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Abstract—Building upon past work, which developed informa-
tion theoretic notions of when a penalized likelihood procedure
can be interpreted as codelengths arising from a two stage code
and when the statistical risk of the procedure has a redundancy
risk bound, we present new results and risk bounds showing that
the l1 penalty in Gaussian Graphical Models fits the above story.
We also show how the traditional l0 penalty times plus lower
order terms which stay bounded on the whole parameter space
has a conditional two stage description length interpretation.

I. INTRODUCTION

It is known that the MDL principle motivates viewing a
penalized log likelihood procedure as minimizing the code-
lengths of a two stage code. Traditionally, this has required
that the minimizing space be countable. In past works [3],
[4] the authors address this issue and develop a notion as
to how to interpret a penalized log likelihood as codelengths
arising from a two stage code even when the minimization is
done over an uncountable parameter space. We describe the
framework laid out in these past works briefly.

We denote the sample space by X and its elements by x.
For any integer n, we denote the n fold cross product of
X by Xn. We denote a generic element in Xn by x and a
random realization (data) from Xn by X = (x1, . . . , xn). A
probabilistic source p is a sequence of probability distribu-
tions p(1), p(2), . . . on X 1,X 2, . . . so that they are consistent.
By consistency we mean that the marginal distribution of
p(n+1) restricted to the first n coordinates is p(n). We drop
the subscript n and write p(x) instead of p(n)(x) whenever
it is clear from the context. For some probability source p
and some element x, whenever we write p(x), it refers to the
probability mass function corresponding to the source p or the
probability density function, corresponding to the source p,
with respect to some dominating measure. In this document,
the uncountable sample spaces are always euclidean spaces of
some dimension and the dominating measure is the Lebesgue
measure. We will also distinguish between countable and un-
countable parameter spaces in our notations. Generically we
denote a countable parameter space by F and an uncountable
parameter space by Θ. We generically denote the elements of
F by θ̃ and elements in Θ by θ. We also consistently denote

a penalty function on Θ by pen and a penalty function on
F by V. We also measure codelengths in nats instead of bits
in this manuscript.

The Kraft’s inequality gives a correspondence between prob-
ability distributions and prefix free codes on a countable
sample space. This correspondence may be extended to
uncountable sample spaces as well, namely − log p(x) may
be regarded as Kraft satisfying codelengths on Xn, see [1] for
more details. For the countable parameter space F , the two
stage codelength on Xn minimize the negative log likelihood
of the data plus a kraft inequality satisfying codelength on F .
These two stage codelengths are clearly uniquely decodable
and hence correspond to a prefix free code. In the case
when the parameter space Θ is uncountable, one of the
ways in which a penalized log likelihood expression could
still be interpreted as Kraft satisfying codelengths on the
sample space is as follows. Assume there exists a countable
subset F ⊂ Θ and any Kraft summable penalty V (θ̃) on F
satisfying firstly, ∑

θ̃∈F

exp(−V (θ)) ≤ 1 (1)

and secondly for all x

min
θ∈Θ
{− log pθ(x) + pen(θ)} ≥

min
θ̃∈F
{− log pθ̃(x) + V (θ̃)}.

(2)

Since the right side of (2) is a Kraft summable codelength
by virtue of having a codelength associated with a two stage
code, the left side also is a Kraft summable codelength.
We call a penalty function pen for which one can find a
countable subset F and a penalty V on it satisfying (1)
and (2) as codelength valid. Arguments in [3] and [4] can be
adapted to show the l1 penalty in linear regression and log
density estimation problems is indeed codelength valid. Just
showing codelength validity of a penalty is relevant for data
compression purposes but not sufficient for generalization
guarantees on future data.

The authors in [3] also define a condition for good statis-
tical risk properties to hold. The loss function we consider
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here is the Bhattacharya divergence between two probability
measures. For two probability distributions on Xn, with
probability mass functions or densities with respect to some
dominating measure given by p and q, the Bhattacharya
divergence between p and q is defined as

B(p, q) = −1

2
log(Ep

√
q(X)

p(X)
). (3)

Let Θ now denote the parameter space which is uncountable.
Say our candidate family of distributions with p.m.f’s or
densities is given by {pθ : θ ∈ Θ} and the true distribution
has p.m.f or density given by p?. Let pen be a penalty
function defined on Θ. The penalized likelihood estimator
is now defined as

θ̂(X) = argmin
θ∈Θ

{− log pθ(X) + pen(θ)}. (4)

Now analogous to (2) if there exists a countable F ⊂ Θ and
a codelength V (θ̃) on F satisfying

∑
θ̃∈F exp

(
−V (θ̃)

2

)
≤ 1

such that the following condition holds:

min
θ̃∈F

(
log

pθ̃(x)

p?(x)
−B(p?, pθ) + V (θ̃)

)
≤

min
θ∈Θ

(
log

pθ(x)

p?(x)
−B(p?, pθ) + pen(θ)

) (5)

then, the right side inherits the positive expectation property
from the left side in (5) as shown in [3]. Then replacing
the minimum over Θ by setting θ = θ̂ and rearranging, one
can conclude, for the estimator given by (4) risk bounds as
follows:

EB(p?, pθ̂) ≤ Emin
θ∈Θ

(
log

p?(x)

pθ(x)
+ pen(θ)

)
. (6)

The above expression is also called the redundancy of the
two stage code with respect to the given class of codes or
distributions {pθ : θ ∈ Θ}. In i.i.d cases (6) becomes

EB(p?, pθ̂) ≤ Emin
θ∈Θ

(
1

n

n∑
i=1

log
p?(xi)

pθ(xi)
+
pen(θ)

n

)
, (7)

where n is the sample size and p now refers to probabilty
mass function or a density on X and not Xn. In the i.i.d
case, it is clear that the Bhattacharya Divergence between
the product distributions on Xn is n times the divergence
between the respective distributions on X .

Remark I.1. The redundancy which is an expected minimum
excess codelength, can be further upper bounded by the
minimum expected excess codelength which is called the
index of resolvability as in [2].

Res = min
θ∈Θ

(D(p?, pθ) + pen(θ)) .

Hence, we have the relation

Risk ≤ Redundancy ≤ Resolvability. (8)

In the i.i.d case, by interchanging expectation and minimum
in (7) we get

EB(p?, pθ̂) ≤ Emin
θ∈Θ
{D(p?, pθ) +

pen(θ)

n
}.

As we see from the above display, the upper bound of
the risk is governed by an ideal tradeoff between Kulback
approximation error and complexity. So, in this sense the two
stage estimator is adaptive, it looks at the tradeoff between
approximation error and complexity at the population size
relative to the sample size given.

We call the penalties for which the penalized likelihood
procedure gives risk bounds of the form

Risk ≤ Redundancy

as risk valid penalties. In particular penalties for which (5)
can be verified are risk valid penalties. It is shown in [3]
[4] that the l1 penalty in linear regression and log density
estimation problems is indeed risk valid. We add a new
example to this story in this paper where we present the
risk validity of the l1 type penalty in Gaussian Graphical
Models. Also in this paper, we present a new interpretation
of the traditional l0 penalty in problems such as linear or
logistic regression being codelength valid. Traditionally in the
MDL literature, the `0 penalty with a log(n)+o(n) multiplier
has been shown to be codelength valid in linear regression
but with the drawback that the o(n) term is unbounded with
respect to θ as we go out to the edges of the parameter
space. Here we partially resolve this issue as we show that the
traditional `0 penalty plus lower order terms can be indeed
thought of as codelength valid in the regime n > p with
the lower order term divided by the number of non zero
parameters remaining bounded as a function of θ. Also in the
linear regression problem, we can leverage the codelength
interpretation of the l0 penalty to derive redundancy risk
bounds which is laid out in detail in [8] but is not the focus
of the current manuscript.

Let us now make some relevant definitions. We denote the
integer lattice in Rp by Zp. So Zp contains all p dimensional
vectors z, every coordinate of which are integers. We now
define a codelength C on Zp as follows

C(z) = |z|1 log(4(p+ 1)) + log 2. (9)

The following lemma says that C defined as in (9) indeed
satisfies a Kraft type inequality.

Lemma I.1. With Zp being the integer lattice, C as defined
in (9), C satisfies the inequality∑

z∈Zp
exp(−C(z)) ≤ 1. (10)

A. Gaussian Graphical Models

Consider the problem of estimating the inverse covariance
matrix of a multivariate gaussian random vector. Suppose we
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observe x = (x1, . . . , xn), each of which is a p dimensional
vector drawn i.i.d from N(0, θ−1). We denote the true inverse
covariance matrix to be θ?. Let us denote the − log det
function as φ. This φ is a convex function on the space of all
p × p matrices with the convention that φ takes value +∞
on any matrix that is not positive definite. Inspecting the log
likelihood of this model we have

1

n
log pθ(x) =

p

2
log(2π) +

1

2
Tr(Sθ) +

φ(θ)

2

Here, Tr(Sθ) is the sum of diagonals of the matrix Sθ and
S = 1

n

∑n
i=1 x

T
i xi is the sample covariance matrix. In this

setting θij = 0 means that the ith and jth variables are
conditionally independent given the others. We outline the
proof of the fact that the penalty |θ|1, which is just the sum
of absolute values of all the entries of the inverse covariance
matrix, is a statistical risk valid penalty. The Bhattacharya
Divergence between p dimensional multivariate normals with
zero means and inverse covariances θ1 and θ2 is

B(θ1, θ2) =
1

2
[φ(θ1) + φ(θ2)]− φ([θ1 + θ2]/2).

We assume that the truth θ? is sufficiently positive definite
in the following way. We assume that for any matrix {∆ :
‖∆‖∞ ≤ δ} we have

det(θ? + ∆) > 0. (11)

Here ‖∆‖∞ means the maximum absolute entry of the matrix
∆ and a matrix being � 0 means it is positive definite. We
remark that this is our only assumption on the true inverse
covariance and the δ in the assumption is the same δ used
in constructing the countable set. The value of δ is specified
later. Now we give an idea as to how we verify (5) and
establish risk validity of the l1 penalty times a multiplier. We
define F to be the set of all matrices, which when vectorized
in some order, lie in the δ integer lattice, intersected with
the space of positive definite symmetric matrices which we
denote by Sp+. So we have

F = {δz ∈ Rp×p : vec(z) ∈ Zp
2

, z ∈ Sp+}. (12)

Clearly, F is a countable set. We also define the penalty
function V on F in the following way

V (δz) = 2C(z). (13)

It is clear from lemma (I.1) that V defined as above on
F satisfies the Kraft inequality requirement. To show risk
validity of the `1 penalty we need to show that (5) holds
for some multiplier times the `! penalty. An equivalent way
to show a penalty pen satisfies (5) is to show for every
fixed θ in Θ and data X the penalty pen is not less than the
following expression

min
θ̃∈F
{log

pθ̃(x)

pθ(x)
−B(pθ? , pθ̃) +B(pθ? , pθ) + V (θ̃)}. (14)

The expression in (14) is a minimum over the entire δ
lattice and hence not lesser than the minimum over the 2p

2

vertices of the cube that θ lives in. We further upper bound

this minimum by an expectation over these vertices with a
particular random choice of vertices in a way such that this
random choice is unbiased for θ. Taylor expanding the log
likelihoods and the Bhattacharya divergence terms upto the
second order permits us to do careful reasoning and obtain
that (14) can be upper bounded by

16n(σmax)2δ|θ|1 +
2|θ|1
δ

log(4(p+ 1)2) + 2 log 2

where σmax is the maximum diagonal of the true covariance
matrix (θ?)−1. By setting δ2 = log(4(p+1)2)

8n(σmax)2 it follows that
by defining the penalty function on Θ defined as follows

pen(θ) = 4
√
σmax log(4(p+ 1)2)2n|θ|1 + 2 log 2 (15)

we construct a risk valid penalty. So with the definition of
pen above, the estimator defined as follows

θ̂ = argmin
θ∈Sp+

(
1

2
Tr(Sθ) +

φ(θ)

2
+
pen(θ)

n

)
. (16)

enjoys the adaptive risk properties we desire. Under the
assumption (11) where now δ has been specified, we have
the following risk bound

EB(pθ? , pθ̂) ≤ E inf
θ∈Sp+

(
1

2
Tr(S(θ − θ?))+

φ(θ)− φ(θ?)

2
+
pen(θ)

n

)
.

By taking the expectation inside the infimum we now present
our theorem.

Theorem I.2. For the estimator θ̂ as in (16) with Σ̂−1 = θ̂−1

and the penalty (15) we have the risk bound

EB(pθ? , pθ̂) ≤ inf
θ∈Sp+

(
1

2
[Tr(θ̂Σ?)− p]+

1

2
[φ(θ̂)− φ(θ?))] +

pen(θ)

n

)
.

(17)

Remark I.2. By setting θ = θ? in the right side of the bound,
as long as θ? has finite l1 norm, one has the standard risk

bound of the order
√

log(4p2)
n ‖θ?‖1. The main purpose of

the risk bound is to demonstrate the adaptation properties of
the l1 penalized estimator and to demonstrate redundancy,
a coding notion, as the upper bound to the statistical risk
which has been championed in [7].

Remark I.3. The assumption (11) says that the true inverse
covariance matrix θ? should be in the interior of the cone of
positive definite matrix by a little margin. This assumption
may be acceptable even in high dimensions as it does not
prohibit collinearity.

II. VALIDITY OF l0 PENALTY IN LINEAR REGRESSION

In this section we consider the linear regression setup to
show the codelength validity of the l0 penalty. We consider
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the known variance σ2 setup and do our analysis on a fixed
design matrix Ψ. Our model is

yn×1 = Ψn×pθp×1 + εn×1

where ε ∼ N(0, σ2In×n) and Ψ is the design matrix. Let
X = (yn×1,Ψn×p) denote the data. The log likelihood of
the model is

− log pθ(X) =
1

2σ2
‖y −Ψθ‖22 +

n

2
log 2πσ2.

We assume our model is well specified and there is a true
vector of coefficients θ?. Our results would be in the regime
when the sample size n is larger than the number of explana-
tory variables p. We divide the data X into Xin = (yin,Ψin)
consisting of p samples and Xf = (yf ,Ψf ) consisting of
(n − p) samples. Here in is intended to suggest initial and
f is intended to mean final. It does not really matter which
p samples are chosen to represent the initial sample as long
as it is done once and then remains frozen. The purpose of
such division of data is to use the initial p samples Xin to
create a Kraft summable penalty on the countable cover we
will choose and then this penalty together with the cover is
used to derive codelength interpretation for the `0 penalized
log likelihood. This codelength interpretation can also be
leveraged to show risk bounds for the estimator minimizing
the `0 penalized log likelihood. The risk bound calculations
can be found in [8].

We now make some relevant definitions and set up some
notations. Let θ ∈ Rp be a given vector. We define k(θ) =∑p
i=1 I{θi 6= 0}. In other words k(θ) is the number of

non zeros of the vector θ. We denote the support of θ or
the set of indices where θ is non zero by S(θ). Clearly
|S(θ)| = k(θ). Let S? be the support of the true vector
of coefficients θ?. For any subset S ⊂ [1 : p], let Ψin,S

denote the initial part of the design matrix Ψ with column
indices in S in natural order. Hence Ψin,S is a p by |S|
matrix. Let us denote the matrix (ΨT

in,SΨin,S)−1/2 by MS .
For any matrix we use the notation Tr to mean the trace of
the matrix. A special role is played by the following quantity
1
|S|Tr

(
(ΨT

in,SΨin,S)−1(ΨT
f,SΨf,S))

)
which we denote by

ΥS for any S ⊂ [1 : p].

Let Z denote the set of integers as before. Also fix some
δ > 0. Consider the set δ(Z − {0})m ⊂ Rm for some
positive integer m. It is the set of all m dimensional integer
vectors none of whose coordinates are zero. Clearly this set
is countable. We denote this set by Gm. For any given subset
S we define a countable set

CS = {MSv : v ∈ G|S|} (18)

As we have defined, CS is a subset of R|S| but by appending
the coordinates in the complement of S as zeroes, we
treat CS as a subset of Rp. We want to construct Kraft
satisfying codelengths and hence subprobabilities on CS
which are proportional to

(
(Pφ(Xin)
Pθ? (Xin)

)
. For this purpose

we want to estimate the normalizer which is the quantity

∑
φ∈CS

(
(Pφ(Xin))

Pθ? (Xin)

)
. The following lemma helps us do

exactly that.

Lemma II.1.∑
φ∈CS

(
Pφ(Xin)

Pθ?(Xin)
)δ|S| ≤ U(Xin, S) (19)

where

U(Xin, S) = exp
(
‖OΨin,S∪S? yin −Ψin,S?θ

?‖22
)

(2π)|S|/2
(20)

and OΨin,S∪S? denotes the orthogonal projection matrix onto
the column space of the matrix Ψin,S∪S? .

We now define the countable set C ⊂ Rp as follows

C = ∪pk=0 ∪{S:|S|=k} CS (21)

C is the union of the countable sets CS,η over all subsets
S ⊂ [1 : p]. Hence C itself is a countable subset of Rp. By
definition, C varies with δ but we dont explicitly write it to
minimize notational clutter. We now define penalty functions
satisfying Kraft type inequalities on the countable set C. First
we define a family of subprobabilities h on C as follows

h(θ̃, Xin) = (
1

2
)k(θ̃)+1 1( p

k(θ̃)

) (
Pθ̃(Xin)

Pθ?(Xin)
) δk(θ̃)

1

U(Xin, S(θ̃))
.

(22)

We claim that h(θ̃) is a subprobability on C for every Xin.
This can be seen by first summing h(θ̃) over non negative
integers k from 0 to p, then summing over all subsets of
[1 : p] with cardinality k and then summing over CS . We
can now define Kraft satisfying codelengths l(θ̃, Xin) on C
by defining

l(θ̃, Xin) = − log h(θ̃) (23)

Then because of h being a subprobability, it is clear that l
satisfies (1).

Now we are ready to show that the classical penalty of the
order k(θ) log n is codelength valid in a certain sense. Let
pen(θ|Xin) be a penalty function defined on Θ = Rp which
is a function of Xin also. So it is infact a random penalty.
The notation is deliberately designed to make the reader think
of pen(θ|Xin) as a penalty conditional on the initial data
Xin. Analogous to (2) we intend to show the existence of a
countable set F ⊂ Θ and a Kraft valid codelength V (θ̃|Xin)
on Θ̃ such that the following inequality holds

min
θ∈Θ
{− logPθ(X) + pen(θ|Xin)} ≥

min
θ̃∈F
{− logPθ̃(Xf ) + V (θ̃|Xin)}

(24)

where now the right side of (24) gives a two stage codelength
interpretation provided we treat it as codelengths on Xf

conditional on Xin and hence the left side as a function
on Xf , being not less than the right side, also has a two
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stage conditional codelength interpretation. We now proceed
to find out a suitable conditional penalty pen(θ|Xin) which
would satisfy (24).

We declare our countable set F = C as defined in (21). We
also define our data dependent V = l as defined in (23).
Then we have

V (θ̃|Xin) = (k(θ̃) + 1) log(2) + log

(
p

k(θ̃)

)
+

k(θ̃) log(
1

δ
) + log(U(Xin, S(θ))− log

Pθ̃(Xin)

Pθ?(Xin)
.

The task now is to verify (24). An equivalent way to verify
(24) is to verify the following for any given θ ∈ Θ and data
X,

min
θ̃∈F
{− log

Pθ̃(Xf )

Pθ?(Xf )
+ log

Pθ(X)

Pθ?(X)
+ V (θ̃|Xin)}

≤ pen(θ|Xin).

(25)

In the case when Xin and Xf are independent, the log
likelihood of the full data X is the sum of log likelihoods of
Xin and Xf and so we can write the left side of the above
equation as

min
θ̃∈F
{− log

Pθ̃(X)

Pθ(X)
+

(
V (θ̃|Xin) + log

Pθ̃(Xin)

Pθ?(Xin)

)
}. (26)

Now our strategy to upper bound the minimum of the above
expression is to restrict the minimum over θ̃ ∈ CS(θ) where
CS(θ) is as defined in (18). Doing this cannot decrease
the overall minimum because CS(θ) ⊂ F by definition of
F . Restricted to θ̃ ∈ CS(θ) one can check that the term
V (θ̃|Xin) + log

Pθ̃(Xin)

Pθ?(Xin)
remains a constant. Now we state

a lemma which helps us in upper bounding (26).

Lemma II.2.

min
θ̃∈CS(θ)

{− log
Pθ̃(X)

Pθ(X)
} ≤ 2(1 + ΥS(θ)) k(θ)δ2. (27)

By the above lemma and the fact that V (θ̃|Xin)+log
Pθ̃(Xin)

Pθ?(Xin)

is constant on CS(θ) we write down the upper bound we get
for the left side of (26) which is as follows

2(1 + ΥS(θ)) k(θ)δ2 + (k(θ) + 1) log(2) + log

(
p

k(θ)

)
+

k(θ) log(
1

δ
) + log(U(Xin, S(θ)).

Setting δ2 = 1
4(1+ΥS(θ))

we see that a valid penalty satisfy-
ing (24) would be

pen(θ|Xin) =
k(θ)

2
+ (k(θ) + 1) log(2)+

log

(
p

k(θ)

)
+
k(θ)

2
log(4(1 + ΥS(θ))) + log(U(Xin, S(θ)).

(28)

Rearranging and expanding U(Xin, S(θ)) we have

pen(θ|Xin) =
k(θ)

2
log(4(1 + ΥS(θ))) + log

(
p

k(θ)

)
+

k(θ)

(
3 log(2)

2
+

log(2π)

2

)
+

1

2
‖OΨin,S(θ)∪S? yin −Ψin,S?θ

?‖22.
(29)

With a fixed design matrix there is only one term in the
above expression which is random. It can be checked that
the term 1

2‖OΨin,S∪S? yin−Ψin,S?θ
?‖22 is distributed as a χ2

random variable with degree of freedom at most k(θ) + k?.
So its expected value is going to be at most k(θ)+k?. In the
case when the design matrices Ψin and Ψf have orthogonal
columns and the `2 norms of each of the columns of Ψin

and Ψf are atmost p and n − p respectively we then have
for any subset S, ΨT

in,SΨin,S = pI|S|×|S| and ΨT
f,SΨf,S =

(n − p)I|S|×|S|. In that case it can be checked that γS =
n−p
p . Hence in this situation, our codelength valid penalty

conditional on Xin becomes

pen(θ|Xin) =
k(θ)

2
log(

4n

p
) + log

(
p

k(θ)

)
+

k(θ)

(
3 log(2)

2
+

log(2π)

2

)
+

1

2
‖OΨin,S(θ)∪S? yin −Ψin,S?θ

?‖22.

(30)

Note that the leading term of the expected penalty
pen(θ|Xin) is indeed going to be the traditional log(n)

2 k(θ)
in case p does not grow with n. In case p grows as nβ for
some 0 < β < 1 then the leading term of of the expected
penalty pen(θ|Xin) is still some constant times k(θ) log(n).
Complete proofs and detailed discussions are in the full paper
[8].
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