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Comment 
Andrew R. Barron 

Relationships between topics in statistics and ar- 
tificial neural networks are clarified by Cheng and 
Titterington. There are fruitful concepts in artificial 
neural networks that are worthwhile for the statis- 
tical community to absorb. These networks provide 
a rich collection of statistical models, some of which 
are ripe for both mathematical analysis and prac- 
tical applications. Many aspects of artificial neural 
networks are in need of further investigation. Here, 
I comment on approximation and computation is- 
sues and their impact on statistical estimation of 
functions. 

APPROXIMATION 
Attention is focussed on the most commonly stud- 

ied feedforward networks (perceptrons) which have 
one or two "hidden" layers defined by composition of 
units of the form q(wx + wO), where X is a hardlim- 
iter or sigmoidal activation function and wo, w de- 
note the parameters (internal weights) that adjust 
the orientation, location and scale of the unit func- 
tions (Rosenblatt, 1962; Rumelhart, Hinton and 
Williams, 1986a). In the one hidden layer case, 
a linear combination of such units is taken with 
the internal weights adjusted so that the result 
approximates a targef function. These networks 
may be regarded as an adjustable basis function ex- 
pansion of ridge form similar to projection pursuit 
(Friedman and Stuetzle, 1981) and similar to sparse 
trigonometric series with adjustable frequency vec- 
tors. Linear combination of such adjustable basis 
functions can provide an accurate approximation 
with far fewer units than by linear combination of 
any fixed basis functions for certain classes of tar- 
get functions when the number of input variables 
is greater than or equal to three (Barron, 1993). A 
consequence is that more accurate statistical func- 
tion estimation is possible for such target functions 
(Barron, 1994). 

These conclusions for one hidden layer networks 
are based, in part, on the following result devel- 
oped in Jones (1992) and Barron (1993). Suppose 
a function f(x) is such that f(x)/V is in the closure 
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of the convex hull of the set of units {?0(wx + wo): 
(w0, w) E Rd+i}, where X is bounded by 1 for some 
positive number V. The closure is in the L2(,a) norm, 
where ,u is any given probability measure ,u with 
bounded support on Rd. Then there are M such 
units with choices of weights depending on f and 
,u, such that their linear combination fM(x) (a sin- 
gle hidden layer network) achieves approximation 
error 

lIf-ftM| < 
?-) 

where the norm is taken in L2(Q). The surpris- 
ing aspect is that the approximation rate as a 
function of M is independent of the dimension d. 
A subclass of functions that satisfy the condition 
are those that possess a bound on the first mo- 
ment of the Fourier magnitude distribution. (This 
class includes all smooth positive definite func- 
tions and convex combinations of translates of such 
functions.) In contrast, approximation using any 
fixed M basis functions cannot achieve approxi- 
mation error uniformly better than order 1/Mild 
for the same class of functions f, taking ,u to 
be the uniform distribution on a d-cube (Barron, 
1993). 

It is of interest to characterize what classes of 
functions can be more parsimoniously approximated 
using two rather than one hidden layer in the net- 
work. Some functions such as the indicator of a cube 
or a ball are not accurately approximated by the 
ridge expansions represented by one-layer networks 
without resorting to a number of units exponentially 
large in the dimension. In these cases the network 
capabilities may be improved by inclusion of a sec- 
ond layer of threshold nonlinearities. Units on the 
second layer can provide indicators of the level sets 
of linear combinations of the first layer units. These 
level sets can be arranged to take arbitrary polygon 
shapes (Lippman, 1987). The linear combination of 
the outputs of the second layer then give piecewise 
constant approximations of a rather general form. 
One conclusion of the same flavor as above is that if 
a function f is such that f(x)/V is in the closure of 
the convex hull of the set of signed indicators of K- 
sided polygons for some positive V, then there is a 
two hidden layer network function fK,M(x) with KM 
units on the first layer and M units on the second 
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layer such that I If - fK,MI I < V/4/. It is not clear 
yet how much more general a class of functions this 
is than those in the convex hull of signed indica- 
tors of half-spaces. Another approach to examining 
approximation by two hidden layer networks is in 
Cybenko (1988). He shows that by using sigmoidal 
activation functions the second layer units can be ar- 
ranged to implement localized kernel functions that 
are then linearly combined to provide the function 
approximation. He shows that the approximation 
error tends to zero but does not give a bound on the 
rate. It is not clear that localized basis expansions 
will be effective in high dimensions. Nevertheless, 
two hidden layer networks may provide one way to 
combine the positive benefits of global ridge approx- 
imations and local kernel approximations. 

ESTIMATION 
These multiunit perceptrons are nonlinearly pa- 

rameterized models incorporated into least squares 
regression, classification and likelihood maximiza- 
tion. By combining results on network approxima- 
tion with analysis of statistical risk, it is possible to 
bound the accuracy of neural network estimators in 
certain cases. 

Frameworks exist for the analysis of the total 
risk of function estimation using neural networks 
or other nonlinear models for various choices of 
loss function. Analogous to the bias-variance de- 
composition of the mean squared error, the prob- 
lem decomposes into separate consideration of the 
approximation error and the additional error due 
to estimation of the function from a finite sample 
(see, for instance, Haussler, 1992; Barron, 1991). 
With squared error loss, the estimation error can 
be bounded by the ratio of the number of parame- 
ters to the sample size times a logarithmic factor. 
The best rate of convergence for a network estima- 
tor occurs when the size of the network (indexed 
by the number of parameters) is chosen so that the 
estimation error is of the same order as the approxi- 
mation error. In particular, the general risk bounds 
are applied to the case of one hidden layer networks 
in Barron (1994). There conditions are given such 
that the risk is bounded by 

/ V2 Md ) ElIIf-t?112 <?0 ( - + og 
where M is the number of units, d is the input 
dimension, N is the sample size and V is as dis- 
cussed above. This risk bound is of the order 
V2((d/N) logN)1/2 with M (N/(d logN))W/2. Thus, 
a satisfactorily small statistical risk is possible with- 
out requiring an exponentially large sample size. 

The estimator f that achieves these bounds is as- 
sumed to correspond to a global optimum of the em- 
pirical squared error loss, among one hidden layer 
networks with M units subject to certain constraints 
on the parameter values. It can be shown, un- 
der similar conditions, that the same risk bounds 
hold for any estimator that achieves an empirical 
squared error not larger than a prescribed value de- 
termined by the bound on the approximation error. 

Since, in general, the network approximation er- 
ror is not known in practice, data-based model se- 
lection criteria are useful to select a size of network 
that achieves approximately the best convergence 
rate permitted by the class of models. Such risk 
bounds are available for networks selected by cer- 
tain complexity based criteria (Barron and Cover, 
1991; Barron, 1991). It is an open problem whether 
risk bounds can be developed for networks selected 
by other criteria such as Akaike's AIC; such bounds 
would be analogous to the results available for lin- 
ear models by Shibata (1981) and Li (1987). 

COMPUTATION 
In some cases, optimization of the appropriate ob- 

jective function is proven to provide accurate esti- 
mators in the sense of statistical risk, as discussed 
above. However, there is no known algorithm for 
network estimation that is proven to produce accu- 
rate estimates of functions in a feasible amount of 
computation time. At the least, we should avoid 
having an average computation time that is expo- 
nential in the input dimension d. Ideally, the com- 
putation time should be bounded by small degree 
polynomial in N and d while achieving a satisfac- 
tory statistical risk bound (e.g., a fractional power 
of d/N) for a sensible class of target functions, where 
N is the sample size. It is not known whether such 
a feasible algorithm exists. Because of its poten- 
tial practical implications, I regard the resolution of 
problems of this type as the most important task for 
theoretical research concerning neural networks. 

Various algorithms have been suggested or used 
in practice that may or may not be appropriate for 
the function estimation task. Here, some of the 
standard approaches and associated problems are 
briefly mentioned. Many of the methods involve nu- 
merical search for an optimum of an empirical ob- 
jective function. Unfortunately, this error surface 
for multiunit perceptrons is extremely multimodal 
as a function of the parameters (weights). 

Gradient search and many of its variants, such as 
back-propagation, produce a local optimum of du- 
bious scientific merit. The use of multiple start- 
ing points may rescue local search strategies, but 
it should be mathematically determined whether or 
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not the number of restarts needed on the average is 
exponential in the -size of the problem. The objec 
tive function may be regularized by the addition of 
a large enough convex penalty term (weight decay 
term) to reduce multimodality, but can it be demon- 
strated whether the function estimates remain sta- 
tistically accurate in that case? A concern is that 
if a penalty term is multiplied by a constant large 
enough to guarantee convexity of the objective func- 
tion, then the effect of the empirical loss term may 
be washed out. 

Stochastic search strategies such as simulated an- 
nealing or guided random search can avoid traps 
of local optima to converge to a global optimum, 
but it needs to be proven whether an accurate esti- 
mate is reached in feasible time for perceptrons. See 
Bertsimas and Tsitsiklis (1993) for some of the is- 
sues associated with proving a computation rate for 
simulated annealing. Convergence theory for ran- 
dom search should reveal what advantage, if any, 
the search strategy has over exponential time al- 
gorithms such as exhaustive search over a suitable 
grid. 

Likelihood maximization can be replaced by av- 
eraging with respect to a Bayesian posterior dis- 
tribution using importance sampling or Metropolis 
algorithms, but it is not proven whether these al- 
gorithms will provide suitable solutions in feasible 
time for highly multimodal surfaces. Indeed, sup- 
pose it were not feasible to find points of high like- 
lihood that provide an accurate estimator. It would 
then be surprising (but not necessarily impossible) 
for an averaging technique to produce an accurate 
estimator. 

The computational task is simplified by certain 
estimation strategies that build up a network one 
unit at a time. At each stage, the parameters of a 
new unit are to be determined given that the smaller 
network has been estimated. In some cases, convex 
objective functions can be defined that are readily 
optimized at each stage. One such class of network 
methods use compositions of small polynomial units, 
each of which is linearly parameterized and opti- 
mized by least squares (Farlow, 1984; Barron and 
Barron, 1988). Another approach involves logistic 
sigmoidal units optimized by a relative entropy cri- 
terion; see below. It needs to be determined under 
what conditions functions can be accurately approx- 
imated by such iteratively constructed networks. 

Some progress has been made in the case of a 
single hidden layer network with a squared error 
criterion. Optimizing such networks one node at 
a time provides a lower dimensional multimodal 

search task while still permitting an accurate ap- 
proximation (Jones, 1992; Barron, 1993). In partic- 
ular, suppose a function f is such that f(x)/V is in 
the closure of the convex hull of the set of functions 
q(wx + wo) (and for simplicity, assume odd symme- 
try q(-z) = -X(z)). Let fo(x) = 0 and for M = 1, 2,... 
iteratively define fM(x) = VfM_1(X) + V2q(WX + wO), 
where the internal weights wo, w of the Mth unit are 
found to maximize the inner product of the function 
rM-l(x) and q(wx+wo), where rM-l(x) = f(x)-fM-l(x) 
and then the external linear weights v1, v2 are opti- 
mized by ordinary least squares. Then I If - fMl I < 
2V//IM which is the same order bound as stated 
above for noniterative approximation. Thus, the 
search has been reduced from M(d + 2) dimensions 
down to d + 1 dimensions, but the objective function 
still may have multiple modes for each M. It re- 
mains to determine whether it is possible to provide 
approximate solutions to this simpler optimization 
(perhaps by a stochastic search or multistart algo- 
rithm) in a time that is not exponentially large in d. 

An interesting approach worthy of further study 
is to choose wo, w for unit M to minimize the av- 
erage binary relative entropy D(g, q) = g logg/l + 
(1 -g) log(l -g)/(l - O) between the functions g(x) = 
1/2 + rMl,(x)/2V and q(wx + wo), with X chosen to 
be the logistic sigmoid 0(z) = ez/(l + ez) and rM(x) = 
f(x) - fM(x). With this choice, the objective function 
is strictly convex in wo, w and an approximate min- 
imizer is readily computed for each M by gradient 
or Gauss-Newton search as in logistic regression. 
Now rM(x) = 0 is a fixed point of these iterations. It 
may be possible to prove that f -fM tends to zero as 
M -- oo. Does it have the same 1/VM approxima- 
tion rate? The problem of computational feasibility 
of accurate network estimation would be solved by 
the positive resolution of this approximation ques- 
tion. 

SUMMARY 
I concur with the conclusions of Cheng and Tit- 

terington that research in statistics and artificial 
neural networks is mutually beneficial and that in- 
creased awareness of work in the respective disci- 
plines should be encouraged. It should be important 
to each field not only to acknowledge existing work 
from both fields but also to put it to use to advance 
the state of the art. Combined use of approxima- 
tion theory, mathematical statistics and computa- 
tion theory are essential to the treatment of funda- 
mental problems of function estimation and neural 
networks. 
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