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Abstract—We extend the correspondence between two-stage
coding procedures in data compression and penalized likelihood
procedures in statistical estimation. Traditionally, this had
required restriction to countable parameter spaces. We show
how to extend this correspondence in the uncountable param-
eter case. Leveraging the description length interpretations of
penalized likelihood procedures we devise new techniques to
derive adaptive risk bounds of such procedures. We show that
the existence of certain countable coverings of the parameter
space implies adaptive risk bounds and thus our theory is quite
general. We apply our techniques to illustrate risk bounds for `1
type penalized procedures in canonical high dimensional statis-
tical problems such as linear regression and Gaussian graphical
Models. In the linear regression problem, we also demonstrate
how the traditional l0 penalty times log(n)

2
plus lower order

terms has a two stage description length interpretation and
present risk bounds for this penalized likelihood procedure.

I. INTRODUCTION

There are close connections between good data compression
and good estimation in statistical settings. Shannon’s recipe
for finding the minimum expected codelength when we know
the data generating distribution shows the correspondence
between probability distributions on data and optimal code-
lengths on the sample space. Also, Kraft’s inequality stating
that for every probability mass function there exists a prefix
free code with lengths negative log probability gives an
operational meaning to probability. The Kraft’s inequality
allows one to think of prefix free codes and probabilities
interchangeably. The MDL principle has further developed
this connection by considering the case where we do not
necessarily know the data generating distribution. From now
on, codes are always meant to be prefix free. In this MDL
framework one considers a family of codes or equivalently a
set of probability sources, possibly indexed by a parameter
space Θ. One codes the observed data by using one of the
codes in the family considered. The idea in one shot data
compression is to compress the observed data sequence well.
But for statistical purposes, we want to devise a coding or
estimation strategy based on the observed data that should

compress or predict well for future data assumed to be arising
from the same generating distribution.

A fundamental concept in the MDL philosophy is that of
universal coding or modelling. The aim of universal coding or
modelling is find a single code u that allows us to compress
data almost as well as the best code in our class of codes
Θ either in expectation or high probability with respect to
the generation of the data X . This universal distribution can
be constructed mainly in four different ways as described
in [4]. These four ways can be categorized as Two-stage
codes, Bayes mixture codes, Predictive codes and Normalized
Maximum Likelihood codes. In the present manuscript we
will focus on the Two-stage coding procedure being brought
into statistical play.

One of the earliest ways to build a universal code is to build
what is called a two stage code cite rissanen,barron and
cover. The basic idea is to first devise a code or description
of all the possible codes in Θ. Also for each possible code
one encodes or describes the data using that code. Then
one chooses the code which minimizes the sum of the two
descriptions, one describing the code and the other describing
data given the code. Now one can play the same game in
the learning setup where now the codes are replaced by
a family pf probability sources and the estimated source
from the data is the that minimized the sum of the two
descriptions. This is indeed the penalized likelihood estimator
where the penalty corresponds to the description lengths
of probability distributions in our model. Traditionally, the
statistical properties of this penalized likelihood procedure
has been studied in the countable parameter space setting.
Past work as in cite li,barron and ?? shows how the expected
pointwise redundancy controls the statistical risk in countable
parameter spaces. Describe pointwise redundancy.

One of the main contributions of this present manuscript
is to extend such risk bounds when the parameter space is
uncountable maintaining the description length interpretation.
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The main idea here is to construct countable subcovers of
the parameter space Θ and leverage the results from the
countable case. These subcovers are variable in size and are
constructed according to the interaction of the negative log
likelihood and the penalty as is made clear in section (II-B).
In this way these covers are different from traditional metric
entropy covers. This is becasue they do not necessarily arise
from a metric and instead, they are based on what is essential,
the negative log likelihood and the penalty. We show that
the loss function we consider, is not much more than the
pointwise redundancy, both in expectation and with high
probability. As we would see, these risk bounds that we
get also reveal the adaptation properties of these penalized
likelihood procedures.

The main idea is to propose conditions on the penalty and the
negative log likelihood in a general setting to derive adaptive
risk bounds of the form as long as the penalized likelihood
estimator mirrors the construction of a two stage code. In a
preliminary form, this idea has appeared in cite Barron,Luo
conference papers. This paper lays out this general theory
in more detail and then show that our conditions are satisfied
and our risk bounds are valid in canonical high dimensional
statistical problems such as linear regression and inverse
covariance estimation in Gaussian models.

In section (II) we describe the general technique of how
to interpret penalized negative log likelihoods as two stage
description lengths in the uncountable parameter situation.
We also lay out the general strategy for deriving adaptive risk
bounds whenever the codelength interpretation holds. In this
section, we describe the conditions needed on the penalty
and the negative log likelihood which allows us to prove
risk bounds. In section (III) we apply our theory to the `1
penalty in linear regression case and fully illustrate different
ways of verifying the conditions we need. We then present
a new result on Inverse covariance matrix estimation in a
multivariate Normal setting which shows that our theory can
handle not just location type problems but scale problems
as well. In section (IV) we then turn our attention to the `0
penalty in the linear regression case. We devise a new way
to interpret the `0 penalty times a log(n)/2 factor as Kraft
satisfying codelengths and leverage this interpretation to
recover adaptive risk bounds. Thus the penalties we consider
in this manuscript are traditionally the two most commonly
used in statistics, namely the `0 penalty or the number of
parameters times a suitable multiplier and `1 type penalties
with suitable multipliers.

A. Notational Conventions

We denote the sample space by X and its elements by x. For
any integer n, we denote the n fold cross product of X by

Xn. We denote a generic element in Xn by x and a random
realization (data) from Xn by X. A probabilistic source p
is a sequence of probability distributions p(1), p(2), . . . on
X 1,X 2, . . . so that they are consistent. By consistency we
mean that the marginal distribution of p(n+1) restricted to
the first n coordinates is p(n). We drop the subscript n and
write p(x) instead of p(n)(x) whenever it is clear from the
context. For some probability source p and some element x,
whenever we write p(x), it refers to the probability mass
function corresponding to the source p or the probability
density function with respect to some dominating measure.
In this document, the uncountable sample spaces are always
euclidean spaces of some dimension and the dominating
measure is the Lebesgue measure.

We will also distinguish between countable and uncountable
parameter spaces. Generically we denote a countable param-
eter space by F and an uncountable parameter space by Θ.
We will also generically denote the elements of F by θ̃ and
elements in Θ by θ. We also consistently denote a penalty
function on Θ by pen and a penalty function on F by V.
We also measure codelengths in nats instead of bits in this
manuscript.

II. GENERAL TECHNIQUE

In this section, we first propose a way to extend the interpre-
tation of the penalized log likelihood expression as akin to a
two-stage codelength in the case when the parameter space
is uncountable. Then we show how our proposed extension
also helps us derive adaptive risk bounds for the penalized
likelihood procedures.

A. Codelength validity

First, let us describe the two-stage code in the case when we
have a countable parameter space. Let the parameter space F
be countable, and V be a penalty function on F satisfying
Kraft’s inequality

∑
θ̃∈F exp(−V (θ̃)) ≤ 1. Then the total

two stage description length l is as follows

l(x) = min
θ̃∈F

(
− log pθ(x) + V (θ̃)

)
. (1)

As one can notice, codelengths l are a sum of two description
lengths; description of the parameter space by V and the
description of the data given the parameter by − log pθ(x).
For countable sample space X , negative log being a Kraft
satisfying codelength is immediate. The extension to un-
countable sample spaces can be carried out and is described
in remark in the appendix . Henceforth, even for uncountable
sample spaces we regard negative log density as codelengths
satisfying Kraft’s inequality.



By the above description, the two stage procedure is clearly
uniquely decodable as first one can decode the code used
and then using that code decode the data. Hence by standard
results in Information Theory cite cover and thomas there
exists a prefix free code on Ωn with codelengths l. Thus the
codelengths l satisfy Kraft’s inequality. In the case when the
parameter space Θ is uncountable, one of the ways in which a
penalized log likelihood expression could still be interpreted
as Kraft satisfying codelengths on the sample space is as
follows. Assume there exists a countable subset F ⊂ Θ
and any Kraft summable penalty V (θ̃) on F such that the
following holds

min
θ∈Θ
{− log pθ(x) + pen(θ)} ≥

min
θ̃∈F
{− log pθ̃(x) + V (θ̃)}.

(2)

In this case the right side of the above display will satisfy
Kraft’s inequality by virtue of being a two-stage codelength
on the countable set F . Then the left side of the last display
being not less than the right side also satisfies Kraft’s inequal-
ity. So the upshot is, that for an uncountable parameter space
Θ and a penalty function pen, as long as one verifies (2),
one can assert that the following codelengths on Ωn

l(x) = min
θ∈Θ
{− log pθ(x) + pen(θ)} (3)

satisfy Kraft’s inequality and hence again correspond to a
prefix free code. In this way we link the countable and the
uncountable cases. For a penalty function pen on Θ if there
exists a countable F and Kraft satisfying V defined on F
satisfying (2) then we say pen is a codelength valid penalty.

Remark II.1. The condition (2) can also be equivalently
restated as the following: There exists a countable subset
F ⊂ Θ and any Kraft summable penalty V (θ̃) on F such
that for every θ ∈ Θ there exists a θ̃ ∈ F satisfying

{− log pθ(x) + pen(θ)} ≥ {− log pθ̃(x) + V (θ̃)}. (4)

In other words, for every θ ∈ Θ there exists its representer in
F satisfying the above inequality. In this sense, F is indeed
a cover for Θ. This cover is built out of the interaction of the
negative log likelihoods, the penalty pen and the function V
which is indeed a theoretical construct but in our applications
would be very closely related to pen.

Remark II.2. Discuss the adaptation issue in universal data
compression.

B. Risk Validity

Now we demonstrate how to derive adaptive risk bounds for
penalized likelihood procedures.

1) Countable parameter Space: First we consider the count-
able parameter space case. Let F be a countable parameter
space and {p(n)

θ̃
: θ̃ ∈ F} denoting probability mass

functions or densities on Xn with respect to some dominating
measure be our model. Let V be a penalty function on Θ.
We want to investigate the statistical risk properties of the
following penalized log likelihood estimator

θ̂(x) = argmin
θ∈F

(
− log(p

(n)
θ (x) + V (θ)

)
(5)

For any 0 < α ≤ 1, we define a family, indexed by α, of loss
functions between two probability measures p(n) and q(n) on
Ωn by

Lα(p(n), q(n)) = − 1

α
logEp(n)

(
q(n)(X)

p(n)(X)

)α
. (6)

We note that in the case p(n) is a n fold i.i.d copy of p(1)

and same for the probability source q then we have for all
0 < α < 1,

Lα(p(n), q(n)) = nLα(p(1), p(1)). (7)

In the literature, these are sometimes known as the Chernoff-
Renyi divergences between probability measures. In the
remaining part of this subsection, probability densities are
understood to be defined on Xn and hence we drop the
subscript n in this section to minimize notational clutter.
Also E would mean taking expectation with respect to the
distribution of the data unless sepcified otherwise.

Remark II.3. Lα is not symmetric in general. However, it
is symmetric when α = 1

2 . In that case L 1
2

turns out to be
the familiar Bhattacharya distance between two probability
measures.

Remark II.4. The Hellinger loss between two probability
distributions p and q is given by

H2(p, q) = Ep(
√
p(X)−

√
q(X))2.

One can check that L1/2(p, q) = −2 log(1 − 1
2H

2(p, q).
In particular we have that the Bhattacharya distance is a
monotonic transformation of the Hellinger distance. Also, by
properties of logarithms, we do have L1/2(p, q) ≤ H2(p, q).
The familiar Kulback Leibler divergence D between p and q
is defined to be

D(p, q) = Ep log(
p(X)

q(X)
).

By Jensen’s inequality one can check that L1/2(p, q) ≤
D(p, q). In fact when the log likelihood ratios of p and q are
bounded by constants then L1/2 is within a constant factor
of D(p, q).

Remark II.5. An upper bound to Lα means an upper bound
to L1/2.



Remark II.6. In case p and q are multivariate normals with
mean vectors µ1 and µ2 and covariance matrices Σ1 and
Σ2 respectively, our loss function evaluates to the following
expression

Lα(p, q) =
1− α

2
(µ1 − µ2)T (αΣ1 + (1− α)Σ2)

(µ1 − µ2) +
1

2α
log

det(αΣ1 + (1− α)Σ2)

det(Σ1)αdet(Σ2)1−α .
(8)

In case the covariance matrices are the same and identity
then it is proportional to the `2 squared norm between the
mean vectors.

Now we state a lemma:

Lemma II.1. Let the true distribution generating the data
X be denoted by p?. For the model {pθ : θ ∈ F} and the
penalized likelihood estimator defined as in (5), if the penalty
function satisfies a slightly stronger Kraft type inequality as
follows, ∑

θ∈F

exp(−α pen(θ)) ≤ 1 (9)

where 0 < α ≤ 1 is any fixed number, we have the following
moment generating inequality:

E exp

(
αmax
θ∈F

(Lα(p?, pθ)− log(
p?(X)

pθ(X)
)

−pen(θ)) ≤ 1.

(10)

Proof: By positivity of the exponential function and the
by monotonicity and linearity of expectation we have

E exp

(
αmax
θ∈F
{Lα(p(n), p

(n)
θ )− log(

p(X)

pθ(X)
)

−pen(θ)}) ≤
∑
θ∈F

E exp (α(Lα(p, pθ)−

log(
p(X)

pθ(X)
)− pen(θ)

)
.

The right side of the above inequality can be rewritten as∑
θ∈F

exp(αLα(p?, pθ))E(
pθ(X)

p?(X)
)α

exp(−α pen(θ)).

(11)

By the definition of the loss function (7) the above simplifies
to ∑

θ∈F

exp(−α pen(θ)) (12)

and the summability condition (9) implies that the above
display is not greater than 1. This completes the proof of
lemma (II.1).

Theorem II.2. Under the same conditions as in lemma (II.1)
we have the following risk bound:

ELα(p?, pθ̂) ≤ E inf
θ∈F

(
log

p?(X)

pθ(X)
+ pen(θ)

)
. (13)

Proof: Interchanging Ep and the exponential cannot
increase the left side of equation (10) so we have the
inequality

exp(α Emax
θ∈F
{Lα(p?, pθ)− log(

p?(X)

pθ(X)
)−

pen(θ)}) ≤ 1.

Monotonicity of the exponential function and α > 0 implies

Emax
θ∈F
{Lα(p, pθ)− log(

p(X)

pθ(X)
)− pen(θ)} ≤ 0.

Setting θ = θ̂ in the left side of the above equation cannot
increase it and hence we have

E{L(n)
α (p(n), p

(n)

θ̂
)− log(

p(X)

pθ̂(X)
)− pen(θ)} ≤ 0.

Taking the loss term on the other side and multiplying by
−1, we get the desired risk bound by recalling the definition
of θ̂. This completes the proof of theorem (II.2).

2) Extension to Uncountable parameter Spaces: The previ-
ous argument only works for countable parameter spaces.
This is because we cannot take a sum over uncountable
possibilities as in the first step of the proof of lemma (10).
In statistical applications, the estimators are optimized over
continuous spaces and it is awkward to force an user to
construct countable discretizations of the parameter space. In
this section we show how to extend the idea of the previous
section to obtain risk bounds for estimators minimizing
negative log likelihood plus a penalty term over uncountable
choices. We identify conditions on the penalty pen and the
log likelihood in order to be able to mimic the countable
case and derive risk bounds. Let Θ now denote the parameter
space which is uncountable. Let pen be a penalty function
defined on Θ. The penalized likelihood estimator is now
defined as

θ̂(X) = argmin
θ∈Θ

(− log(pθ(X) + pen(θ)) . (14)

Analogous to (2) let us assume the existence a countable
subset F ⊂ Θ and a penalty function V on F such that the
following holds for any fixed 0 < α < 1

max
θ̃∈F

(
Lα(p?, pθ̃)− log

p?(X)

pθ̃(X)
− V (θ̃)

)
≥

max
θ∈Θ

(
Lα(p?, pθ)− log

p?(X)

pθ(X)
− pen(θ)

)
.

(15)



Also analogous to (9) let us assume V satisfies a similar
inequality on F ∑

θ̃∈F

exp(−α V (θ̃)) ≤ 1. (16)

We now state the following theorem for the uncountable
parameter case.

Theorem II.3. We again denote the true distribution gener-
ating the data X by p?. For the model {pθ : θ ∈ Θ}, if the
assumptions (15) and (16) are met then we have the desired
risk bound for the estimator (14) as follows

ELα(p?, pθ̂) ≤ E inf
θ∈Θ

(
log

p?(X)

pθ̂(X)
+ pen(θ)

)
. (17)

Proof: Since V satisfies (9) on F which is countable by
lemma (II.1) we obtain

E exp(αmax
θ̃∈F
{Lα(p?, pθ̃)− log(

p(X)

pθ̃(X)
)

− V (θ̃)}) ≤ 1.

By assumption (15) and monotonicity of the exponential
function and the expectation operator we therefore have our
moment generating inequality

E exp(αmax
θ∈Θ
{Lα(p?, pθ)− log(

p?(X)

pθ(X)
)

− pen(θ)}) ≤ 1.

(18)

Again by interchanging exponential and expectation and then
by the monotonicity of the exponential function we have the
following

Emax
θ∈Θ

(Lα(p?, pθ)− log
p(X)

pθ(X)
+ pen(θ)) ≤ 0.

By setting θ = θ̂(X) we cannot increase the expectation and
hence we have

Ep

(
L(n)
α (p, pθ̂)− log

p(X)

pθ̂(X)
+ pen(θ̂)

)
≤ 0.

Taking the log term and the penalty term on the right side
and recalling the definition of θ̂ we obtain the desired risk
bound. This completes the proof of theorem (II.3).

For a penalty function pen on Θ if there exists a countable
F and a penalty function V defined on F satisfying (15)
and (16) then we say pen is a risk valid penalty.

Remark II.7. The condition (15) is very similar to (2) with
the loss terms added. Condition (15) can be interpreted in
another way which is going to be sometimes more convenient
for us. For a penalty pen defined on Θ to be valid for
redundancy risk bounds such as (17), condition (15) behooves
us to find a countable F ⊂ Θ and a penalty V defined on F

satisfying Kraft (9) such that for any given θ ∈ Θ and any
given data point X, we have the following inequality

min
θ̃∈F

(Lα(p?, pθ)− Lα(p?, pθ̃) + log
p?(X)

pθ̃(X)

− log
p?(X)

pθ(X)
+ V (θ̃)) ≤ pen(θ).

(19)

Consequently, for every θ ∈ Θ there must exist a representer
θ̃ ∈ F such that the left side of the above equation without
the minimum is less than pen(θ). This representer may also
depend on the data X. In this sense, again F is a cover for
Θ built out of differences of log likelihoods and the penalty
function pen. Existence of such a cover allows us to mimic
the countable parameter space situation and lets us prove
desired risk bounds.

Remark II.8. Note that we have a variety of risk bounds with
loss functions Lα parametrized by 0 < α ≤ 1. Note also that
our requirement on the penalty also changes with α. Also p?

denotes the true data generating probability measure which
need not be in the model we consider for our risk bounds to
be valid.

We now again include the subscript n when writing proba-
bility mass functions or densities. An important case is when
the data is i.i.d, that is when the data generating distribution
pn is the n fold product of a distribution p1 on X and the
model consists of {pnθ : θ ∈ Θ} where pnθ refers to the n
fold product of p(1)

θ . In this setting, as can be readily checked
from (7), we have for two probability sources p and q

Lα(pn, qn) = nLα(p1, q1). (20)

In this case we write our risk bound in the following
corollary.

Corollary II.4. Let the model be consisting of n fold products
of {p(1)

θ : θ ∈ Θ} and the true data generating distribution
be the n fold product of p?. In this case, under the same
assumptions as in theorem (II.2) we have the risk bound for
all 0 < α ≤ 1,

ELα(p?, pθ̂) ≤ E inf
θ∈Θ

(
1

n
log

pn(X)

pnθ (X)

+
pen(θ)

n
).

(21)

Proof: The proof follows by dividing throughout by n
in equation (17) and because we are in the i.i.d setting.

We note that by interchanging expectation and infimum in
the right side of the risk bound in the last display we have

ELα(p?, pθ̂) ≤ inf
θ∈Θ

(
D(p?, pθ̂) +

pen(θ)

n

)
. (22)



The right side in the last display is called the index of resolv-
ability as in []. As it can be seen, the index of resolvability
is an ideal tradeoff between the KL approximation and the
penalty or the complexity relative to the sample size. In this
way the risk of the penalized likelihood estimator adapts to
subclasses in the parameter space with varying complexity
or penalty level.

So far we have provided finite sample upper bounds for
the expected loss. In case of i.i.d data finite sample high
probability upper bounds are also readily available for the
loss.

Corollary II.5. In case of i.i.d data we have the probability
of the event that the loss exceeds the redundancy by a positive
number τ > 0 is exponentially small in n. We have the
following inequality

P (Lα(p, pθ̂) >
1

n

n∑
i=1

log(
p?(xi)

pθ̂(xi)
)

+
pen(θ̂)

nα
+ τ) < e−nατ .

(23)

Proof: We take equation (18) as our starting point. In
the i.i.d setting we can rewrite it as

E exp(nαmax
θ∈Θ
{Lα(p?, pθ)−

n∑
i=1

log(
p?(xi)

pθ̂(xi)
)−

pen(θ)

n
}) ≤ 1.

By setting θ = θ̂ the above equation implies

E exp(nα{Lα(p?, pθ̂)−
n∑
i=1

log(
p?(xi)

pθ̂(xi)
)

− pen(θ̂)

n
}) ≤ 1.

Let τ be any positive number. By applying Markov’s inequal-
ity and the previous equation we complete the proof of this
corollary.

Remark II.9. p? denotes the true data generating probability
measure which need not be in the model we consider for our
risk bounds to be valid.

Remark II.10. In order to apply theorem (II.2) to particular
models, we need to be able to check condition (15) which
means we have to come up with a choice of a countable
subset F ⊂ Θ and a penalty function V defined on F
satisfying (16). We will show in the coming sections how
to demonstrate that these conditions hold in canonical high
dimensional parametric problems such as Linear Models and
Gaussian Graphical Models with the penalty being a suitable
multiple of the l1 penalty. We will also show how to use

theorem (II.2) to obtain adaptive risk bounds for a suitable
multiplier times the l0 penalty in the Linear model case in
the regime where n > p. Our aim is to demonstrate that
the existence condition of countable covers of the parameter
space that we have proposed are natural and are satisfied
for the canonical problems we consider in high dimensional
statistics.

III. VALIDITY OF THE l1 PENALTY

In this section we show that a certain weighted `! type penalty
with a suitable multiplier is codelength valid and risk valid
in the linear regression problem. We also show that the `1
penalty is risk valid in the setting of Gaussian graphical
models. We essentially verify conditions (15) and (16) in both
these models. Our point is to convince the reader that our
conditions are indeed satisfied in these canonical problems.

A. Linear Regression

To illustrate our techniques of obtaining adaptive risk bounds
we first choose the setting of linear regression which is one
of the canonical location problems in statistics. We have a
real valued response variable y and a vector valued predictor
vector x. We assume y conditional on x is Gaussian with
conditional mean function f?(x) and known variance σ2.
We are given n realizations {(yi, xi)}ni=1 from the joint
distribution of (y, x). The goal in this setting might be
to estimate this unknown f? as that completely specifies
the conditional density of y given x under the Gaussian
assumption. What we would do in this problem is given the
predictor variables {(xi)}ni=1 treat this as a conditional den-
sity estimation problem, define an appropriate `1 penalized
likelihood estimator, apply our theory, check our conditions
and get risk bounds, conditional on all the predictor values.
At the end we can always take a final expectation with
respect to the distribution of {(xi)}ni=1 to get our final risk
bounds. So we now treat the predictor values {(xi)}ni=1 as
given and do a conditional analysis. We assume that we have
a dictionary D of fixed functions {fj}pj=1 where p could
be very large compared to n. The dictionary could have
been obtained from a previous training sample or otherwise.
We restrict attention to estimators of the conditional mean
function, which take the form of a data dependent linear
combination of the functions f ∈ D. In other words, our
estimators would be a member of the set

{f : f =

p∑
j=1

θjfj}

where θ = (θ1, . . . , θp) ∈ Rp. Hence our parameter space Θ
could be identified with Rp. For any θ ∈
Rp we denote the function f =

∑p
j=1 θjfj by fθ. Now



we proceed to show risk validity of a certain weighted `1
penalty. We would need to define a countable set F ∈ Θ
and a penalty function V satisfying (16) defined on F such
that equation (19) holds. What we essentially do to define
our penalty is upper bound the left side of equation (19) and
define the upper bound itself as the penalty, thus automati-
cally satisfying (19). Our loss functions between conditional
densities with means fθ and fθ′ are denoted by Lα(θ, θ′)
for notational simplicity. The loss functions Lα, as can be
checked from (8) turn out to be

Lα(θ, θ′) =
(1− α)σ2

2

n∑
i=1

(fθ(xi)− fθ′(xi))2. (24)

Now we proceed to verify (19). Expanding the left side
of (19) in this setting translates to the following

min
Θ̃∈F

[
(1− α)

2σ2

n∑
i=1

(
(fθ(xi)− f?(xi))2 −

(fθ̃(xi)− f
?(xi))

2
)

+
1

2σ2

n∑
i=1

(
(yi − fθ̃(xi))

2

− (yi − fθ(xi))2
)

+ V (θ̃)]

(25)

Let us now make some relevant definitions. We denote the
integer lattice in Rp by Zp. So Zp contains all vectors z,
every coordinate of which are integers. We now define a
codelength C on Zp as follows

C(z) = |z|1 log(4p) + log 2. (26)

The following lemma shows that C defined as in (26) indeed
satisfies a Kraft type inequality.

Lemma III.1. With Zp being the integer lattice, C as defined
in (26), C satisfies the inequality∑

z∈Zp
exp(−C(z)) ≤ 1. (27)

The proof of this lemma is given in appendix.

By expanding (25) we see that we have to minimize the
following expression Hθ(θ̃) over a countable set F and a
penalty function V to be defined momentarily.

Hθ(θ̃) =
α

2σ2

n∑
i=1

(fθ(xi)− fθ̃(xi))
2−

α

σ2

n∑
i=1

(yi − fθ(xi))(fθ̃(xi)− fθ(xi))−

(1− α)

σ2

n∑
i=1

(f?(xi)− fθ(xi))(fθ̃(xi)− fθ(xi))

+ V (θ̃).

(28)

Our strategy is to upper bound the minimum of Hθ(θ̃) the
above expression by an expectation over a carefully chosen
distribution µ on F . Let θ̃ ∈ F be random and distributed
according to µ. The minimum is always less than or equal
to an average so we have for any distribution µ on F the
following

min
θ̃∈F

Hθ(θ̃) ≤ Eθ̃∼µHθ(θ̃)

We will now show how to choose this distribution µ. We
would arrange for the mean of µ to be θ. Consequently, the
cross product terms in would be zero on an average. So the
terms we would have to control in (28) are the averages of
the quadratic term and the penalty term. We introduce some
more notations. If we denote the design matrix by Ψ, where
Ψij = fi(xj), then we define weights {wj}pj=1 as follows

wj =
1

n
(ΨTΨ)jj (29)

The weight vector w is nothing but the empirical `2 norms of
the columns of the design matrix Ψ. For any vector v ∈ Rp
we denote its weighted `1 norm as

|v|1,w =

p∑
j=1

wj |vj |.

Now we illustrate how to sample θ̃ in F and hence define
a distribution µ on F for purposes elicited above. We will
actually show how to do the above in two other ways in the
appendix, which are interesting by themselves. Along the
way we will define the countable set F and the penalty V
we would be working with.

1) Sampling method: We now show a way of devising a
probability distribution on the countable set F so that the
average of Hθ upper bounds the minimum of it over F and
helps us set a penalty which allows for our desired adaptive
risk bounds. We now define our countable set F . Let W
denote the diagonal matrix of weights as defined in (29). We
define the set F as follows

F = δ{W−1z : z ∈ Zp} (30)

Clearly F is countable since Zp is so. A careful observation
shows that h always takes values in F . We now define a
penalty function V on F derived from C. So we define V
in the following manner

V (δW−1z) =
C(z)

α
for all vectors z in Zp. It is clear from (9) that V satisfies
the Kraft inequality (16). So the symbol E would now mean
expectation with respect to the distribution of h on F . Let
θ ∈ Rp be given and δ > 0 be a given number. We can
always write θ in the following way

θ = δ(
m1

w1
, . . . ,

mp

wp
)



for some vector (m1, . . . ,mp). We now describe our sam-
pling strategy. For any integer 1 ≤ l ≤ p we define a random
variable hl in the following way.

hl =
δ

wl
dmle with probability (dmle −ml)

=
δ

wl
bmlc with probability (ml − bmlc)

=
δ

wl
ml with probability 1− (dmle − bmlc)

(31)

We note some facts about the random variable hl. If θl is
an integer multiple of δ then hl = θl with probability 1.
Secondly, hl itself, is an integer multiple of δ with probability
1, regardless of what θl is. Thirdly, hl is unbiased for θl, that
is

Ehl = θl

Now we define the random vector h = (h1, . . . ,hp) where
the coordinate random variables {hl}pl=1 are jointly indepen-
dent. Then by the properties of hl for each 1 ≤ l ≤ p, we
have Eh = θ and h ∈ F with probability 1. Now, we are
going to compute the average of the expression in (25) with
respect to the distribution of h on F . Again by unbiasedness
of h we have the cross product terms zero on an average. To
control the quadratic term we have to control

α

2σ2

n∑
i=1

E(

p∑
j=1

(hj − θj)fj(xi))2 (32)

By unbiasedness of h and independence of each of its
coordinates the expected crossproduct terms in the inner sum
are zero. Hence after interchanging the order of summation
the last display equals the following

n

p∑
j=1

E(hj − θj)w2
j .

Now after some calculations similar to the calculation of the
variance of a bernoulli random variable, it can be shown that
for each 1 ≤ l ≤ p,

E(hl − θl)2 = (
δ

wl
)2(ml − bmlc)(dmle −ml).

Also it can be checked that for all numbers ml we have the
following inequality

(ml − bmlc)(dmle −ml) ≤ |ml|.

So from the arguments above, we obtain an upper bound
α

2σ2nδ
2
∑p
l=1 |ml| for the expected quadratic term. Now by

dividing and multiplying by wl within every term in the sum
and recalling the definition of θ we get the upper bound
α

2σ2nδ|θ|w,1.

We note that each coordinate of h has a fixed sign depending
on the signs of the coordinates of θ. Hence, we again have

EV (h) =
|θ|w,1
αδ

log(4p) +
log 2

α
. (33)

Hence, we have the upper bound for the expectation of Hθ

to be
α

2σ2
nδ|θ|w,1 +

|θ|w,1
αδ

log(4p) +
log 2

α
.

Setting δ2 = 2σ2 log 4p
α2n we finally obtain the following

min
θ̃∈F

Hθ(θ̃) ≤
1

σ

√
2n log(4p)|θ|w,1 +

log 2

α
.

It follows that by defining the penalty function on Θ defined
as follows

pen(θ) =
1

σ

√
2n log(4p)|θ|w,1 +

log 2

α
. (34)

we have the risk validity of a weighted `1 penalty given by
pen. Since pen is a risk valid penalty, by a direct application
of theorem (II.2) and some minor rearranging of terms we
obtain for all 0 < α < 1

E
1

2nσ2

n∑
i=1

(fθ̂(xi)− f
?(xi))

2 ≤

(
1

1− α
)E inf

θ∈Rp

(
1

2nσ2

n∑
i=1

[(yi − fθ(xi))2−

(yi − f?(xi))2] +
1

σ

√
2 log(4p)

n
|θ|w,1 +

log(2)

αn

)
.

(35)

By taking the expectation inside the infimum on the right
side of the above display we present a theorem in this linear
regression setting

Theorem III.2. For the penalized likelihood estimator θ̂
defined as in (5) and the penalty given by (73) we have the
following oracle inequality type result

E
1

2nσ2

n∑
i=1

(fθ̂(xi)− f
?(xi))

2 ≤

(
1

1− α
)E inf

θ∈Rp

(
1

2nσ2

n∑
i=1

[(fθ(xi)− f?(xi))2]

+

√
2 log(4p)

n
|θ|w,1 +

log(2)

αn

)
.

(36)

Remark III.1. The leading constant on the right side can be
made to be arbitrarily close to 1 by choosing α arbitrarily
near 0 but then we pay for it as we have to divide the penalty
term by α in the risk bound.

Remark III.2. We do not need any conditions on the design
matrix Ψ in order for our risk bound to hold.



B. Gaussian Graphical Models

A canonical scale problem in statistics is the problem of
estimating the inverse covariance matrix of a multivariate
Gaussian random vector. We observe X = {xi}ni=1, each of
which is drawn i.i.d from Np(0, θ). Here θp×p denotes the
inverse covariance matrix of the random gaussian vectors. We
denote the corresponding covariance matrices by Σ = θ−1.
We assume that the model is well specified and we denote
the true inverse covariance matrix to be θ?. In this section we
denote the − log det function on matrices by φ. We follow
the the convention that φ takes value +∞ on any matrix that
is not positive definite. Then it follows that φ is a convex
function on the space of all p × p matrices. Inspecting the
log likelihood of this model we have

1

n
logPθ(X) =

p

2
log(2π) +

1

2
Tr(Sθ) +

φ(θ)

2

Here, Tr(Sθ) is the sum of diagonals of the matrix Sθ and
S = 1

n

∑n
i=1 x̃i

T x̃i. In this setting θij = 0 means that the
ith and jth variables are conditionally independent given the
others. We outline the proof of the fact that the penalty |θ|1,
which is just the sum of absolute values of all the entries of
the inverse covariance matrix, is a risk valid penalty. We show
our risk bounds in the case when the truth θ? is sufficiently
positive definite in the following way. We assume that for
any matrix {∆ : ‖∆‖∞ ≤ δ} we have

(θ? + ∆) � 0. (37)

Here ‖∆‖∞ means the maximum absolute entry of the matrix
∆ and a matrix being � 0 means it is positive definite.
We remark that this is our only assumption on the true
inverse covariance and the value of the δ in the assumption is
specified later. Now we proceed with our scheme of things.
Let us denote the space of p× p positive definite symmetric
matrices by Sp+. In this setting the parameter space could be
identified with a convex cone of Rp2 , the convex cone being
the cone of positive definite symmetric matrices. We define
F to be the δ integer lattice intersected with Sp+. So we have

F = {δz ∈ Rp×p : vec(z) ∈ Zp
2

, z ∈ Sp+}. (38)

Clearly, F is a countable set. We also define the penalty
function V on F in the following way

V (δz) =
C(z)

α
. (39)

By (27) it is clear that V defined as above on F satisfies
the Kraft type inequality (16). For this i.i.d model, our loss
function turns out to be

Lα(θ1, θ2) =
n

2α
[αφ(θ2)

+ (1− α)φ(θ1)− φ(αθ2 + (1− α)θ1)].
(40)

Since φ is a convex function, by Jensen’ inequality one can
see that Lα ≥ 0. In this setting, for technical reasons, we do
not allow α to be too close to 1. So, in the following section,
we will present our risk bounds for 0 < α ≤ 1

2 although there
is nothing special about 1

2 and in principle it can be replaced
by any constant strictly less than 1 with the corresponding
change in the factor of 2 in our assumption (37). Now we
need to verify (19) in order to set a risk valid penalty. Denote
the left side of (19) again by Hθ(θ̃). We now expand and
simplify Hθ(θ̃). We have

Hθ(θ̃) =
n

2
Tr(S(θ̃ − θ)) +

n

2
[φ(θ̃)− φ(θ)]+

V (θ̃) +
n

2α

(
(α)[φ(θ)− φ(θ̃)]+

n

2α
[φ(αθ̃ + (1− α)θ?)− φ(αθ + (1− α)θ?)]

After some cancellations we are left with

Hθ(θ̃) =
n

2α
[φ(αθ̃ + (1− α)θ?)

− φ(αθ + (1− α)θ?)] +
n

2
Tr(S(θ̃ − θ)) + V (θ̃).

One can check that by treating φ as a function of p2 variables,
one has for a given positive definite matrix Mp×p and for
any pair of indices i, j we have ∂

∂Mi,j
φ(X) = −(M−1)i,j .

Also for any other pair of indices k, l the second derivatives
are given by ∂2

∂Mk,l∂Mi,j
φ(X) = (M−1Ek,lM

−1)i,j =

(M−1)i,k(M−1)j,l. Here Ek,l is a p×p matrix with all zero
entries except a 1 at the k, l position. By Taylor expanding
φ about A upto the second order term we have the following
equality for all positive definite symmetric matrices A and
A+B where t is some number between 0 and 1

φ(A+B)− φ(A) = −Tr(BA−1)+

vec(B)TH
(
(A+ tB)−1

)
vec(B).

(41)

where H evaluated at a positive definite matrix Mp×p is a
p2 × p2 matrix and is given by

H(i,j),(k,l) = Mi,kMj,l.

Let us now set A = (1 − α)θ? + αθ and B = α(θ̃ − θ) in
the above Taylor expansion. Then we can write Hθ(θ̃) as

Hθ(θ̃) = − n

2α
Tr(BA−1) +

n

2
Tr(SB) + V (θ̃)+

n

2α
vec(B)TH

(
(A+ tB)−1

)
vec(B).

We again upper bound the minimum of Hθ(θ̃) over θ̃ ∈ F
by an expectation over a chosen distribution on F . This
distribution is exactly similar to the second sampling method
used in the linear regression setting. Expand on this point?
So our random choice of θ̃ is unbiased for θ and hence the
average of B is zero. Consequently the trace terms are zero
on an average. Then we have to control the quadratic form
and the penalty term. Since the coordinates of the random



choice of θ̃ are independent the cross terms in the quadratic
form are zero on an average. We note that an important
property of our sampling strategy is that the `∞ distance
between the random choice θ̃ and θ is not greater than δ.
Hence it follows that |B|∞ ≤ αδ. Now by assumption (37)
one can check for all 0 < t < 1 and all 0 < α ≤ 1

2 it follows
that (1−α)

2 θ?+ tB � 0. Also we have by definition of A and
B here,

A+ tB − (1− α)

2
θ? − αθ =

(1− α)

2
θ? + tB. (42)

The above two equations imply that for all 0 < t < 1 and
all 0 < α ≤ 1

2 we have

A+ tB � (1− α)

2
θ? � 0. (43)

In particular we are always inside the region of differen-
tiability of φ and hence our taylor expansion is valid. We
first consider the following expected quadratic form for any
0 ≤ t ≤ 1

E(vec(B)TH(A+ tB)−1vec(B)).

Since the cross terms are zero on an average due to indepen-
dence of the coordinates and the fact that Evec(B) = 0 we
have the last display equalling

E
p2∑
l=1

(vec(B)l)
2(H(A+ tB)−1)ll.

Now by definition of H any of the diagonals of (H(A +
tB)−1) is not greater than the maximum diagonal of (A +
tB)−1 squared. Now (43) implies that the maximum diagonal
of (A+ tB)−1 is not greater than the maximum diagonal of

2
1−αΣ?. Let us denote the maximum diagonal of Σ by σmax.
Then we have the following inequality for all 1 ≤ l ≤ p2,

((A+ tB)−1 ⊗ (A+ tB)−1)ll ≤
4(σmax)2

(1− α)2
. (44)

Now, as in the linear regression case, it can be shown that for
each coordinate l, the variance of vec(B)l is upper bounded
by δ|vec(θ)l|. Hence we can write

E(vec(B)TH
(
(A+ tB)−1vec(B)

)
≤ 4(σmax)2

(1− α)2

δ|vec(θ)|1.

As for the penalty term, the sampling method ensures that
the signs of each of the coordinates of the random choice θ̃
does not change. Hence the expected penalty term is just the
penalty evaluated at θ. So then we have

EHθ(θ̃) ≤
4n(σmax)2

2α(1− α)2
δ|θ|1 +

|θ|1
αδ

log(4p2) +
log 2

α
.

Again by setting δ2 = log(4p2)(1−α)2

2n(σmax)2 it follows that by
defining the penalty function on Θ defined as follows

pen(θ) =

√
σmax log(4p2)2n

α(1− α)
|θ|1 +

log 2

α
(45)

we construct a risk valid penalty. So with the definition of
pen above, the estimator defined as follows

θ̂ = argmin
θ∈Sp+

(
1

2
Tr(Sθ) +

φ(θ)

2
+
pen(θ)

n

)
. (46)

enjoys the adaptive risk properties we desire. Under the
assumption (37) where now δ has been specified, we have
the following risk bound for all 0 < α ≤ 1

2

ELα(θ?, θ̂) ≤ E inf
θ∈Sp+

(
1

2
Tr(S(θ − θ?))+

φ(θ)− φ(θ?)

2
+
pen(θ)

n

)
.

By taking the expectation inside the infimum we now present
our theorem.

Theorem III.3. For the estimator θ̂ as in (46) with Σ̂−1 =
θ̂−1 and the penalty (45) we have the risk bound

ELα(θ?, θ̂) ≤ inf
θ∈Sp+

(
1

2
[Tr(θ̂Σ?)− p]+

1

2
[φ(θ̂)− φ(θ?))] +

pen(θ)

n

)
.

(47)

Remark III.3. Remark about the factor outside the oracle
inequality.

Remark III.4. By setting θ = θ? in the right side of the
bound, as long as θ? has finite l1 norm, one has the standard

risk bound
√

log(4p2)
n ‖θ?‖1. The main purpose of the risk

bound is to demonstrate the adaptation properties of the l1
penalized estimator and to demonstrate redundancy, a coding
notion, as the upper bound to the statistical risk which has
been championed in

Remark III.5. The assumption (37) says that the true inverse
covariance matrix θ? should be in the interior of the cone of
positive definite matrix by a little margin. This assumption
may be acceptable even in high dimensions as it does not
prohibit collinearity.

IV. VALIDITY OF l0 PENALTY IN LINEAR REGRESSION

In this section we return to the linear regression setup to
show the codelength and risk validity of the l0 penalty. We
consider the fixed design Ψ and known variance σ2 setup.
Our model is

yn×1 = Ψn×pθp×1 + εn×1



where ε ∼ N(0, σ2In×n) and Ψ is the design matrix. Let
X = (yn×1,Ψn×p) denote the data. The log likelihood of
the model is

− log pθ(X) =
1

2σ2
‖y −Ψθ‖22 +

n

2
log 2πσ2.

We assume our model is well specified and there is a true
vector of coefficients θ?. Our results would be in the regime
when the sample size n is larger than the number of explana-
tory variables p. We divide the data X into Xin = (yin,Ψin)
consisting of p samples and Xf = (yf ,Ψf ) consisting of
(n − p) samples. Here in is intended to suggest initial and
f is intended to mean final. It does not really matter which
p samples are chosen to represent the initial sample as long
as it is done once and then remains frozen. The purpose of
such division of data is to use the initial p samples Xin to
create a Kraft summable penalty on the countable cover we
will choose and then this penalty together with the cover is
used to derive codelength interpretation for the `0 penalized
log likelihood or risk bounds for the estimator minimizing
the `0 penalized log likelihood.

We now make some relevant definitions and set up some
notations. Let θ ∈ Rp be a given vector. We define k(θ) =∑p
i=1 I{θi 6= 0}. In other words k(θ) is the number of non

zeros of the vector θ. We denote the support of θ or the set of
indices where θ is non zero by S(θ). Clearly |S(θ)| = k(θ).
Let S? be the support of the true vector of coefficients θ?.
For any subset S ⊂ [1 : p], let Ψin,S denote the initial part
of the design matrix with column indices in S in natural
order. Hence Ψin,S is a p by |S| matrix. Let us denote
the matrix (ΨT

in,SΨin,S)−1/2 by MS . We also denote the

quantity 1
|S|Tr

(
(ΨT

in,SΨin,S)−1(ΨT
f,SΨf,S))

)
by ΥS .

Let Z denote the set of integers as before. Also fix some
δ > 0. Consider the set δ(Z − {0})m ⊂ Rm for some
positive integer m. It is the set of all m dimensional integer
vectors none of whose coordinates are zero. Clearly this set
is countable. We denote this set by Gm. For any given subset
S we define a countable set

CS = {MSv : v ∈ G|S|} (48)

As we have defined, CS is a subset of R|S| but by appending
the coordinates in the complement of S as zeroes, we treat
CS is a subset of Rp. We want to construct Kraft satisfying
codelengths and hence subprobabilities on CS which are
proportional to

(
(Pφ(Xin)
Pθ? (Xin)

)η
for any fixed but arbitrary

0 < η ≤ 1. For that purpose we want to estimate the
normalizer which is the quantity

∑
φ∈CS

(
(Pφ(Xin))

Pθ? (Xin)

)η
. The

following lemma helps us do exactly that.

Lemma IV.1. For all 0 < η ≤ 1 we have∑
φ∈CS

(
Pφ(Xin)

Pθ?(Xin)
)ηδ|S| ≤ Uη(Xin, S) (49)

where

Uη(Xin, S) = exp
(η

2
‖OΨin,S∪S? yin −Ψin,S?θ

?‖22
)

(
2π

η
)|S|/2

(50)

and OΨin,S∪S? denotes the orthogonal projection matrix onto
the column space of the matrix Ψin,S∪S? .

The proof of this lemma is given in the appendix.

We now define the countable set C ⊂ Rp as follows

C = ∪pk=0 ∪{S:|S|=k} CS (51)

C is the union of the countable sets CS,η over all subsets
S ⊂ [1 : p]. Hence C itself is a countable subset of Rp. By
definition, C varies with δ and in applications we will set δ
to be something specific. We now define penalty functions
satisfying Kraft type inequalities on the countable set C. First
we define a family of subprobabilities hη on C as follows

hη(θ̃, Xin) = (
1

2
)k(θ̃)+1 1( p

k(θ̃)

) (
Pθ̃(Xin)

Pθ?(Xin)
)η δk(θ̃)

1

Uη(Xin, S(θ̃))
.

(52)

We claim that hη(θ̃) is a subprobability on C̃η for every Xin.
This can be seen by first summing hη(θ̃) over non negative
integers k from 0 to p, then summing over all subsets of
[1 : p] with cardinality k and then summing over CS,η. The
inner sum over CS,η of (

Pθ̃(Xin)

Pθ? (Xin) )δ|S| 1
Uη(Xin,S) is no more

than 1 by lemma (IV.1). Then for each k we sum over
( p

k(θ̃)

)
subsets and the factor 1

( p

k(θ̃))
keeps the overall sum still no

more than 1. Similarly, the factor ( 1
2 )k(θ̃)+1 makes the whole

sum less than or equal to 1 when we sum over k from 0 to
p, which can be seen by summing up the geometric series.
Hence, we prove our claim.

We can now define Kraft satisfying codelengths lη(θ̃, Xin)
on C by defining

lη(θ̃, Xin) = −1

η
log hη(θ̃) (53)

Then because of hη being a subprobability, it is clear that lη
satisfies the following inequality for all Xin∑

θ̃∈C

exp(−ηlη(θ̃, Xin)) ≤ 1. (54)



A. Codelength Validity

In this section we show that the classical penalty of the
order k(θ) log n is codelength valid in a certain sense. Let
pen(θ|Xin) be a penalty function defined on Θ = Rp which
is a function of Xin also. So it is infact a random penalty.
The notation is deliberately designed to make the reader think
of pen(θ|Xin) as a penalty conditional on the initial data
Xin. Analogous to (2) we intend to show the existence of a
countable set F ⊂ Θ and a Kraft valid codelength V (θ̃|Xin)
on Θ̃ such that the following inequality holds

min
θ∈Θ
{− logPθ(X) + pen(θ|Xin)} ≥

min
θ̃∈F
{− logPθ̃(Xf ) + V (θ̃|Xin)}

(55)

where now the right side of (55) gives a two stage codelength
interpretation provided we treat it as codelengths on Xf

conditional on Xin and hence the left side as a function
on Xf , being not less than the right side, also has a two
stage conditional codelength interpretation. We now proceed
to find out a suitable conditional penalty pen(θ|Xin) which
would satisfy (55).

We declare our countable set F = C as defined in (51). We
also define V = lη with η = 1 as defined in (53). Then we
have

V (θ̃) = (k(θ̃) + 1) log(2) + log

(
p

k(θ̃)

)
+

k(θ̃) log(
1

δ
) + log(U(Xin, S(θ))− log

Pθ̃(Xin)

Pθ?(Xin)
.

The task now is to verify (55). An equivalent way to verify
(55) is to verify the following for any given θ ∈ Θ and data
X,

min
θ̃∈F
{− log

Pθ̃(Xf )

Pθ?(Xf )
+ log

Pθ(X)

Pθ?(X)
+ V (θ̃|Xin)}

≤ pen(θ|Xin).

(56)

In the case when Xin and Xf are independent, the log
likelihood of the full data X is the sum of log likelihoods of
Xin and Xf and so we can write the left side of the above
equation as

min
θ̃∈F
{− log

Pθ̃(X)

Pθ?(X)
+ log

Pθ(X)

Pθ?(X)
+(

V (θ̃|Xin) + log
Pθ̃(Xin)

Pθ?(Xin)

)
}.

(57)

Now our strategy to upper bound the minimum of the above
expression is to restrict the minimum over θ̃ ∈ CS(θ) where
CS(θ) is as defined in (48). Doing this cannot decrease
the overall minimum because CS(θ) ⊂ F by definition of
F . Restricted to θ̃ ∈ CS(θ) one can check that the term

V (θ̃|Xin) + log
Pθ̃(Xin)

Pθ?(Xin)
remains a constant. Now we state

a lemma which helps us in upper bounding (57).

Lemma IV.2.

min
θ̃∈CS(θ)

{− log
Pθ̃(X)

Pθ?(X)
+ log

Pθ(X)

Pθ?(X)
} ≤ 2(1 + ΥS(θ)) k(θ)δ2.

(58)

The proof of the above lemma is given in the appendix.

By the above lemma and the fact that V (θ̃|Xin)+log
Pθ̃(Xin)

Pθ?(Xin)

is constant on CS(θ),1 we write down the upper bound we
get for the left side of (57) which is as follows

2(1 + ΥS(θ)) k(θ)δ2 + (k(θ) + 1) log(2) + log

(
p

k(θ)

)
+

k(θ) log(
1

δ
) + log(U(Xin, S(θ)).

Setting δ2 = 1
4(1+ΥS(θ))

we see that a valid penalty satisfy-
ing (55) would be

pen(θ|Xin) =
k(θ)

2
+ (k(θ) + 1) log(2)+

log

(
p

k(θ)

)
+
k(θ)

2
log(4(1 + ΥS(θ))) + log(U(Xin, S(θ)).

(59)

Rearranging and expanding U(Xin, S(θ)) we have

pen(θ|Xin) =
k(θ)

2
log(4(1 + ΥS(θ))) + log

(
p

k(θ)

)
+

k(θ)

(
3 log(2)

2
+

log(2π)

2

)
+

1

2
‖OΨin,S(θ)∪S? yin −Ψin,S?θ

?‖22.
(60)

With a fixed design matrix there is only one term in the
above expression which is random. It can be checked that
the term 1

2‖OΨin,S∪S? yin−Ψin,S?θ
?‖22 is distributed as a χ2

random variable with degree of freedom at most k(θ) + k?.
So its expected value is going to be at most k(θ)+k?. In the
case when the design matrices Ψin and Ψf have orthogonal
columns and the `2 norms of each of the columns of Ψin

and Ψf are atmost p and n − p respectively we then have
for any subset S, ΨT

in,SΨin,S = pI|S|×|S| and ΨT
f,SΨf,S =

(n − p)I|S|×|S|. In that case it can be checked that γS =
n−p
p . Hence in this situation, our codelength valid penalty



conditional on Xin becomes

pen(θ|Xin) =
k(θ)

2
log(

4n

p
) + log

(
p

k(θ)

)
+

k(θ)

(
3 log(2)

2
+

log(2π)

2

)
+

1

2
‖OΨin,S(θ)∪S? yin −Ψin,S?θ

?‖22.

(61)

Note that the leading term of the expected penalty
pen(θ|Xin) is indeed going to be the traditional log(n))

2 k(θ)
in case p does not grow with n. In case p grows as nβ for
some 0 < β < 1 then the leading term of of the expected
penalty pen(θ|Xin) is still some constant times k(θ) log(n).
We remind the reader that k(θ) log(p/k(θ)) ≤ log(

(
p
k(θ)

)
) ≤

k(θ) log(ep/k(θ)). So the term log(
(
p
k(θ)

)
) again contributes

a constant times k(θ) log(n) term in case p is growing as
some power of n.

B. Risk validity

In this section we show the risk validity of the l0 penalty
by leveraging its codelength interpretation as shown in the
last subsection. To prove risk bounds by the same reasoning
as in section (II-B) we need to adapt the arguments in
section (II-B) to the case when we have data split into two
parts. We define our family of loss functions between two
probability distributions p and q on Xn in the same way as
before except that it only depends on the final part of the
data Xf . Let 0 < α ≤ 1 be a fixed, arbitrary number. We
define our loss function as follows

Lα(p, q) = − 1

α
log(E(

q(Xf )

p(Xf )
)α). (62)

Also for a penalty pen(θ|Xin) depending on Xin we define
our penalized likelihood estimator to be

θ̂(X) = argmin
θ∈Θ

{− logPθ(X) + pen(θ|Xin)}. (63)

We now present the theorem which will help us in proving
risk bounds for the `0 penalized likelihood estimator. Fix 0 <
α < 1. For our countable set F = C and codelengths V = lα
as defined in (53), clearly the following is true by (54).∑

θ̃∈F

exp(−αV (θ̃|Xin)) ≤ 1. (64)

We expand V to get

V (θ̃|Xin) =
1

α

(
(k(θ̃) + 1) log(2) + log

(
p

k(θ̃)

)
+

k(θ̃) log(
1

δ
) + log(Uα(Xin, S(θ̃))

)
− log

Pθ̃(Xin)

Pθ?(Xin)
.

We would like to now verify the following

min
θ̃∈Θ̃
{− log

Pθ̃(Xf )

Pθ?(Xf )
+ log

Pθ(X)

Pθ?(X)
+

Lα(P, Pθ)− Lα(P, Pθ̃) + V (θ̃|Xin)} ≤ pen(θ).

(65)

Verifying the above gives us risk bounds as is shown in the
following lemma.

Lemma IV.3. Assuming the existence of a countable subset
F ⊂ Θ and a penalty function V (.|Xin) defined on F
satisfying (64) and (65), we have the following risk bound

EL(Pθ? , Pθ̂) ≤ Emin
θ∈Θ

(
log

Pθ?(X)

Pθ(X)
+ pen(θ|Xin)

)
.

The proof of this lemma parallels the proof of theorem (II.3)
and is given in the appendix.

Now we proceed to verify (64) in order to derive the risk
bound in theorem (IV.3) for the l0 penalized estimator in the
linear regression setting. We can write the left side in (65)
as

min
θ̃∈Θ̃
{− log

Pθ̃(X)

Pθ?(X)
+ log

Pθ(X)

Pθ?(X)
+ Lα(P, Pθ)−

Lα(P, Pθ̃) +

(
Vα(θ̃|Xin) + log

Pθ̃(Xin)

Pθ?(Xin)

)
}.

Again we upper bound the minimum of the above expression
by restricting to θ̃ ∈ CS(θ) which cannot decrease the overall
minimum. Restricted to θ̃ ∈ CS(θ) it turns out that the term
Vα(θ̃|Xin) + log

Pθ̃(Xin)

Pθ?(Xin)
remains a constant. The following

lemma now helps us.

Lemma IV.4. Given any θ and data X we have the following
inequality

min
θ̃∈CS(θ)

(
log(

Pθ(X)

Pθ̃(X)
) + Lα(θ̃, θ?)− Lα(θ, θ?)

)
≤ 2k(θ)δ2(1 + αΥS(θ))

Hence we get an upper bound for the left side of (65) which
is as follows

2k(θ)δ2(1 + αΥS(θ)) +
(k(θ) + 1) log(2)

α
+

log
(
p
k(θ)

)
α

+
k(θ)

α
log(

1

δ
) +

log(U(Xin, S(θ))

α
.

Setting δ2 = 1
4α(1+αΥS(θ))

we see that a risk valid penalty
would be

penα(θ|Xin) =
k(θ)

2α
log(4α(1 + αΥS(θ))) +

k(θ)

2α
+

(k(θ) + 1) log(2)

α
+

log
(
p
k(θ)

)
α

+
log(Uα(Xin, S(θ))

α
.



Rearranging and expanding logUα(Xin, S(θ)) we have

penα(θ|Xin) =
k(θ)

2α
log(4α(1 + αΥS(θ))) + αΨT

f Ψf ))+

(k(θ) + 1) log(2)

α
+

log
(
p
k(θ)

)
α

+
k(θ)

2
log(

2π

α
)+

1

2
‖OΨin,S∪S? yin −Ψin,S?θ

?‖22
(66)

By taking the expectation inside the minimum in the right
side and then doing some algebraic manipulations of the
statement of theorem (IV.3), we get the resolvability risk
bound which we write down below as a theorem.

Theorem IV.5. With the estimator being defined as in (63)
and penα(θ|Xin) as defined in (66) we have the risk bound
for all 0 < α ≤ 1,

E
1

2n
‖Xf (θ̂ − θ?)‖22 ≤

1− α
σ2

inf
θ∈Rp

(
1

2n
‖Xf (θ̂ − θ?)‖22

+
1

n
Ein pen(θ|Xin)

)
.

Remark IV.1. As we can see, as α is taken to be near
zero, the constant outside the right side in theorem (IV.5)
approaches the desired value 1. But then we have to pay for
the fact that the penalty contains terms divided by α which
blow up when α is brought near zero.

By setting θ = θ? inside the infimum in the above theorem
we obtain

E
1

2n
‖Xf (θ̂ − θ?)‖22 ≤

1− α
σ2

Ein
pen(θ?|Xin)

n
. (67)

Remark IV.2. The random part depending on yin in
pen((θ?|Xin)) is ‖OΨin,S∪S? yin−Ψin,S?θ

?‖22 which is dis-
tributed as a χ2 random variable with degrees of freedom
at most k(θ) + k(θ?). In the case when the design matrices
Ψin and Ψf are orthogonal and the `2 norms of the columns
of Ψin and Ψf are atmost p and n− p respectively we then
have ΥS = n−p

p . Then the leading term of the expected
penalty is of the order k(θ) log(n) and hence we atleast have
a k(θ?) log(n)/n rate of convergence of the left side in (67).

Remark IV.3. Our risk bounds are useful even when p grows
like a constant fraction of n.

V. APPENDIX

We hereby prove lemma (III.1).

Proof: We first define a subprobability measure π on Zp.
We define π in two stages. For each non negative integer k,

let π(Ck) = 1/2k+1 where Ck ⊂ Zp denotes all integer p
tuples with l1 norm equalling k. We claim that

|Ck| ≤ (2p)k.

We prove the claim in the end. Now let the conditional
distribution of π given the set Ck be the uniform distribution
on Ck for all non negative k. Then, for any z ∈ Zp, if we
define π to be

π(z) =
1

(2)|z|1+1

1

(2p)|z|1

then π is clearly a subprobability distribution on Zp. Now
by taking negative log of the subprobability π we have

− log(π(z)) = |z|1 log(4p) + log 2.

Clearly − log(π(z)) satisfies the desired Kraft type inequal-
ity. Now we prove our claim. Let us first give an upper
bound for the set of length p positive integer sequences which
sums to k. This is exactly equal to the number of ways of
assigning k unlabelled balls to p labelled cells. It is certainly
upper bounded by the number of ways of assigning k labelled
balls to p labelled cells. The latter is easy to count and it is
precisely pk. Now given a positive integer sequence one can
flip the signs of non zero coordinates and the l1 norm would
remain k. There would be atmost k non zero coordinates as
the sum is k and hence the final upper bound (2p)k.

1) Sampling method 1: Let θ be any given vector in Rp and
let us first consider the quadratic term which is the following

α

2σ2

n∑
i=1

(fθ(xi)− fθ̃(xi))
2.

By expanding out fθ and fθ̃ in terms of the dictionary
functions the last display becomes

α

2σ2

n∑
i=1

(

p∑
j=1

(θ̃j − θj)fj(xi))2. (68)

Let δ be a positive real number. Let K(θ) = d |θ|w,1δ e. K
is the least integer larger than or equal to |θ|w,1 divided by
δ. We will write K = K(θ) to minimize notational clutter.
In order to explain our sampling strategy, we first define a
random variable h. Let {ẽj}pj=1 denote the canonical basis
of Rp. The random vector h takes value Kδsign(θj)

ẽj
wj

with

probability wjθj
Kδ for all j = 1, . . . , p. With the remaining

probability, h takes the form of the zero vector. One can
check that h defined this way is unbiased for θ, that is
E(h1) = θ. Say we sample K i.i.d copies h1, . . . , hk. of
h. We now consider the mean of these random vectors
h = 1

K

∑K
i=1 hi. Clearly, h is also unbiased for θ. h would

be our random choice of θ̃ ∈ F . We are now in a position
to define our countable set F . Let W denote the diagonal



matrix of weights as defined in (29). We define the set F as
follows

F = δ{W−1z : z ∈ Zp} (69)

Clearly F is countable since Zp is so. A careful observation
shows that h always takes values in F . We now define a
penalty function V on F derived from C. So we define V
in the following manner

V (δW−1z) =
C(z)

α

for all vectors z in Zp. It is clear from (9) that V satisfies
the Kraft inequality (16). So the symbol E would now mean
expectation with respect to the distribution of h on F . After
making the definitions of F and V clear, let us now compute
the expectation of the expression in (32) over our random
choice of h ∈ F . We first note that

E(

p∑
j=1

((hj − θj)fj(xi))2 =
1

K
E(

p∑
j=1

((hj − θj)fj(xi))2.

This is because h is the sum of K i.i.d copies of h. Now we
can upper bound the expectation over {hl}Kl=1 of the above
term as follows

E(

p∑
j=1

((hj − θj)fj(xi))2 ≤ E(

p∑
j=1

hjfj(xi))
2.

The above inequality follows due to unbiasedness of h1 and
by the simple fact that the variance of any random variable
is at most the expected square of that random variable. We
note the fact that for any j 6= l the cross product terms
hjhl = 0 pointwise by definition of h. Now summing over
i and combining the previous two inequalities we obtain the
following result

E
n∑
i=1

(

p∑
j=1

(hj − θj)fj(xi))2 ≤ n

K

p∑
j=1

w2
jE(hj)

2. (70)

For any j we also have by definition of the random variable
h

Eh2
j =

Kδθj
wj

. (71)

So combining the last two equations we have

E
n∑
i=1

(

p∑
j=1

(hj − θj)fj(xi))2 ≤ nδ|θ|w,1. (72)

Now we consider the penalty term. We note that each
coordinate of h has a fixed sign depending on the signs of the
coordinates of θ. Therefore, linearity of expectation extends
to absolute values also, in other words it can be checked that
the following holds for any j ∈ [1 : p]

E|hj | = E|hj |

The above equation and the definition of V implies the
following fact

EV (h) = EV (h).

It is clear now from the definition of h and (26) the following

EV (h) =
K log(4p) + log 2

α
.

So by the above arguments we can conclude that Hθ on an
average is upper bounded by the following expression

α

2σ2
nδ|θ|w,1 +

K log(4p) + log 2

α
.

Using the fact that K ≤ |θ|w,1δ + 1 we have the expression in
the last display can be further upper bounded by the following
expression

α

2σ2
nδ|θ|w,1 +

|θ|w,1
δ

log(4p)

α
+

log(4p) + log 2

α
.

Setting δ2 = 2σ2 log 4p
α2n we finally obtain the following

min
θ̃∈F

Hθ(θ̃) ≤
1

σ

√
2n log(4p)|θ|w,1 +

log(4p) + log 2

α
.

It follows that by defining the penalty function on Θ defined
as follows

pen(θ) =
1

σ

√
2n log(4p)|θ|w,1 +

log(4p) + log 2

α
. (73)

we define a risk valid penalty. Check whether it is log(2p)
or log(4p).

In this case the random matrix ΨT
in,SΨin,S has a Wishart dis-

tribution denoted by Wk(ΣS , n). By Bartlett’s decomposition
for Wishart matrices we have the following lemma:

Lemma V.1.

E log detΨT
in,SΨin,S =

k∑
i=1

ψ(
p+ 1− i

2
) + k log 2

where ψ is known in literature as the digamma function.

We also have the following well known upper and lower
bound on the digamma function which we do not prove here.
Give reference.

Lemma V.2.

log(x− 1) ≤ ψ(x) ≤ log(x) ∀x > 0.

We now control the behaviour of E log detΨT
in,SΨin,S in the

following lemma

Lemma V.3. If there exists a constant C such that det(ΣS) >
|S|C for all S then there exists a universal constant C0 such
that

log

(
p

k

)
− E log detΨT

in,SΨin,S ≤ C0k (74)



Proof: Using the lower bound of ψ in lemma (V.2) we
obtain

k∑
i=1

ψ(
p+ 1− i

2
) + k log 2 ≥

k∑
i=1

log(p− i− 1).

We can further lower bound by replacing each of the log
terms by log(n− k − 1) to obtain

k∑
i=1

ψ(
p+ 1− i

2
) + k log 2 ≥ k log(p− k − 1) (75)

Also we have the inequality

log

(
p

k

)
≤ k log(

ep

k
). (76)

By equations (75) and (76) we have

log

(
p

k

)
− E log detΨT

in,SΨin,S ≤

k log(
ep

k(p− k − 1)
)− log det(ΣS)

(77)

Now k(p − k − 1) is minimized at the extremes k = 1 and
k = p− 2. Hence log( ep

k(p−k−1) ) ≤ log( ep
p−2 ). Now we can

definitely find a constant C0 such that log( ep
p−2 ) ≤ C0. Hence

we prove the lemma.

for obtaining a redundancy risk bound. It is very similar to
the arguments in section (II-B1). In the following, 0 ≤ α < 1
is any fixed but arbitrary number. We define our family of
loss functions between two probability measures P and Q in
the same way as before except that it only depends on the
final part of the data Xf . They are defined as follows

Lα(P,Q) = − 1

α
log(E(

Q(Xf )

P (Xf )
)α). (78)

For a penalty pen(θ|Xin) depending on Xin we define our
penalized likelihood estimator to be

ˆθ(X) = argmin
θ∈Θ

{− logPθ(X) + pen(θ)}.

By the definition of θ̂ we have

Lα(Pθ? , Pθ̂) =

(
Lα(Pθ? , Pθ̂)− log

Pθ?(X)

Pθ̂(X)

−pen(θ̂)
)

+ min
θ∈Θ

(
log

Pθ?(X)

Pθ(X)
+ pen(θ)

) (79)

If we focus on the first term in the brackets in the above
display we can write it as

Lα(Pθ? , Pθ̂)− log
Pθ?(X)

Pθ̂(X)
− pen(θ̂|Xin) =

1

α
log

(
exp(αLα(Pθ? , Pθ̂))(

Pθ̂(X)

P (X)
)
α

exp(−αpen(θ̂|Xin))

)
.

(80)

Assume we are able to define a countable set θ̃ and a penalty
V (θ̃|Xin) on it so that for any fixed data X and θ, there
would exist a θ̃ ∈ Θ̃ satisfying the following inequality

log

(
α exp(αLα(Pθ? , Pθ))(

Pθ(X)

P (X)
)
α

exp(−αpen(θ|xin))

)
≤

log

(
exp(αLα(Pθ? , Pθ̃))(

Pθ̃(Xf )

P (Xf )
)
α

exp(−αV (θ̃|Xin))

)
(81)

where V (θ̃, Xin) also satisfies for all Xin,∑
θ̃∈Θ

exp(−αV (θ̃|Xin)) ≤ 1. (82)

Then we note that (81) implies a further upper bound

log

(
exp(αLα(Pθ? , Pθ))(

Pθ(X)

P (X)
)
α

exp(−αpen(θ|Xin))) ≤

log

∑
θ̃∈Θ̃

exp(αLα(Pθ? , Pθ̃))

(
Pθ̃(Xf )

P (Xf )
)
α

exp(−αV (θ̃|Xin))

)
.

We can now take expectation with respect to Xf conditional
on Xin and move the expectation inside the log by Jensen’s
inequality. Now by equations (82), (83) and by definition of
Lα

Ef log

∑
θ̃∈Θ̃

exp(αL(Pθ? , Pθ̂))(
Pθ̂(Xf )

P (Xf )
)
α

exp(−αV (θ̃|Xin))
)
≤ 0.

From the above and (79) we get an upper bound of the
expected loss function conditional on Xin where expectation
is taken over Xf ,

EfL(Pθ? , Pθ̂) ≤ Ef min
θ∈Θ

(
log

P (Ψ)

Pθ(Ψ)

+pen(θ|Xin)) .

Now by taking expectation with respect to Xin we obtain
the following risk bound, where E refers to expectation taken
over the whole data,

ELα(Pθ? , Pθ̂) ≤ Emin
θ∈Θ

(
log

Pθ?(X)

Pθ(X)

+pen(θ|Xin)) .

Lemma V.4. Given θ and data X we have the following
inequality

min
θ̃∈CS(θ),α

(
log(

Pθ(X)

Pθ̃(X)
) + Lα(θ̃, θ?)− Lα(θ, θ?)

)
≤ 2δ2(Tr(ΨT

inΨin + αΨT
f Ψf )).



Proof: For all θ̃ ∈ CS(θ),α clearly k(θ̃) = k(θ). Now if
we expand the expression we have to minimize we obtain

1

2
‖y −Ψθ̃‖22 −

1

2
‖y −Ψθ‖22 +

1− α
2
‖Ψfθ −Ψfθ

?‖22

− 1− α
2
‖Ψf θ̃ −Ψfθ

?‖22.
(83)

After simplifications and noting ΨTΨ = ΨT
inΨin + ΨT

f Ψf

the above term can be written as
1

2
‖Ψinθ̃ −Ψinθ‖22 +

α

2
‖Ψf θ̃ −Ψfθ‖22 + l(θ̃ − θ)

where l is a affine function. Again, our strategy is to upper
bound the minimum by an expectation with respect to a
carefully chosen distribution. We now describe the choice
of the distribution. Consider θ and its position in the δ
integer lattice in R|S(θ)|. It is in one of the cubes in the
lattice. Consider this cube and all the other neighbouring
cubes. Each of these cubes have one and only one point
belonging to CS(θ). It can be checked that the set of these
points contain the point θ in its convex hull. Hence one can
devise a distribution on this set of points with the property
that the each coordinate of the random vector drawn from this
distribution is independent and the average of this distribution
is θ. Hence l, being an affine function of θ̃− θ is zero on an
average. Now for any quadratic form (θ̃−θ)TA(θ̃−θ) where
A is some non negative definite matrix its expectation boils
down to the expectation of the diagonal terms. We mean that

E(θ̃ − θ)TA(θ̃ − θ) =

k(θ)∑
i=1

AiiE((θ̃ − θ))2.

Now since we are only choosing points from neighbouring
cubes any coordinate of θ̃ − θ is atmost 2δ. So the total `2
distance of E((θ̃ − θ)i)

2 is for all random choices atmost
k(θ)4δ2. So we actually have the bound

E(θ̃ − θ)TA(θ̃ − θ) ≤ 4Tr(A)δ2.

So applying the above fact to the quadratic forms in the next
display we have the following inequality

E
1

2
‖Ψinθ̃ −Ψinθ‖22 + E

α

2
‖Ψf θ̃ −Ψfθ‖22+

El(θ̃ − θ) ≤ 2δ2(Tr(ΨT
inΨin + αΨT

f Ψf )).
(84)

Now by the column normalization condition, we have that
the trace terms are upper bounded by n.

Now we prove lemma
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