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ABSTRACT

The work discussed in this presentation is motivated by
the problem of decoding superposition codes when using
{−1,+1}-valued dictionary elements. Under this encod-
ing scheme, the output, Y , is a linear combination of inde-
pendent Bernoulli random variables and noise. Statistical
decoding then requires the study of the conditional distri-
bution of the Bernoulli random variables given the output,
Y . We find this distribution analogous to that of sum-
mands given the sum of independent random variables as
studied by Cover and Campenhout and Csiszár. Motivated
by this work we wish to bound the Rényi relative entropy
distance between the true conditional distribution and the
product of tilted distributions in order to show that events
that are exponentially rare under the tilted product distri-
bution remain rare under the true distribution.

1. INTRODUCTION

Distributional analysis of the summands given the sum of
independent random variables arises in science and en-
gineering applications. Superposition encoding over the
Gaussian white noise channel, discussed here, is one such
example. This conditional distribution has been studied
extensively in both statistical mechanics and mathemati-
cal statistics, and we now know that given the sum, the
summands are approximately independent with exponen-
tially tilted distributions. We present the method of nearby
measures as way to use this information. By bounding the
Rényi relative entropy between the true distribution and
the independent, exponentially tilted distribution it can be
shown that events which are rare under the approximate
distribution are also rare under the true distribution, al-
lowing for calculations to be computed using the approx-
imate, usually much simpler, distribution. The follow-
ing section discusses background information on super-
position coding, Section 3 presents the method of nearby
measures and the Rényi relative entropy, Section 4 estab-
lishes upper-bounds on the Shannon relative entropy and
the Rényi relative entropy of order α between the true dis-
tribution and the approximate distribution, and finally a
short conclusion is supplied in Section 5. All Theorem
proofs are collected in the appendices.

2. BACKGROUND

When using superposition encoding, codewords are sparse
linear combinations of L out of N = LM columns of a
dictionaryX of size n×N for which, in our case, each en-
try is an independent Bernoulli {−1,+1}-valued random
variable,

codeword =

L∑
l=1

√
PlXl (1)

where Pl are weights such that
∑L
l=1 Pl = P with power

constraint P and Xl is the lth selected column of X . By
sparse, we mean that the subset of L columns used in the
codeword is much smaller than the total number of col-
umns N of the dictionary. The input specifies which L
columns are used to form the codeword.

When sending information across an additive Gaus-
sian white noise channel, the output Y is an n× 1 column
vector

Y =

L∑
l=1

√
PlXl + ε (2)

for ε ∼ N(0, σ2In×n). Decoding using the adaptive suc-
cessive decoder, developed by Joseph and Barron [1], re-
quires the study of the conditional distribution of the col-
umns (X1, ..., XL) given the output Y . Notice that each
entry in Y is independent of the others, so we focus on a
single row of the output,

Yi =

L∑
l=1

√
PlXi,l + εi (3)

and the conditional distribution of (Xi,1, ..., Xi,L) given
the output Yi. In what follows we drop the subscript i
when discussing the one-dimensional random variables
X1, ..., XL, Y .

3. THE NEARBY MEASURE

The distribution of summands given the sum of indepen-
dent random variables has been studied extensively in sta-
tistical mechanics motivated by the original work of Boltz-
mann (see, for example, Lanford [2]) and others as well
as in statistics and information theory by Cover and van
Campenhout [3], Csiszár [4], and others. This work states



that conditionally given the sum, the summands are dis-
tributed approximately independently according to the the
maximum entropy distribution subject to the mean con-
straint. This takes the form of exponentially tilted distri-
butions. This situation is analogous to the statistical de-
coding problem involving the conditional distribution of
(X1, ..., XL) given the output Y . Motivated by this work,
we hope to be able to approximate the true conditional dis-
tribution of (X1, ..., XL) given Y by the product of inde-
pendent, exponentially tilted Bernoulli ±1 distributions,
meaning that if an event is rare under the approximate dis-
tribution then it remains rare under the true distribution.

Consider the true distribution of X1, ..., XL which we
define by independent q such that

q(xl) =

{
1
2 , if xl = 1
1
2 , if xl = −1

(4)

for each l ∈ (1, 2, ..., L). Observation of Y gives rise to
qX|Y which we approximate as the product of indepen-
dent, exponentially tilted distributions. We let qaX|Y be
the tilted distributions given Y . For each l ∈ (1, 2, ..., L),

qaXl|Y (xl) =


eaY
√
Pl

eaY
√
Pl+e−aY

√
Pl
, if xl = 1

e−aY
√
Pl

eaY
√
Pl+e−aY

√
Pl
, if xl = −1

(5)

where a is an appropriate constant. Let us define QL as the
measure associated with the true joint distribution (joint
probability mass function) of (X1, ..., XL, Y ). Similarly,
let QaL, a for approximate, be the measure associated with
the joint probability distribution of (X1, ..., XL, Y ) when
the conditional distribution of (X1, ..., XL) given Y is the
product of exponentially tilted distributions. Finally, let
qL and qaL be the probability distributions associated with
each measure. Specifically qaL is the product

pY (y)

L∏
l=1

qaXl|Y (xl)

where pY (y) is the probability mass function of Y . Let us
define the Rényi relative entropy of order α > 1 between
these measures, denoted Dα(QL||QaL), as

1

α− 1
logEQL

(
qL(X1, ..., XL, Y )

qaL(X1, ..., XL, Y )

)α−1
. (6)

If Dα(QL||QaL) is finite for some α > 1, then we can re-
late probabilities under the true measure QL to probabili-
ties under the approximate measure QaL. This relationship
is summarized in the following Lemma.

Lemma 3.1 Consider an event A. If the Rényi relative
entropy between the two measures is finite for some order
α > 1, meaning Dα(QL||QaL) ≤ c0 for some constant c0,
then the probability of the event under the true measure
is upper-bounded using the probability under the approx-
imate distribution with the following inequality.

QL(A) ≤ (ec0QaL(A))
α−1
α . (7)

Proof

QL(A) =

∫
qL(x)1{x∈A}dx, (8)

=

∫
qL(x)

qaL(x)
qaL(x)1{x∈A}dx, (9)

≤
(∫

(qL(x))
α

qaL(x)
dx

) 1
α

(QaL(A))
α−1
α ,(10)

=
(
eDα(QL||Q

a
L)QaL(A)

)α−1
α

. (11)

Step (10) follows from Holder’s inequality.

In the following section we demonstrate how to ob-
tain bounds for both the Shannon relative entropy and the
Rényi relative entropy between the two measures for all
signal-to-noise ratios.

4. BOUNDING THE RÉNYI RELATIVE
ENTROPY

The Shannon relative entropy between the true distribu-
tion QL and the approximate distribution QaL is defined to
be

D(QL||QaL) = EQL log
qL(X1, ..., XL, Y )

qaL(X1, ..., XL, Y )
(12)

using the base e logarithm. This is also the Rényi relative
entropy of order α = 1. Because the Rényi relative en-
tropy is continuous in α, the upper-bound for α just above
1 should be close to the Shannon entropy between the two
measures. Before we demonstrate the bound acquired for
the Rényi relative entropy, we show that the Shannon rel-
ative entropy upper-bound is finite for all signal-to-noise
ratios where we define the signal-to-noise ratio to be

snr =
P

σ2
.

4.1. Shannon entropy upper-bound

Consider the true joint distribution qL(x1, ..., xL, y) which
equals

q(x1)...q(xL)φε

(
y −

L∑
l=1

√
Plxl

)
, (13)

where φε is the probability mass function associated with
ε ∼ N(0, σ2), and the approximate joint distribution

qaL(x1, ..., xL, y) = qaX1|Y (x1)...q
a
XL|Y (xL)pY (y),

=

L∏
l=1

(
q(xl)e

aY
√
Plxl

1
2e
aY
√
Pl + 1

2e
−aY

√
Pl

)
pY (y).

The following theorem provides an upper-bound for the
Shannon relative entropy between these two distributions.



Theorem 4.1 For any constant a,

D(QL||QaL) ≤
1

2
log(1 + snr) +

1

2
a2P (σ2 + P )− aP,

(14)
which is minimized by choosing a = 1

σ2+P making the
upper-bound

D(QL||QaL) ≤
1

2
log(1 + snr)− snr

2(1 + snr)
. (15)

We prove Theorem 4.1 in Appendix 1. Notice that the
upper-bound stated in Theorem 4.1 is positive for all val-
ues of snr, as we would expect of the Shannon relative
entropy. This is can be seen by remembering that log(1 +
x) ≤ x for all x > −1 and so

log(1 + snr) = − log(1− snr

1 + snr
) ≥ snr

1 + snr
. (16)

We next demonstrate bounds for the Rényi relative en-
tropy.

4.2. Rényi relative entropy upper-bound

We first choose work with the Rényi relative entropy of
order α = 2 for simplicity. The order α = 2 relative
entropy is defined to be

D2(QL||QaL) = logEQL

(
qL(X1, ..., XL, Y )

qaL(X1, ..., XL, Y )

)
. (17)

The following Theorem upper-bounds this relative en-
tropy. The proof can be found in Appendix 2.

Theorem 4.2 For any snr ≤ .58, there exists a range of
γ values in the interval 0 < γ < 1− snr

(1+snr)2 such that

D2(QL||QaL) ≤ log
20

3
+

(
1 +

1

γ

)
2snr

− 1

2
log

(
1− γ − snr

(1 + snr)2

)
. (18)

While the Shannon entropy upper-bound held for all
snr, the Rényi relative entropy upper-bound at order α =
2 is limited to only small signal-to-noise ratios. In allow-
ing α to approach 1, the Rényi relative entropy approaches
the Shannon relative entropy, and bounds are obtained for
all signal-to-noise ratios. The following Theorem bounds
the Rényi relative entropy for all values of the signal-to-
noise ratio by allowing α to be arbitrarily small.

Theorem 4.3 For any snr and any γ in the range 0 <
γ < 1

2 , there exists a δ = α− 1 > 0 such that

Dα(QL||QaL) ≤ log
4(5)1/δ

3
+

(
1 +

1

γ

)
2snr

− 1

2δ
log(δ(1− γ − a2σ2P )). (19)

The proof of Theorem 4.3 can be found in Appendix 3.
Using this bound and Lemma 3.1, we are able to demon-
strate an upper-bound on the error accrued when approxi-
mating the true distribution with the tilted distribution.

5. CONCLUSION

Using knowledge of the distributional behavior of the sum-
mands given the sum of independent random variables,
and the closeness of measures established by finite Rényi
relative entropy, we are able to approximate a distribution
which is statistically difficult to analyze with a much sim-
pler distribution with a constant error rate, thus simplify-
ing statistical decoding of superposition coding over the
Gaussian white noise channel.

6. APPENDIX 1
PROOF OF THEOREM 4.1

We want to consider the expectation under the true joint
distribution of the log ratio of the distributions,

E log
q(X1)...q(XL)φε(Y −

∑L
l=1

√
PlXl)

qaX1|Y (X1)...qaXL|Y (XL)pY (Y )
. (20)

Letting the codeword,
∑L
l=1

√
PlXl, be calledW , expres-

sion (20) can be simplified to

E log
φε(Y −W )

∏L
l=1

(
1
2e
aY
√
Pl + 1

2e
−aY

√
Pl
)

eaYW pY (Y )
.

(21)
We use the following Lemma.

Lemma 6.1 For any value x ∈ R,

1

2
ex +

1

2
e−x ≤ e x

2

2 .

Proof Using the MacLaurin expansion ex =
∑∞
k=0

1
k!x

k,

1

2
ex +

1

2
e−x =

1

2

∞∑
k=0

1

k!
(xk + (−x)k), (22)

=

∞∑
k′=0

1

(2k′)!
x2k

′
, (23)

≤
∞∑
k′=0

1

k′!

(
x2

2

)k′
, (24)

= e
x2

2 , (25)

with Step (24) following from the fact that (2k)! ≥ 2kk!.

Using Lemma 6.1, an upper-bound for (21) is given by

− 1

2
log 2πσ2 − 1

2σ2
E(Y −W )2 +

a2P

2
EY 2

− aEYW − E log pY (Y ). (26)



Finally, we know that −E log pY (Y ) is the entropy of Y
which is less than or equal to the entropy of a normal ran-
dom variable with the same variance (see, for example
Thomas and Cover [5]). This means that

−E log pY (Y ) ≤ 1

2
log(2π(σ2 + P )) +

1

2
. (27)

Applying this to bound (26) and taking the expectation of
the remaining terms gives the desired upper-bound

− 1

2
log 2πσ2 − 1

2
+
a2(σ2 + P )P

2

− aP +
1

2
log(2π(σ2 + P )) +

1

2
. (28)

Calculating the minimizing value of a is straightforward.

7. APPENDIX 2
PROOF OF THEOREM 4.2

We want to consider the log of the expectation under the
true joint distribution of the ratio of the distributions,

logE
q(X1)...q(XL)φε(Y −

∑L
l=1

√
PlXl)

qaX1|Y (X1)...qaXL|Y (XL)pY (Y )
. (29)

Again we let the codeword,
∑L
l=1

√
PlXl, be called W ,

and then expression (29) can be simplified to

logE
φε(Y −W )

∏L
l=1

(
1
2e
aY
√
Pl + 1

2e
−aY

√
Pl
)

eaYW pY (Y )
.

(30)
Applying Lemma 6.1, we find that (30) is upper-bounded
by

logE
φε(Y −W )e

a2Y 2P
2

eaYW pY (Y )
. (31)

We make use of the following Lemma, which is a gen-
eralization of a result given by Brown [6], to upper-bound
the probability density function of Y .

Lemma 7.1 Let Y be defined as Y = W + ε where W
is the codeword

∑L
l=1

√
PlXl and ε ∼ N(0, σ2), then for

any γ > 0

PY (Y ) ≥ 3

4

1√
2πσ2

e
−(1+γ)

2σ2
Y 2

e−(1+
1
γ )2snr.

Proof We first supply a quick proof of the inequality (A+
B)2 ≤ (1 + γ)A + (1 + 1

γ )B, for γ > 0. Notice that
(A + B)2 = A2 + B2 + 2AB, so it suffices to show
that 2AB ≤ γA + 1

γB. We know that this is true since
0 ≤ (

√
γA− 1√

γB )2 = γA+ 1
γB − 2AB.

Notice that by Chebyshev’s Inequality,

P(|W | ≤ 2
√
P ) ≥ 3

4
.

We use both these facts below.

PY (Y ) =

∫ ∞
−∞

pW (s)φε(Y − s)ds, (32)

≥
∫ 2
√
P

−2
√
P

pW (s)φε(Y − s)ds, (33)

≥ 3

4
min

s:|s|≤2
√
P
φε(Y − s), (34)

≥ 3

4
φε(|Y |+ 2

√
P ), (35)

=
3

4

1√
2πσ2

e
−1

2σ2
(|Y |+2

√
P )2 , (36)

≥ 3

4

1√
2πσ2

e
−1

2σ2
((1+γ)Y 2+(1+ 1

γ )4P ).(37)

Applying Lemma 7.1 gives the following upper-bound to
(31).

log
4e(1+

1
γ )2snr

3
E
e
−1

2σ2
(Y−W )2e

a2Y 2P
2

eaYW e
−(1+γ)

2σ2
Y 2

. (38)

Using the fact that the expectation of the true distribution
equals the expectation taken first over Y |W and then over
W , the expectation in expression (38) equals

EW e
−1

σ2
W 2
∫ ∞
−∞

e
−1

2σ2
[y2(1−γ−a2σ2P )−2yW (2−aσ2)]dy,

(39)
and so we simplify expression (38) using the representa-
tion in (39) to give

log
4e(1+

1
γ )2snr

3
√

1− γ − a2σ2P
EW e

W 2

(
1

2σ2

(
(2−aσ2)2

1−γ−a2σ2P

)
− 1
σ2

)
.

(40)
We must now impose the restriction 0 < γ < 1− a2σ2P
to be sure that the integral in expression (39) is finite. Let-
ting

c∗ =
1

2σ2

(
(2− 1

1+snr )
2

1− γ − snr
(1+snr)2

)
− 1

σ2
,

we wish to upper-bound EW ec
∗W 2

. The following Lemma,
a result from Pollard [7], is used to supply an upper-bound
for this expectation.

Lemma 7.2 For a random variable Z, if EetZ ≤ e
c2t2

2

for some constant c and for all real t, then for all c̃ ≥ c,

Ee
Z2

4c̃2 ≤ 5. (41)



Proof

Ee
Z2

4c2 − 1 = E
∫ ∞
0

1

{
0 ≤ t ≤ Z2

4c2

}
etdt, (42)

≤
∫ ∞
0

Ee
|Z|
√
t

c −tdt, (43)

≤
∫ ∞
0

E
(
e
Z
√
t

c + e
−Z
√
t

c

)
e−tdt,(44)

≤ 2

∫ ∞
0

e
−t
2 dt, (45)

= 4. (46)

where step (43) follows by Markov’s inequality and (45)
follows from the fact that EetZ ≤ e c

2t2

2 for all t.

Using Lemma 7.2, we see that because EetW ≤ e t
2P
2 (by

Lemma 6.1), then EeW
2

4P ≤ 5. Therefore, whenever c∗ ≤
1
4P the expectation in expression (40) is upper-bounded
by 5. We will show that for any snr < .58, there exists
a range of γ values in the interval 0 < γ < 1 − a2σ2P ,
which will make c∗ < 1

4P . To see this notice that c∗ < 1
4P

whenever

snr

2

(
(1 + 2snr)2

(1− γ)(1 + 2snr + snr2)− snr

)
− snr < 1

4
.

(47)
For γ = 0, the left-hand side of (47) equals 1

4 when snr ≈
.58. Therefore, for snr values strictly less than .58, there
exists a range of γ values close to 0 making the inequality
hold. Then upper-bound from (40) is then

log
20

3
√
1− γ − a2σ2P

+

(
1 +

1

γ

)
2snr. (48)

8. APPENDIX 3
PROOF OF THEOREM 4.3

Proof Remember that the Rényi relative entropy of order
α equals

1

α− 1
logEQL

(
qL(X1, ..., XL, Y )

qaL(X1, ..., XL, Y )

)α−1
. (49)

Letting δ = α− 1, we want to obtain an upper-bound for

1

δ
logE

(
q(X1)...q(XL)φε(Y −

∑L
l=1

√
PlXl)

qaX1|Y (X1)...qaXL|Y (XL)pY (Y )

)δ
.

(50)
Again let the codeword,

∑L
l=1

√
PlXl, be called W , and

then (50) can be simplified to

1

δ
logE

φε(Y −W )
∏L
l=1

(
1
2e
aY
√
Pl + 1

2e
−aY

√
Pl
)

eaYW pY (Y )

δ

.

(51)

Applying Lemma 6.1 and Lemma 7.1, expression (51) is
bounded by

1

δ
log

4δeδ(1+
1
γ )2snr

3δ
E
e
−δ
2σ2

(Y−W )2e
δa2Y 2P

2

eδaYW e
−δ(1+γ)

2σ2
Y 2

. (52)

Using the fact that the expectation of the true distribution
equals the expectation taken first over Y |W and then over
W , the expectation in expression (52) equals

EW e
−δ
σ2
W 2
∫ ∞
−∞

e
−δ
2σ2

[y2(1−γ−a2σ2P )−2yW (2−aσ2)]dy.

(53)

Using the representation in (53), expression (52) can be
simplified to

1

δ
log

4δeδ(1+
1
γ )2snr

3δ
√
δ(1− γ − a2σ2P )

EW ec
∗
δW

2

, (54)

where

c∗δ =
δ

2σ2

(
(2− aσ2)2

1− γ − a2σ2P

)
− δ

σ2
.

We must again impose the restriction 0 < γ < 1−a2σ2P
to be sure that the integral in (53) is finite. Another appeal
to Lemma 7.2 is made in order to obtain an upper-bound
for EW ec

∗
δW

2

. We see that because EetW ≤ e
t2P
2 (by

Lemma 6.1), then EeW
2

4P ≤ 5. Therefore, whenever c∗δ ≤
1
4P the expectation in (54) is bounded by 5. This occurs
whenever

δ

(
1

2
snr

(
(1 + 2snr)2

(1− γ)(1 + snr)2 − snr

)
− snr

)
≤ 1

4
.

Since we can take δ arbitrarily close to 0, it is obvious that
there is a small enough δ for this inequality to hold for any
γ and snr pair.

Then upper-bound from (54) is

1

δ
log

4δ5

3δ
+

(
1 +

1

γ

)
2snr

− 1

2δ
log(δ(1− γ − a2σ2P )). (55)
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