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Abstract

Probabilistic information theory determines fundamental limits in the

topics of data compression� channel capacity� thermodynamics� statistical

estimation� prediction� hypothesis testing and related topics� Moreover�

information theory provides an illuminating perspective on the limit the�

orems of probability� Beginning with some identities and inequalities for

relative entropy� followed by their use in solving some problems in proba�

bility and statistics� and concluding with application to neural networks�

this talk reviews the role of information theory in answering interesting

questions in these topics�

� INTRODUCTION

In probability theory� basic limits properties can be better understood by ex�
amination of the role of the relative entropy or Kullback divergence D�P jjQ�
between pairs of distributions� It provides the exponent of the probability of
large deviations and in particular the tail probability in the law of large num�
bers� It characterizes� via a minimization� the conditional limit distribution
when conditioning on large deviation events� Chain rules for D for various
choices of Pn and Qn quantify a change in D�PnjjQn� yielding a proof of con�
vergence of the distribution of a Markov Chain where n is the number of steps�
a proof of convergence of martingales� and a proof of the central limit theo�
rem with a stronger mode of convergence than is traditional� The monotonicity
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properties and especially the chain rule reveals the naturalness of the choice of
relative entropy in the investigation of these limits�

In statistics and learning theory� including neural net examples� the relative
entropy plays a basic role in both classical procedures for estimation and in the�
oretical characterization of the limits of achievable performance� Consistency
of maximum likelihood and Bayes estimates of a parameter and the identity
of the limiting parameter value are examined via examination of convergence
of empirical versions of the relative entropy to D�PX jjPXj��� Quanti�cation of
e	ciency involves the Hessian J� of second derivatives of D�PX jjPXj�� which
is the Fisher information� The local self�standardization of relative entropy via
this Fisher information in its quadratic expansion reveals asymptotic risk of the
form k�
n where k is the number of parameters and n is the sample size� The
cummulative relative entropy risk of estimators reduces via a chain rule to a
total relative entropy D�PX������XN

jjQX������XN
�� From this the individual risk

of order k�
n and the cummulative risk of order �k�
� logN are shown to not
be beaten except for a negligible set of distributions� An index of resolvability
gives a simple means to demonstrate cummulative risk bounds of the right or�
der for Bayes estimators in both parametric and nonparametric settings� The
minimax cummulative relative entropy risk is the same as the minimax redun�
dancy of universal data compression� the same as the information capacity of
the channel from the parameter to the data� and it is shown to be the same to
within a constant factor as the Kolmogorov ��entropy at a critical seperation
�N � A consequence is characterization of the minimax rate for estimation in
in�nite�dimensional or nonparametric problems� Sequences of parametric fami�
lies achieve these optimal rates in various nonparametric problems as a tradeo�
between approximation and estimation error of order minkfDk� k�ng� In suit�
able settings both Bayes mixtures and model selection by penalized likelihood
achieve the optimal rates�

In a preliminary section we give some basic de�nitions and tools used in
subsequent sections� including relationships between information quantities� a
pythagorean property of information� the chain rule� and the asymptotic equipar�
tion property� The relative entropy is the principle quantity that arises in the
topics we study� The variance of log�density ratios and a relativized Fisher
information are also introduced and related to relative entropy�

The third section begins the main body of the review� There we exam�
ine the role of information quantities in basic limit theorems of probability
including the law of large numbers� large deviations� a conditional limit theo�
rem� martingales� and the central limit theorem� The fourth section discusses
information�theoretic bounds for convergence of Markov chains to the stationary
distribution� The �fth section addresses roles of information theory in statistics
and learning with application to neural nets� and a �nal section interpretes some
of the conclusions in terms of data compression�

For the role of information theory in many of these topics� the books by
Kullback 
Kul��� and Cover and Thomas 
CT��� give excellent introductions�






though as the reader will see� I provide di�erent emphases and review substan�
tial ground not covered therein� particularly with regard to characterization of
achievable performance in statistical estimation� learning� universal data com�
pression� bounds on Bayes procedures� and the role of information theory in
probability�

� PRELIMINARIES

Here we give some basic de�nitions and tools used in subsequent sections� in�
cluding de�nition of information quantities and relationships between them�
a pythagorean property of information� the chain rule� and the asymptotic
equipartion property�

Before discussing informational divergence or relative entropy between dis�
tributions we mention the Shannon entropy

H�X� � H��P � � �
Z
p�x� log p�x�

of a probability distribution P for a random variable X on a measurable space
X with density p�x� with respect to a reference measure �� usually taken to be
a discrete or continuous uniform measure� i�e�� counting or Lebesgue measure�
Here the integral is understood to be with respect to �� and � log � � �� The
reference measure is assumed to be sigma��nite on X � In the discrete case
H �

P
x�X p�x� log ��p�x� is a sum of nonnegative terms so then H exists and

is nonnegative �though possibly in�nite�� Another case in which existance is
assured �though possibly minus in�nity� is when � is a �nite measure� for then
it is normalizable to be a probability measure for which H��P � � �D�P jj��
�see below��

The entropy H arose in the work of Shannon 
Sha��� on the number of
bits required to represent or to generate a discrete random variable X � and in
statistical physics and in Shannon information theory through the asymptotic
equipartition property where it characterizes the measure of the typical set �see
subsection 
��� and through the maximum entropy principle �see subsection
��
��

��� Relative Entropy

In this review we will focus on the relative entropy between pairs of probability
distributions� Let

D�PX jjQX� � D�pjjq� � EP log p�X��q�X� �

Z
p�x� log p�x��q�x�

denote the Kullback�Leibler divergence or relative entropy between distributions
P � PX andQ � QX for a random variableX with probability density functions
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p and q with respect to some measure � dominating P and Q� where the integral
is understood to be with respect to �� In most cases we will take � to be
a discrete or continuous uniform measure� To handle some general situations
one may take � � P � Q� The ratio ��X� � p�X��q�X� will be the same
�almost everywhere� for any measures dominating both P and Q� Here and
throughout p�x��q�x� is taken to be zero whenever p�x� is zero and it is taken
to be in�nite whenever the denominator is zero and the numerator is positive�
If the set fx � q�x� � �g has positive P probability then D�P jjQ� is in�nite�
Finite D�P jjQ� requires P to be absolutely continuous with respect to Q� in
which case one may take � � Q and D may be expressed in terms of the general
entropy as D�P jjQ� � �HQ�P �� A representation for relative entropy in terms
of a non�negative integrand is

D�P jjQ� �
Z
�p�x� log p�x��q�x� � q�x�� p�x���

From the strict positivity of this integrand when p�x� and q�x� are not equal� it
follows that D�P jjQ� � � with equality if and only if P � Q�

We note that D�P jjQ� is convex in P and Q and hence the information
neighborhoods fP � D�P jjQ� � ��g and fQ � D�P jjQ� � ��g are convex sets of
distributions�

The relative entropy D occurs naturally in a number of ways that will be
covered in this paper� for instance� as a probability exponent in hypothesis tests
and large deviations� as a measure of risk and cumulative risk of predictive
distributions� and as the excess expected codelength in data compression ne�
cessitated by lack of knowledge of the governing distribution� Optimization of
D for a family of distributions identi�es the conditional limit in conjunction
with large deviations� characterizes the Gaussian limit in central limit theory�
characterizes the limit of likelihood�based statistical procedures� bounds the re�
solvability and minimax risk for various measures of statistical loss� determins
the minimax redundancy in universal data compression� and determines the
capacity of communication channels�

��� Relations Between Measures of Divergence

Though principly the relative entropy will provide the answers to questions we
address here� it will be useful to relate it to other notions of divergence� In
particular� we consider the L� distance

R jp � qj �which is the total variation
distance between the distributions�� the squared Hellinger distance h��p� q� �R
�
p
p �pq��� the Chi�square distance R �p � q���q� and the Renyi relative en�

tropies ����	 � ��� log
R
p�p�q���� for 	 
 �� The Renyi relative entropies

approach D�pjjq� from below as 	 � � and from above as 	 � �� All of the
above measures of divergence are monotone increasing functions of f �divergences
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Csi��� AS��� which have the representation

Df �pjjq� �
Z
pf�q�p�

with f convex and equal to zero when the ratio q�p is �� From the convexity
of f these divergences have the property that they are non�increasing under
�deterministic or stochastic� transformation of the random variable�

For f twice di�erentiable with continuous and positive second derivative at
� these divergence are locally equivalent to each other �to within multiplicative
constants� at least for p�q uniformly close to one� It appears that among these
divergences �with twice di�erentiable f� only the squared Hellinger distance
h��p� q� is a squared metric� In this way the Hellinger metric is essential to the
behavior of the local topology with any of these divergences� including relative
entropy�

Other measures of discrepancy between densities that we shall encounter
include the second moment of the log density ratio

R
p�log p�q��� and� for ran�

dom vectors in Rd with everywhere di�erentiable densities� a relativized Fisher
information de�ned by J�pjjq� � R p�x�jjr log p�x��q�x�jj�dx�

The relative entropy D is less than the Chi�square� greater than the squared
Hellinger� and greater than ���
��L��

�� see 
Csi��� Kul���� A number of addi�
tional inequalities can be established when there is a bound on the density ratio�
For instance� if q�x��p�x� � v for all x in the support of p� then as in 
YB��a��

�


 � log v

Z
p�log p�q�� � D�pjjq� � v




Z
p�log p�q���

For sequences of pairs of distributions with densities� convergence of D to
zero implies Hellinger and L� convergence of the di�erence of the densities�
entailing total variation convergence of the di�erence of the distributions� The
expected absolute value EP j log p�X��q�X�j is not greater than D �

p

D� see


Pin��� Bar���� Thus convergence ofD to zero also implies an L��P � convergence
of log p�X��q�X� to zero�

For any sequence of pairs of density functions with ratio p�x��q�x� converging
uniformly to ��

D�pjjq� � 
h��p� q�

in the sense that the ratio of the two sides tends to one� Similarly� D �
���
�

R
�p � q���q and D � ���
�

R
p�log p � log q��� again as p�q converges

uniformly to one�

��� Relative Entropy and Relativized Fisher Information

The relativized Fisher information will arise in cases where we take the incre�
ment of relative entropy associated with the addition of a small multiple of a
random vector Z independent of X � Supppose Z has covariance equal to the
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identity matrix I and suppose X also has �nite second moments� The two dis�
tributions P and Q for X are assumed to have densities p and q� with respect to
Lebesgue measure on Rd� Let p� and q� denote the density of X�

p
�Z when X

has density p or q� respectively� Under regularity conditions on derivatives of the
densities p and q one �nds that the derivative of D�p� jjq� � with respect to � is
continuous and that evaluated at � � � the derivative is equal to ����
�J�pjjq��
where

J�pjjq� �
Z
p�x�jjrx log p�x��q�x�jj�dx

is the relativized Fisher information� Thus

D�p� jjq� � � D�pjjq�� �



J�pjjq� � O�����

When Z is a standard normal random vector and P and Q are arbitrary dis�
tributions on Rd �not necessarily continuous� with �nite second moments� we
may replace X by the random vector X �

p
�Z with �xed � 
 �� which has

smooth densities p� and q� that satisfy the required regularity� Now adding an
additional independent normal vector preserves the form of the distribution �it
amounts to increasing ��� Thus we �nd for all � 
 � that

�

��
D�p� jjq� � � ��



J�p� jjq� ��

Now D�p� jjq� � converges to D�P jjQ� as � � � and to � as � � 	� Conse�
quently� the following integral representation holds

D�P jjQ� � �




Z
f���g

J�p� jjq� �d��

This integral identity extends the result in 
Bar��� which was for the case that
the second measure Q is normal� though the proofs are much the same�

Similar identities for relative entropy arises in conjuction with a process X�

that evolves for � � � according to the stochastic di�erential equation

dX� � ���
�r log p�X� �d� � dZ� �

where Z� is a standard Brownian motion� Suppose here that p�x� is continu�
ously di�erentiable� Let Q� and P� � P be the marginal distributions for X�

when the initial distribution for X� is either Q or P � respectively� Then Q�

approaches the stationary distribution P in a manner analogous to a discrete�
time stochastic gradient model studied in section ��
� Examination of the
discrete�time approximation suggests that via stochastic calculus we again have
	
	�D�P jjQ� � � ����
�J�P jjQ�� and

	
	�D�Q� jjP � � ����
�J�Q� jjP �� yielding

D�P jjQ� � �




Z �

�

J�P jjQ� �d�

and

D�QjjP � � �




Z �

�

J�Q� jjP �d��
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��� Pythagorean Relation

Though it is not a squared metric� the relationship between relative entropy
and other squared distances and Pythagorean identities stated here show that
relative entropy behaves geometrically in a way analogous to squared Euclidean
distance�

IfQ is a convex set of distributions and we denoteD�QjjP � � infQ�QD�QjjP �
as the divergence of P from the set Q� then as shown in 
Top��� Csi��� there is
a unique information projection P � such that for all Q 
 Q�

D�QjjP � � D�QjjP �� �D�QjjP ��

and consequently any sequence of distributions Qn in Q for which the diver�
gence tends to the in�mum D�QjjP � must have Qn converging to P � �indeed
D�QnjjP ��� ��� Equality holds in the Pythagorean relation

D�QjjP � � D�QjjP �� �D�P �jjP �

when Q is a hyperplane of distributions such as fQ � EQf�X� � ag and P � is in
Q achieving D�P �jjP � � D�QjjP �� in which case there is an exponential family
characterization of this information projection 
Csi����

��� Chain Rule

When random variables X�� X�� � � � � Xn have joint densities that factor as a
product of conditionals p�X�� � � � � Xn� �

Qn
i�� p�XijX i��� and q�X�� � � � � Xn� �Qn

i�� q�XijX i��� the chain rule yields

EPXn log
p�X�� X�� � � � � Xn�

q�X�� X�� � � � � Xn�
�

nX
i��

EPXn log
p�XijX i���

q�XijX i���
�

Thus the total relative entropy between the joint distributions is a sum of ex�
pected relative entropies between the conditional distributions

D�PXn jjQXn� �

nX
i��

EP
Xi��D�PXijXi�� jjQXijXi����

��� Asymptotic Equipartition and Hypothesis Tests

Let X�� X�� � � � � Xn� � � � be independent and identically distributed �i�i�d�� with
marginal distribution either P or Q� By the Chain rule ���n�D�PXn jjQXn� �
D�P jjQ� and if the random variables are distributed according to P then by the
law of large numbers ���n� log p�Xn��q�Xn� converges with probability one to
D � D�P jjQ�� A suitable notion of divergence D between processes� as a limit
of the expected conditional relative entropies in the chain rule decomposition�
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and a corresponding almost sure limit theorem for ���n� log p�Xn��q�Xn� are
given in 
Ore��� Bar��� when the process is stationary and ergodic with repect
to the governing measures PXn under restrictions on the dominating measures
QXn � extending earlier work of Shannon� McMillan� and Breiman in which QXn

was restricted to be discrete uniform�
Let ��Xn� � p�Xn��q�Xn� be the density ratio and suppose ���n� log ��Xn�

converges to D in PXn �probability� with �nite D� The key consequence of this
convergence is the role of the set of Xn typical for P against Q� de�ned for � 
 �
by

An�
 � fen�D�
� � ��X�� � � �Xn� � en�D�
�g�
The distribution is nearly concentrated on this typical set� that is limn P �An�
� �
�� it is nearly equipartitioned �nearly uniformly distributed relative to QXn�
within the typical set� the QXn�An�
� measure of the typical set is between
e�n�D�
� and e�n�D�
�� and no sequence of high P probability sets can have
asymptotically smaller Q measure� that is� if PXn�Bn� � � � 	 for some � 

	 
 � then QXn�Bn� � e�n�D�o����� A one�sided version of the typical set
f��Xn� � en�D�
�g is a set of smallest QXn measure among sets that share its
high PXn probability �in accordance with the Neyman Pearson Lemma in the
hypothesis testing interpretation� and often it can be used in place of An�
�

This collection of results is known as the asymptotic equipartition prop�
erty �AEP� of information theory and statistical mechanics �usually with QXn

uniform�� In hypothesis testing it is known as the Cherno��Stein Lemma char�
acterizing e�n�D�o���� as the best exponential convergence of Q probability of
error in a test of P versus Q 
Che���� See also 
CT��� for these interpretations�

��	 Divergence from Mixtures
 Mutual Information
 and

Capacity

In information theory and statistics a role is often played by the divergence
D�PXj�jjQX� between members of a family of distributions PXj�� � 
 � and

�xed distributions QX on X � often taken in the form of mixtures PX � P
�W �
X �R

PXj�W �d�� for probability measuresW on �� Here QX may be interpreted as
a distribution for X in the absense of knowledge of �� The average divergenceR
D�PXj�jjQX�W �d�� is the relative entropy D�P��X jjP� � QX� of the joint

distribution for � and X from the product distribution P� �QX when P� �W �
Chain rule expansion shows it to equal D�P��X jjP� �PX� �D�PX jjQX�� which
is uniquely minimized by the choice of QX � PX � The resulting minimized
average divergence takes the form D�P��X jjP� � PX� which is known as the
Shannon mutual information I���X� between � andX � The minimax divergence
is V � minQX max�D�PXj�jjQX� and the maximin average divergence is C �
maxW minQX

R
D�PXj�jjQX�W �d�� � maxW IW ���X� which is known as the

Shannon information capacity of the family of distributions fPXj�� � 
 �g �aka
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channel�� This game�theoretic examination of relative entropy is from 
Dav���
in a data compression context�

As to be expected from decision theory and game theory for convex and
lower�semicontinuous loss functions 
Fer���� the minimax divergence V and the
maximin average divergence C are the same 
Gal��� DLG���� even in the gen�
erality that X is a complete separable metric space 
Hau���� To continue the
decision theoretic terminology� a probability measure W on � is a prior� the

mixture P
�W �
X is a Bayes strategy� and such mixtures are admissible �for any

such mixture PX there is no QX for which D�PXj�jjQX� is made everywhere as
small and somewhere smaller than with PX��

The divergence from mixtures D�PXj�jjPX � arises in data compression as
the excess average codelength or redundancy of a code for X in the absence of
knowledge of � �see section ��� in hypothesis testing as a probability of error
exponent for simple versus composite hypotheses �see 
CB����� in prediction
with X � �X�� � � � � XN � as the cumulative relative entropy risk �see section ���
in gambling as the cumulative expected log wealth regret� and �averaging over
�� it arises in communication channels as an achievable rate of communication�

An index of resolvability will be used in section � to give upper bounds on
divergence from mixtures� The following simple inequality is used to give lower
bounds�

��� Inequality between Relative Entropy and Probabili�

ties of Events

For any distributions P and Q for a random variable X and any measurable
A � X �

D�P jjQ� � P �A� log ��Q�A�� log 
�

This inequality is a consequence of the monotonicity of D under transformation�
Indeed� the chain rule applied to �X�T � where T � �A�X� givesD�PX jjQX� not
less than the binary relative entropy D�PT jjQT � � P �A� logP �A��Q�A� � ���
P �A�� log�� � P �A����� � Q�A��� which is further lower bounded by throwing
away the �� � P �A�� log ���� � Q�A�� term and bounding the binary entropy
H� � �P �A� logP �A�� ��� P �A�� log��� P �A�� by log 
� In the applications
of the inequality I give here the log 
 may be ignored since it will typically be
small compared to the total relative entropy between distributions for a sequence
X � �X�� � � � � Xn��

The above inequality gives a lower bound on D�P jjQ� in terms of log ��Q�A�
for events with P �A� near one� It can be used in this form to prove Rissanen�s
results on the negligibility of supere	cient data compression and corresponding
results on the negligibility of supere	cient estimation �see section ���
��

The inequality may be rewritten in the form

P �Ac� � �� D�P jjQ� � log 


log ��Q�A�
�

�



Using the inequality in this form with A � Ar�� � fX � L����X�� �� � rg for a

loss function L and estimator �� with P � PXj� one obtains a lower bound on the

tail probability PXj�fL���� �� � rg and lower bounds on the risk EPXj�L�
��� �� �

rPXj��A
c�� Here the idea is to �nd the critical distance r such that D�P jjQ� is

small compared to log ��Q�Ar���� In the above form the inequality is an analog
of Fano�s inequality in which the distribution Q is the mixture with respect to a
uniform distribution on a �nite set of values for �� the event A � f���X� � �g and
one averages over �� Such inequalities are used both in statistics and channel
capacity to show that rates of estimation and communication have fundamental
limits �see section ���� and section ���

The inequality may also be rewritten in the form

QX�A� � e��D�PX jjQX��log ���PX �A��

Letting X � �X�� � � � � Xn�� one may use the inequality in this form as one way
to prove the fact in the AEP that if An is any sequence of sets with PXn�An� con�
verging to one thenQXn�An� � e�n�D�o���� whereD � lim sup���n�D�PXn jjQXn��
Thus the converse half of the AEP does not require stationarity or ergodicity
of the processes�

��
 Conditioning on an Event

Let X be a random variable �or vector� and let B be a set for which the distri�
bution PX assigns positive probability� The conditional distribution PXjB has
density �B�x��PX �B� with respect to PX and hence

D�PXjB jjPX � � log ��PX�B��

Thus there is an exact relative entropy expression for the probability of events

PfX 
 Bg � e�D�PXjBjjPX ��

� PROBABILITY

Here we examine the role of information quantities in basic limit theorems of
probability including the law of large numbers� large deviations� a conditional
limit theorem� martingales� central limit theorems� and convergence of Markov
chains to the stationary distribution� The chain rule and representations for
increments of relative entropy will be our main tools�

��� Large Deviations and the Law of Large Numbers

Let X�� X�� � � � � Xn be i�i�d� and let Bn � f �Pn 
 Qg be the event that the
empirical distribution is in a convex set Q� The empirical distribution is de�ned

��



by �Pn�A� � ���n�
Pn

i�� �A�Xi� for A � X � Large deviations is concerned with

the asymptotic behaviour of Pf �Pn 
 Qg when P is not necessarily in Q� In
particular� if Q equals fQ � EQf�X� � � � �g or fQ � EQf�X� � � � �g with
EP f�X� � � and � 
 �� then Pf �Pn 
 Qg provides the tail probabilities of
the distribution of the sample average ���n�

Pn
i�� f�Xi� associated with the

law of large numbers� A particularly nice treatment of large deviations �and
conditional limits discussed below� is in Csisz�ar 
Csi��� using several of the
probabilistic information theory ideas discussed above� From the conditioning
identity and the chain rule� Csisz�ar showed that

Pf �Pn 
 Qg � e�nD�P
X�j

�Pn�Q
jjP � � e�nD�QjjP �

if Q is completely convex� When D�QjjP � is positive this proves exponential
convergence of the probability to zero �which provides in particular a form of
law of large numbers�� Now Qfj �Pn�A� � Q�A�j � �g � � for each set A � X �
Consequently� for a suitable notion of the interior Qo as de�ned in 
Csi��� one
has that Qf �Pn 
 Qg � � for each Q in Qo� Then by the optimality of the
exponent D�QjjP � in the AEP or Cherno��Stein Lemma �here with the roles of
Q and P reversed� Pf �Pn 
 Qg � e�n�D�QjjP ��o��� for each Q in Qo and hence

Pf �Pn 
 Qg � e�n�D�Q�jjP ��o�����

Suppose P has the same distance from both Q and its interior Q�� that is�
D�QojjP � � D�QjjP �� �This is true for instance in the case that Q � fQ �
EQf�X� � ag with a in the interior of the set of expected values achievable by
the exponential family through P using exponent proportional to f�X��� Then
as in 
Csi��� one has

Pf �Pn 
 Qg � e�n�D�QjjP ��o�����

Thus relative entropy identi�es the large deviations exponent� Under conditions
on the range and the variance of i�i�d� random variables� Hoe�ding� Bennett� and
Bernstein inequalities follow via bounds on the exponentD�QjjP �� Unmotivated
use of generating functions is not needed for these large deviations proofs�

When X�� X�� � � � � Xn� � � � form a Markov chain with stationary transitions�
an extension given in 
Sch��� of this information�theoretic technique identi�es
the large deviation exponent D for empirical measures constrained to a set Q�
It is equal to D � minD�QX��X� jjQX�PX�jX�

� where the minimum is over all
QX��X� in Q that satisfy the stationarity constraint QX� � QX� � Armed with
an evaluation of this information exponent in the case that Q equals fQX��X� �
EQX�

f�X�� � �� �g or fQX��X� � EQX�
f�X�� � � � �g one could in principle

determine how long to run a Markov chain such that with high probability
the sample average of a function f�X� is within � of its expectation under the
stationary distribution�

��



��� Conditional Limit Theorem and Thermodynamics

How should we reassess the distribution of the Xi given the empirical mea�
surement that �Pn is in the convex constraint set Q� Continuing with the set�
ting of the previous subsection in which X�� X�� � � � are i�i�d�� Csisz�ar 
Csi���
showed from the large deviations answer and from the conditioning inequality
given above that the sequence of conditional distribution PX�j �Pn�Q

which are

in Q have relative entropy from P converging to D�QjjP � and hence by the
Pythagorean relation the conditional distribution PX�j �Pn�Q

converges to the

information projection P � in the sense that D�PX�j �Pn�Q
jjP �� tends to zero�

This result has interpretation as a proof of the thermodynamic principle
stating that the conditional distribution on the microstates Xi for each i� given
the macroscopic property �Pn 
 Q� converges in the limit of a large number n
of particles to the distribution P � that minimizes the relative entropy D�QjjP �
among distributions Q that satisfy the macroscopic constraint Q 
 Q� This
conclusion agrees with the maximum entropy principle if via suitable transfor�
mation the canonical �unconditional� distribution on the microstates can be
taken to be uniform� More generally� it is in agreement with Kullback�s princi�
ple for estimating distributions �given that average measurements correspond to
distributions in Q� by minimum discrimination information from a previously
believed distribution P �

��� Martingales

Basic to the understanding of relative entropy is a monotonicity and convergence
property that

D�PnjjQn�� D�P jjQ�
if Pn and Qn are the restrictions of measures P and Q respectively to an in�
creasing sequence of sigma�algebras of sets that in the limit generate the whole
sigma�algebra of sets on which P and Q are de�ned� In information theory
this result with sigma��elds generated by sequences of partitions has been used
to show the equality of two de�nitions of D �one with a supremum over par�
titions and the other in terms of the integral of densities� arising in the work
of Kolmogorov and his colleagues in the �����s �see 
Pin����� It has also been
used to characterize the mutual information I�X��X�� X�� � � �� as the limit of
I�X� � X�� X�� � � � Xn� for any sequence of random variables� by taking the
sigma��elds to be generated by X�� X�� � � � � Xn �see 
Pin��� KK����� Similar
conclusions hold for conditional entropy and conditional mutual information
rates� In this context it is used to demonstrate the vanishing of the gap in the
sandwich proof of the Shannon�McMillan�Brieman�Moy�Orey�Barron theorem
of 
AC��� or the dominated convergence proof of 
Ore��� Bar����� In all of these
settings the limit of the information quantities has been proven by appealing to
convergence properties of martingales�

�




I maintain that there is a more direct understanding of the information the�
ory property Dn � D and that convergence of the appropriate martingales
follow as a consequence 
Bar���� The heart of the matter is the chain rule in a
suitably general setting� Consider the case that the sequence Dn � D�PnjjQn�
is bounded �when it is unbounded the convergence will still follow from a demon�
stration of monotonicity�� Let �n��� be the density of Pn with respect to Qn�
Then for n 
 m�

log �n � log �m � log �n��m�

Taking expectation with respect to P and using the measurability of log �m with
respect to the smaller sigma�algebra� we have

D�PnjjQn� � D�PmjjQm� �

Z
�n log �n��m

where the integral is taken with respect to Q� Now since both �n and �m inte�
grate to one� we have

R
�n log �n��m � �� This shows that Dn is an increasing

sequence of numbers� Hence it is a Cauchy sequence� so that Dn � Dm �R
�n log �n��m tends to zero as m tends to zero� uniformly over n � m� By in�

equalities in section ��� this implies that both
R j�n��mj and EP j log �n�log �mj

tend to zero� Hence �n is a Cauchy sequence in L��Q� and log �n is a Cauchy
sequence in L��P �� Let � be the resulting limit of �n which then exists by
completeness of L�� By L��Q� convergence we deduce that P is absolutely con�
tinuous with respect to Q and � is the density of P with respect to Q� By L��P �
convergence of log �n we have that Dn � EP log �n converges to EP log � which
by de�nition is D�P jjQ��

Thus we have a direct proof that D�PnjjQn� � D�P jjQ� with convergence
of the nonnegative Q�martingales �n as a corollary� The L� convergence for
more general uniformly integrable martingales �n �not necessarily positive with
bounded

R
�n log �n� can be treated by reduction to this special case�

��� Central Limit Theory

Let Sn � �X� �X� � � � ��Xn��
p
n be the standardized sum for i�i�d� random

variables with mean zero and variance �� Suppose it has a density function pn�s�
and let ��s� be the standard normal density� It is a familiar fact� equivalent
to D�pnjj�� � �� that the normal has the maximum entropy for the given
variance and that equality holds only if Sn is normal 
CT���� Thus the idea
that the normal should be the limit and the form that this limit should take
�exponential family with exponent proportional to s�� are naturally motived by
the constrained maximum entropy principle� But does the density pn converge
to � in the information sense� D�pnjj��� �� Equivalently� does the entropy of
Sn converge to the entropy of a normal random variable as n�	� And is this
convergence monotone� That is� is Dn � D�pnjj�� a decreasing sequence�

The answer from 
Bar��� is that� yes� D�pnjj�� � �� if and only if it is
eventually �nite� Moreover� nD�pnjj�� is a subadditive sequence� henceD�pnjj��
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is convergent and it is monotone alone the powers of 
 subsequence� Doubling
the sample size brings us strictly closer to the normal�

The proof that the limit of D�pnjj�� is zero is based on the representation of
D as an integral of the relativized Fisher information� This relativized Fisher
information has an interpretation as a squared L� norm of the di�erence in the
score functions �derivatives of the log�densities� between the smoothed density
and and associated normal� Pythagorean identities for the L� norm and projec�
tion properties for the score functions reveal the convergence of the derivatives
of the smoothed log�densities in L� as shown in 
�� building on results of 
Bro�
��
The integral representation of the relative entropy in terms of the relativized
Fisher information 
Bar��� then proves convergence to zero of the relative en�
tropy by application of the monotone convergence theorem�

Thus D�pnjj�� � �� Convergence in total variation and in distribution
are corollaries� In general for the standardized sum of i�i�d� random variables
with mean zero and �nite variance� D�Pnjj�� might never be �nite� indeed�
Sn need not have a density� Nevertheless� the classical result of convergence
in distribution still follows as a corollary since convergence in distribution is
equivalent to convergence in distribution for each positive � for the random
variables smoothed by addition of independent normals of variance �� which
does produce �nite divergence�

��� Markov Chains

Let X�� X�� ��� be a Markov chain on a state space X with initial distribution
P ��� � PX� � transition distribution PX�jX � and a stationary distribution PX �

Let Dn � D�PX jjP �n�
X � be the relative entropy distance of the distribution

P
�n�
X � PXn

from the stationary distribution PX � Each step of the chain brings
the distribution closer to stationarity� This can be seen by application of the

chain rule applied to expand in both ways the relative entropy D�PX�X� jjP �n�
X�X��

between the joint distribution PX�X� of consecutive states under stationarity

and the joint distribution P
�n�
X�X� � PXn�Xn�� of consecutive states after n steps�

As in CT��� the result of this chain rule expansion is

D�PX jjP �n�
X � � D�PX� jjP �n���

X� � �EPX�D�PXjX� jjP �n�
XjX��

where PXjX� is the time�reversed conditional distribution when X � has the sta�

tionary distribution and likewise P
�n�
XjX� is the conditional distribution of Xn

given Xn��� Here if PX and P
�n�
X have densities p�x� and pn�x� respectively

and PX�jX has a conditional density p�x�jx�� then by Bayes rule the time�
reversed conditional distributions have conditional densities p�x�p�x�jx��p�x��
and pn�x�p�x

�jx��pn���x��� which share the common factor p�x�jx��
Conclusions from the above identity are that Dn � D�PX jjP �n�

X � is a de�
creasing sequence� the di�erence rn � Dn � Dn�� is itself a relative entropy
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rn � EPX�D�PXjX� jjP �n�
XjX��� if Dn is �nite for some n then rn must must con�

verge to zero� and summing over a number of steps up to n� we �nd that the
Cesaro average satis�es

�

n

nX
k��

rk � D�

n
�

The same analysis works for the sequence D�P
�n�
X jjPX � which has posi�

tive increments E
P
�n�

X�
D�P

�n�
XjX� jjPXjX�� converging to zero with Cesaro average

bounded by D�P
���
X jjPX��n�

To obtain convergence of P
�n�
X to PX � information inequalities arizing from

the chain rule are used to prove a Cauchy sequence property for total variation�
see 
Fri��� Ken��� Ren����

To obtain bounds for how close to zero is the divergence D�P
�n�
X jjPX�� what

one would look for is for the result of applying the marginal P
�n�
X to the two

transitions P
�n�
XjX� and PXjX� to be near each other only if P

�n�
X is near PX � Note

the rough similarity with what is required �see section 
��� to have a not too
small exponent for the tail probability of sample averages �large deviations� in
a Markov Chain� Bounds for certain types of chains are developed in the next
section�

��� Probability Reprise

To summarize this probability section� we have seen that the chain rule in
conjuction with other information�theoretic inequalities provides simple proofs
for the large deviations exponent� the conditional limit theorem� the convergence
of martingales� the central limit theorem� and the analysis of Markov chains�
The quantities of information theory are natural in that they characterize the
large deviations exponent and they characterize the identity of the limit in the
conditional limit theorem and the central limit theorem� Moreover� they provide
monotonicity of convergence in the central limit theorem and monotonicity of
convergence of martingales and Markov chains�

� Metropolis Chains� Stochastic Gradients� and

Distance from Stationarity

In this section I present work in progress on Metropolis chains and stochastic
gradient models� The aim is to identify rates of convergence of pn to p and
to determine bounds on measures of distance between them� Depending on
the nature of such bounds� we would like to interprete Xn as approximately a
draw from the stationary density p for polynomially large n� The eventual goal
is to apply such bounds to computational statistics or computational learning
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problems in the case that p is the posterior density that arises in Bayes models�
so that provably accurate posterior mean functions can be rapidly computed
from Monte Carlo averages using several independent runs of the chain�

��� Metropolis Chains

Let p�x� be a given density with respect to Lebesque measure on Rd� Metropolis
chains are constructed to have a transition PX�jX for which the distribution
with density p is the stationary distribution� We choose a pilot distribution
for the transitions that is uniform on a small cube of sidelength proportional
to � centered at the current state x� What is essential here is that the pilot
distribution has mean equal to the current state� step size bounded by order ��
and covariance of order �� times the identity matrix� For de�niteness I choose
this covariance to equal ��I � If x� is a candidate point drawn from the pilot
distribution then the chain steps there with probability minfp�x���p�x�� �g and
otherwise stays at x�

Assume that log p�x� and log pn�x� have a bound � on the absolute values of

the second derivatives 	�

	x�
i

log p�x� and 	�

	x�
i

log pn�x� and the square of the �rst

derivatives 	
	xi

log p�x� and 	
	xi

log pn�x��

The density ratio between PXjX� and P
�n�
XjX� � restricted to x in the � cube

around x�� is the ratio of p�x��p�x�� and pn�x��pn���x
�� which are uniformly

close to one for small �� From section ��� this permits the approximation

EPX�D�PXjX� jjP �n�
XjX�� � ���
�EPX�X�

�
log

p�X��p�X ��

pn�X��pn���X ��

��

to within terms that will be seen to be of order �	� Examining quantities that
arise inside the square on the right side� one can show that log pn���x

���pn�x
�� is

of order ��� which is negligible compared to the di�erence between log p�x��p�x��
and log pn�x��pn�x

�� for which the �rst order Taylor expansion equals

�x � x��Tr log p�x���pn�x
�� �O�����

In this way we �nd that with Dn � D�pjjpn��

Dn �Dn�� � ���
���J�pjjpn��O��	�

and� in particular� there is a positive universal constant C such that

Dn �Dn�� � ���
���J�pjjpn�� Cd��	�

where J�pjjq� � R
p�x�jjr log p�x��q�x�jj�dx is the relativized Fisher informa�

tion and d is the dimension of X � The same representation holds for the di�er�
ences in the sequence D�pnjjp� but with J�pnjjp� in place of J�pjjpn��
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Note the similarity of this representation of the increment of relative en�
tropy to the case in section ��� where one adds a small independent random
vector of covariance equal to �I with � � ��� Here the Metropolis perterba�
tions are not independent of the site X � but the representation holds nonethe�
less� An alternative proof of the above identity is to note that Dn � Dn�� �
EPX log pn���X��pn�X� and then expand log pn���X��pn�X� to second order
using the de�nition of pn���X�� The terms one gets appear somewhat more
complicated� but several of them vanish employing an integration by parts�

The characterization of the drop in relative entropy is here based on a small
step size �� It reveals a positive drop as long as J�pjjpn� remains at least a
multiple of �� To allow via these bounds a demonstration that Jn � J�pjjpn�
tends to zero it will be necessary to allow �n to shrink slowly with n� Note
that this produces time�inhomogeneous transition probabilities but maintains
the stationarity of the distribution P �

Now ideally one may have an inequality relationship D�pjjq� � �J�pjjq�
�which may be interpreted as a Sobolev inequality 
Maz����� though the constant
� may in some cases be quite large �especially for multimodal p on Rd�� If that
inequality holds then one may deduce by induction a bound of order Dn �

O���
p
n�� indeed Dn � maxfD�� �Cd��


��
p g�pn� in conjuction with a choice of

�n � 
��
p
n� The idea in that case is that the decrease in Dn will be at least

a certain small positive multiple of Dn� Nonetheless� we are interested here in
what error bounds we can extract for the convergence of pn to p even in the
absence of a relationship D�pjjq� � �J�pjjq��

Suppose we set �k to decrease to zero fairly slowly� such that the sequence
��k is not summable� but in such a way that �	k is a summable sequence� For
instance let �k � ���k�r with ��� 
 r 
 ��
 and let the sum of cubes be
� �

P
k �

	
k� Summing the inequality above and then dividing by n we have that

�

n

nX
k��

��kJk �
A

n
�

where Jk � J�pjjpk� and A � 
D� � C�d�� Consequently�

�

n

nX
k��

Jk � A

n����r�
�

This means that if we choose a random number of steps Kn between � and n
the expected value of the distance JKn

is bounded by A�n����r�� In particular
there must be a kn � n such that Jkn is not greater than A�n����r�� If also Jn
is nonincreasing� then Jn � A�n����r��

A similar but slightly better bound is obtained by drawing Kn on f�� � � � � ng
with probability mass function ��k�

Pn
k��� �

�
k� � which can focus on a somewhat

smaller number of steps and achieves EJKn
� A�

Pn
k�� �

�
k� For a given n we

may set �k � ���n���	 for k � n and make no steps thereafter ��k � � for
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k 
 n�� Then the sum of cubes is � � � and the sum of squares is n��	 so that
we achieve

EJKn
� A

n��	
�

Thus we have convergence of the probability densities pKn
to p in the rela�

tively strong sense of L��P � convergence of the gradient of the log�density� with
an explicit bound on the error� The bound permits determination of a number
of iterations n of the Metropolis algorithm� usually polynomial in the dimension
d� such that we have approximately a sample from the density p in the sense of
small J on the average for k � n�

The bound given here is a very promising bound� particularly because there
is no assumption of log�concavity or unimodality of the target density p� Nev�
ertheless� to be useful in an application there remains the task of showing that
small J is su	cient for the task at hand� I also remind the reader of the require�
ment we have not veri�ed here� that log pk�x� as well as log p�x� have second
derivatives and squares of �rst derivatives that remain bounded by � for every
� � k � n� Assuming one has a target density p for which the derivatives
are bounded in this way and that the initial distribution is chosen to be one
for which these derivative bounds hold� then it is conceivable that the bounds
continue to hold for k � ��

��� Stochastic Gradient

Here we consider a stochastic gradient process designed to have transitions with
the same conditional means and variance �to �rst order� as the Metropolis chain�
Speci�cally� starting from an initial distribution for X�� let Xn evolve according
to the stochastic di�erence equation

Xn�� � Xn �
�



��nr log p�Xn� � �nZn�

where the vector Zn has mean zero� identity covariance and is independent of
Xn� and r denotes the gradient� Here I will take Zn to be i�i�d� standard normal
random vectors� though other choices such as uniformly distributed on a cube
may also yield the same conclusions� In this chain we have lost the property
of the density p providing an exact stationary distribution� Nevertheless� the
aim is to reveal that for certain sequences �n the marginal distribution of the
process will approach p at a reasonable rate�

Let pn denote the density for Xn� Using Taylor expansions in the integral
de�ning pn��� the expansion that should hold here under reasonable conditions
on the densities is that

log pn���pn �
��n



�
�r log pn�

Tr�log pn�p� �rTr log pn�p
��O���n��

where rTr log pn�p denotes the Laplacian or trace of the Hessian of log pn�p�
I �nd this notation useful to facilitate the multivariate integration by parts
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R
prTr�log pn�p� � �

R
�rp�Tr�log pn�p� which equals �

R
p�r log p�Tr�log pn�p�

and which combines nicely with the other term� Note that this expansion reveals
the near stationarity of the density p to within order ���

The corresponding drop that we would expect in the relative entropy� namely
D�pjjpn��D�pjjpn��� � EPX log pn���X��pn�X�� can then be obtained by tak�
ing the expected value in the above identity and using the integration by parts�
It also can be anticipated as an analogue of the di�erential identity for relative
entropy in terms of relativized Fisher information� The result is a now familiar
conclusion

D�pjjpn��D�pjjpn��� � �



��nJ�pjjpn�� ����n��

Similarly

D�pnjjp��D�pn��jjp� � �



��nJ�pnjjp�� ����n��

Here in this preliminary assessment I have not yet identi�ed the most natural
conditions on the densities for the validity of this expansion� nor have I identi�ed
the form of satisfactory constants in the O���n� term� Nevertheless this direction
is again promising for exhibiting bounds on distance from stationarity� Once
again we would take �n to decrease to zero� but now we permit somewhat more
gradual descent ���n�r with r 
 ��� to make ��n summable and obtain in the
same manner as before EKn

J�pjjpKn
� � O���n�����r�� With �k held �xed at

��n��� for k � n and Kn uniformly distributed on f�� � � � � ng we would achieve

EKn
J�pjjpKn

� � O���n�����

��� Reprise

Let�s summarize this section on convergence bounds for Metropolis chains and
stochastic gradients� We have seen that chain rules for relative entropy reveal
the role of the relativized Fisher informations J�pjjpn� and J�pnjjp� for chains
that make small steps� For discrete time Metropolis chains and stochastic gra�
dients these informations converge to zero at polynomial rates in the number of
steps� with apparently manageable constants� The implications of the conver�
gence of J for the convergence of D�pjjpn� and D�pnjjp� or other measures of
distance are less clear� Appealing to general Sobolev and Poincar�e inequalities
suggests that one would expect the sort of constants �related to conductance�
that give rise in some cases to exponential numbers of steps with dimension in
Chi�square bounds� It remains possible that improved Sobolev inequalities hold
for log�density ratios� Integral relationships between D and J provide tactics for
examining this issue� Additional work is desired to determine whether the rela�
tive entropy based analysis yields practical conclusions for Monte Carlo Markov
chain methods in some practical multimodal and high�dimensional settings�
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� STATISTICS

Here we examine the role of relative entropy in characterizing achievable asymp�
totic performance of parametric and nonparametric estimators� We also look
at practical bounds for risk of Bayes and related estimators� The �rst two sub�
sections are of a classical  avor� but I include them since optimality properties
of Bayes and maximum likelihood estimators and the nature of the optimal
risk sequence as ���
�� parameters � sample size seem often to be neglected
in computational learning theory� The results characterizating optimal rates
for uniformly accurate estimators in nonparametric settings should also be of
general interest in computational learning theory�

��� Consistency of Maximum Likelihood

Let PXj�� � 
 � be a parametric family of distributions with densities p�xj�� and
let X�� X�� � � � Xn � � � be i�i�d� with distribution P having a density p�x� �with
respect to a measure � dominating the members of the family�� It is required
that � be contained in a separable metric space� In typical examples it is
k�dimensional Euclidean space� Let ��n be a maximum likelihood estimate and
let PXj��n be the corresponding estimate of the distribution� Relative entropy is
used in analysis of maximum likelihood to determine the set of possible limits ���
to prove convergence of ��n to it and to prove convergence of the corresponding
estimates of the distribution�

Maximizing the log�likelihood log p�Xnj�� is mathematically equivalent to
minimizing the empirical relative entropy �Dn��� � ���n� log p�Xn��p�Xnj���
Note that for each � the empirical relative entropy �Dn��� converges almost
surely to the relative entropy D��� � D�P jjPXj��� If � were a �nite set it would

follow from the resulting uniform convergence that D���n� � D�P jjPXj��n� would
converge almost surely to D� � min�D��� and hence that ��n would converge
to the set of minimizers �� of D���� entailing� if in particular the minimizer ��

is unique� that ��n � �� almost surely�
The consistency proof of Wald 
Wal��� �and others who have extended it�

treats the case that � is not �nite by a compacti�cation� assuming a domination
of the log�densities� a continuity in � and a convergence to zero of the p�Xkj��
for any sequence of � divergent from each compact subset of �� Though phrased
in 
Wal��� as separate conditions on domination in each su	ciently small ball
in a compact subset and domination outside the compact set� the domination
conditions are tantamount to the key assumption that for some k � �� the
function pmax�X

k� � max� p�X
kj�� satis�es EP log p�Xk��pmax�X

k� 
 �	�
In particular if pmax�X

k� is integrable then it is normalizable to be a proba�
bility density q�Xk� � pmax�X

k��ck with ck �
R
pmax�x

k��k�dxk� and hence
EP log p�Xk��pmax�X

k� � D�PXk jjQXk� � log ck 
 �	 and Wald�s domina�
tion conditions are satis�ed� �The quantity log ck will arise again in universal


�



learning and coding��
The consequence of these assumptions is that D�P jjPXj��n� converges almost

surely �and hence in probability� to min�D�P jjPXj��� If D�P jjPXj�� is strictly
above this minimum outside neighborhoods of a minimizing �� then convergence
of D implies parameter consistency ��n � �� a�s� as n � 	� If P � PXj�� is
in the model class then �even if there are multiple representations of it in the
family� we have that almost surely�

D�PXj�� jjPXj��n�� ��

The convergence in probability of D�P jjPXj��n� to D� � min�D�P jjPXj��
means that for every positive � and � there is an N��� �� such that for all n �
N��� ��

PXnfD�P jjPXj��n� 
 D� � �g � ��

Such convergence in probability of the loss function of an estimator is called sta�
tistical consistency� For the maximum likelihood estimator and certain classes
fPXj� � � 
 �g this convergence is not necessarily uniform over P � The unifor�
mity of such convergence is called uniform consistency in statistics and called
PAC learnability Hau�� in computational learning theory� Uniform consistency
and the exhibition of polynomial bounds on N��� �� �which translate into an is�
sue of minimax rate of convergence� are matters addressed in later subsections�

��� E�ciency of Parametric Estimators

In examination of the asymptotics of the distribution of estimators� relative
entropy and related quantities arise again� not only in identifying� via the con�
sistency analysis� the limit ��� which becomes the mean of the asymptotic dis�
tribution� but also in characterizing the asymptotic variance using the inverse of
the Hessian of D�P jjPXj�� at ��� and even in determining the Gaussian shape
of the asymptotic distribution via the entropy maximization principle in the
central limit theory�

I do acknowledgement that� in the case that the true distribution is in the
parametric family� characterization of the Fisher information matrix as a Hessian
of twice the squared Hellinger distance is applicable to more general families
than the entropy�based de�nition�

Suppose we have a smooth k�dimensional parametric family� Together with
consistency� expansion of the gradient of the log�likelihood shows that under
suitable conditions� maximum likelihood estimators achieve

p
n���n � ��� � J����

�
�p
n

nX
i��

g�Xi�

�
�OP

�
�p
n

�

Where J�� is an information matrix and g�X� is a score function that will be
de�ned momentarily� The function g will have moments EP g�X� � � and I�� �


�



EP g�X�g�X�T � so by application of the central limit theorem� the expansion
yields convergence in distribution of the estimator to a normal� In particular�

p
n���n � ���
 Normal��� J���� I��J

��
�� ��

The de�nition of g�x� and J�� for this expansion depends on which of two
sorts of conditions one takes� Under local domination conditions as in Cramer
Cra��� g�x� � r log p�xj��� is the gradient with respect to the parameter vector
evaluated at �� and taken pointwise in x� Here J�� is the expected Hessian
�EPrrT log p�X j��� assumed to be positive de�nite� Under Cramer�s condi�
tions it is in agreement with the Hessian of the expectation rrTD�P jjPXj����
In the special case that P � PXj�� is in the family� these matrices reduce� under
the local domination conditions� to the Fisher information J�� � I�� and

p
n���n � ���
 Normal��� I���� ��

Under a mean square di�erentiability condition as in 
IH��� LeC��� �� ��
one takes g�x� � 
��x��

p
p�xj��� where ��x� � rpp�xj��� is the gradient in

L���� of
p
p�xj��� at ��� The Fisher information I�� � EP g�X�g�X�T may also

be expressed as
R
��x��T �x��fp�xj�����g��dx�� assuming here that P � PXj�� is

in the family� With this assumption one may set J�� � ���
��I�� � !I��� where
!I�� �

R
��x����x��T ��dx�� With L� di�erentiability� !I�� agrees with the Hessian

of twice the squared Hellinger distance at ��� The information matrices !I�� � I��

and J�� agree provided the set fx � r
p
p�X j��� �� � and

p
p�X j��� � �g is

a set of measure zero �in accordance with LeCam�s notion of contiguity�� The
conclusion in this setting is again that�

p
n���n � ���
 Normal��� I���� ��

Maximum likelihood is a type of M estimator 
��� which means that it op�
timizes an empirical loss ���n�

Pn
i��G�Xi� �� for a choice of G�X� �� for which

EP��G�X� �� is assured to be optimized at the unknown ��� Such estimation
is also called the method of minimum contrast 
�� �� BM��� or the method of
empirical risk minimization 
Vap�
��

M estimators other than maximum likelihood are asymptotically normal
centered at ��� but with a larger covariance V 
�� ��� The di�erence V � I����

is nonnegative and equality V � I���� holds only if the empirical contrast is
the log�likelihood� as can be shown as a Cramer�Rao inequality applied to the
covariance of the limit distribution� In addition to maximum likelihood there are
a number of other estimators� including Bayes estimators with suitable priors�
for which

p
n���n � ��� is asymptotically normal��� I���� � �under similar local

di�erentiability conditions� but often under weaker conditions for consistency�

�� LeC��� Historically then� for reasons that will be ampli�ed in subsection
���
 below� such estimators are said to be e	cient� and estimators which have
a larger variance of the asymptotic distribution are said to be ine	cient�







��� Implications for Loss and Risk

Armed with the asymptotic distribution of ��n for e	cient estimators one can
determine the asymptotics for various smooth loss functions L���� ��� In partic�

ular� when L���� �� � ���
���� � ��T I���� � �� and more generally when L���� ��

is minimized at �� � � and twice continuously di�erentiable in �� with Hessian
matching the Fisher Information I�� we have that

nL���n� �
��
 �



���k��

where ���k� is a random variable with the Chi�square �k� distribution �the dis�
tribution of jjZjj� if Z is multivariate standard normal on Rk� which has expec�
tation k� In particular� for smooth parametric families these asymptotics hold
for D�PXj�� jjPXj��n� for twice H��PXj�� � PXj��n� or for any other asymptotically
equivalent measure of divergence�

When the sequence nL���n� �
�� is uniformly integrable then from this con�

vergence in distribution we have that the risk rn � EPL���n� �
�� satis�es

rn �

�
k


n

�
�� � o�����

That is� the risk is asymptotically the number of parameters divided by twice the
sample size� Results in this direction for relative entropy loss are in 
�� Cen�
��

The convergence in distribution discussed here concerns demonstration that
the tail probability of the loss L���n� �� satis�es

PfL���n� �� 
 �


n
g � Pf���k� 
 �g�

��� Uniformly Valid Bounds for Loss and Risk

The asymptotics above do not give uniformly valid bounds on the tail proba�
bility of the loss� Nevertheless� they point the way for what to expect in PAC
learnability� The best one can hope for is uniformity in the asymptotics of loss
for e	cient estimators� that is� for all positive � and n

PfL���n� �� 
 �


n
g � CPf���k� 
 �g

for some constant C � �� So at best� for loss not greater than � with con�dence
level �� � the sample size required is

N��� �� �
�k��

�

with �k�� the upper � quantile of the �
��k� distribution� For large k and small

�� this �k�� is approximately

k � �
k�����
 log �������


�



to within order k��� log log ���� Typically one is forced to give up somewhat on
such re�ned asymptotics to have bounds that hold uniformly for all n and all P
in a family� in order to yield a sample size N��� �� with the desired guarantee�
Nevertheless� ignoring for the moment the e�ect of �� one should at least seek to
have N��� �� of order k�� corresponding to loss bounded by order k�n uniformly
in probability� We now discuss general results of this type�

The cancellation of the Fisher information in the asymptotics of the diver�
gence suggests that �nite Fisher information and local quadratic approximation
of the likelihood are not essential for order k�n bounds�

What is essential is that k be a metric dimension of the family� Results
in this direction are in 
LeC��� BM��� where it is assumed that if the family
Q � fPXj� � � 
 �g is compact and has �nite metric dimension k with the
Hellinger metric �which means that each ball of radius r� 
 � can be covered
using at most �Cr��r��

k balls of smaller radius r� � ���
�r��� then for various
estimators �Bayes with certain priors� maximum likelihood on nets� global max�
imum likihood� there exists constants c�� c�� c�� c	 �each � �� such that for all
n

Pfh��P� PXj��n� 

c�k � c��

n
g � c	e

��

uniformly over P in fPXj� � � 
 �g� and� moreover� ifD��P � � min�D�P jjPXj��
is added to the right side in the bound� then for all n

Pfh��P� PXj��n� 
 c�D
��P � �

c�k � c��

n
g � c	e

��

uniformly over all probability distributions P � Integrating such bounds over
� � � shows that the risk Eh��P� PXj��n� is bounded by order

D��P � � k�n�

Results of this type are used in 
BBM��� YB��a�� when a list of models is
available� to show under conditions on the models that there exist constants
c��� c

�
�� c

�
	 such that penalized maximum likelihood estimators �P achieve

Pfh��P� �P � 
 c��an�P � � c����ng � c�	e
��

uniformly over all probability measures� Here an�P � is the accuracy index

an�P � � min
m
fD�

m �
km
n
g

where D�
m � minQ�mD�P jjQ� is the approximation error and km is the metric

dimension of model m� Again integrating such a bound over � 
 � shows that
the risk EH��P� �P � is bounded by order an�P �� Armed with such bounds it
is shown in 
BBM��� that one can achieve minimax optimal convergence rates
in many nonparametric as well as parametric cases� Moreover� the penalized


�



likelihood estimators acheve these optimal rates adaptively� that is� without
prior knowledge of which function classes contain the true density and without
prior knowledge of which �nite�dimensional model mn�P � will achieve the best
accuracy index�

Note the shift in perspective here� When a variety of possible models are
considered of various dimension� once a sample size is chosen� the aim is to
have an adaptive procedure which will lead to as small as possible a risk� as
if the best family mn were known� Here an�P � and its empirical counterparts�
are unknown to us in advance of seeing the data� and for some P can converge
to zero arbitrarily slowly� Thus it is not possible to chose a sample size with
performance guarantees �except of course by hypothetically presuming certain
constraints on an�P ��� Again� once a sample size is chosen� one should nolonger
feel tied to these presumptions� but rather should allow the data to reveal better
or worse accuracy than hypothesized�

��� Relative Entropy Risk for Maximum Likelihood in Ex�

ponential Families

Let S � Sm be a linear space of dimension k � km of real�valued func�
tions on X and let ���x�� � � � �k�x� be a convenient basis for S which will be
used in a model m for the log�density� Densities in the exponential family
p�xj�� � p��x� expf

Pk
j�� �j�j �����g where ���� � log

R
p� expf

P
�j�jg withR

�j�x�p�xj�� equal to 	j � say� for j � �� � � � � n arises naturally in information�
theoretic statistics as the information projection achieving the minimumD�qjjp��
in the linear constraint set Q � fq � R �jq � 	j for j � �� � � � � kg in accordance
with Kullback�s minimum discrimination information principle 
Kul��� Csi����

Suppose we have empirically speci�ed values 	j � ���n�
Pn

i�� �j�Xi� for

j � �� � � � � k� If there is a density �pn�m�x� � p�xj��� in the exponential family
that matches these expected values then� as well as being the density in Q
that minimizes the relative entropy from p�� it is also the maximum likelihood
estimator �and method of � moments estimator� in the exponential family� I
remark that given Sm the basis may be adjusted in any convenient way� As long
as it spans the same space� it will yield the same maximum likelihood density
estimator �pn�m�x��

Probability bounds on the relative entropy loss of this maximum likelihood
estimator in exponential families are given in 
BS����

In particular suppose the data X�� � � � � Xn are i�i�d� according to a density
p that is not necessarily in the family� If there is a member of the exponential
family p�m�x� � p�xj��� that achieves expectations for �j�X�� j � �� � � � � n that
match the values achieved by p� then it is the member of the family that best
approximates p in the sense of minimizing the relative entropy D�pjjp��j���� as
can be con�rmed by the Pythagorean�like identity

D�pjjp��j��� � D�pjjp�m� �D�p�mjjp��j����


�



Consequently� the relative entropy loss of an estimator �pn�m decomposes as a
sum of an approximation error and an estimation error

D�pjj�pn�m� � D�pjjp�m� �D�p�mjj�pn�m��

The approximation error D�pjjp�m� is related to the classic L� approximation
error of the log�density f�x� � log p�x� by members fm�x� of Sm� when the
corresponding L� approximation error is bounded�

Using for convenience in the analysis� a basis in which the ��� � � � � �k are
orthonormal with respect to the unknown p� the estimation error D�p�mjj�pn�m�
is shown to be related to the sum of squared error in the estimation of the
expectations

R
�jp by the sample averages ���n�

Pn
i�� �j�Xi� which is of order

km�n in probability�
Indeed for families in which there is a suitable link between the L� and L

�

norms in Sm �satis�ed for instance by certain polynomial� spline� trigonometric�
and wavelet models�� it is shown in 
BS��� that for a range of � speci�ed there

PfD�pjj�pn�m� � D�pjjp�m� � C
km
n
�g � ���

uniformly over all p for which the L� approximation error of the log density
jjf � fmjj� is bounded by some �� where the constant C depends on ��

Armed with classical approximation results for functions in Rd with norms
on derivatives of order s� the approximation error is shown to be of order
D�pjjp�m� � ���m��s using a parameter dimension km of order md� Here the
model index m represents the dimension per coordinate in a tensor product
basis� It follows that D�pjj�pn�m� converges to zero in probability at the rate

min
m

�
�

m�s
�
md

n

�
�

known to be minimax optimal in such function classes 
YB��b��
The results given in 
BS��� can be improved somewhat using the better

constants in the relationship between D�pjjq� and R p�log p�q�� stated in section
���� Also it is possible to obtain exponential bounds on the probability tails
�analogous to those stated in the preceding subsection� rather than the ���
bound� see 
YB��b��

An advantage of this treatment of exponential families is that it concerns
relative entropy loss bounds rather than the weaker Hellinger loss bounds that
are available for more general families�

��� Asymptotics of Bayes Posterior Distributions

Suppose fPXnj�� � 
 �g is a family of distributions for possible data sequences
Xn and suppose further that the family is dominated by a measure �n yielding


�



joint density functions p�Xnj��� If the parameter � is endowed with a prior prob�
ability distribution P� �W � then Bayes rule provides the posterior distribution
P�jXn �W�jXN for � given observation of Xn as

P�jXn�B� �

Z
B

p�Xnj��W �d���pW �Xn�

for B � � where

pW �Xn� �

Z
�

p�Xnj��W �d��

is the �joint� marginal density for Xn obtained by integrating out the parameter
with respect to the prior�

In the Bayes model the quantity � which is unknown is modeled probabilis�
tically� In advance of collecting the data� at the time we are making a choice
of a prior� we can assess the behavior of Bayes procedures also probabilistically
by asking what will be the distributional behavior of the posterior and of Bayes
estimators for various possible values of the unknown parameter� From such an
investigation we can seek to know what properties of the prior determine� at
least in rough� the characteristics the posterior�

Information theory plays a role here in several ways� Suppose �� is the un�
known value of the parameter� Then with probability one p�Xnj��� will be pos�
itive� Dividing it into the numerator and denominator and writing the density
ratios as exponentials of their logarithms shows that the posterior probability
of sets equals

P�jXn�B� �

Z
B

e�n
�D���jj��W �d���e�n

�Rn �

where �D���jj�� � ���n� log�p�Xnj����p�Xnj��� is the empirical divergence of the
distribution at � from the distribution at �� and �Rn � ���n� log�p�Xnj����pW �Xn��
is the empirical divergence of the Bayes mixture from the distribution at ��� The
idea here is that �Rn will be converging to zero at a certain rate as we shall see in
later sections� One anticipates that the integral over B should converge to zero
exponentially fast as long as it does not include a relative entropy neighborhood
of ��� though care must be taken to deal with the potential lack of uniformity
of convergence of �D���jj�� to D���jj���

Examination of this representation of the posterior suggests the following
principles� ��� asymptotic concentration of the posterior in relative entropy
neighborhoods of �� for those values of �� for which the prior probability of such
neighborhoods is positive� �
� rates of concentration of the posterior and rates of
convergence of estimators determined by the tradeo� between a radius of such
relative entropy neighborhoods and their prior probability� and ��� asymptotic
normality of the posterior in smooth �nite dimensional cases with positive prior
density at �� via local quadratic expansion of �D���jj��� Such conclusions are
true under appropriate conditions 
LeC��� �� �� Bar��� BSW���� with care taken


�



to deal with the potential lack of uniformity in � of convergence of the empirical
relative entropy �D���jj�� for large n�

As pioneered by Le Cam and Schwartz 
Sch���� a special role is played by
the theory of uniformly consistent tests to reveal consistency properties of Bayes
estimators in cases where that convergence need not be uniform in �� By that
means� consistency holds at �� for priors that give positive mass to relative en�
tropy neighborhoods� in those cases when restricted to the parametric model�
relative entropy convergence is equivalent to weak convergence of distributions�
see 
Bar��� CB���� One may allow also priors in some nonparametric settings
and get Hellinger or L� consistency provided that the prior probability is expo�
nentially small for the set of those parameter values � for which the models lack
a certain amount of smoothness 
Bar��� BSW����

��	 The Form of Bayes Estimation � Prediction with Rel�

ative Entropy Loss

Given a loss function for the estimation of a quantity that depends on a param�
eter� the task of choosing an estimator to minimize the average risk� averaging
both with respect to the distribution of data PXnj� and with respect to a prior
P�� is accomplished by choosing for each Xn an estimate that minimizes the
posterior risk� In particular� suppose we wish to estimate the distribution of an
unobserved random variable U that also depends on the parameter �� First let�s
suppose U is conditionally independent of Xn given �� Assume that the family
of distributions for U have densities p�uj�� with respect to some measure� We
use relative entropy loss and ask� "what is the form of the Bayes estimator�#

Let p�ujXn� �
R
p�uj��P�jXn�d�� be the predictive density in which we have

integrated out � with respect to the posterior distribution and let q�ujXn� be
any other estimator which is nonnegative� integrates to �� and depends on Xn�
Then the estimators satisfy the chain ruleZ
D�PUj�jjQUjXn�P�jXn�d�� �

Z
D�PUj� jjPUjXn�P�jXn�d���D�PUjXn jjQUjXn��

which is uniquely minimized by setting QUjXn � PU jXn � the distribution esti�
mator corresponding to the density estimator �p�u� � p�ujXn��

So we conclude that the predictive density p�ujXn�� which is already custom�
arily used in the Bayesian�s probabilistic model� is indeed the Bayes estimator
with relative entropy loss 
Ait��� CB����

It is interesting to note that many other loss functions� e�g� Hellinger or L��
lead to di�erent estimators of the distribution that would not be the Bayesian�s
conditional distribution for U given Xn�

In the case that the distribution of U is not conditionally independent of
the data Xn given the parameter �� the above conclusions still hold except that
p�uj�� is replaced by p�uj��Xn�� In that case the quantity being estimated hap�
pens to also be a function of the observed data as well as the unknown parameter�


�



Though such a problem deviates from traditional statistical decision theory� it
remains very much relevant for prediction problems� and it is not a obstacle for
these Bayesian considerations� since they are carried out conditionally given the
data� We �nd that the Bayes estimator is p�ujXn� �

R
p�uj��Xn�P�jXn�d���

For prediction we principly have in mind the case that U � Xn�� is the next
observation after the data X�� � � � � Xn�

��� Decision Theory and Bayes Estimation

Decision�theoretic characterization of the importance of Bayes estimators arises
via admissibility and via minimaxity� as well as through optimization of average
risk� and some of these characterizations will arise in our information�theoretic
analysis�

An estimator �p of the density function p��j�� is inadmissible if there is another
estimator �pbetter such that the risk function EPXnj�L�p��j��� �pbetter� does not

exceed and is somewhere less than EPXnj�L�p��j��� �pbetter� for � 
 �� Admissible
estimators are de�ned as those that are not inadmissible� Bayes estimators are
admissible and every admissible estimator has a risk function which agrees with
the limit of risks of Bayes estimators for a sequence of priors� see for instance

Fer����

For the estimation of a parameterized quantity �� using data Xn the mini�
max risk using a loss function L��� ��� is de�ned as

rn � min
�


max
���

EL���� ����

where the minimization is over all estimators �� that depend on the data� the
maximization is over all � in the parameter space� and the expectation is with
respect to PXnj�� For any priorW the Bayes average risk of the Bayes estimator
��W is Z

EPXnj�L���� ��W �W �d��

which is often called simply the Bayes risk� It provides a lower bound on the
minimax risk� Maximizing over choices of priors W on � leads to what is called
the least favorable prior and the maximin risk

rn � max
W

min
�


Z
EPXnj�L��� ���W �d���

Under convexity and semi�continuity conditions on the loss� a fundamental the�
orem of games in decision theory shows that the maximin risk is the same as
the minimax risk and that there is a unique minimax procedure that is Bayes
with respect to a least favorable prior �though on occassion there may be sev�
eral priors which yield this unique maximin procedure� 
Fer���� In particular
the theory of equality of minimax and maximin risks applies to total relative
entropy as discussed in subsection ����
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��
 Prediction and Cumulative Relative Entropy Risk

The simplest context in which to develop risk bounds using information theory is
the setting of prediction with cumulative relative entropy risk� For each n � ��
after observing X�� � � � � Xn��� we are asked to provide an estimate �pn�x� �
�pn�x�X�� � � �Xn��� for the density function for Xn �this includes for n � � a
guess �p��x� based on no data for the density function for X��� We consider
�rst the case that X�� X�� � � � � XN are i�i�d� with distribution P having density
p� We require that the estimate �pn be a valid probability density� For each
n � �� � � � � N we incur a loss D�pjj�pn�� These losses accumulate to the total loss

NX
k��

D�pjj�pn��

The corresponding total risk is the expected value

RN �P � �

NX
n��

EP
Xn��D�pjj�pn��

Of course one could use other measures of loss in this sum� Some such choices of
loss are bounded by investigating relative entropy 
HB�
�� An advantage here
of relative entropy is the chain rule that allows considerable simpli�cation of the
analysis of the cumulative risk�

LetQXN be the joint distribution with conditional densities q�XnjXn��� � � � X��
for Xn de�ned by the estimator �p�x�X�� � � � Xn���� The chain rule gives total
risk

RN �P � �

NX
n��

EP
Xn��D�pjj�pn� �

NX
n��

E log
p�Xn�

q�XnjXn��� � � �X��
� D�PXN jjQXN �

and Cesaro average risk

$rN �P � �
�

N

NX
n��

EP
Xn��

D�pjj�pn� � �

N
D�PXN jjQXN ��

As we shall see in the next subsection it is easier to directly bound the
total relative entropy D�PXN jjQXN � than it is to bound the individual risks
ED�pjj�pn� for n � �� � � � � N � especially when we use Bayes estimators� Before
turning our attention to such bounds on total risk� I point out a way to get an
estimator with reasonable small individual risk once a bound on the total or
Cesaro average risk is available�

An estimator with risk that is not greater than $rN �P � is obtained by smooth�
ing over sample sizes

!pN �x� �
�

N

NX
n��

�pn�x� �
�

N

NX
n��

�pn�x�X�� � � � � Xn����

��



By convexity of D we have

ED�pjj!pN � � �

N

NX
n��

EP
Xn��D�pjj�pn� � �

N
D�PXN jjQXN ��

Under the i�i�d� model we will have the same risk D�pjj!p��N� with !p��N �

���N�
PN

n�� �pn�x�X����� � � � � X��n���� for any permutation � of f�� � � � � Ng� If
one is going to take such a Cesaro average� one might �nd it most palatable to
average over subsamples going backward �rather than forward� in the sequence
so that the most recent observations contribute the most using the estimator
���N�

PN
n�� �pn�x�XN��� � � � � XN��n����� A variant on this approach is to av�

erage over various permutations to further reduce the relative entropy risk�
If in a speci�c setting one is able to characterize satisfactorily the �nal in�

dividual risk for the original estimator ED�pjj�pN �� then it is not necessary to
potentially weaken the quality of the estimator by averaging across sample sizes
less than N �

Next suppose that some dependence in X�� � � � � XN is permitted� For def�
initeness� think of the case of a Markov chain� In the case of a stationary
transition� one could envision estimation �using parametric models� of a tran�
sition density function p�x�jx� for all x� x� in the state space from the batch
data X�� � � � � XN � However� for on�line prediction purposes� at each time n�
having seen the previous values X�� � � � Xn��� what is strictly required is to be
able to estimate �by some qn�x

�jX�� � � � � Xn���� the conditional density function
pn�x

�jXn��� for the unknown Xn conditioning on the observed Xn�� �rather
than conditioning on some other arbitrary x�� Fortunately the corresponding
relative entropy risks of prediction are precisely what is accumulated in the
chain rule

RN �P � �

NX
n��

E log
pn�XnjXn���

qn�XnjXn��� � � � � X��
� D�PXN jjQXN ��

Dividing by N we have the relative entropy rate $rN �P � � ���N�D�PXN jjQXN �
which equals the average for n � �� � � � � N of the conditional relative entropies
of prediction E log pn�XnjXn����qn�XnjXn��� � � � � X���

���� Cumulative Risk and Resolvability of Bayesian Pre�

dictions

Continuing the initial framework of the preceding subsection in which the ran�
dom variables are i�i�d�� suppose we have a family of densities p�xj��� � 
 �� Here
we use Bayes estimators with a prior probability distribution W � WN � This
prior is not permitted to change with n� but it may depend on the total horizon
N of all the variables which will be observed in the study� The estimators are

��



the Bayes predictive densities �pn�x� � p�W ��xjXn��� �
R
p�xj��W�jXn���d��

and the chain rule gives total risk

RN �P � �

NX
n��

EP
Xn��D�pjj�pn� � D�PXN jjP �W �

XN ��

and Cesaro average risk

$rN �P � �
�

N

NX
n��

ED�pjj�pn� � �

N
D�PXN jjP �W �

XN ��

As we shall see from a simple bound this risk is made small for any P in the
information support of the prior�

The information closure of the family fPXj�g consists of those distributions
P for which the information neighborhoods B��P � f� � D�P jjPXj�� � ���
���g
are non�empty for all � 
 � and the information support of the prior consists
of those P for which the information neighborhoods are assigned positive prior
probability W �B��P � 
 ��

The size of the risk depends on now much prior probability is given to these
information balls� Indeed� the following bound holds�

$rN � min
���

f�
�



�

�

N
log ��W �B��P �g�

The right side of this inequality is here called the index of resolvability of the
distribution P by the mixture of distributions with prior W � An alternative
expression for the index of resolvability is

min
B
fmax
��B

D�P jjPXj�� �
�

N
log ��W �B�g�

This de�nition is an extension of the resolvability de�nition given in CB�� in
which W was discrete and the minimization was restricted to singleton sets f�g
�there L��� � log ��Wf�g was interpreted as an arbitrary codelength for the
parameter in a two�stage rather than mixture code for the resolution of X � see
section ���

The proof of the resolvability bound on cumulative risk follows simply from
pW �XN � �W �B�

R
B p�X

N j��W �d�jB�� and convexity to get

D�PXN jjP �W �
XN � � EP log

p�Xn�

pW �XN �

� EP log
p�Xn�R

B
p�XN j��W �d�jB� � log

�

W �B�

�
Z
B

D�PXN jjPXN j��W �d�jB� � log
�

W �B�

� max
��B

D�PXN jjPXN j�� � log
�

W �B��

�




Dividing by N and optimizing over B produces the claimed bound� This proof
is from 
Bar��� where the point was Cesaro average consistency for all P in the
information support of the prior and its use to express rates of convergence is
in 
Bar���� The name resolvability for the bound is more recent�

Thus the cumulative accuracy of Bayes estimation depends only on the local
behavior of the prior for sets of � with PXj� near the distribution PX followed
by the data� This simple conclusion is to be contrasted with the behavior of the
posterior distribution which to asymptotically concentrate on a neighborhood of
PX requires also global conditions �entailing existence of a uniformly consistent
test against all but an a priori neglibible set of PXj� outside of the neighborhood
of PX � 
Bar�����

Allowing dependence in the model� the same bound holds for $rN �P � �

���N�D�PXN jjP �W �
XN � �the average conditional relative entropy of prediction�

when the information neighborhoods are de�ned more generally by

B��PXN � � f� � ���N�D�PXN jjPXN j�� � ���
���g�

An alternative information�theoretic development of a similar bound on

D�PXN jjP �W �
XN � is obtained via chain rule expansion of the total divergence be�

tween the joint distributions PXN �W �N�
� and PXN j�W� where the approximate

posterior W
�N�
� is de�ned to have density e�D�P

XN
jjP

XN j���CN with respect to
the prior W�� The result is that

D�PXN jjP �W �
XN � �EP

XN
D�W

�N�
� jjW�jXN � � log ��CN

where CN �
R
e�D�P

XN
jjP

XN j�
�W �d��� Thus as shown in 
Bar��� HO��a� the

total relative entropy risk D�PXN jjP �W �
XN � is bounded by the following quantity

�interpreted as a "Razor# in Bal���

log ��

Z
e�D�P

XN
jjP

XN j��W �d���

Indeed this proof shows that the Razor equals the total relative entropy risk up
to a term that gives the error in an approximation to the posterior� Restricting
the integral to a neighborhood� it is seen that bound improves somewhat on the
previous bound min�f�N�
��� � log ��W �B��P �g�

���� Parametric Bounds

Suppose we have a �nite�dimensional parametric family of densities p�xj��� � 

� � Rk and that X�� � � � � XN are i�i�d� according to p�xj��� where �� is in the
interior of � and suppose the relative entropy D���jj�� � D�PXj�� jjPXj�� is
twice continuously di�erentiable in � at �� with positive de�nite Hessian J�� �

��



Let $J�� locally dominate the Hessian for � with D�PXj�� jjPXj�� � ���
���� so
that for such ��

D�PXj�� jjPXj�� � �



�� � ���T $J���� � ����

Then the information ball B���� � f� � D�PXj�� jjPXj�� � ���
���g contains the
ellipse

S���� � f� � �� � ���T $J���� � ��� � ��g�
Suppose also that the prior W satis�es a near�absolute continuity property

near ��� namely that there exists a positive w�� such that the prior probability
of the ellipse S���� is at least w�� times its volume �as in the case of a prior with
a density w��� locally bounded below by w����

Now the prior probability of the information neighborhood satis�es

W �B����� �W �S����� � w�� j $J�� j����vk�k

where vk denotes the volume of the unit ball in Rk� Consequently� we have a
bound for �N�
��� � log ��W �B����� which is obtimized at �� � k�N � yielding

D�PXN j�� jjP �W �
XN � � k



log

N

k
�
k



� log

�
j $J�� j����w��

	
� log ��vk

Clearly� similar bounds for dependent data models are possible as long as
there is a local quadratic behavior for ���N�D�PXN j�� jjPXN j���

Under additional regularity assumptions on the parametric family in the
i�i�d� case it is shown in 
CB��� that

D�PXN j�� jjP �W �
XN � �

k



log

N


�e
� log

�
jJ�� j����w����

	
� o���

for �� in the interior of the parameter space when the prior has a density w���
that is positive and continuous at ��� These asymptotics are shown there �in

CB��� to be related to the asymptotic normality of the posterior distribution
and to Laplace�s method of approximation of the Bayes mixture�

With the choice of Je�reys� prior wJ which is proportional to jJ�j��� we see
that the total relative entropy is asymptotically �k�
� logN plus a �xed constant
in the interior of the parameter space� Thus all such PXN j� are approximately

equidistant from the centroid P
�wJ �
XN obtained by averaging with respect to wJ �

Indeed� it is shown in 
CB��� that for each compact S internal to � the
minimax total relative entropy satis�es

VN � max
QN
X

min
��S

D�PXN j�jjQXN � �
k



log

N


�e
� logCJ�S � o���

where CJ�S �
R
S jJ�j���d�� Moreover� Je�reys� prior on S is asymptotically least

favorable �maximin� and sequences of modi�cations of it are asymptotically

��



maximin and asymptotically minimax� These modi�cations use Je�reys� prior
on a sequence of sets Sn shrinking slowly to S� to handle the boundary behavior
so that the prior remains positive in neighborhoods of all points in S�

In 
XB��a� the minimax value for the family of discrete distributions on the
whole probability simplex is determined� There too� modi�cations of Je�rey�s
prior are used�

The answer �k�
� logN plus a constant for the cumulative relative entropy

riskD�PXN j��jjP �W �
XN � �

PN
n��ED�p�jj�pn� corresponds to individual risksED�p�jj�pn�

of the form k�
n plus a summable remainder� in keeping with the e	cient level
identi�ed in section ��
�

The individual risks ED�p�jj�pn� may be much smaller or larger than k�
n
for some n � N � but not for most such n� Indeed� the Cesaro average of the
risks is �k�
N��logN �constant� in agreement with the Cesaro average of k�n�

���� Negligibility of Supere�ciency

The key to e	cient total relative entropy risk is the identi�cation of one joint
probability measure QXN �e�g� a Bayes mixture� which is simultaneously rea�
sonably close to all the members PXN j� of the parametric family� Indeed in the
parametric case we have seen that relative entropy rate ���N�D�PXN j�jjQXN �
can be made to be of order �k�
N� logN for every �� We want small distance
simultaneously from distributions PXN j� that have large distance between them�
selves� Thus it is essential to the ability to obtain estimators of small cumulative
risk that the relative entropy distance does not satisfy a triangle inequality and
hence is not a metric� Nevertheless� the intuition of distance holds up to some
extent� As we shall review� there is a critical relative entropy distance� such
that it is not possible to make QXN simultaneously closer than this critical
distance to the members of the family PXN j� except for a negligible set of pa�
rameter values� This was shown by Rissanen 
Ris��� Ris��� with re�nements in

�� �� BH����

The identi�cation of the critical distance depends on the ability to estimate
uniformly well the parameter � at a certain rate� As we have seen in typical
parametric problems this rate is of order ��

p
N �

For simplicity� suppose � is a compact set in Rk and that there are estimators
��n such the the event AN�� � fXN � jj��N � �jj � CN�

p
Ng has probability

PXN j��AN��� at least ��� uniformly in �� where CN is a slowly growing sequence
�e�g� a logarithm�� From the de�nition of these events� they are disjoint when
� and �� separated by at least � � 
CN�

p
N � If G
 is a set of such ��separated

��s� it is not possible to have the QXN �AN��� probability be much larger than
��card�G
� except for a small fraction of such ��s� since the sum of QXN �AN���
over the disjoint sets is not more than �� Implications for the total relative
entropy follow� using the fact that D�PXN j�jjQXN � is not smaller than the

��



divergence restricted to the event AN�� and its complement� to get

D�PXN j�jjQXN � � PXN j��AN��� log ��QXN �AN���� log 


� ��� �� log ��QXN �AN���� log 
�

Taking G
 to be a largest � separated set� it has log cardinality equal to the
metric entropy 
�� known to be of order k log ���� Consequently� for any QXN �

D�PXN j�jjQXN � � ��� ��
k



logN � const

except for � in a set that possesses a sparse cover and consequently has small
Lebesgue measure� Thus �k�
� logN is the e	cient level of cumulative relative
entropy risk�

Indeed� in 
Ris��� BH��� it is shown that the set of supere	cient cumulative
risk

f� � lim sup
N

D�PXN j�jjQXN �

logN


k



g

has Lebesgue measure zero� A corollary using the chain rule is that for any
estimator sequence f �Png the set of supere	cient individual risk

f� � lim sup
n

nED�PXj�jj �Pn� 

k



g

also has Lebesgue measure zero 
BH���� This con�rms that k��
n� is the e	cient
level of risk for parametric estimation with relative entropy loss�

In particular this conclusion holds for plug�in estimators �Pn � PXj��n � The

conclusion in this case is in agreement with k��
n� as the e	cient risk for loss
functions locally equivalent to

���
��� � ���T J��� � ����

Related negligibility of supere	ciency results are in 
�� using Bayesian Cramer�
Rao inequalities�

The precursor of such e�orts is the result of LeCam 
LeC��� �based on Fatou�s
Lemma applied to the Bayes average of the di�erence in risk of a given estiamtion
and the risk of a Baye estimator for certain absolutely continous priors� that

for any loss function that can be expressed as a bounded function of
p
n��� ���

and any e	cient sequence of estimators� the set of supere	ciency has measure
zero� The present information�theoretic analysis does not presume the estimator
to be e	cient to obtain neglibility of supere	ciency� it is for the potentially
unbounded sequence nED�PXj�jjPXj���� and it can be used to quantify bounds
on the measure of supere	ciency for �nite n�

��



���� Minimax Bounds and Metric Entropy

Let F be a class of functions� let d�f� g� be a metric and let K��� be the log�
cardinality of the largest ��separated set ���net� of functions in F � called the
Kolmogorov ��entropy� metric entropy� or ��capacity of the family F � An optimal
set of functions packed at separation � is also an ��cover� every function in F is
within � of a function in the net�

Let F be large enough to satisfy lim
��K���
��K��� 
 � which is true for
instance if K��� � �����c� as is typical in nonparametric �in�nite�dimensional�
function classes� in contrast to the k log ��� behavior in �nite�dimensional cases�

Let data be i�i�d� with sample size N from a distribution in family fPf �
f 
 Fg� I have in mind that f is the density or log�density in the case that
the observations consist of independent scalars or vectors Xi� and that f is the
regression function f�x� � E
Y jX � x� in the case that the observations consist
of input�output pairs �Xi� Yi� for i � �� � � � � N � For notational simplicity I will
write XN for the data with the understanding that one needs to incorporate
response variables in the input�output case�

Suppose the metric d�f� g� is such that d��f� g� agrees with D�Pf jjPg� to
within constant factors at least for f and g in F � For instance� in density
estimation� d can be Hellinger distance and F can be densities bounded away
from zero and in�nity� In regression with additive Gaussian error� d can be the
L� distance between regression functions� In some cases the desired relationship
fails for all of F but it holds within suitable subsets that resolve the minimax
rates� As shown in 
YB��b� this is true for instance with the L� norm on
densities�

Let the critical separation �N be de�ned to satisfy ��N � K��N��N � which is
of the same order as min
f�� �K����Ng� In many� but not all cases� one can
interpret K��� as a dimension of an ��approximating subfamily� such that �� �
K����N reminds us of the familiar trado� in squared approximation error plus
dimension over sample size �or squared bias plus variance� as in the accuracy
index in subsection ����

The result in 
YB��b� is that the following quantities coincide to within

constant factors� the minimax individual risk min �fN
maxf�F Ed

��f� �fN�� the

minimax relative entropy risk min �fN
maxf�F ED�Pf jjP �fN

�� the minimax Cesaro

average relative entropy risk� ���N� times the information capacity of the family
of distributions for the data� the critical squared distance ��N � the metric entropy
at the critical distance divided by the sample size K��N ��N � and the index of
resolvability of distributions in the family by a mixture that uses a uniform prior
over a minimal cardinality �N �cover�

For the upper bound on minimax risk� the proof is based on the use of the
Cesaro average of Bayes estimators �as in subsection ���� together with the
resolvability bound �from subsection ����� on the Cesaro average of relative
entropy risks� also known as ���N� times the total relative entropy� With a
uniform prior over an �N �cover the index of resolvability is bounded �choosing

��



� � �N � by a constant times ��N plus K��N��N � since the logarithm of the
reciprocal of the prior probability is K��N� in this case�

For the lower bound on minimax risk� the proof is based on the use of Fano�s
inequality �c�f� subsection ���� which applied here asserts that averaging over �
with respect to a uniform distribution on an optimal r�packing set �and using the

fact that for any estimator �� the projection to the r�net produces an error�free
estimate of a net point � when d���� �� is less than r�
� we have

Pfd���� �� � r�
g � �� I���XN � � log 


K�r�

Now the mutual information I���XN � is not greater than the Shannon capacity
CN which by the resolvability bound on the minimax total relative entropy is not
greater than a constant times N��N plus K��N�� �The use of Fano�s inequality in
this context was �rst made by Hasminskii 
Has��� at the recommended of Mark
Pinsker�� Then picking r � rN a �xed fraction of �N makes the Kolmogorov
capacityK�r� in the denominator at least twice the numerator� and hence makes
the probability given above at least ��
� Consequently� still incorporating the
average over � as well as over the data�

Ed����� �� � �r�
��Pfd���� �� � r�
g � r����

Thus for any estimator �� the maximum risk over � is at least r�N�� which is
of the same order as ��N � K��N��N � Together the lower and upper bounds
identify this to be the minimax rate�

Implications are given in 
YB��b� for a variety of function classes� The
proof in 
YB��b� we have outlined here goes somewhat beyond the precursors
in that it is the order of the metric entropy alone which the result requires
for determination of the minimax order of risk of estimation� In contrast the
theorem in 
Bir��� �used in 
Dev����
Yat����
BBM���� demands of the reader
determination of a local packing set �such as a hypercube� in which the diameter
of the set is the same order as the separation �N of points in the net and
yet the log�cardinality is of the same order as K��N�� What is essential to
reveal the role of the metric entropy alone is to recognize that the average or
maximum of the divergences D�PXN j�jjQXN � of distributions from a centroid
QXN �

P
� PXN j�Wf�g is what is needed to best control the mutual information

I���XN � in Fano�s inequality �as we do using the resolvability�� and not the
potentially coarse bounds on this mutual information from the relative entropy
diameter max���� D�PXN j�jjPXN j��� 
Bir��� or from NI���X�� 
Has��� BH����
These course bounds are potentially of order N �unless one restricts to a very
localized packing set� whereas I���XN� and the capacity CN grow more slowly
�at rate N��N��

��



���� Neural Net Bounds

In this section we use single hidden layer sigmoidal network models as an exam�
ple setting for presentation of resolvability bounds on cumulative risk of Bayes
predictive estimators�

We will consider both dichotomous response models and Gaussian error mod�
els in which the the conditional distribution for the response Y given input
X � x has mean function f�x� which we model using a neural net� In both
cases there will be observations of �Xi� Yi�

N
i��� The inputs Xi will be i�i�d� with

an arbitrary and possibly unknown distribution PX on a given bounded convex
set B �such as the cube 
��� ��d�� The risk bounds we give will hold uniformly
over all such PX �

For the dichotomous response case we have Yi 
 f��� �g� with probability
of getting a � equal to ��
 � f�Xi��
� Here f�x� represents the di�erence of
the probability of getting a � and getting a �� when X � x� For the sake of
symmetry we are putting the Bernoulli distribution on f��� �g� We will assume
in this dichotomous response case that jf�x�j � �� 	 is strictly less than �� If
necessary this can be arranged by mixing with a coin  ip with probability 	�

For the Gaussian error model we have Yi � f�Xi�� ei where the ei are i�i�d�
Normal��� ����

Consider the neural net model

fm�x� �� �

mX
j��

ck��aj � x�

parameterized by � � �aj � cj�
m
j�� with internal weight vectors aj in Rd�� and

external weights cj � where ��u� is an odd�symmetric sigmoid such as the hy�
perbolic tangent or 
��u�� � where ��u� � eu��� � eu� is the logistic sigmoid�
From the odd�symmetry of �� we restrict the cj to be positive� without loss of
generality� For simplicity an auxiliary coordinate of x is set to � so that the
internal weights parameterize the location as well as the orientation and gain of
the sigmoids� In the dichotomous response case we will clip the magnitude of
fm�x� �� to be not greater than �� 	�

For the function f it is assumed to have a spectral norm Cf�B which for now

is assumed to be not greater than some given v� Here Cf�B �
R j�jB !F �d�� is a

�rst moment of the Fourier magnitude distribution !F and j�jB � supx�B j� � xj
is the norm of the frequency vector that is dual to the domain B for the variable
X � The consequence of this assumption �established in 
Bar���� that we need
is that that there exists an approximation f�m�x� �

Pm
j�� c

�
j��a

�
j � x�� withPm

j�� jc�j j � v and ja�j jB � �m where �m is of order
p
m logm� achieving

jjf � f�mjj� �
�
v��

m

where the norm of the approximation error is taken in L��PX�� Here the exte�
rior weights may be �xed at cj � v�m� This approximation bound holds more

��



generally assuming that f�v is in the closure of the convex hull of signum func�
tions� We make the more narrow assumption of bounded spectral norm in order
to have control on the magnitudes of the internal weights aj in the model�

Let PXN �Y N jf denote the distribution of the sample �Xi� Yi�
N
i�� with the

�unknown� true target function f � and let PXN �Y N jfm�� or PXN �Y N j� denote the
corresponding distribution with f�x� replaced by members of the approximating
family fm���x� � fm�x� ��� Let W be a prior distribution that we assign to �

and let P
�W �
XN �Y N

denote the resulting mixture�
Our information�theoretic analysis involves examination of the total relative

entropy D�PXN �Y N jf jjP �W �
XN �Y N � which is the cumulative relative entropy risk

of the Bayesian predictive distributions� The resolvability bound gives for any
subset A of the parameter space

�

N
D�PXN �Y N jf jjP �W �

XN �Y N
� � max

��A
D�PX�Y jf jjPX�Y jfM��

� �
�

N
log

�

W �A�
�

For the Gaussian error model

D�PX�Y jf jjPX�Y jfm�� � �
�


��
jjf � fm��jj��

and for the dichotomous response model �using the L�� and Chi�square bounds
on D�

�



jjf � fm��jj� � D�PX�Y jf jjPX�Y jfm�� � �

�

	
jjf � fm��jj�

Thus our L� approximation bounds are ready made to bound the resolvability�
The resolvability bounds for the cumulative risk of the Bayes estimators are
comparable to that which was given for constrained least squares estimators in

Bar����

At a suitable �� � �a�j �
m
j�� depending on f � with norms bounded by ja�j jB �

�m� the approximation error jjf � fm��� jj is bounded by 
v�
p
m� Now take A

to be the neighborhood of �� de�ned by A � f� � jaj � a�j jB � ��
p
m� j �

�� 
� ����mg� and use the triangle inequality and the fact that the sigmoid � is
Lipshitz with j��u����u��j � 
ju�u�j to obtain for � in A� that the approxima�
tion error jjf � fm��jj is bounded by jjf � fm���jj�
v�

p
m which is not greater

than �v�
p
m� As a consequence of these bounds we have that

�

N
D�PXN �Y N jf jjP �W �

XN �Y N � � ��v�

cm
�

�

N
log

�

Pf� 
 Ag �

where c � 
�� in the Gaussian regression case� and c � 	 in the dichotomous
regression case�

It remains to lower bound Pf� 
 Ag for a speci�c choice of the prior� Tak�
ing for instance a prior that makes the aj independently uniformly distributed

��



on fjaj jB � �m � ��
p
mg in Rd��� we have P �A� � ���

p
m�m � ��m�d����

Consequently�

�

N
D�PXN �Y N jf jjP �W �

XN �Y N � � ��v�

cm
�
m�d� ��

N
log�

p
m�m � ��

� O

�
v

�
d logN

N

�����

for m � v�N��d logN������
Note that the second term in the bound involves the ratio of the parameter

dimension km � m�d � �� and the sample size N � Thus the bound is similar
to the familiar squared approximation error plus parameter dimension divided
by the sample size as in section ���� A di�erence here is the log factor� pre�
sumably because the nonlinear neural net models with potentially large internal
parameter values lack the homogeneous metric dimension property�

Nevertheless� the neural net model �and other similar nonlinear models

BBM���� have a particularly nice  exibility of approximation to achieve the
indicated accuracy using only order m times d parameters� In contrast� linear
approximation �e�g� by tensor product expansions as in subsection ���� requires
exponentially many terms in d to achieve comparable accuracy for functions of
bounded spectral norm 
Bar���� The logarithm is a minor price to pay for the
gain in the approximation versus dimension tradeo��

Recall that the relative entropy distance between the joint distributions is
related to an average relative entropy distance between f�x� and the Bayes

estimates �fn�Bayes�x� �
R
fm�x� ��p��jXn� Y n�d�� averaging over samples of

size n � �� �� ���� N � �� Indeed� by the chain rule

�

N
D�PXN �Y N jf jjP �W �

XN �Y N
� �

�

N

N��X
n��

ED�PX�Y jf jjPX�Y jfn�Bayes��

Let the Cesaro average of the Bayes estimates be �fN�x� �
�
N

PN��
n��

�fn�Bayes�x��
Then by the convexity of the relative entropy and its relationship to the squared
L� norm� we conclude with the following bound on the mean squared error�

�

c
Ejjf � �fN jj� � ED�PX�Y jf jjPX�Y j �fN �

� �

N

N��X
n��

ED�PX�Y jf jjPX�Y jfn�Bayes�

� O

�
v

�
d logN

N

����
�
�

where c is 
�� in the Gaussian regression case and 
 in the dichotomous regres�
sion case�

��



If� as is usually the case� a bound on the spectral norm is not known in
advance� one can incorporate in the prior distribution the parameter v for the
sum of the external coe	cients cj � Moreover� one can mix with a prior various
size models m� By such strategies� one can achieve accuracy given by the resolv�

ability bound Cf�B

�
d logN
N

	���
� without prior knowledge of what size network

is best� See also the discussion on model selection and mixing below�
This completes the information�theoretic proof of the accuracy of neural net

estimators based on the Bayesian predictors� As a consequence of these bounds�
it is su	cient to have a polynomially bounded sample size to obtain an accurate
estimates of a target function with a polynomially bounded spectral norm�

The analysis of Bayes posterior mean estimates rather than optimization of
penalized empirical risk is very much motivated by interest in computational
issues of estimation� The idea is that while the multimodality of the empiri�
cial risk surfaces creates a major obstacle to reliable optimization� there re�
mains the possibility to obtain Monte Carlo computations of posterior means
�fn�Bayes�x� �

R
fm�x� ��p��jXn� Y n�d� by sampling from the posterior distri�

bution and averaging fm�x� ��� As discussed in section �� stochastic gradient
methods are designed for this purpose in which the posterior distribution plays
the role of the target stationary distribution� but it remains to be seen whether
there is a satisfactory form of rapid convergence to stationarity suitable for
accurate Monte Carlo averages for these multimodal models�

���� Worst Case Regret

We return our attention to the prediction problem in subsection ��� in which
for each n � �� 
� � � �N � having seen x�� � � � xn�� we are to provide a conditional
density function q�xjxn��� � � � � x�� for the next observation xn �with respect to
a reference measure ��� Our aim is to have a large value for this density when
evaluated at the heretofore unseen xn� and in particular to have a large product
q�x�� � � � � xN � �

QN
n�� q�xnjxn��� � � � � x�� compared to the best within a certain

class of predictive densities p�xjxn��� � � � � x�� ��� For motivation� think of a
weatherman declaring for each day a probability of rain� where his economic
interest in accurate predictions is forced by having his wealth at the station
multiplied by q�xnjxn��� � � � � x�� times some odds each day� For other gambling�
learning� and data compression motivations see CT���CO���XB��b and section
��

The game we consider here is the choice of qN �x�� � � � � xN � that minimizes
the maximum ratio

max
x������xN

max
�

p�x�� � � � � xN j���q�x�� � � � � xN �

subject to q having sum or integral
R
q�xN � equal to � �where the integral is with

respect to the N �fold product of the reference measure ��� With this constraint

�




the choice of joint probability function coincides the choice of a sequence of
functions q�xjXn��� � � � � X�� for x 
 X interpreted operationally as providing
conditional probabilities that a player declares for the next outcome� Here there
is no presumption of knowledge of a distribution governing the data �indeed the
formulation does not even presuppose that there is a governing distribution��

The target level of performance is the best value pmax�x�� � � � � xN � � max� p�x�� � � � � xN j��
at time horizon N among those achieved by players that use predictive den�
sities p�xjxn��� � � � � x�� �� in a given family� The value pmax�x�� � � � � xN � �

p�x�� � � � � xN j��N � is not itself achievable� Indeed� its sum or integral will be

greater than � and the value of ��N revealed with hindsight� is not available
prior time N �except for one lucky player unknown to us in advance who hap�

pens to use � � ��N for all n�� An equivalent game is obtained by taking the
logarithm of the ratio which decomposes into a sum of logarithmic regrets for
prediction for each n � N �

The solution to this game �due to Shtarkov 
Sht��� in a data compression
context� is to take qN �x�� � � � � xN � to be the normalization of the maximum
likelihood

pmax�x�� � � � � xN ��cN

where cN is the normalization constant

cN �

Z
pmax�x�� � � � � xN ��

With this choice the ratio max� p�x�� � � � � xN j���q�x�� � � � � xN � is the same for
all x�� � � � � xN and is equal to cN � For any other joint probability assignment the
density must be smaller for some sequence� It follows that cN is the minimax
value of the ratio�

This same cN arose in the examination of consistency of maximum likelihood
�subsection ����� where �niteness of cN for some N is a key requirement in a set
of su	cient conditions for consistency�

It is not practical to determine the conditional distributions for prediction for
each n � N based on the normalized maximum likelihood pmax�x�� � � � � xN ��cN �
Statistical analysis �with an information�theoretic  air� comes to the rescue by
consideration of Bayes procedures to give an approximately optimal �and often
practical� solution that is easier to interprete� Here q�x�� � � � � xN � is chosen to
be a Bayes mixture pW �x�� � � � � xN � �

R
p�x�� � � � � xN j��W �d��� for which the

conditionals are available from posterior distributions� Analogs of the general
resolvability bound are available for the logarithm of the regret� by restrict�
ing the integral to a neighborhood of ��N and using the maximum ratio in the
neighborhood�

For smooth families and prior densities� Laplace�s approximation to the ratio
pmax�x�� � � � � xN ��

R
p�x�� � � � � xN j��w���d� is�

N


�

�k�� j�I���N �j���
w���N �

��



where �I��� is the empirical Fisher information� de�ned as the Hessian of �

���N� log p�x�� � � � � xN j�� when the maximum likelihood estimate ��N is interior
to the parameter space� Thus when �I��� is independent of the data� as holds
when the family has a representation in regular exponential form� an approxi�
mate constant ratio strategy is obtained by making the prior w��� be propor�
tional to jI���j���� that is by the choice of Je�reys� prior� Consequently� the
approximation that should hold for the minimax ratio for � in a set S is

cN � N


�

k��Z
S

jI���j���d�

The corresponding minimax log regret approximation is

k



log

N


�
� log

Z
S

jI���j���d�

which is in agreement with the result of 
CB��� for minimax expected log regret
�see subsection ����� for compact sets S interior to the parameter space �for the
expected log regret case it was not necessary to restrict to exponential families��

So far� in work in progress with Takeuchi� we have con�rmed that the ap�
proximation holds for exponential families with S interior to the parameter
space and for one�dimensional exponential families we �nd modi�cations of the
prior that give the approximate minimax answer on the whole natural parameter
space�

With Qun Xie� the minimax regret has been determined by this Bayes
method for the whole simplex of distributions for a �nite alphabet 
��� In all
these cases the answer agrees with the form k

� log
N
�� � log

R jI���j��
d� though
various modi�cations to Je�reys� prior are required to handle boundary behav�
ior�

For non�exponential families the situation is complicated by the fact that
the ratio of j�I���N �j��� and jI���N �j��� is not necessarily close to one uniformly
over all sequences�

Another approach to yield the asymptotics of
R
pmax�x�� � � � � xN � in certain

cases is a Riemann integral interpretation Sta���CO���Fre��� However� that
approach does not reveal feasible methods for computation of the predictive
distributions potentially a�orded by the Bayesian mixtures�

���� Cumulative Risk Bounds for other Loss Functions

Suppose a response variable Yn is to be predicted from a explanatory variable
Xn and past values of the variables �Xi� Yi�

n��
i�� � We assume that it is generated

according to a distribution PYnjXn�Y n�� unknown to us and possibly a member
PYnjXn�Y n����� of a parametric family of predictive distributions� We base our
predictions using a predictive distribution QYnjXn�Y n�� � which in particular can
be the predictive distribution associated with a Bayes mixture�

��



Suppose the set Y of possible values for Y is discrete� The rule that mini�
mizes the probability of error if we knew the probability mass function PfYn �
yjXn� Y n��g would be to pick Y �n � argmaxPfYn � yjXn� Y n��g� Not know�
ing P we use �Yn � argmaxQfYn � yjXn� Y n��g� The instantaneous regret is
de�ned as the di�erence in the probability of errors for prediction of Yn

PfYn �� �YnjXn� Y n��g � PfYn �� Y �n jXn� Y n��g�
The expected regret for n � �� 
� � � � � N is de�ned as the expected relative
frequence of errors

$rN �
�

N

NX
n��

E
PfYn �� �YnjXn� Y n��g � PfYn �� Y �n jXn� Y n��g��

Now since �Yn minimizes the predictive probability of error with respect to Q� we
can upper bound the expected regret by adding the positive di�erence QfYn ��
Y �n jXn� Y n��g�QfYn �� �YnjXn� Y n��g inside the expected value� Then we have
di�erences between P and Q predictive probabilities at �Yn and at Y �n � Summing
the probability di�erences over all y yields a bound in terms of total variation
distances between the predictive distributions which in turn is bounded usingp

D�

$rN � �

N

NX
n��

E
X
y

jPfYn � yjXn� Y n��g �QfYn � yjXn� Y n��gj

� �

N

NX
n��

E�
D�PYnjXn�Y n�� jjQYnjXn�Y n�������

�
�


�

N

NX
n��

ED�PYnjXn�Y n�� jjQYnjXn�Y n���

����

�
�


�

N
ED�PY N jXN jjQY N jXN �

����
�

where the last two lines are by the Cauchy�Schwartz inequality and the Chain
rule� The expectation is with respect to any distribution on XN �

We conclude that the upper bounds we have obtained on Kullback�Leibler
risk apply to the expected regret in prediction with a zero�one valued loss� by
taking a square root� In particular in smooth �nite�dimensional parametric
families we have from the resolvability bound an expected regret of order

�
k logN


N

����
�

Comparable lower bounds for expected regret with zero�one loss are in 
���

��



To avoid the square�root� suppose there is an 	 � 	P such that the di�erence
between PfYn � yjXn� Y n��g at the maximizer Y �n and at all other y is at least
as large as the gap 	P � Then in the expected regret

$rN �
�

N

NX
n��

E
PfYn � Y �n jXn� Y n��g � PfYn � �YnjXn� Y n��g�

we obtain an upper bound by multiplying by the ratio 
PfYn � Y �n jXn� Y n��g�
PfYn � �YnjXn� Y n��g��	P inside the expection� Then proceeding as before we
obtain

$rN � �

N

NX
n��

E
PfYn � Y �n jXn� Y n��g � PfYn � �YnjXn� Y n��g���	P

� �

N	P

NX
n��

E
sumy�PfYn � yjXn� Y n��g �QfYn � yjXn� Y n��g���

� 


N	P

NX
n��

ED�PYnjXn�Y n�� jjQYnjXn�Y n���

�
�



�

N	P
ED�PY N jXN jjQY N jXN �

�
�

Consequently� the expected regret with zero�one loss is bounded by using
the bounds on the Kullback�Leibler risk and dividing by the gap 	� In this way
we avoid the square�root�

The regret bounds given here are in 
HB�
� �for the binary response case�
and in 
BCH��� for general discrete�valued Y �

���	 Model Selection

���� Statistics and Learning Reprise

� Data Compression
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