounds on the mean square risk of estimators of f .

Corollary: Expected Resolvability Bound on Mean Square Risk : For any distribution on
Y |X with conditional variance bounded by σ2, any β > 0 and any choice of A = Af , the
mean square generalization error is bounded by

E
[
|| ˆ̂f − f ||2

]
≤ 1

N

∑N
t=1E

[
||f̂t − f ||2

]
≤ 2 resolveNβ(A, f) + 4βc2σ,b.

Here
ˆ̂
f(x)= 1

N

∑N
t=1 f̂t(x), the cσ,b=σb+b2 and resolveNβ(A, f) is the expected resolvability

resolveNβ(A, f) = 1
2

∫
A
||fw − f ||2P0(dw|A) + 1

Nβ
log 1

P0(A)
.

If Y |X is Normal(f(X), σ2) and β = 1/σ2, using the expected log regret bound directly,
yields a Kullback risk of the predictive density estimates, with no need for the 4βc2 term.

E
[
D(pf || ˆ̂pN)

]
≤ 1

N

∑N
t=1E

[
D(pf ||p̂t)

]
≤ resolveN/σ2(A, f).

Here ˆ̂pN(y|x) = 1
N

∑N
t=1 p̂t(y|x) and D(pf ||p̂) = D(pY |X ||p̂Y |X) is the Kullback loss

between the conditional density and an estimator p̂.

Discretization: Consider a discretized uniform prior which makes wk independent on
the restriction Sd1,M of the simplex Sd1 to vectors with rational coordinates of denominator
M . For sufficient size M and Kd, the p(ξ) remains log-concave and, for the discretized
log-concave p(w|ξ), there are sampling strategies, such as in [7], that still mix rapidly.

Resolvability for Neural Nets: For f in the convex hull of VΨ, by methods from [4][12],

there are w1,...,wK in Sd1,M with ||fw−f ||2 ≤ V 2

K
+ V 2

M
. Take Af to be a singleton at such w.

There are at most (2d)MK points in the support of the prior. Accordingly, setting M = K,

an expected resolvability bound is resolveNβ(f) ≤ V 2

K
+ K2

Nβ
log(2d). For this bound the

optimal number of neurons is K = V 2/3(Nβ)1/3/(2 log 2d)1/3, at which the resolvability
bound is 2.05V 4/3(log 2d)1/3/(Nβ)1/3. In the normal error model, with β = 1/σ2, this
provides Kullback risk of a computationally-feasible estimator of order ((log 2d)/N)1/3.

In the general error model, with the added 4C2β, the best β is 0.5(K/C)((log 2d)/N)1/2,
and for the best K is 0.5(V/C1/2)(N/(log 2d))1/4, at which the resulting computationally-
feasible mean square risk bound is

4V C1/2
(

log(2d)
N

)1/4
.
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Neural net mean square risk with a 1/2 power (instead of 1/3 or 1/4) is available from
knowledge of the metric entropy or the Gaussian complexity of the convex hull of V Φ
as in [13],[14],[15]. However, these use empirical criteria with potentially computationally
infeasible optimization, or Bayes posteriors as in [10] with computationally infeasible priors
on optimal covers. It is not yet known if risk with the 1/2 power is computationally feasible.
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