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Abstract— For Gaussian regression, we develop and analyse
methods for combining estimators from various models. For
squared-error loss, an unbiased estimator of the risk of a mixture
of general estimators is developed. Special attention is given to
the case that the components are least-squares projections into
arbitrary linear subspaces. We relate the unbiased risk estimate
for the mixture estimator to estimates of the risks achieved by
the components. This results in accurate bounds on the risk and
its unbiased estimate — without advance knowledge of which
model is best, the resulting performance is comparable to what
is achieved by the best of the individual models.

I. INTRODUCTION

Regression problems in statistics concern estimating some
functional relation between a response variable and explana-
tory variables. Often there are multiple models describing such
a relation. For example, each model can be a linear subspace
of the full model space and the corresponding estimator
for such a model to be the least-squares projection of the
observations into that subspace. It is common to employ a two-
stage practice which first picks a good model based on some
data-dependent model assessment criterion, and then uses an
appropriate regression estimator for that model. This is useful
especially when a parsimonious model for explanation of the
response is desired. However, model selection procedures can
be unstable, as small changes in the data often lead to a sig-
nificant change in model choice. Moreover, the inference done
with the estimator for the chosen model does not account for
model uncertainty from the selection procedure, and therefore
can be overly optimistic.

An alternative to model selection-based estimation is to
combine estimators from different models. As Bayes estima-
tors are well-known to possess desirable statistical properties,
a motivation for such mixtures comes from Bayesian philos-
ophy. With squared-error loss, Bayes procedures never select
a model, but rather, are convex combinations of estimators
weighted by the corresponding models’ posterior probability.

In this paper we study properties of the statistical
risk (mean-squared error) of the combined estimator. An
information-theoretic characterization of an unbiased estimate
of its risk is provided. Connection with Bayes estimators
is discussed. Furthermore, the risk of the resulting mixture
is not much more than an idealized target defined by the
minimum of risks achieved by the various estimators (one for

each model considered). The general sharp risk bounds in this
paper are obtained by choosing certian types of weights that
adapt to the data. Moreover, the resulting mixture estimator
often performs better in simulations [1] than a related model-
selection estimator which picks the estimate corresponding to
the highest-weighted model.

Problem Setting

One often reduces regression and function estimation prob-
lems into the following simplified canonical form. We start
with observations

Yi
� fi

�
X � θ � � εi � i � 1 � 2 � � � � � n (1)

of response values f plus independent Gaussian noise ε 	
N

�
0 � σ2I � , where X are dependent variables and θ are nui-

sance parameters. One estimates, under squared-error loss,
the unknown mean µ � f

�
X � θ � of the random vector Y . For

simplicity σ2 is known, and taken to be 1 henceforth.
The simple estimator Y can be obtained by maximizing

likelihood or by least-squares (for µ in the entire parameter
space 
 n ), and has a mean-squared error of n. It is well-known
in statistics that, for n � 3, there exist estimators with mean-
squared errors below n without assuming any restriction of the
parameter space. The type often studied is of the form

µ̂i
� ciYi

where 0 � ci � 1 and may depend on Y . The main application
of the present paper is an estimator of this form.

A linear regression model m is a dm-dimensional linear
subspace of 
 n where the mean vector µ may reside. Let
µ̂m � PmY be the estimator that projects Y onto m. With  � 
the Euclidean norm, the Pythagorean identity decomposes its
risk into bias and variance:

rm
def� �  µ̂m � µ  2 �  Pmµ � µ  2 � dm � (2)

where the expectation is taken with respect to the sampling
distribution Y given µ. Thus, if µ is close to m and dm � n,
then µ̂m will have small risk, perhaps much smaller than n.

Now consider M a finite class of linear models m. Since
we do not know which model is best, we form a convex



combination of these estimators

µ̂ � ∑
m � M

wmµ̂m � (3)

where the data-determined weights wm are chosen to give em-
phasis to models assessed to be better. This will be the setting
we focus on in Section II-C, although the result in Section
II-A applies to mixing any class of estimators

�
µ̂m : m � M � ,

and some special forms of weights are suggested in II-B. The
goal is to derive upper-bounds to the risk r � � µ̂ � µ � 2 of (3),
given in Section IV using information-theoretic techniques in
III.

II. UNBIASED ESTIMATE OF MEAN-SQUARED ERROR

A. General Mixtures

A key tool in our analysis is the unbiased estimate, or
assessment, of risk. We use the notation a � b � ∑n

i � 1 aibi for the
inner product and ∇ for the gradient

�
∇i � n

i � 1 where ∇i
� ∂ � ∂Yi.

Assume that each µ̂m, when expressed as a function of Y ,
is almost differentiable (that is, each of its coordinates can
be represented by a directional integral, which is implied
by continuity together with piecewise differentiability) with
almost-everywhere derivatives ∇iµ̂m

i .
Then for each m, in accordance with Akaike [2], Mallows

[3], or Stein [4], we have

r̂m
def� � µ̂m � Y � 2 � 2

n

∑
i � 1

∇iµ̂
m
i

� n � (4)

as an unbiased estimate for the risk of µ̂m, meaning � r̂m
�

� � µ � µ̂m �
Y � � 2 for each µ � 
 n . We will give explicit formulae

for the case of linear models m and least-squares estimation in
section II-C. But here, we only assume that such an unbiased
risk assessment r̂m exists for each m, so both m and its
corresponding estimator µ̂m are quite general. In effect, m
serves here merely as an index to a collection M of arbitrary
estimators µ̂m.

Our first main result relates the unbiased assessment of the
risk of µ̂ to unbiased assessments of the risks of the individual
estimators µ̂m.

Theorem 1: For each m � M , assume that µ̂m is almost
differentiable in Y , and � � ∇iµ̂m

i
� � ∞ for each i. Consider the

mixture (3) with non-negative almost differentiable weights
wm

�
Y � that sum to one, and satisfy � � �

∇iwm � µ̂m
i

� � ∞ for
each i. Then an unbiased estimate of the risk r � � � µ̂ � µ � 2

of (3) is given by

r̂ � ∑
m � M

wm



r̂m

� � µ̂m � µ̂ � 2 � 2
�
∇ logwm � � �

µ̂m � µ̂ �  � (5)

In addition, if

wm
�
Y � � exp

� � ρm � πm

∑m � exp
� � ρm � � πm � (6)

for almost differentiable ρm
� ρm

�
Y � and arbitrary constants

πm, then

r̂ � ∑
m � M

wm



r̂m

� � µ̂m � µ̂ � 2 � 2
�
∇ρm � � �

µ̂ � µ̂m �  � (7)

Remark: One can adjust ρm
�
Y � by adding any function of Y

that does not depend on m without changing either the value
of wm or the validity of (7).

This unbiased estimate (5) of risk has three terms. The
principal term ∑m wmr̂m is the weighted average of the indi-
vidual risk estimates. This average is a crude risk assessment,
possibly biased. An information-theoretic representation of
this term yields the conclusion that it is not much larger than
minm r̂m.

The second term � ∑m wm � µ̂ � µ̂m � 2 wonderfully illustrates
an advantage of mixing estimators. If the estimates µ̂m vary
with m (that is, if the fits are different for different m), then
averaging them (with weights wm) leads to a reduction in the
unbiased risk assessment given by the weighted average of the
squared distances of the µ̂m from their centroid µ̂.

The third term 2∑m � wm
�
∇ logwm � � �

µ̂m � µ̂ � � quantifies the
effect of the data-sensitivity of the weights (through their
gradients with respect to the data Y ). Constant weights would
make this term zero, but would not permit means to adapt the
fit to the models that have smaller r̂m. Finally, the exponential
form of weights (6) gives a particularly clean mixture risk
estimate (7) that depends on the weights via the gradient
of the exponents in the relative weighting only and not the
normalization.

If our weights focus on models assessed to be good, then
our intuition says that the third term quantifies the price one
pays for making the mixture estimator adaptive, so it should
have a positive expectation (otherwise, mixing offers a “free
lunch”).

Proof of Theorem 1: See p.16 of [1] for a proof of the
first claim (5). For the second, ∇ logwm

�
Y � equals � ∇ρm

�
Y �

minus a function (the gradient of log∑k exp
� � ρk � πk) which

does not depend on m. Now since µ̂ � µ̂m has w-average
being the null vector 0, its inner product with a quantity not
depending on m averages to 0 under the weights w, so that
we are left with the ∇ρm

�
Y � term. This proves (7). �

Given a collection of models and its corresponding estima-
tors, one way to use Theorem 1 is to design data-determined
weights wm to make the unbiased estimate of risk (5) for the
mixture small. The weights (6) offer a tractable start, and we
can further simplify (7) in certain cases laid out in Section
II-B. Our risk bounds developed later belong to this category.

A second application is evaluation of model classes and their
respective mixture estimators, as there can be multiple model
classes that meaningfully decompose a common parameter
space into scientifically reasonable models. For example, two
classes may consist of different linear models, and a third
class may contain curved models. Provided that we have the
component estimators in each model class and know how to
weight them (again Section II-B offers some suggestions),
we evaluate how effective each model class explains the data
by using the unbiased estimate of risk for the corresponding
mixture estimator of the class, i.e. as a test of goodness of fit.
One can go further to use this model class assessment to aid
model (and model class) design.



B. Special Forms of Weights (6)

Bayes mixtures use weights (6), where wm is the posterior
probability p

�
m � Y � of model m. The exponent � ρm is the log

marginal density log p
�
Y � m � of Y for model m obtained by

integrating the Gaussian likelihood p
�
Y � µ � with respect to a

specified prior p
�
µ � m � for µ restricted to m. The prior may be

improper (an infinite measure) so long as it yields p
�
Y � m � � ∞

for each Y and m, such that wm is defined. The constants πm

are of course the prior probability for model m. Here, the
component estimator µ̂m for the model m is posterior Bayes,
i.e. the expectation of µ under the posterior density p

�
µ � Y � m �

(with support in m). It is easy to show that (e.g. see [5])

µ̂m � Y � ∇ρm
�
Y � � (8)

This implies the assumption of the following corollary with
β � 1.

Corollary 2: If ρm
�
Y � in (6) has gradient β

�
Y � µ̂m � for each

m � M and some β � 0, then

r̂ � ∑
m � M

wm

�
r̂m

� �
1 � 2β � � µ̂m � µ̂ � 2 � � (9)

In addition, if β 	 1� 2 , the risk estimate can be bounded by

r̂ 	 ∑
m � M

wmr̂m �

with equality when β � 1� 2 .
Proof: From the stated assumption of the form of ρm

�
Y � , we

see that after adding a function not depending on m, ∇ρm
�
Y �

matches a multiple of µ̂ � µ̂m so the first claim follows from
(7). The next claim is a special case of (9). �

We can apply Theorem 1 to more general weights. Consider
wm emphasizing models with small risk estimates r̂m.

wm
� πm exp

� � βr̂m � 2 �
∑m � πm � exp

� � βr̂m � � 2 � � β � 0 � (10)

where the positive constants πm are a mechanism for assigning
model preference. That is, we take ρm

� βr̂m � 2 in (6). The
parameter β controls the relative importance of averaging
across models (small β) and picking out the one that is
empirically best (large β). The two extremes are β � 0, which
ignores the observations Y and weights the models by π
only, and β � ∞, which uses only the model(s) with minimal
estimated risk.

Intuitive appeal aside, the main motivation for these weights
is that, in the case of linear models m and least-squares estima-
tion (to be explored next), they also yield further simplification
of (7) via Corollary 2.

In particular, the connection between these two cases (Bayes
and linear least-squares) arises when the choice of prior
p

�
µ � m � is uniform (and improper) under each linear model

m, such that least-squares µ̂m for m is also posterior Bayes,
and the posterior weights take the form of (10) with β � 1.

C. Linear Least-Squares

Now we specialize to the case that each model m � M is a
linear subspace of 
 n . The estimator µ̂m under such a model
is the least-squares projection of the observations Y into the
dm-dimensional linear space, the column space of a design
matrix Xm of a subset of explanatory variables. This can be
accomplished by Gram-Schmidt procedures, or explicitly via
the projection matrix Pm

� Xm
�
X

�
mXm � � 1X

�
m such that µ̂m �

PmY .

Lemma 3: For each linear model m, let µ̂m � PmY . Then

r̂m
� � Y � µ̂m � 2 � 2dm

� n � (11)

is its unbiased risk estimate and has gradient 2
�
Y � µ̂m � .

Proof: Use Stein’s identity (4), together with the fact that
trPm

� dm to show that r̂m is unbiased. Then write

� Y � µ̂m � 2 � Y
� �

I � Pm � � �
I � Pm � Y � Y

� �
I � Pm � Y �

where the last equality follows from the fact that I � Pm is
symmetric and also a projection (onto the space orthogonal to
m). Thus the gradient of (11) is 2

�
I � Pm � Y � 2

�
Y � µ̂m � . �

Thus, for linear least-squares estimators, using weights (10)
satisfies the condition for Corollary 2. The tuning parameter
β adjusts the degree of concentration of the weights on the
models with small risk estimates. Typical values are β � 1,
which gives the weighted mixture a Bayes interpretation; and
β � 1� 2 , which leads to the main risk bounds below. When
the unknown mean µ can be well-approximated by multiple
models m, the resulting risk of the mixture at µ would not be
very sensitive to the choice of β in � 1� 2 � 1 	 .

III. INFORMATION-THEORETIC CHARACTERIZATION OF

AVERAGE RISK ASSESSMENT

We analyse the average risk estimate ∑m wmr̂m in this section
using weights (10). It is the primary term in the estimate for
the risk of the mixture µ̂; and for β 	 1� 2 , Corollary 2 says
that it upper-bounds the unbiased risk estimate.

A. Upper-bound for Average (and Unbiased) Risk Estimate

Since the choice β � 1� 2 makes this average risk estimate
unbiased for the risk of µ̂, we will set it so temporarily for
a brisk exposition. The generalization to any β � 0 (done
soon) can be obtained by replacing all occurrences of 4 below
with 2 � β, though the average risk estimate will no longer be
unbiased when β �� 1� 2 .

From now on, we write πm
� exp

� � Cm � , where Cm can be
interpreted as the complexity for model m, giving preference
to low-complexity models. For example, Cm may be chosen to
increase with the dimension of m, and the resulting mixture
estimator would weight the “small” models higher. We further
impose that ∑m πm 	 1.

Remark: This condition ∑m exp
� � Cm � 	 1 is of course

Kraft’s inequality [6] in base e and the model complexity
is connected to the length of some codeword (in nats) that
describes the model. However, our theory does not require



such coding interpretation. One can simply use the model
preference π as a starting point to define Cm

� � logπm.

Theorem 4: For each m � M , define weights w by putting
β � 1� 2 in (10). Then, with m̂ being any model attaining
minm

�
r̂m � 4Cm � the unbiased risk estimate for µ̂ � ∑m wmµ̂m

satisifies

r̂ � ∑
m � M

wmr̂m
� r̂ m̂� 4

�
Cm

� D
�
w � π � � logw m̂�

� min
m � M

�
r̂m � 4Cm � � (12)

where D
�
w � π � � ∑m wm log

�
wm � πm � is the Kullback-Leibler

divergence of π from w.
Proof: Observe that

r̂m
� 4

�
log

πm

wm

� log∑m � πm � exp
� � r̂m � � 4 � � (13)

� r̂ m̂� 4
�
C m̂

� log
wm

πm
� logw m̂� 	

Thus, the equality follows by averaging over m � M with
weights w. The inequality results since D 
 0 and w m̂ � 1 (the
logarithm of the latter is strictly negative). 	

From now on, let M � #M be the cardinality of M . The
following is immediate.

Corollary 5: Put πm
� 1� M . Here, with any model m̂ achiev-

ing minm r̂m
def� r̂ � , the unbiased risk estimate for µ̂ satisifies

r̂ � ∑
m � M

wmr̂m
� r̂ � � 4

�
H

�
w � � logw m̂� (14)

� r̂ � � 4logM �
where H

�
w � � ∑m wm log

�
1 � wm � is the entropy of the distri-

bution w. 	
Therefore, for the special case πm

� 1� M , the average risk
estimate (14) is the minimum of the individual risk estimates
r̂ � plus a price for mixing, which is a function of the mixing
weights w. If the weights w are concentrated on mostly one
model m̂, then both the entropy H

�
w � and logw m̂are close to

zero and the combined risk estimate is close to the minimum
r̂ � . This bound is useful when our model class contains an
estimator with risk much larger than 4logM, which is typical
for linear least-squares when n is large and the full model � n

is in the class. We now tighten this bound.

B. Refinements

Now we bring to the fore the role of an arbitrary β � 0 in
mixing estimators, and improve upon Corollary 5.

Definition 6: Let ψ � ψ
�
M � be a function in M 
 2 defined

by the solution to

ψ � log
M � 1

ψ
� 1 	 	

Note that ψ
�
M � is increasing in M. Also, for each K � 0,

ψ � max � K � log
M � 1

K
� 1 � � (15)

by considering separately whether ψ � K or not. The proof of
the following lemma is straightforward.

Lemma 7: ψ
�
M � � logM for M 
 2. 	

An upper-bound for ψ is provided by (15) using K � 1.

ψ1
�
M � def� max

�
1 � log

�
M � 1 � � 1 � 	 (16)
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The following theorem is interesting in its own right, as
it gives a tight bound for the average ∑m wmr̂m for arbitrary
values r̂m (not necessarily any risk estimates, and possibly
negative). Nonetheless, it is mostly a technical refinement,
since for large M, the reduction of ψ

�
M � from logM is only

of “secondary” order, log
�
logM � .

Theorem 8: For any real values
�
r̂m : m � M � with M �

#M � ∞, and weights (10) with πm
� 1� M , we have

∑
m � M

wmr̂m � min
m � M

r̂m � 2
β

ψ
�
M � 	 (17)

Proof: See Lemma 2.20b in [1]. 	
Remark: One proof using the idea of separating out the case

m � m̂ from the rest is reminiscent of Fano’s inequality [6].

Characterizing the average risk estimate by the minimum is
useful as it leads directly to a risk bound.

IV. RISK BOUNDS FOR MIXING LEAST-SQUARES

Corollary 9: If µ̂m are least-squares regressions with risk
estimates r̂m in (11), then with r̂ � � minm r̂m, the unbiased
risk estimate for the mixture of least-squares regressions µ̂ �
∑m wmµ̂m using weights (10) with πm

� 1� M satisfies

r̂ � r̂ � � 2
β

ψ
�
#M � � r̂ � � 2

β
log

�
#M �

for each β � 1� 2 . Hence, with rm as the risks (2) of the
individual estimators, the risk r �  � µ̂ � µ � 2 satisfies

r � min
m � M

rm � 2ψ
�
#M �
β � min

m � M
rm � 2

β
log

�
#M � 	

Proof: Corollary 2 implies that the unbiased risk estimate
for µ̂ is upper-bounded by the average risk estimate for this
range of β, which in turn is bounded as in (17). Recalling
ψ

�
M � � log

�
M � proves the first claim. The second conclusion



follows from taking the expected value of each side of (17)
and using � minm r̂m � minm

� r̂m. �

Again, the best bound occurs at β � 1� 2 . We compare by
tabulating below these terms ψ and (16) of order logM in
these bounds.

M � #M 2 5 10 20 40 100 1000
4logM 2.8 6.4 9.2 12.0 14.8 18.4 27.6
4ψ1

�
M � 4.0 4.0 4.8 7.8 10.7 14.4 23.6

4ψ
�
M � 1.1 2.9 4.4 6.1 7.9 10.5 17.7

And we see that the improved bound of order ψ
�
M � is twice

as tight as that of order logM for M � 10 and the approximate
upper-bound with ψ1

�
M � is very good for 5 � M � 20.

Corollary 10: The risk r of the mixture (3) of least-squares
estimators µ̂m with weights (10), restricting β to

�
0 � 1� 2 � ,

satisfies

r � min
m � M

� rm
� 2

β
logπm � �

where rm, taking value (2), is the risk of µ̂m.
Proof: Starting with (12), this is another application of� minm r̂m � minm

� r̂m. �

Thus, with Cm
� � logπm and formula (2) for rm, this upper-

bound can be interpreted as an index of resolvability,

min
m � M

� � Pmµ � µ � 2 	 dm 	 2
β

Cm � �

an idealized trade-off among approximation error, dimension,
and complexity of the models considered. This is a calibration
of the error our model class M provides for µ̂ even if µ were
known.

With the refinement for the case with π uniform (Cm
�

logM), Corollary 9 gives sharper bounds than Corollary 10
does, but the latter allows us to control model complexities.

V. CONCLUSION AND DISCUSSION

We have developed an unbiased estimator for the risk of
mixture estimators. For the case of linear models and least-
squares components, this results in simple and accurate risk
bounds. The mixture estimator adapts to the models considered
by emphasizing those assessed to have low risks. The tight
risk bounds, with explicit constants of 1 and 4 for the target
minm rm and the order logM term, respectively, represent im-
proved oracle inequalities for regression problems. Although
the theory is offered in a somewhat restricted setting, it gives
insight to understanding practical procedures in more realistic
settings by careful comparison with the mixtures and risk
bounds considered here.

Our bounds comply with the model selection bound of
order logM in [7]. For leading-term models [8], the means µi

correspond to ordered coefficients of orthogonalized regressors
or basis functions. The mixture has the form µ̂i

� ciYi with ci

decreasing in i. Estimators of this type have good minimax
properties [9], [10], and can adapt to functions in Sobolev
classes via the Gaussian sequence models (1). Adaptation to
more complex (e.g. Besov) classes is possible by considering

all subsets of basis functions with model complexity control.
More discussion along this line will appear in a journal paper.

Our weights (10) have been used explicitly with β � 1 by
others. Buckland et al [11] offers numerical evaluations for
the case with πm

� 1� M . See Hartigan [12] for resolving model
weight ambiguity via hypothesis testing.

Demonstration of detailed risk properties of weighted
regressions has been challenging. Analogous information-
theoretic bounds for Bayes predictive density estimation have
been developed in [13]–[17], with extensions to regression
by Catoni and Yang. George [18], [19] also studied mixing
estimators, with emphasis on shrinkage estimators, and pro-
vided an expression for the risk estimate of the mixture using
Stein’s result. Also, the presentation here for least-squares has
a shrinkage estimator analogue [1].
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