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Abstract

It has been experimentally observed in recent years that multi-layer artificial
neural networks have a surprising ability to generalize, even when trained with far
more parameters than observations. Is there a theoretical basis for this? The best
available bounds on their metric entropy and associated complexity measures are
essentially linear in the number of parameters, which is inadequate to explain this
phenomenon. Here we examine the statistical risk (mean squared predictive error)
of multi-layer networks with ℓ1-type controls on their parameters and with ramp
activation functions (also called lower-rectified linear units). In this setting, the risk
is shown to be upper bounded by [(L3 log d)/n]1/2, where d is the input dimension
to each layer, L is the number of layers, and n is the sample size. In this way, the
input dimension can be much larger than the sample size and the estimator can still
be accurate, provided the target function has such ℓ1 controls and that the sample
size is at least moderately large compared to L3 log d. The heart of the analysis is
the development of a sampling strategy that demonstrates the accuracy of a sparse
covering of deep ramp networks. Lower bounds show that the identified risk is close
to being optimal.

Index terms — Deep learning; neural networks; supervised learning; nonparamet-
ric regression; nonlinear regression; penalization; machine learning; high-dimensional
data analysis; big data; statistical learning theory; generalization error; probabilistic
method; variation; Markov chain; matrix product

1 Introduction

Good empirical performance of deep learning networks has been reported across various
disciplines for difficult tasks in classification and prediction [31]. These successes have
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largely been buoyed by the ability of multi-layer networks to generalize well despite being
able to fit any dataset, given enough parameters — an apparent contradiction to age-
old statistical wisdom that warns against overfitting. This phenomenon is particularly
striking when the input dimension is far greater than the available sample size, as is
the case with many modern applications in molecular biology, medical imaging, and
astrophysics, to name a few. Despite a vast amount of effort that goes into training deep
learning models, typically in an ad-hoc manner for anecdotal datasets, a unifying theory
of their complex mechanisms has not yet caught up with these applied and practical
developments.

As is generally true in statistical estimation, there is a trade-off between estimation
error and descriptive model complexity relative to sample size. At the outset, one may be
tempted to believe that the descriptive complexity of deep learning models is very large,
in accordance with the large number of parameters that index each model. Fortunately,
we will show that, although a generic deep network may be difficult to describe, never-
theless, under suitable control on norms of the weights, it can be well approximated by
a sparse representation, and this sparse representation comes from a subfamily that has
a manageable cardinality. We will then use these small cardinality covers to balance the
estimation error and complexity trade-off and thereby achieve (close to) optimal rates of
estimation, in a minimax sense, in appropriate settings.

Prior results that seek to quantity different notions of model complexity typically
produce unsavory statistical risk bounds for two main reasons reasons.

First, the functions classes that are approximated by deep networks are typically not
suited for high-dimensional settings. Indeed, minimax optimal rates for certain smooth
function classes (e.g., Lipschitz, Hölder, Sobolev) degrade either with the number of
inputs per layer, viz., O(n−αd), where αd → 0 as d approaches infinity, or in a similar
way through the depth. Second, the complexity constants often scale exponentially with
the depth or number of units per layer [1, 8, 21, 35, 38], which is problematic for high-
dimensional or very deep networks.

Other works [23,45,46] study the general approximation capabilities of deep networks
using state-of-the-art VC dimension bounds cTL log(T/L) ≤ VCdim(T,L) ≤ CTL log T
for depth L ramp networks, where T is the number of weights. So the VC dimension
is indeed linear in the number of parameters to within a log-factor. These results,
again, when applied to a statistical learning setting, do not satisfactorily showcase the
advantages of these model classes.

Our perspective on function estimation is slightly different than, for example, [41],
who works with a function class known to be rich enough for flexible high-dimensional
modeling, while, at the same time, ensuring its members also admit sparse representa-
tions by deep networks. Even still, associated minimax rates depend in the exponent on
the level of sparsity and smoothness of the target function. Instead, we assume that the
target function is equal to (or approximated well) by a deep network and ask, for such
a family, what is the size of the smallest subfamily with members that can approximate
an arbitrary network within a desired level of accuracy?

To the best of our knowledge, the risk bound here of order [(L3 log d)/n]1/2 is the first
to provide conditions for a fixed rate (1/2) in the exponent while having the numerator
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depend only logarithmically on the number of parameters and as a low order polynomial
in the depth L. These results give conditions such that desirably good performance of
deep networks can be achieved under rather weak conditions on sample size, i.e., n large
relative to L3 log d. Indeed, the effect of L can be benign as many applications involve
depths ranging from 2 or 3 to 22 [42] or, at the extreme end, 152 [24]. On the other hand,
d can be extremely large, possibly in the millions, but thankfully its effect is modulated
by the presence of the logarithm.

This paper is organized as follows. In Section 2, we formally introduce the notation
and language of deep networks used throughout the article. In Section 3, we define new
concepts of variation and average variation for multi-layer networks and subnetworks.
In Section 4 and Section 5, we outline our strategy for constructing and counting the
number of sparse approximants of deep networks. New complexity constants that govern
the quality of the approximation and corresponding metric entropy bounds are defined in
Section 6. The proof of our main result is furnished in Section 7, followed by a discussion
on the multiplicity of representation of a given network function in Section 8 and how
it affects our bounds. We compare our results with related literature in Section 9.
Section 10 presents examples where our complexity constants can be explicitly calculated
and shown to be independent of the depth L and number of inputs per layer d. In
Section 11, we specialize our general treatment of multi-layer networks to the case of
two layers and provide a covering number for a large class of high-dimensional functions.
In Section 12, we use the metric entropy bounds from Section 6 to obtain rates for the
minimax risk and generalization error of deep network function classes. In Section 13,
we show that these rates are close to being minimax optimal. Finally, some additional
examples and proofs of supporting claims are given in Appendix A.

2 Deep Networks

Let f(W,x) be the parameterized family of depth L networks which map input vectors
x of dimension din into output vectors of dimension dout, where f(W,x) either takes the
form W1φ(W2φ(· · ·WL−1φ(WLx))) or the form

φout(W1φ(W2φ(· · ·WL−1φ(WLx)))),

where φout is any Lipschitz(1) function, such as the fully-rectified linear function
φout(z) = sgn(z)min{|z|, 1}, which is applied at the output, and φ is the positive-part
activation function (also known as the ramp function or lower-rectified linear unit or first
order spline basis function with knot at 0) applied at the internal layers. This positive-
part function takes values φ(z) = z+ = max{z, 0} for scalar inputs z. For vector inputs,
our understanding is that φ is the vector-valued function that results from application
of the positive part coordinate-wise (though below we will modify it so that half the
coordinates of φ use the positive part and half use minus the positive part).

There are dℓ units on layer ℓ for ℓ = 0, 1, 2, . . . , L, with d0 = dout on the outermost
layer, and dL = din input units on the innermost layer, where, for analysis convenience,
we are letting ℓ specify the number of layers away from the output. It is typical practice
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to set d1, d2, . . . , dL−1 to be a common (possibly quite large) value d, at least as large
as arising from din and there is the option that these number of units be unconstrained
(constraining only norms on composite weights as we shall see below). The units on
layer ℓ are indexed by jℓ in {1, 2, . . . , dℓ}. Each Wℓ is the dℓ−1 × dℓ matrix of weights
and each matrix entry wjℓ−1,jℓ = Wℓ[jℓ−1, jℓ] is the weight between unit jℓ−1 in layer ℓ
and unit jℓ in layer ℓ, where we drop the index specifying layer ℓ when it is clear from
the indices jℓ. Juxtapositions Wℓφ and WLx denote the product of the weight matrices
with the indicated vectors.

We assume that each coordinate of the input vector x has a bounded range which
we take to be [−1, 1]. There is the freedom that one of the coordinates of x (say the
last coordinate) is always assigned the value −1 so that by choice of the weights we are
adjusting the location of the knot (sometimes called the bias or offset of the unit) as
well as adjusting the coefficients of linear combinations of the non-constant coordinates
of x. Likewise, we can arrange the network so that the last entry of each row of Wℓ

multiplies a constant input, thus providing a freedom of offset of the internal activation
functions. The availability of a constant input node at each layer ℓ can be arranged by
explicit reformulation or by specializing the present formulation, setting the last row of
Wℓ to be 0, except in its last entry.

We focus on the case that dout = 1, though multidimensional outputs can be examined
similarly. In this case, there is but one output index j0 = 1, and W1 is a row vector
of length d1 with entries wj0,j1 = wj1 . Accordingly, for networks of the first form, the
function f(W,x) is

∑

j1

wj1φ
(∑

j2

wj1,j2φ
(∑

j3

wj2,j3 · · ·φ
(∑

jL

wjL−1,jLxjL
)))

.

Each unit computes zjℓ = φ(
∑

jℓ+1
wjℓ,jℓ+1

zjℓ+1
), where zjℓ denotes the output value for

unit jℓ on layer ℓ, as a function of its inputs zjℓ+1
, starting with the innermost layer,

with the convention that zjL is the input coordinate xjL .
An important matter for the generality of representation is the freedom of negative

and positive signs in this representation. For each jℓ we need to be able to accomplish
the same result as if an arbitrary subset of the jℓ+1 contribute negative weights. Instead
of allowing the associated wjℓ,jℓ+1

to be negative, we choose to consider the freedom to
double the set of inputs from layer ℓ + 1 with the first dℓ+1 being positive zjℓ+1

values
and the second dℓ+1 being the corresponding values with a minus sign attached to the
activation. Then, when a term in the sum is to be positive, it is by a selection from the
first half and when a term is to be negative it is by selection from the second half.

We analyze this setting cleanly by generalizing the meaning of φ for vector inputs to
be a vector of twice the length with the positive part function for the first half and minus
that for the second half. Accordingly, the dℓ for ℓ = 1, . . . , L − 1 are taken to be twice
their original values. Likewise, for the inputs, we modify dL to be 2din and generalize
the zjL to match the xjL for the first din of these, and to match minus those values for
the rest.

[For a network with twice the size at each layer to be strictly commensurate with
a network of the original size with this sign-handling convention, it would require a

4



duplication of weights interior to a node and its partner node of opposite sign on each
layer ℓ, as well as an understanding that for the links from layer ℓ at most one of each
node and its partner node can be be non-zero. The strictly commensurate networks are
a subset of the networks considered here in which we do not make the limitations of the
duplication, nor at most one partner non-zero.]

The point of the above arrangements is that we have facilitated analysis of the weights
by probabilisitic methods, by having arranged the wjℓ,jℓ+1

to be nonnegative.

3 Network and Subnetwork Variations

Critical to the analysis of the ramp networks is a homogeneity property. Namely, for
nonnegative w and a vector z of even length, the vector wφ(z) equals φ(wz). Again this
φ(wz) vector has the first half nonnegative and the second half nonpositive. Applying
this homogeneity repeatedly, if one wishes, and allowing weights on internal layers to be
indexed by the output path, one can push all the weights to the innermost layer, such
that

f(W,x) =
∑

j1

φ
(∑

j2

φ
(∑

j3

· · ·φ
(∑

jL

wj1,j2,...,jLxjL
)))

,

with composite nonnegative weights

wj1,j2,...,jL = wj1wj1,j2wj2,j3 · · ·wjL−1,jL .

This representation of f(W,x) may be thought of as an unravelling of the graph of the
network into a tree rooted at the output. It has nodes (at layer ℓ say) indexed by the
sequence j1, j2, . . . , jℓ marking the path from the root to this node. At first glance this
unravelled form may seem surprising. We find this form useful for analysis, even though
the original form is more appropriate for function evaluation. In the above equation, for
each j1, . . . , jℓ−1, the first half of each sum (over indices jℓ) is for positive terms and the
second half is for negative terms. It is valuable to take note that if a weight, wj1 say,
is equal to zero, then the terms are made zero for all multi-indices (j1, j2, . . . , jL) that
share this j1.

The composite weight representation makes apparent some freedom of interlayer
scaling of the weights that preserve the network function f(W,x). In particular, at layer
ℓ = 1, for any j1 and positive cj1 , if wj1 is multiplied by cj1 and wj1,j2 is divided by
the same cj1 , for all j2, then the composite weights are preserved. The same is true
for any node jℓ with 1 < ℓ < L and positive value cjℓ , where for all jℓ−1 and jℓ+1 the
wjℓ−1,jℓ is multiplied by cjℓ and the wjℓ,jℓ+1

is divided by cjℓ . If desired, such function-
preserving modifications can be provided at the nodes in each layer in succession for ℓ
from 1 to L − 1. As we shall see, this interlayer scaling can be used to balance total
weights flowing into and out of nodes, which permits relationship between geometric and
arithmetic forms of total weight variation.

There is freedom to have an auxiliary positive scalar weight wj0 = w0, which can
be regarded as a output layer weight multiplying the final sum, so that the network
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functions f(W,x) we study take the form

wj0

∑

j1

wj1φ
(∑

j2

wj1,j2φ
(∑

j3

wj2,j3 · · ·φ
(∑

jL

wjL−1,jLxjL
)))
,

or the same with φout applied thereto. The corresponding composite weights wj0,j1,...,jL

are the same as the wj1,...,jL above, now with multiplication by wj0 . This wj0 provides
no additional freedom of representation (as its action can be absorbed into W1), yet it
will allow some simplification of expression of our bounds, via a balance between w0 and
the total inner layer weights. Recall that the output node index j0 can take only one
value since we are assuming dout = 1.

We are now set to provide some measures of size of the weights that appear in our
approximation and risk bounds.

Set V = VL(W ) to be the sum of products of the weights across the paths,

V =
∑

j0,j1,...,jL

wj0,j1,...,jL

= wj0

∑

j1,j2,...,jL

wj1wj1,j2wj2,j3 · · ·wjL−1,jL, (1)

which we recognize as being equal to the entry-wise ℓ1 norm of the product of the weight
matricesW0W1 · · ·WL.We call this the variation VL of the depth L network f(W,x). The
variation is similar to the so-called path norm (a group-norm type regularizer [27,36–38]).

There will be a role for the variations of subnetworks, or subnetwork variations. In
particular, let V out

jℓ
= V out

jℓ
(W ), given by

V out
jℓ

= wj0

∑

j1

∑

j2

· · ·
∑

jℓ−1

wj1wj1,j2 · · ·wjℓ−1,jℓ,

be the variation emanating out of node jℓ and let V out
ℓ =

∑
jℓ
V out
jℓ

be the variation for

the subnetwork of dℓ inputs that starts at layer ℓ. Similarly, it is the entry-wise ℓ1 norm
of W0W1 · · ·Wℓ.

Likewise, let V in
jℓ

= V in
jℓ

(W ), given by

V in
jℓ

=
∑

jℓ+1

∑

jℓ+2

· · ·
∑

jL

wjℓ,jℓ+1
wjℓ+1,jℓ+2

· · ·wjL−1,jL ,

be the variation of the subnetwork that terminates at (flows into) node jℓ on layer
ℓ, and let V in

ℓ =
∑

jℓ
V in
jℓ

, which is the entry-wise ℓ1 norm of the matrix product
Wℓ+1Wℓ+2 · · ·WL.

For ℓ = 0 we have V out
0 = w0 and we see that the product of V in

0 and V out
0 is equal

to V . Furthermore, for each ℓ = 0, 1, . . . , L−1, the variation V is a sum of products of
these subnetwork variations

V =
∑

jℓ

V out
jℓ

V in
jℓ
.

6



Similar expressions arise in our analysis. For each layer ℓ = 0, 1 . . . , L−1, we have a sum
of geometric means of the subnetwork variations, and its bound via the arithmetic mean

Vℓ =
V out
ℓ + V in

ℓ

2
.

The average across the layers of the subnetwork variations, denoted by V = V (W ),
is given by

V =
1

L

L−1∑

ℓ=0

Vℓ,

which we call the average variation. Different scalings of the weight matrices result
in various instantiations of the average variation, but we will postpone discussion of

this until Section 8. We similarly define V
out

and V
in

as the average of V out
ℓ and V in

ℓ ,
respectively.

This average variation V is built simply by averaging the subnetwork variations
V out
ℓ and V in

ℓ across the layers, so it built from the same sorts of objects as V itself.
Nevertheless, V arises via products of subnetwork variations as described above, and a
consequent intriguing aspect is that it is the square of the subnetwork value V that is

naturally comparable to V . Indeed, as we shall see, V
2
exceeds V and for our squared

error bounds there will be a role for v = V
√
V which is comparable to, and exceeds, V .

The input variations are related between layers by multiplication by Wℓ+1, yielding
V in
jℓ

=
∑

jℓ+1
wjℓ,jℓ+1

V in
jℓ+1

, and similarly for output variation V out
jℓ

=
∑

jℓ−1
V out
jℓ−1

wjℓ−1,jℓ .

There will be a role for a reduced input variation V in,red
jℓ

=
∑

jℓ+1 6=j∗
ℓ+1

wjℓ,jℓ+1
V in
jℓ+1

in

which the largest term in the sum is removed. We have corresponding values V in,red
ℓ ,

V red
ℓ , V

out,red
, and V

red
, which are defined using V in,red

jℓ
in place of V in

jℓ
.

Our risk and cover bounds are developed for arbitrary network functions of finite

average variation V or V
red

, via composite variations defined by the products v = V
√
V

and vred = V
red√

V . The composite variation of the whole network is controlled if the
sum of the constituent subnetwork variations is controlled. This structural condition fits
with the perspective in engineering that, for a system to exhibit good behavior, each of
its constituent components must also be operating effectively.

It will be seen, via interlayer scaling, that there is a canonical form of the network
function in which, for ℓ = 0, 1, . . . , L−1, at each node jℓ, the V

in
jℓ

matches V out
jℓ

, and

hence V in
ℓ = V out

ℓ = Vℓ. This is analogous to conservation laws for electrical current or
for volumes of fluid flow. A similar canonical form for the reduced variation arranges for
V in,red
jℓ

and V out
jℓ

to match. It can produce smaller bounds, though in this case, there is
less of an analogy with conservation laws.

Arbitrary network functions have multiple representations, and, as we shall see,

among such, the bounds involving V and V
red

, respectively, are optimized by choice
of the respective canonical forms.

Another way of describing the average variation is that it is the entry-wise ℓ1 norm
of the Cesàro average of successive matrix products. In the canonical representation of
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the network weights, this expression has common value

∥∥∥∥∥
1

L

L−1∑

ℓ=0

W0W1 · · ·Wℓ

∥∥∥∥∥
1

=

∥∥∥∥∥
1

L

L−1∑

ℓ=0

Wℓ+1Wℓ+2 · · ·WL

∥∥∥∥∥
1

,

where ‖A‖1 =
∑

j1,j2
|aj1,j2 | for a matrix A with entries aj1,j2 = A[j1, j2]. As will be

discussed further in Section 9 and in Section 10, it is such characterization via norms of
matrix products rather than products of matrix norms that can yield favorable behaviour
of V for possibly large L.

There is a more general notion of variation when d1, d2, . . . , dL−1 are free to be
arbitarily large to achieve accurate approximation to a target function f . In particular,
for a specified distance metric and dL = 2din, and for any function f on [−1,+1]din , we
define its variation VL(f) as the infimum of numbers V such that for every ǫ > 0, no
matter how small, there is a depth L network of this variation V with distance from f
not more than ǫ.

Likewise we take the average variation V L(f) to be the infimum of V such that for
every ǫ > 0, there is a depth L network of such average variation V (and arbitrarily
large d1, d2, . . . , dL−1) with distance from f not more than ǫ. Moreover, the composite
variations v(f) and vred(f), respectively, are defined similarly, as infima of v = V

√
V

and vred = V
red√

V for which there are depth L networks with such composite variations
having arbitrarily small distance from f .

Let a be normalized weights given by

aj1,j2,...,jL =
w0

V
wj1,j2,...,jL,

which can be interpreted as a joint probability distribution on the multi-indices
(j1, j2, . . . , jL), which is nonnegative and sums to 1.

There are three reasons for calling the sum of composite weights V = VL in (1) the
variation of the network. First, it is the total variation (in the probability theory sense)
of the measure W = V a.

Second, there is the calculus notion of the variation of functions of one variable, with
respect to unit step functions, which is generalized in multiple dimensions to variation
with respect to other classes (dictionaries) of bounded functions in [3], also called the
atomic norm of the function with respect to the dictionary [13], taken to be the infimum
of sums of absolute values of weights of linear combinations of dictionary elements for
arbitrarily accurate approximation of the specified function.

The function f(W,x) = V f(a, x) = V
∑

j1
aj1fj1(a, x), as seen below, is V times

a convex combination of functions in the dictionary of depth L − 1 networks, of unit
total weight. Accordingly, VL(f) is the variation of a function f with respect to this
dictionary and V L(f) modifies it appropriately to take into account the functions arising
at intermediate layers as well. These extend the notion of variation from [3–5] for single
hidden-layer networks.

Third, there is the simple notion of variation ±VL as the potential range of a function.
As we will also see below, for x in the unit cube [−1, 1]din the function f(W,x) satisfies
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|f(W,x)| ≤ VL. A set of input values (e.g. among the vertices of this unit cube) is said to
saturate a network with specified weights W if both ±VL are achievable. For networks
that are strictly commensurate with signed weight networks of the original size, to be
saturable, this entails achieving, for some such x, values of fj1(a, x) that are all +1 and
for other such x values of fj1(a, x) that are all −1, for all j1 with wj1 > 0, which, in turn,
is a saturable requirement of subnetworks. Thus VL has an interpretation as the range
of saturable networks. For example, if the input variables are all 1 and if the weights
are zero for the off-set and are non-zero only for the positive activation functions, then
the value of f(W,x) achieves the bound of VL. The value −VL is similarly achievable.
Likewise, the subnetwork variations such as V out

ℓ and V in
jℓ

share this interpretation of
controlling the range of the corresponding subnetwork functions.

Having discussed quantities that measure the variation of a multi-layer network, let
us now show how to construct and count the number of sparse networks that approximate
any other deep network to a desired level of accuracy. We shall see that our notions of
network and subnetwork variation play a crucial role in controlling the quality of the
approximations.

4 Constructing and Counting Sparse Approximants

Let us return our attention to the normalized weights aj1,j2,...,jL interpreted as a joint
probability distribution on the multi-indices (j1, j2, . . . , jL). Let ajℓ,jℓ+1

be the marginal-
ized distribution for the pair jℓ, jℓ+1 obtained by summing out over all the other L− 2
indices. We note that this ajℓ,jℓ+1

is not the same as the normalized wjℓ,jℓ+1
because at

least one of these jℓ, jℓ+1 appear in other factors of the product representation ofW . Let
ajℓ and ajℓ+1|jℓ be the associated marginal and conditional distributions for jℓ and for
jℓ+1 given jℓ induced by this joint distribution, where again we continue the slight abuse
of notation as these distributions are in general not the same across ℓ = 1, 2, . . . , L.

For any fixed jℓ, the wj1,j2,...,jL factors as the product of wj1wj1,j2 · · ·wjℓ−1,jℓ and
wjℓ,jℓ+1

· · ·wjL−1,jL (a conditional independence). One implication is that the sum over
all indices except jℓ likewise factors as the product of V in

jℓ
and V out

jℓ
and hence the

marginals ajℓ may be expressed in terms of the subnetwork variations as

ajℓ = V out
jℓ

V in
jℓ
/V.

One sees that the joint distribution a has a Markov structure (obtained from the
product form of W ), namely,

aj1,j2,...,jL = aj1aj2|j1aj3|j2 · · · ajL|jL−1
.

The interpretation is that with respect to these weights the j1, j2, . . . , jL forms a Markov
chain (with inhomogeneous transitions), here interpreted as starting at the nearly outer-
most index j1 and ending at the innermost index jL. Of course, it is also a Markov chain
starting at a random innermost index and transitioning forward toward the output, in
accordance with a generative model, but we will not use that here. In accordance with
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this representation, we may use the homogeneity of the ramp and write

f(W,x) = V f(a, x),

where
f(a, x) =

∑

j1

φ
(∑

j2

φ
(∑

j3

· · ·φ
(∑

jL

aj1,j2,...,jLxjL
)))

is seen to also have the representation

∑

j1

aj1φ
(∑

j2

aj2|j1φ
(∑

j3

aj3|j2 · · ·φ
(∑

jL

ajL|jL−1
xjL
)))

.

That is, starting from the representation with weight matricesW1,W2, . . . ,WL and using
homogeneity of the ramp, and decomposition of the normalized product representation,
we obtain an iterated expectation representation, interspersed with the nonlinearities.
It is this representation that facilitates our probabilistic method of analysis.

In keeping with our previous notation, the subnetwork output zjℓ at any specified
node jℓ is zjℓ = fjℓ(a, x) given by

φ
(∑

jℓ+1

ajℓ+1|jℓφ
(
· · · φ

(∑

jL

ajL|jL−1
xjL
)))

.

For x in [−1, 1]din the Lipschitz(1) property of the ramp functions (with either the
positive or negative sign) and the fact that the a sums to 1 leads inductively to the
property that f(a, x) is in the interval [−1, 1] and each subnetwork function fjℓ(a, x) in
this representation is also bounded by 1.

This representation is fundamental to our analysis of the size of the class of such net-
works, that determines their statistical learnability, subject to entry-wise ℓ1 constraints
on products of the weight matrices. We use metric entropy to quantify the size of this
class. Namely, we specify a discrete set of parameters ã, providing a cover, determine
the cardinality of this set of networks, and bound the accuracy with which any f(a, x)
is represented by some f(ã, x). The accuracy will be quantified by a bound that holds,
in particular, for all empirical L2 norms on any finite set of data.

We use a trick in which, for any a, we draw representer parameters ã at random from
a finite set we specify and show that the bound holds for the expectation, so accordingly
there exists a representer of that accuracy. The representer set (the cover) is indexed by
a parameter M that controls both the accuracy and the cardinality.

The representers are built from the collection of vectors of nonnegative integers of
specified sum K = (Kj1,j2,...,jL :

∑
j1,j2,...,jL

Kj1,j2,...,jL = M, Kj1,j2,...,jL ≥ 0). The

index set is of size D = DL = d1d2 · · · dL, which is equal to dL, where d = (d1d2 · · · dL)1/L
is the geometric mean of the dℓ. [This geometric mean reduces to the common value of
d1, d2, . . . , dL when they are all equal.] By the stars and bars argument of Feller [19, page
38], the number of such nonnegative integer vectors of specified sumM equals

(M+D−1
M

)
,

which will bound the cardinality of our cover. It has the familiar bounds of (M + 1)D

and DM = dLM , the latter providing a log-cardinality bound of M logD = LM log d.
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There is also the entropic bound that the binary logarithm of
(M+D−1

M

)
is less than

(M+D−1)H(M/(M+D−1)), where H is the binary entropy function. This inequality
is familiar in information theory, see [32, Lemma 8, Page 310], and is a direct consequence
of the Chernoff bound for Bern(1/2) trials, i.e., P [Bin(m,k/m) ≤ k] ≤ 2−mD(k/m||1/2),
where D(k/m||1/2) is the Kullback-Leibler divergence (in bits) between Bern(k/m) and
Bern(1/2). Note that M log(e(1 + (D − 1)/M)) is a further upper bound of (M +D −
1)H(M/(M + D − 1)), to which it is close when D is large compared to M . With M
appearing in the denominator this bound is superior to the M logD bound for M > e.
We also have the sometimes more convenient further bound M log(2eD/M), valid for
D ≥M − 1, again superior to M logD, now for M > 2e.

We will not use fully these vectors of integers, but only the integers Kjℓ,jℓ+1
associated

with indices (jℓ, jℓ+1) that arise by summing out over the other indices. There is a
possibility to find a useful reduction of the log cover-size by considering the collection of
such doubly indexed counts.

The previous results are useful when the dimensions d1, d2, d3, . . . , dL−1 are not ex-
cessively large. Going further, an ideal theory would allow for these dimensions to be
arbitrary. Thankfully, this can be done as we will now discuss.

5 Cardinality Improvement

For the cover from Section 4, there is a reduction in the log cover size accounting that is
available for large d1, d2, . . . , dL−1. In particular we provide improvement when dℓ > 2M .
In the present formulation, at layer ℓ < L, each node appears with marginal weight
ãjℓ = Kjℓ/M , with at most M of the first half and second half of the nodes having non-
zero weight. If dℓ > 2M , then without changing the function f(ã, x), we may eliminate
dℓ − 2M of the zero weight nodes on layer ℓ and reindex those that remain, with a fixed
schematic of M with nonnegative activation and M with nonpositive activation. So the
same functions in the cover are implemented with dnewℓ = min{dℓ, 2M}. Now dnewL =
dL = 2din is unchanged because at the innermost layer we must preserve the identity of
the original input coordinates. The new number of multi-indices is Dnew =

∏L
ℓ=1 d

new
ℓ

which can replace D in the cardinality bounds from Section 4.
The products of minima are not more than the minimum of the products. Thus

Dnew ≤ 2M [min{d̄, 2M}]L−22din where d̄ is the geometric mean of d2, d3, . . . , dL−1.
[In this bound we have replaced the first factor min{d1, 2M} with the bound 2M so
that there is a convenient factor M to cancel inside the log in the M log(2eDnew/M)
bound below.] As before, the log-cardinality of counts with sum M is not more than
M log(e(1 + (Dnew − 1)/M)). This is further bounded by M log(2eDnew/M)). Thus, in
summary, we have shown that the log cardinality of such multi-layer networks is at most

(L−2)M log(min{d̄, 2M}) + M log(8e din).

In particular, no matter how large d1 and d̄ are, the log-cardinality of the set of such
networks is at most

(L−2)M log(2M) + M log(8e din).

11



A minor matter concerns covering networks for which the variation VL(W ) can be less
than a specified value V . In this case, the measure a in the preceding section is a
sub-probability. Fill it out to a probability by arranging a null index for j1, with trivial
subnetwork f0(x) = 0, and assigning it weight on the outer layer 1 of a0 = 1−VL(W )/V .
This increases d1 by one, but does not increase the bound on the size of our cover, which
is independent of d1. Similar arrangements can be made for covering networks for which
subnetwork variations are less than specified values.

6 Main Result

With this setup and notation, our main result is as follows.

Theorem 1. Consider the parameterized family FL,v of depth L network functions with

composite variation V
√
V at most v. There is a subfamily F̃L,v of log-cardinality at most

(L−2)M log(min{d̄, 2M}) +M log(8e din), (2)

such that for any probability measure P on [−1, 1]din and any f(W,x) belonging to FL,v,

there is a sparse approximant f(W̃ , x) in F̃L,v such that

∫
|f(W,x)− f(W̃ , x)|2P (dx) ≤

[
Lv√
M

]2
. (3)

Likewise, for networks with composite reduced variation V
red√

V at most vred, we have
the same log-cardinality of cover (2), and now the accuracy bound

∫
|f(W,x)− f(W̃ , x)|2P (dx) ≤

[
2Lvred√

M

]2
. (4)

Next we state a refinement from which those two approximation bounds are derived.
For each W there is a W̃ in the cover of the given cardinality bound for which

∫
|f(W,x) − f(W̃ , x)|2P (dx)

≤ V

M



L−1∑

ℓ=0

∑

jℓ

√
V out
jℓ

V in
jℓ
σjℓ



2

, (5)

where the σ2j0 = σ2j0,W is the P expectation of the variance of zJ1(a, x) with respect to

the distribution aj1 for J1 in {1, . . . , d1}, the σ2jℓ = σ2jℓ,W is the P expectation of the
variance of zJℓ+1

(a, x) with respect to the conditional distribution ajℓ+1|jℓ for Jℓ+1 given

jℓ, and the V = V (W ), V in
jℓ

= V in
jℓ

(W ) and V out
jℓ

= V out
jℓ

(W ) are, respectively, the full
network and input and output subnetwork variations determined by the weights W .
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The |zjℓ | are not more than 1, so that σjℓ ≤ 1 for all jℓ, and the right side of (5) may
be replaced by

V

M



L−1∑

ℓ=0

∑

jℓ

√
V out
jℓ

V in
jℓ



2

. (6)

The first bound (3) follows from the refinement by using the geometric mean inequality

that
√
V out
jℓ

V in
jℓ

is not more than (1/2)
(
V out
jℓ

+ V in
jℓ

)
.

Likewise, the second bound (4) follows from the refinement using

σ2jℓ ≤
∫ ∑

jℓ+1

ajℓ+1|jℓ

(
zjℓ+1

(a, x)− zj∗
ℓ+1

(a, x)
)2
P (dx),

where for each jℓ the j
∗
ℓ+1 is a nonrandom choice (depending on jℓ) to which it is linked.

A natural choice is the one maximizing wjℓ,jℓ+1
V in
jℓ

, or equivalently maximizing ajℓ+1|jℓ .
This nullifies the contribution to the input variation from this highest weight link to
jℓ which comes from j∗ℓ+1. It leads to V in,red

jℓ
in place of V in

jℓ
. Here we are using that

|zjℓ+1
− zj∗

ℓ+1
| is zero at jℓ+1 = j∗ℓ+1 and is not more than 2 otherwise. It leads to the

bound

V

M


2

L−1∑

ℓ=0

∑

jℓ

√
V out
jℓ

V in,red
jℓ



2

, (7)

with V in,red
jℓ

in place of V in
jℓ

, from which one obtains (4), again by using the geometric
mean inequality.

As a corollary to this theorem, we provide a quantitative bound on the complexity
of the function class FL. First, we require a couple of definitions.

Definition 1. Let P be a probability measure on a measurable space and suppose F is a
family of functions in L

2(P ). A subfamily F̃ is called an ǫ-net for F if for any f ∈ F ,
there exists f̃ ∈ F̃ such that ‖f − f̃‖ ≤ ǫ. The logarithm of the minimum cardinality of
ǫ-nets is called the covering ǫ-entropy of F and is denoted by VF (ǫ).

One immediate corollary of Theorem 1 is a bound on VFL,v
(ǫ), which we state next.

Corollary 1. The covering ǫ-entropy of FL,v is at most

L2v2

ǫ2
[
(L− 2) log(min{d̄, 2L2v2/ǫ2)}) + log(8e din)

]
. (8)

7 Proof of Theorem 1

The randomization argument we use to bound the accuracy of approximation is
as follows. For any specified normalized network parameters a (which accordingly
has the Markov interpretable structure), Let K = (Kj1,j2,...,jL) be distributed as a
Multinomial(M,a). [If a is a subprobability the remaining mass is placed a on null-
sequence with associated zj1 set to be 0 when j1 = 0. Zero values of jℓ for ℓ > 1 only
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co-occur with j1 = 0 and are immaterial to the accounting and to the function eval-
uation.] Sum out over unspecified indices to form pairwise counts Kjℓ,jℓ+1

. We know
that, jointly over choices of jℓ, jℓ+1, these have the Multinomial(M, (ajℓ ,jℓ+1

: (jℓ, jℓ+1) ∈
{1, . . . , dℓ}×{1, . . . , dℓ+1})) distribution. [In the subprobability case the index set for jℓ
is {0, 1, . . . , dℓ} starting at 0.]

We could form ã = K/M as the representer of a. This would be the empirical dis-
tribution (from relative frequencies) corresponding to the counts K that arise when we
draw M independent multi-indices J(m) = (J1(m), J2(m), . . . , JL(m)) from the distri-
bution a. Though drawn from the Markov a, such a joint distribution ã on L indices
would not necessarily have the Markov structure.

Instead, we form ã as the Markov measure on (j1, j2, ...jL) consistent with the pairwise
marginals ãjℓ,jℓ+1

= Kjℓ,jℓ+1
/M . These have individual marginals ãjℓ = Kjℓ/M , and,

conditional distributions ãjℓ+1|jℓ which are defined as Kjℓ,jℓ+1
/Kjℓ when Kjℓ > 0 (and as

0/0 = 0 otherwise).
Accordingly, we have f(ã, x) is equal to

∑

j1

ãj1φ
(∑

j2

ãj2|j1φ
(∑

j3

ãj3|j2 · · ·φ
(∑

jL

ãjL|jL−1
xjL
)))

.

A key step in our analysis is to form the hybrid functions fℓ(ã, a, x) given by

∑

j1

ãj1φ
(∑

j2

ãj2|j1φ
(
· · ·
∑

jℓ

ãjℓ|jℓ−1
φ
(∑

jℓ+1

ajℓ+1|jℓ · · · φ
(∑

jL

ajL|jL−1
xjL
)))

,

which uses ã on the ℓ outermost layers and nonrandom a on the L− ℓ innermost layers.
When ℓ = 1 the tilde is only on the ãj1 values on the outermost layer. When ℓ = 0
we take this function to be f0(ã, a, x) = f(a, x) and when ℓ = L we take it to be
fL(ã, a, x) = f(ã, x).

The error between f(ã, x) and f(a, x) is written as a telescoping sum of (successively
collapsing) differences

f(ã, x)− f(a, x) =

L−1∑

ℓ=0

[fℓ+1(ã, a, x)− fℓ(ã, a, x)]

in which the fℓ+1(ã, a, x) and fℓ(ã, a, x)) differ only on layer ℓ + 1, the former using
ãjℓ+1|jℓ and the later using ajℓ+1|jℓ . The squared error |f(ã, x)− f(a, x)|2 is equal to

∑

ℓ,ℓ′

[fℓ+1(ã, a, x)− fℓ(ã, a, x)][fℓ′+1(ã, a, x) − fℓ′(ã, a, x)].

For any distribution P for X in the cube [−1, 1]din , including, for instance, an empirical
distribution P = Pn on any n data points X1,X2, . . . ,Xn in this cube, we bound the
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L
2(P ) norm square ‖f(ã, ·)−f(a, ·)‖2 =

∫
|f(ã, x)−f(a, x)|2P (dx), by taking the integral

inside the above double sum.
To show there is a choice ã producing a function with desirably small distance from

the function at a, we consider our random ã and bound the expected squared distance
E
[ ∫

|f(ã, x) − f(a, x)|2P (dx)] by also bringing the expectation inside the double sum
and using the Cauchy-Schwarz inequality. Thus we obtain the bound

E
[ ∫

|f(ã, x)− f(a, x)|2P (dx)] ≤
∑

ℓ,ℓ′

rℓr
′
ℓ =

(∑

ℓ

rℓ
)2
,

where

r2ℓ =

∫
E
[
|fℓ+1(ã, a, x)− fℓ(ã, a, x)|2

]
P (dx).

The inequality [
E
[ ∫

|f(ã, x)− f(a, x)|2P (dx)]
]1/2

≤
∑

ℓ

rℓ

may also be seen as a use of the triangle inequality for the indicated L
2 norm (using

joint expectation with respect to the distribution of ã and x), applied to the telescoping
decomposition.

Return attention to the ingredients r2ℓ given above as an integral. Inside the integral
is the expected square of the difference fℓ+1(ã, a, x)− fℓ(ã, a, x) using the distribution of
ã for fixed x.

When ℓ = 0 the difference takes a simplified form, with |f1(ã, a, x)−f0(ã, a, x)| being
equal to

|
∑

j1

(ãj1 − aj1)zj1 |,

where zj1 = fj1(a, x) is the output of the subnetwork terminating at the outermost-layer
node of index j1, where the parameters from its inner layers are from a and the input is
x. For notational conciseness in writing zj1 , we suppress the dependence on a and x. If
there is a Lipschitz(1) activation applied to the final output, then the same expression
arises as a pointwise upper bound on the absolute difference |f1(ã, a, x) − f0(ã, a, x)|.

The sum in this expression is interpretable as a mean-zero average of functions arising
in sampling J1(m) for m = 1, . . . ,M . Indeed, this expression is the same as

∣∣∣∣∣∣
1

M

M∑

m=1

[∑

j1

(1{J1(m)=j1} − aj1)zj1
]
∣∣∣∣∣∣
=

∣∣∣∣∣
1

M

M∑

m=1

(zJ1(m) − µ)

∣∣∣∣∣ ,

where µ =
∑

j1
aj1zj1 , the mean of zJ1 , is merely the value of the function f(a, x). Indeed,

putting in the dependence on x, this µ is
∑

j1
aj1fj1(a, x). Accordingly, the expected

square of this expression, for any fixed x, is simply VAR(zJ1)/M = σ2j0(x)/M where

15



VAR(zJ1) = σ2j0(x) =
∑

j1
aj1(zj1 − µ)2. It has expectation σ2j0/M for x drawn from P .

Consequently, r0 ≤ σj0/M
1/2.

The distribution aj1 in these expressions is the same as aj1|j0 , recalling that condi-
tioning on j0 is degenerate as there is only one outermost node. Use of the subscripts j0
allows the notation for this bound for the outer layer to blend well with what we obtain
for the inner layers.

The variance σ2j0(x) is not more than 1, since the zj1 are bounded by 1, uniformly
in x, which is used in our first bound. It is also not more than the expected square
with µ replaced by any value (any function of x) not depending on j1. One natural
choice is zj∗1 where j∗1 is the index with the largest value of aj1 . This produces the
bound σ2j0(x) ≤ 4

∑
j1 6=j∗

1
aj1 , uniformly in x. In terms of the original weights this yields

σ2j0 ≤ 4V in,red
0 /V in

0 , as used in our second bound, where V in,red
0 =

∑
j1 6=j∗

1
wj1V

in
j1

=

‖W ∗
1W2 · · ·WL‖1 is the reduced input variation, in which W ∗

1 is the row vector of wj1 ,
with nullification of the entry j∗1 which would otherwise provide the largest contribution.

The cases of ℓ = 1, . . . , L − 1 have some similarity of analysis, with an interesting
twist. Repeatedly using the triangle inequality (moving absolute values inside sums)
and the Lipschitz property of φ, one finds that the difference between fℓ+1(ã, x) and
fℓ(ã, a, x) has the following pointwise bound on its absolute value

∑

j1,...,jℓ−1

ãj1,...,jℓ−1
|
∑

jℓ

ãjℓ|jℓ−1

(
φ(z̃injℓ )− φ(zinjℓ )

)
|,

where z̃injℓ is
∑

jℓ+1
ãjℓ+1|jℓzjℓ+1

and its counterpart zinjℓ is
∑

jℓ+1
ajℓ+1|jℓzjℓ+1

, where zjℓ+1
=

fjℓ+1
(a, x) is the output of the indicated intermediate-layer unit when the parameters

from its inner layers are from a and the input is x. The right side of this pointwise bound
simplifies by marginalization to

|
∑

jℓ

ãjℓ
(
φ(z̃injℓ )− φ(zinjℓ )

)
|.

The z̃injℓ as expressed above is a random quantity arising from the counts Kjℓ,jℓ+1
. When

conditioning on Kjℓ , these counts Kjℓ,jℓ+1
for jℓ+1 in {1, . . . , dℓ+1} have a joint multino-

mial distribution of size Kjℓ and parameters (ajℓ+1|jℓ , jℓ+1 ∈ {1, . . . , dℓ+1}). Accordingly,
the z̃injℓ have conditional mean zinjℓ .

[If the conditional mean of the φ(z̃injℓ ) were equal to φ(zinjℓ ) then we could take the

expected square, nullify cross-product terms, and obtain a better risk bound of L2V 2/M .
But the positive part activation function is convex (and minus the positive part is con-
cave) so these conditional expectations are greater or less than the target φ(zinjℓ ) whenever

the conditional distribution of z̃injℓ straddles 0 (the point of nonlinearity of φ). This is a
conditional bias. It is an open question whether a sampling strategy can be arranged to
remove or control this statistical bias in such a way that the expectations of these cross-
terms become zero. In the absence of such refined understanding, we proceed instead as
follows.]
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Apply one more use of the triangle inequality and the Lipschitz property of φ to
bound |fℓ+1(ã, x)− fℓ(ã, a, x)| by the following expression

∑

jℓ

ãjℓ |z̃injℓ − zinjℓ | =
∑

jℓ

ãjℓ |Ujℓ |

where Ujℓ = z̃injℓ − zinjℓ . It is the conditional empirical average
∑
ãjℓ+1|jℓzjℓ+1

minus its

conditional mean zinjℓ =
∑
ajℓ+1|jℓzjℓ+1

and so, for each x, it is equally well expressed as

Ujℓ =
∑

jℓ+1

ãjℓ+1|jℓ(zjℓ+1
− zinjℓ ).

Thus, by the same reasoning as above, the difference Ujℓ is an average of Kjℓ condi-
tionally independent copies of the random variables zJℓ+1

− zjℓ of conditional mean zero
and conditional variance σ2jℓ(x), and hence it has conditional expected square equal to

σ2jℓ(x)/Kjℓ .
Per the expression above, we bound the expected square of |fℓ+1(ã, a, x)−fℓ(ã, a, x)|,

for any given x, by the following

E
[
(
∑

jℓ

ãjℓ |Ujℓ |)2
]
,

which is ∑

jℓ,j
′
ℓ

E
[
ãjℓ ãj′ℓ |Ujℓ | |Uj′

ℓ
|
]
.

We examine the expectation for each jℓ and j′ℓ in {1, . . . , dℓ} by iterated expectation,
conditioning on the values of Kjℓ and Kjℓ

E
[
ãjℓ ãj′ℓ E

[
|Ujℓ | |Uj′

ℓ
|
∣∣Kjℓ ,Kj′

ℓ

]]
. (9)

Recognize that the terms with jℓ = j′ℓ involve the conditional expected square
E
[
(Ujℓ)

2
∣∣Kjℓ

]
.

For the terms with j′ℓ distinct from jℓ, we use that the counts Kjℓ,jℓ+1
determining Ujℓ

are conditionally independent of the corresponding counts determining Uj′
ℓ
, conditional

on the sums Kjℓ and K ′
jℓ
. Hence the expected product factors into the product of

expectations via

E
[
|Ujℓ | |Uj′

ℓ
|
∣∣Kjℓ ,Kj′

ℓ

]
= E

[
|Ujℓ |

∣∣Kjℓ

]
E
[
|Uj′

ℓ
|
∣∣Kj′

ℓ

]
.

Along with the Cauchy-Schwarz inequality applied conditionally, this allows us to
bound (9) by

E
[
ãjℓ ãj′ℓ

√
E[(Ujℓ)

2
∣∣Kjℓ ]E[(Uj′

ℓ
)2
∣∣Kj′

ℓ
]
]
.
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As argued above, the
√
E[(Ujℓ)

2|Kjℓ ] and its counterpart at j′ℓ can be evaluated and

are equal to σjℓ(x)/
√
Kjℓ and σj′

ℓ
(x)/

√
Kj′

ℓ
respectively, for each x. Thus, using the

form of ãjℓ = Kjℓ/M , the iterated expectation has the following bound, for each x,

E


ãjℓ ãj′ℓ

σjℓ(x)σj′ℓ(x)√
KjℓKj′

ℓ


=

σjℓ(x)σj′ℓ(x)

M2
E
[√

KjℓKj′
ℓ

]
, (10)

which, by another application of the Cauchy-Schwarz inequality1, is bounded by

σjℓ(x)σj′ℓ(x)
√
ajℓ

√aj′
ℓ

M
.

Taking the expectation with respect to x drawn according to P , and using Cauchy-
Schwarz yet again yields

σjℓσj′ℓ
√
ajℓ

√aj′
ℓ

M
.

Take the sum over jℓ, j
′
ℓ to obtain the bound on r2ℓ of

1

M

(∑

jℓ

σjℓ
√
ajℓ
)2
. (11)

Thus for ℓ = 1, . . . , L− 1 we have

rℓ ≤
1

M1/2

(∑

jℓ

σjℓ
√
ajℓ
)
.

Including the simpler σj0/M
1/2 bound for the ℓ = 0 case, we have that the expectation

of
∫
|f(ã, x)− f(a, x)|2 P (dx) is not more than

1

M


σj0 +

L−1∑

ℓ=1

(∑

jℓ

σjℓ
√
ajℓ
)


2

.

The minimum over choices of ã is always less than or equal to the expectation. So for for
any normalized weights a there must be a representer ã, and hence for any normalized
L layer network function f(a, x), there is a representer f(ã, x), such that the squared
L
2(P ) norm of the error is not more than this bound.
Let us examine this bound further. Recall the representation of ajℓ as V out

jℓ
V in
jℓ
/V .

To include the output layer term with the others use V out
j0

V in
j0
/V = 1 where the presence

of the Vj0 = w0 permits an arbitrary factoring of V as V out
j0

V in
j0

. Accordingly, we have

the squared L
2(P ) bound on the error between f(ã, x) and f(a, x) of

1

M



L−1∑

ℓ=0

∑

jℓ

(
V out
jℓ

V in
jℓ

/
V )1/2σjℓ



2

.

1Using Jensen’s inequality and the formula for the covariance between two marginals of a multinomial
distribution COV(Kjℓ ,Kj′

ℓ
) = −Majℓaj′

ℓ
, this bound can be improved by a factor of

√

(M − 1)/M .
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Multiplying by V 2 we have the squared error bound between f(W̃ , x) = V f(ã, x) and
f(W,x) = V f(a, x) of

V

M



L−1∑

ℓ=0

∑

jℓ

(
V out
jℓ

V in
jℓ

)1/2
σjℓ



2

.

This is the bound in its refined form from which the other specific bounds (3) and (4)
are obtained.

As we have said, we can use that the σjℓ are not more than 1, along with the
relationship between geometric and arithmetic means, (V out

jℓ
V in
jℓ

)1/2 ≤ (1/2)(V out
jℓ

+V in
jℓ
),

with equality if and only if V out
jℓ

= V in
jℓ

, to obtain the squared L
2(P ) error bound of

L2V V
2

M
.

The bound with V
red

is similar. For each jℓ we identify a linking j∗ℓ+1, and use
zj∗

ℓ+1
in place of the conditional mean of zjℓ+1

in obtaining the bound on σ2jℓ(x) of∑
jℓ+1

ajℓ+1|jℓ(zjℓ+1
−zj∗

ℓ+1
)2, which is not more than 4

∑
jℓ+1 6=j∗

ℓ+1
ajℓ+1|jℓ, uniformly in x,

which provides a bound on σ2jℓ of 4V in,red
jℓ

/V in
jℓ

. This yields the same bounds as before

but with a factor of 4 and V in,red
jℓ

replacing V in
jℓ

.
This completes the proof of Theorem 1.

As we have seen a key quantity arising from the refined form of bounds is the sum
of square roots ∑

jℓ

(
V out
jℓ

V in
jℓ

)1/2
. (12)

We close this section with a comment about how the square of this quantity compares
to the full network variation V . It is seen that it is at least V . Indeed, expansion
of the square of this sum includes at least the terms

∑
jℓ
V out
jℓ

V in
jℓ

which comprise a
representation of V , as well as other possibly non-negligible terms. Accordingly, our
squared error upper bounds (in the case that we replace the σjℓ with 1), in both geometric
and arithmetic forms, are at least as large as L2V 2/M , where we recognize the similarity
with the V 2/M bound that holds in the single hidden-layer case.

8 Optimization of Interlayer Scalings

It may be difficult to assess the size of the sum of geometric means in (12). Accordingly,
the use of the arithmetic mean bound and its resultant subnetwork variation interpreta-
tion is important for examination of the size of the bounds. The idea is that our average
variation bound is good if constituent subnetworks likewise have good bounds.

As we have seen, there is a multiplicity of representation of a given network function,
because it is unchanged if, at any node jℓ, we multiply the input links wjℓ,jℓ+1

by a
positive cjℓ and divide the output links wjℓ−1,jℓ by the same cjℓ , for ℓ = 1, 2, . . . , L−1.
With the introduction of the auxiliary w0 this interlayer scaling invariance holds for ℓ = 0
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as well: for any positive cj0 = c0 the network is unchanged if wj1 is multiplied by c0 and
w0 is divided by c0.

To explore the implications of this multiplicity, consider the refined form of the
approximation error bound with the σjℓ replaced by 1. In this bound we have the

geometric means
√
V out
jℓ

V in
jℓ

of the input and output variations at every node jℓ with

ℓ < L. This geometric mean is invariant to the rescalings of the weights into and out

of this node
√

(V out
jℓ

/cjℓ)(cjℓV
in
jℓ

). As a consequence the refined form of the bound is an

invariant, unaffected by the multiplicities of weight representation.
Yet, for the arithmetic mean bound, it is fruitful to explore the choices that produce

the smallest average variation. For each node, with ℓ < L, the arithmetic mean gives
a family of bounds (1/2)(V out

jℓ
/cjℓ + cjℓV

in
jℓ

) which does depend on the scaling factor.

Each of these produces an approximation bound L2v2/M with v2 = V V
2
depending

on the scaling. Optimizing the scaling factor to produce the smallest such arithmetic

mean bounds for each node yields cjℓ =
√
V out
jℓ

/V in
jℓ

, which equalizes the new input

and output variations cjℓV
in
jℓ

= V out
jℓ

/cjℓ and we denote the resultant common value
Vjℓ . [These equalized variations are unchanged by the adjustments on previous or later
layers because the associated scaling factors and their reciprocals cancel in the products
which are summed to form these subnetwork variations.] The equalizing choices make
the arithmetic means bound match the geometric means. In this way, we have produced
the smallest average variation V among the multiple representation available by such
interlayer rescalings. In brief, the optimized average variation V reproduces the invariant
constructed from the geometric means.

The application of these optimal interlayer scalings at all nodes (past the input
layer) produces what we call canonical weights, which now satisfy the conservation law
V in
jℓ

= V out
jℓ

= Vjℓ, giving rise to V in
ℓ = V out

ℓ = Vℓ, for all ℓ<L. For instance, for ℓ = 0,

matching V out
0 = w0 and V in

0 , which are required to have product V , makes each match√
V . In this canonical case, there is no loss to use the simple average variation form of

the bound as it matches the seemingly more complicated refined bound.

If the cjℓ depend only on the layer ℓ, then the choice cℓ =
√
V out
ℓ /V in

ℓ yields average

variation

1

L

L−1∑

ℓ=0

√
V out
ℓ V in

ℓ .

If the cjℓ are all constant and equal to c, then the choice c =
√
V out/V in produces

average variation
√
V

out
V

in
, or,

√√√√
∥∥∥∥∥
1

L

L−1∑

ℓ=0

W0W1 · · ·Wℓ

∥∥∥∥∥
1

∥∥∥∥∥
1

L

L−1∑

ℓ=0

Wℓ+1Wℓ+2 · · ·WL

∥∥∥∥∥
1

. (13)

Thus, the average variation is a product of Cesàro averages of the subnetwork variations
emanating out of and flowing into the nodes.
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In like fashion, using the bound on σjℓ based on the reduced subnetwork variation,
the resulting composite variation bound is entirely analogous, now with the geometric

means of V out
jℓ

and V in,red
jℓ

. Optimizing V
red

among function-preserving scalings produces

the equalizing case with V out
jℓ

= V in,red
jℓ

.

9 Discussion

In characterizing the sample complexity of multi-layer networks needed for good gen-
eralization, early work centered around their pattern-classifying capacity, or roughly
speaking, the number of sample points whose random assignments to two classes (di-
chotomies) can be implemented by the network. [16, Section VII], [9,17] give bounds on
the capacity that are linear in the total number of weights. Cover [17] also gives an exact
expression for the number of ways N points in d dimensions can be partitioned into two
sets by a single linear threshold, mainly, 2

∑d−1
k=0

(
N−1
k

)
. Using this, he also bounds the

number of networks with step activation functions, having T total number of weights,
that can implement the 2N functions from a pattern set of N vectors into {−1,+1} by
(2N)T , with logarithm T log(2N).

Work such as [2, 6] expressed the risk of discretized multilayer learning network es-
timates in terms of their complexity and approximation tradeoff, shown to be optimal
in general [44], however the approximation tradeoff was only adequately worked out in
cases of one and two hidden-layer networks [4, 5, 7, 14, 15, 26] often with bounds linear
in the input dimension, an exception being the recent work of the authors [29] for one
hidden-layer networks with bounds logarithmic in the input dimension.

Other recent work has focused on bounding the Rademacher complexity or VC di-
mensions of various deep network classes and studying how they can be used to bound
the generalization error or out-of-bag error (known in statistics as regret or excess
risk) [1, 8, 21,35,38]. Typical results are of the following form: given access to a sample
of size n drawn from the network, the generalization error scales as C/√n, where C is
some complexity constant that depends on the parameters of the network. Typically,
C has exponential dependence on L, either indirectly through some (possibly weighted)
product of norms

∏L
ℓ=1 ‖Wℓ‖ of the weight matrices Wℓ across the layers ℓ = 1, 2, . . . , L,

or directly as cL for some positive constant c > 1 (in addition to polynomial factors in L
or logarithmic factors in d1, d2, . . . , dL). Notably, the work of [21] manages to avoid this
direct dependence on L by controlling various Schatten norms2 of the weight matrices.

Perhaps most relevant to our work is [8, Theorem 3.3], which gives an ǫ-covering
entropy bound for depth L networks (with respect to the empirical measure on n data

2The p-Schatten norm of a matrix is the ℓp norm of its singular values.
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points X = (X1,X2, . . . ,Xn) ∈ R
din×n) of3

‖X‖22 log(max1≤ℓ≤L dℓ)

ǫ2

(
L∏

ℓ=1

‖Wℓ‖2σ

)


L∑

ℓ=1

(‖Wℓ‖2,1
‖Wℓ‖σ

)2
3




3

, (14)

where ‖Wℓ‖σ and ‖Wℓ‖2,1 =
∑

jℓ−1

√∑
jℓ
w2
jℓ−1,jℓ

are the the spectral4 and (2, 1) group

norms of a matrix, ‖X‖2 =
√

1
n

∑n
i=1 ‖Xi‖22. Since ‖Wℓ‖2,1 ≥ ‖Wℓ‖σ , it follows that

(14) is at least

L3‖X‖22 log(max1≤ℓ≤L dℓ)

ǫ2

(
L∏

ℓ=1

‖Wℓ‖2σ

)
. (15)

Extensions of these covering bounds to more general matrix norms are given in [8, Ap-
pendix A.5], but they still depend multiplicatively on the depth L according the product
of the individual norms of the weight matrices. Their proof relies on a matrix covering
bound for the affine transformation of each layer via Jones-Barron sparsification and then
an inductive argument on the layers to give a covering bound for the whole network.

We see three major advantages of (8) over (15).

1. First, our bound depends only on d1, d2, . . . , dL through

(L− 2) log(min{d̄, 2L2v2/ǫ2}) + log(8e dL),

with d̄ ≤ max{d2, . . . , dL−1}, whereas (15) depends on them more strongly via

L log(max{d1, d2, . . . , dL}),

most noticeably when d1, d2, . . . , dL−1 are larger than 2L2v2/ǫ2. In particular, our
bound is completely independent of the penultimate layer dimension d1.

2. Second, the factor
∏L

ℓ=1 ‖Wℓ‖2σ in (15) results from creating a net for each layer
inductively. In contrast, our technique relies on the probabilistic method by sam-
pling M random paths simultaneously from a distribution that incorporates inter-
actions across successive layers. In the canonical representation of the network,
the average variation V is the entry-wise ℓ1 norm of the Cesàro average of suc-
cessive matrix products W0W1 · · ·Wℓ and Wℓ+1Wℓ+2 · · ·WL. So V can be thought
of as a norm of a matrix product, whereas

∏L
ℓ=1 ‖Wℓ‖σ is a product of matrix

norms. There may be instances where V depends only polynomially on L, whereas∏L
ℓ=1 ‖Wℓ‖σ may grow exponentially (as is the case when each ‖Wℓ‖σ is greater

than 1).5 See also (A.3) and (A.5) in Appendix A for bounds on the entry-wise ℓ1

3In that paper, the network is multi-output and hence the penultimate layer weights W1 form a d0×d1
matrix instead of a d1-dimensional row vector. Nevertheless, for comparison, we treat ‖W1‖σ as the ℓ1

norm of the row vector W1.
4The spectral norm of Wℓ is the square root of the largest eigenvalue of W⊤

ℓ Wℓ.
5Incidentally, in [8, Section 4], the authors pose the question of whether there are better choices of

norms that would yield smaller complexity constants.
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norms of W2W3 · · ·Wℓ and Wℓ+1Wℓ+2 · · ·WL in terms of ‖W2‖σ‖W3‖σ · · · ‖Wℓ‖σ
and ‖Wℓ+1‖σ‖Wℓ+2‖ · · · ‖WL‖σ, respectively. These inequalities also show that
the average variation is controlled whenever the product of the matrix norms is,
but not necessarily the other way around. We will explore this matter further in
Section 10.

Finally, let us mention that because of the equivalence of norms, the entry-wise
ℓ1 matrix norm of a product can be bounded by the product of other individual
matrix norms. Taken together, these facts imply that the product of the weight
matrices is a fundamental quantity, from which other bounds in the literature can
be obtained.

3. Finally, they assume that the ℓ2 norm of the data matrix ‖X‖2 scales as some
constant B, independent of din, (to avoid dimension dependence like, say,

√
din)

necessitating that most of the coordinates of each data vector are of order 1/
√
din.

Our fixed-width hypercube input domain fits more comfortably within the realm of
natural data-generating distributions encountered in high-dimensional data mod-
eling.

We have seen how the complexity constants in our approximation bounds involve the
subnetwork variations through their average. In the next section, we give some insights
into how this quantity behaves for various choices of weight matrices.

10 Example Average Variation Calculations

In Section 9, we briefly mentioned the advantages of the average variation over other mea-
sures of network complexity, defined through products of norms of the individual weight
matrices. The average variation is defined through a product of matrices and hence it is
not hard to see that there may be cases where the norm of product of matrices is signif-
icantly smaller than the product of norms of the individual matrices. Characterization
of the growth of a matrix product can be accomplished by either studying conditions
on the individual matrices or more global measures on the entire product. To the first
point, by (A.1) in Appendix A, we have

‖W1W2 · · ·Wℓ‖1 ≤ ‖W1‖1‖W2 · · ·Wℓ‖1,∞,

where ‖A‖1,∞ = maxj1
∑

j2
|aj1,j2 | is the induced norm of a matrix A. Likewise, by (A.2)

in Appendix A, we could give a further bound of

‖W1‖1‖W2‖1,∞ · · · ‖Wℓ‖1,∞, (16)

however, we would not want to do so if each factor were larger than numbers near 1 (or,
equivalently, if some of the row sums of the weight matrices were larger than numbers
near 1), as the resulting product could be large. Likewise, by (A.4) in Appendix A, we
can bound ‖Wℓ+1Wℓ+2 · · ·WL‖1 by

‖Wℓ+1‖1‖Wℓ+2‖1 · · · ‖WL‖1, (17)
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although we also may not want to for the same reason. In summary, it is better to convey
size through norms of products rather than products of norms.

Inequalities (16) and (17) reveal that the composite variation can be controlled via
the maximum row sums or the entry-wise ℓ1 norms of the weight matrices. On the other
hand, these criteria may be too crude and more refined calculations may be necessary.
Let us investigate a few of these situations in the sequel.

The study of the size of products of matrices is facilitated by eigen-decomposition.
The role of eigen-decomposition is most apparent in the case of matrices with common
eigenvectors, as then the eigenvalues of the product are the product of the eigenvalues.
Moreover, the eigenvector with the largest product of eigenvalues controls the size of
the resulting product. For example, if each intermediate layer weight matrix is Toeplitz,
with the Wℓ[j, k] depending only on j and k through the difference j − k, (as in the
case of a class of convolutional networks), then by Szegö’s limit theorem [10, Theorem
5.10], asymptotically, the discrete Fourier basis provides a common eigen-structure and
the product of the weight matrices is indeed controlled by the product of the Fourier
coefficients as eigenvalues. Or even more simply, if the weight matrices Wℓ = Q were
the same across the intermediate layers, then the shared eigenvector property would be
automatic, and the size of the product would be controlled by the size of the largest
eigenvalue. Some examples are given in Appendix A.

Let us now give a concrete example in which the average variation is bounded by a
constant, independent of L, but the product of individual matrix norms grows exponen-
tially with L. This example further elucidates the advantages that the average variation
has over other measures of network complexity, defined through such products of norms
of the weight matrices [8, 21,35].

In this simple example we have in mind, the Wℓ are chosen to be constant across
each layer and equal to a square matrix Q with nonnegative entries. If ‖Q‖ > 1, then∏L

ℓ=1 ‖Wℓ‖ = ‖Q‖L increases exponentially with L, even though the maximum eigenvalue
of Q may be less than or equal to 1, which is the criterion for stable matrix products
and hence stable average variation.

Moreover, since the maximum eigenvalue of Q is bounded by any sub-multiplicative
matrix norm6, it follows that V is bounded by a constant, independent of L, whenever∏L

ℓ=1 ‖Wℓ‖ is, i.e., when ‖Q‖ ≤ 1, but not the other way around, as the following example

clarifies. Let Q =

[
t t(1− t)/s
s 1− t

]
for t ∈ [0, 1] and s > 0 and also let W0W1 =

[
1 1

]
.

It is easily verified that Q is a projection matrix and so by Example B in Appendix A,

V ≈
√
W0‖W1Q‖1‖Q‖1 = 1 + s+

t(1− t)

s
.

But if ‖ · ‖ is the spectral norm or any Schatten norm (which includes the nuclear and
Frobenius norms as special cases), then

‖Q‖2 = ((t− 1)2 + s2)(1 + (t/s)2) > 1,

6A matrix norm ‖ · ‖ is sub-multiplicative if it satisfies ‖A1A2‖ ≤ ‖A1‖‖A2‖ for any matrices A1 and
A2.
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whenever s2 6= t(1− t).

As an aside, note that ‖Q‖1,∞ = max
{
t+ t(1−t)

s , s+ 1− t
}
> 1 whenever s 6= t and

‖Q‖1 > 1. Thus, using the product of the individual entry-wise ℓ1 norms ofWℓ to bound
the average variation (as in (16) and (17)) would also lead to undesirable exponential
dependence on the depth L.

When more realistically, the Wℓ have distinct eigen-structures across the layers ℓ,
then there is no shared basis for exact quantification of size via eigenvalues. Nevertheless,
products of the maximal eigenvalues can be used as a bound on the variation [18], and
aid in the comparison with what others have done, as explained in Section 9.

10.1 Reduced Variation

It can be important to use the reduced variation instead of the full variation. As a simple
example, suppose each weight matrix Wℓ is equal to the identity matrix Idin , except for
the final row vector W1 which takes a linear combination of the inputs. Then an easy
calculation (see Example B in Appendix A) reveals that V

out
= 1

LW0 +
L−1
L W0‖W1‖1

and V
in

= 1
L‖W1‖1 + L−1

L din, and hence in accordance with the form (13), the average
variation is √(

1

L
W0 +

L− 1

L
W0‖W1‖1

)(
1

L
‖W1‖1 +

L− 1

L
din

)
. (18)

In this case, the average variation is of order
√
din, which is problematic if din is large.

We can overcome this by using the reduced average variation V
red

, whereby we
eliminate the weights of the diagonal cross links, i.e., wjℓ,j

∗
ℓ+1

, where jℓ = j∗ℓ+1. Thus, in

effect, we may replace Wℓ+1 by a hollow matrix W ∗
ℓ+1 =Wℓ+1− diag(Wℓ+1) and instead

consider the variation associated with Wℓ+1 − diag(Wℓ+1). We proceed by eliminating
the diagonal weights of Wℓ+1. Returning to our example, the reduced average variation

V
red

is √(
1

L
W0 +

L− 1

L
W0‖W1‖1

)(
1

L
‖W1‖1

)
,

which is independent of din.
Similar conclusions also hold if each Wℓ = Idin + Qℓ, ℓ = 2, 3, . . . , L, is near the

identity matrix, in which the products are controlled by sums of the perturbations from
the identity (the perturbation matrices Qℓ have non-negative entries). One can expand
the product of these sums of identity matrix plus small perturbation matrix as follows:

Wℓ+1Wℓ+2 · · ·WL = Idin +

L−ℓ∑

k=1

∑

ℓ1,ℓ2,...,ℓk

Qℓ1Qℓ2 · · ·Qℓk , (19)

where the second sum runs over all distinct k-tuples (ℓ1, ℓ2, . . . , ℓk) from {ℓ + 1, ℓ +
2, . . . , L}. The entry-wise ℓ1 norm of this product is easily seen to be

din +
L−ℓ∑

k=1

∑

ℓ1,ℓ2,...,ℓk

‖Qℓ1Qℓ2 · · ·Qℓk‖1.
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As with (18), we also see that this would lead to average variation of order
√
din. Again,

luckily, this strong dimension dependence can be avoid by working with the reduced
variation, which has the effect of removing the identity matrix from the decomposition
(19).

Suppose
∑L

ℓ=1Qℓ has entry-wise ℓ1 norm bounded by S. In this case, note that by
(A.4) in Appendix A, each term ‖Qℓ1Qℓ2 · · ·Qℓk‖1 is bounded by ‖Qℓ1‖1‖Qℓ2‖1 · · · ‖Qℓk‖1
and hence,

L−ℓ∑

k=1

∑

ℓ1,ℓ2,...,ℓk

‖Qℓ1Qℓ2 · · ·Qℓk‖1

≤
L−ℓ∑

k=1

∑

ℓ1,ℓ2,...,ℓk

‖Qℓ1‖1‖Qℓ2‖1 · · · ‖Qℓk‖1

=

L−ℓ∏

k=1

(1 + ‖Qk‖1)− 1 ≤ exp

{
L−ℓ∑

k=1

‖Qk‖1
}

≤ eS . (20)

Now, if W ∗
ℓ+1 = Wℓ+1 − diag(Wℓ+1) = (Qℓ+1 − diag(Qℓ+1)), then multiplying (19)

(when ℓ is replaced by ℓ+ 1) by W ∗
ℓ+1 leads to the expansion

W ∗
ℓ+1Wℓ+2 · · ·WL = (Qℓ+1 − diag(Qℓ+1))+

L−ℓ−1∑

k=1

∑

ℓ1,ℓ2,...,ℓk

(Qℓ+1 − diag(Qℓ+1))Qℓ1Qℓ2 · · ·Qℓk , (21)

where the second sum runs over all distinct k-tuples (ℓ1, ℓ2, . . . , ℓk) from {ℓ + 2, ℓ +
3, . . . , L}. Using the inequality ‖(Qℓ+1 − diag(Qℓ+1))A‖1 ≤ ‖Qℓ+1A‖1 for any matrix
A with nonnegative entries, it is seen that (20) bounds the ℓ1 norm of (21). Hence we
obtain

V
in,red ≤ 1

L
‖W1W2 · · ·WL‖1 +

L− 1

L
eS .

By (A.1) in Appendix A, ‖W1W2 · · ·WL‖1 is further bounded by
‖W1‖1‖W2‖1,∞ · · · ‖WL‖1,∞. Furthermore, each ‖Wℓ‖1,∞ is equal to 1 + ‖Qℓ‖1,∞,
which is also bounded by 1 + S, per our assumptions on Qℓ. This shows that
‖W1W2 · · ·WL‖1 is at most ‖W1‖1

∏L−ℓ
k=1(1 + ‖Qk‖1,∞) ≤ ‖W1‖1eS . Hence we obtain

V
in,red ≤ ‖W1‖1

L
eS +

L− 1

L
eS .

Using the same reasoning for W0W1 · · ·Wℓ, we can bound V
out

by 1
LW0 +

1
LW0‖W1‖1 +

L−2
L W0‖W1‖1eS ≤ 1

LW0+
L−1
L W0‖W1‖1eS . Plugging in the relevant expressions for V

out

and V
in,red

into V =
√
V

out
V

in,red
, we obtain a final bound on V of

√
W0

L
+
L− 1

L
W0‖W1‖1eS

×
√

‖W1‖1
L

eS +
L− 1

L
eS , (22)
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which does not depend explicitly on din.
Uniform perturbations from the identity can be imposed if the entry-wise ℓ1 norm of

each Qℓ is at most 1/L. This yields S = 1. However, the perturbation matrix Qℓ should
have the flexibility to be smaller for inner layers and larger for outer layers. To this end,
suppose that Qℓ = cℓQ̃ℓ for some positive sequence cℓ that tapers to zero and ‖Q̃ℓ‖1 ≤ 1.
It follows that S is at most

∑L
ℓ=1 cℓ.

Mild growth of the average variation is permitted if the cℓ are harmonic weights 1/ℓ.
In this case, eS ≤ L, so for these specifications, the average variation bound (22) assumes
the form √(

W0

L
+ (L− 1)W0‖W1‖1

)
(‖W1‖1 + L− 1).

In the next section, we analyze networks with only a single hidden layer. Because
a large body of work has been devoted to studying what types of functions are well-
approximated by them, we are able to provide covering entropy bounds for a very large
class of high-dimensional functions.

11 Specialization to Two-layer Networks

Let us now consider a simple case of particular interest. When L = 2, the network
functions have the form

f(W,x) =
∑

j1

wj1φ(
∑

j2

wj1,j2xj2). (23)

These functions are single-hidden layer networks with ramp activation functions.
It is known that if a general function f admits a Fourier representation f(x) =∫
R
din

e2πi〈x,ω〉F(f)(ω)dω on [−1, 1]din , then the spectral condition

Cf,2 ,

∫

R
din

‖ω‖21|F(f)(ω)|dω < +∞,

is sufficient to ensure that it can be well-approximated by a network of the form (23).
More precisely, there exists W with W0 = Cf,2, ‖W1‖1 ≤ 1, and ‖W2‖1,∞ ≤ 2, such that
the squared L

2(P ) distance between f(W,x) and f(x) − f(0) − 〈x,∇f(0)〉 is less than
16C2

f,2/d1 [28], [11, Theorem 3]. These weight matrices produce subnetwork variations

V out
1 = 1

2(W0 +W0‖W1‖1) and V in
1 = 1

2 (‖W1W2‖1 + ‖W2‖) bounded by Cf,2 and d1 +
1 ≤ 2d1, respectively, and variation V = W0‖W1W2‖1 bounded by 2Cf,2. Hence, the

composite variation V
√
V =

√
V

out
V

in
V is bounded by 2Cf,2

√
d1.

Furthermore, by Theorem 1, for this f(W,x) there exists another approximant

f(W̃ , x) from a subcollection of log-cardinality at most M log(8e din) such that the

squared L
2(P ) distance between f(W,x) and f(W̃ , x) is at most 16d1C

2
f,2/M . By the

triangle inequality, if f(0) = 0 and ∇f(0) = 0, we have

‖f − f(W̃ , ·)‖ ≤ ‖f − f(W, ·)‖ + ‖f(W, ·) − f(W̃ , ·)‖

≤
√

16C2
f,2/d1 +

√
16d1C

2
f,2/M.
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Let d1 =
√
M and ǫ = 8Cf,2/M

1/4, so that ‖f − f(W̃ , ·)‖ ≤ ǫ. If Fv is the set of all
functions f with Cf,2 ≤ v, then the previous argument shows that

VFv(ǫ) ≤
8v4

ǫ4
log(8e din). (24)

The collection Fv can also be viewed as the closure of the convex hull class of F2, v′ ,
for some composite variation v′ equal to a multiple of v. There has been a long history in
obtaining entropy covering bounds for these function classes — the best available bound
is from [33, Theorem 2.1(1)], which states that there exists a universal constant C > 0
such that

VFv(ǫ) ≤ Cdin(v/ǫ)
2−4/(din+2). (25)

When din is large relative to v2/ǫ2, as would be the case in a high-dimensional setting,
we see that (25) is inferior to (24).

In the next section, we apply our covering entropy bounds to obtain risk bounds for
deep network function classes. As we will see, these risk bounds turn out to be governed
by the aforementioned (1/2) exponent from Section 1.

12 Implications for statistical learning

Statisticians and applied researchers are frequently concerned with predicting a response
variable at a new input from a set of data collected from an experiment or observational
study. Data are of the form Dn = {(Xi, Yi)}ni=1, drawn independently from an unknown
joint distribution PX,Y on [−1, 1]din ×R. The target function is f(x) = E[Y |X = x], the
mean of the conditional distribution PY |X=x , optimal in mean square for the prediction
of future Y from corresponding input X. In some cases, assumptions are made on the
error of the target function εi = Yi − f(Xi) (i.e., bounded, Gaussian, sub-Gaussian, or
sub-exponential).

From the data, estimators f̂(x) = f̂(Dn, x) are formed and the loss at a target f is
the L

2(PX ) square error ‖f − f̂‖2 and the risk is the expected squared error E‖f − f̂‖2.
For any class of functions F on [−1, 1]din , the minimax risk is

Rn(F) = inf
f̂

sup
f∈F

E‖f − f̂‖2, (26)

where the infimum runs over all estimators f̂ of f based on the data Dn.
For Gaussian errors ε = Y − f(X), [44] exploits the fact that the Kullback-Leibler

(K-L) divergence between PX,Y and PX,Y ′ , with Y ′ = g(X) + ε, is equivalent to the
squared L

2(PX) distance between f and g. This useful observation establishes a direct
link between function and density estimation. Their estimation scheme is as follows.
First, a joint density p̂n(x, y) is estimated, having the form ĥ(y|x)P (dx), where ĥ(y|x) is
an estimate of the conditional density of Y given X. Then the regression estimate f̂(x) is
set to be the minimizer over all z of the Hellinger distance between ĥ(·|x) and a normal
density with mean z and variance VAR(ε|x). It is finally shown that the maximum
squared L

2(PX) risk for f̂ is upper bounded by a constant multiple of the Bayes average
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redundancy for the model. Using the fact that the Bayes mixture density minimizes
the average K-L divergence over all choices of densities, the redundancy can be further
bounded by a multiple of ǫ2n, where VF(ǫn) ≍ nǫ2n. Thus, we can deduce the following
results from [44] and the ǫ-covering entropy bounds (8) and (24) by solving VF (ǫn) ≍ nǫ2n
for each function class F .

For the next set of results in Theorem 2 and Theorem 3, we consider estimation
of network functions subjected to Gaussian noise N(0, σ2). The more general cases of
bounded, sub-Gaussian, and sub-exponential errors can be handled by large deviation
theory, although we do not present it here.

We first present a risk bound for two layer networks in Section 12.1 followed by a
corresponding result for multi-layer networks in Section 12.2.

12.1 Two-layer Networks

For the next result, let Gv denote the collection of all functions in Fv with L
∞ norm at

most B. We also define G∞ =
⋃

v>0 Gv.

Theorem 2.

Rn(Gv) ≤ C

(
v4 log(8e din)

n

)1/3

, (27)

for some positive constant C that depends only on B and σ2.

Remark 1. Using the alternative covering entropy bound in (25) yields

Rn(Gv) ≤ Cv
din

din+1

(
din
n

)1/2+1/(2(din+1))

,

for some positive constant C that depends only on B and σ2. For large din, this bound
is roughly equal to v(din/n)

1/2, and hence we see that (27) is superior roughly when
din > (nv2)1/6.

Remark 2. Compare the rate in Theorem 2 with the more familiar

v

(
din log(en/din)

n

)1/2

(28)

from [5, Theorem 3]. There are two main differences — (I) it is only valid for n mod-
erately large compared to din (whereas Theorem 2 is valid for either regime) and (II) it
is for the class of all functions satisfying

Cf,1 ,

∫

R
din

‖ω‖1|F(f)(ω)|dω ≤ v < +∞,

which is a weaker requirement than Cf,2 ≤ v < +∞ since Cf,1 ≤
√
Cf,2 ‖

√
|F(f)|‖ by

the Cauchy-Schwarz inequality.
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Remark 3. The rate in Theorem 2 is akin to those obtained in [39, Theorem 4] or [40,
Theorem 3.2] for squared-error prediction in high-dimensional linear regression with ℓ1

controls on the parameter vectors. However, there is an important difference — the
richness of Gv is largely determined by the variation through v and therefore it more
flexibly represents a larger class of functions, far beyond the rigidity of linear.

Remark 4. The same rate in (27) is available from an adaptive risk bound which holds
for estimators that minimize the penalized empirical risk over a finite ǫn-cover UG∞(ǫn)
of G∞, i.e., when f̂ satisfies (or approximately satisfies via a greedily obtained variant)

1

n

n∑

i=1

(Yi − f̂(Xi))
2 + C

4/3

f̂ ,2
ψ1/3
n ≤

inf
g∈UG∞ (ǫn)

{
1

n

n∑

i=1

(Yi − g(Xi))
2 + C

4/3
g,2 ψ

1/3
n

}
, (29)

where ψn ≍ (log(e din))/n.
In this case, f̂ has the following adaptive risk bound:

E

[
‖f̂ − f‖2

]
≤ inf

g∈G∞

{
‖g − f‖2 + C

4/3
g,2 ψ

1/3
n

}
.

If the penalized empirical risk minimization (29) is performed over the entire space
G∞, it can be shown using the covering entropy in (24) and techniques from [29] that the

risk has penalty Cg,2 ψ
1/4
n , and consequently worse rate, with exponent (1/4) instead of

(1/3).

12.2 Multi-layer Networks

For multi-layer networks, we let GL,v be the set of all function in FL,v with L
∞ norm at

most B. We also define GL,∞ =
⋃

v>0 GL,v. The next set of results bound the risk for
the function class GL,v.

Theorem 3.

Rn(GL,v) ≤ CLv

(
(L− 2) log(d̄) + log(8e din)

n

)1/2

,

where C is a positive constant that depends only on B and σ2. A bound that is indepen-
dent of d̄ is also available, viz.,

Rn(GL,v) ≤ CLv

(
(L− 2) log(v

√
n) + log(8e din)

n

)1/2

,

where C is a positive constant that depends only on B and σ2.

These results are surprising, since they show that the effect of large depth L and
interlayer dimensions d1, d2, . . . , dL are relatively harmless and benign, even for modest
sample sizes. That is, aside for the composite variation v, the minimax risk scales as the
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previously advertised rate of [(L3 log d)/n]1/2, where d is the maximum input dimension
of the layers. This may explain why the performance of deep networks does not seem to
be hindered by their highly parameterized structure. Also important to notice is that the
rate in the exponent (1/2) does not degrade with the input dimension or other network
parameters. What does matter is the average variation, which, as we have argued, can
be controlled in many situations.

12.3 Adaptive Risk Bounds

All the multi-hidden-layer-network risk bounds we have stated thus far are derived from
non-adaptive estimators. Let us briefly make a statement about adaptive risk bounds. It
can be shown using techniques from [29] that if f̂ is a penalized estimator with penalty
defined through the “smallest” composite variation v(f) (or reduced composite variation
vred(f)) among all representations of a network f ,

1

n

n∑

i=1

(Yi − f̂(Xi))
2 + v(f̂)ψ1/2

n ≤

inf
g∈UGL,∞

(ǫn)

{
1

n

n∑

i=1

(Yi − g(Xi))
2 + v(g)ψ1/2

n

}
,

where ψn ≍ (L−2) log(d̄)+log(8e din)
n , then

E

[
‖f̂ − f‖2

]
≤ inf

g∈GL,∞

{
‖g − f‖2 + v(g)ψ1/2

n

}
.

An important aspect of the above adaptive risk bound is that f need not belong to
GL,∞. The only requirement is that it is well-approximated by certain members of GL,∞.

12.4 Rademacher Complexity and Generalization Error

Because of the close connection between covering entropy and generalization error, our
covering entropy bounds can also be used to improve the aforementioned generalization
bounds in the literature (see Section 9). To be more specific, for a class of functions F
and data Dn = {(Xi, Yi)}ni=1, define the empirical Rademacher complexity as R̂(F) =
Eσ

[
supf∈F

1
n

∑n
i=1 σif(Xi)

]
, where σ = (σ1, σ2, . . . , σn) is a sequence of iid random

variables that assume the values ±1 with equal probability. Then by [8, Lemma A.5],
we can use a refined version of the standard Dudley entropy integral approach to bound
the empirical Rademacher complexity via

R̂(GL,v) ≤ inf
α≥0

(
4α+ 12

∫ supf∈GL,v
‖f‖

α

√
VGL,v

(ǫ)

n
dǫ

)
.

Next, using (8) with metric space L
2(Pn), we have that

∫ supf∈GL,v
‖f‖

α

√
VGL,v

(ǫ)dǫ is at

most
∫ B

α

√
L2v2[(L− 2) log(min{d̄, 2L2v2

ǫ2
}) + log(8e din)]

ǫ2
dǫ.
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This integral is less than

∫ B

α

√
L2v2[(L− 2) log(min{d̄, 2L2v2

α2 }) + log(8e din)]

ǫ2
dǫ,

which equals

log(Bα )

√
L2v2[(L− 2) log(min{d̄, 2L2v2

α2 }) + log(8e din)].

Finally, choose α to be proportional to 1/
√
n. Thus, there exists a constant C > 0

that depends polylogarithmically on B such that R̂(GL,v) is at most

CLv(log n)

√
(L− 2)log(min{d̄, 2L2v2n}) + log(8e din)

n
.

Using standard techniques [34], it is possible to convert these bounds into bounds on the
generalization error, which are similar in form.

More recently, [1, Theorem 4.1] used a compression approach to prove that the gen-
eralization error is of order7

√
L2K2B2 log(max1≤ℓ≤L dℓ)

∑L
ℓ=1

1
µ2
ℓ
µ2
ℓ→

n
, (30)

where B is a bound on the L
∞ norm of the networks, µℓ is a “layer cushion”, µℓ→ is an

“interlayer cushion”, and K is an “activation contraction” coefficient. Since they take
µℓ→ to be at most 1/

√
dℓ, it follows that (30) is at least

√
L2K2B2 log(max1≤ℓ≤L dℓ)

∑L
ℓ=1

dℓ
µ2
ℓ

n
.

Here again we find that the bounds depend more strongly on the interlayer dimensions
than ours do. Because it is possible for ramp networks to achieve their variation V at
some input (i.e., saturable networks), we can think of B here as corresponding to a bound
on the variation of the networks.

One question the curious reader may ask is whether it is possible to improve Theo-
rem 2 or Theorem 3. We will now show that the exponent (1/3) from Theorem 2 is not
improvable beyond (1/2), in a minimax sense.

13 Optimality

We now show that the minimax risk from Theorem 2 is nearly optimal, up to a polynomial
factor in v. Using the fact that ramp functions are invariant under composition, φ(z) =

7We ignore some unrelated logarithmic terms and, as before, treat the network as single-output, even
though the multi-output case was considered in the paper.
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φ(φ(z)) for all real z, the constructions used for the following lower bound can easily be
adapted to give corresponding statements for depth L networks.

Below we give an improvement of a minimax lower bound that first appeared in
the authors’ conference paper [30, Theorem 1]. For completeness, we reproduce the
argument, but tailored to our setting.

Theorem 4. Consider the model Y = f(X) + ε for f ∈ Gv, i.e., Cf,2 ≤ v and the L
∞

norm of f is at most B, where ε ∼ N(0, σ2) and X ∼ Uniform([−1, 1]din ). If din is large
enough so that

din > cA(n/σ2)1/AB2/A [log(din/A+ 1)]−1/A −A,

where A =
√
v/B and c is a universal positive constant, then

Rn(Gv) ≥ Cσv1/4
(
log(din/

√
v + 1)

n

)1/2

, (31)

where C is a positive constant that depends only on B.

Before we prove Theorem 4, we first state a lemma which is contained in the proof
of Theorem 1 (pp. 46-47) in [20].

Lemma 1. For integers N,T with N ≥ 10 and 1 ≤ T ≤ N/10, define the set

S = {a ∈ {0, 1}N : ‖a‖1 = T}.

There exists a subset A ⊂ S with cardinality at least
√(N

T

)
such that the Hamming

distance between any pairs of A is at least T/5.

Note that the elements of the set A in Lemma 1 can be interpreted as binary codes of
length N , constant Hamming weight T , and minimum Hamming distance T/5. These are
called constant weight codes and the cardinality of the largest such codebook, denoted
by A(N,T/5, T ), is also given a combinatorial lower bound in [22]. The conclusion of

Lemma 1 is A(N,T/5, T ) ≥
√(N

T

)
.

Proof of Theorem 4. Define the collection Λ = {θ ∈ Z
din : ‖θ‖1 ≤ A}, where A ∈ Z

+.
Then, we have from [12, Theorem 6] the following expression and lower bound for the
number of lattice points in an ℓ1 ball with radius A:

N , #Λ =

min{din,A}∑

k=0

2k
(
din
k

)(
A

k

)

=

min{din,A}∑

k=0

(
A

k

)(
din +A− k

A

)
≥
(
din +A

A

)
.
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Consider sinusoidal ridge functions sin(2π〈θ, x〉) with θ in Λ. Note that these functions
(for θ 6= 0) are orthonormal with respect to the uniform probability measure P on
D = [−1, 1]din . This fact is easily established using an instance of Euler’s formula
sin(2π〈θ, x〉) = 1

2i(
∏din

j=1 e
i2πθjxj −∏din

j=1 e
−i2πθjxj ).

For an enumeration θ1, . . . , θM of Λ, define a subclass of Gv by

F0 =

{
fa =

B

T

M∑

k=1

ak sin(2π〈θk, x〉) : a ∈ A
}
,

where A is the set in Lemma 1. Next, we give a bound on the variation of members from
F0.

Lemma 2. For any fa in F0, we have Vfa,2 ≤ BA2.

Proof. The proof is based on the fact that

F(sin(2π〈θ, x〉))(ω) =
∏din

j=1 δ(ωj − θj)−
∏din

j=1 δ(ωj + θj)

2i
,

where δ is the Dirac delta function. Thus, we have

Vfa,2 =

∫

R
din

‖ω‖21|F(fa)|dω

≤ B

T

N∑

k=1

|ak|‖θk‖21 ≤ BA2.

Let us furthermore assume that A =
√
v/B so that F0 ⊂ Gv.

Any distinct pairs fa, fa′ in F0 have L
2(P ) squared distance at least ‖fa − fa′‖2 ≥

B2‖a− a′‖22/T 2 ≥ B2/(5T ). A separation of ǫ2 determines T = (B/(
√
5ǫ))2.

By Lemma 1, a lower bound on the cardinality of A is
√(N

T

)
with logarithm lower

bounded by (T/2) log(N/T ). To obtain a cleaner form that highlights the dependence on
T , we assume that T ≤

√
N , giving log(#A) ≥ (T/4) logN . Since T is proportional to

(B/ǫ)2, this condition puts a lower bound on ǫ of order BM−1/4. Also, N ≥ (din/A+1)A.
Thus, if ǫ > B/(din/A + 1)A/4, it follows that a lower bound on the logarithm of the
packing number is of order logN (ǫ) = (B/ǫ)2A log(din/A + 1). Thus we have found an
ǫ-packing set of this cardinality. As such, is it a lower bound on the metric entropy of
Gv.

Next we use the information-theoretic lower bound techniques in [44] or [43]. Let
pa(x, y) = p(x)ψσ(y − fa(x)), where p is the uniform density on [−1, 1]din and ψσ is the
N(0, σ2) density. Then

Rn(Gv) ≥ (ǫ2/4) inf
f̂

sup
f∈F0

P(‖f − f̂‖2 ≥ ǫ2),

where the estimators f̂ are now restricted to F0. The supremum is at least the uniformly
weighted average over f ∈ F0. Thus a lower bound on the minimax risk is a constant

34



times ǫ2 provided the minimax probability is bounded away from zero, as it is for sufficient
size packing sets. Indeed, by Fano’s inequality as in [44], this minimax probability is at
least

1− α log(#F0) + log 2

log(#F0)
,

for α in (0, 1), or by an inequality of Pinsker, as in Theorem 2.5 in [43], it is at least

√
#F0

1 +
√
#F0

(
1− 2α−

√
2α

log(#F0)

)
,

for some α in (0, 1/8). These inequalities hold provided we have the following

1

#F0

∑

a∈A

D(pna ||q) ≤ α log(#F0),

bounding the mutual information between a and the data Dn = {(Xi, Yi)}ni=1, where q
is any fixed joint density for Dn. When suitable metric entropy upper bounds on the
log-cardinality of covers Fa′∈A′ , {f : ‖f − fa′‖ < ǫ′} of F0 are available, one may use q
as a uniform mixture of pna′ for a

′ in A′ as in [44], as long as ǫ and ǫ′ are arranged to be
of the same order. In the special case that F0 has small radius already of order ǫ, one
has the simplicity of taking A′ to be the singleton set consisting of a′ = 0. In the present
case, since each element in F0 has squared norm B2/T = 5ǫ2 and pairs of elements in F0

have squared separation ǫ2, these functions are near f0 ≡ 0 and hence we choose q = pn0 .
A standard calculation yields

D(pna ||pn0 ) ≤
n

2σ2
‖fa‖2 ≤

nB2

2σ2T
=

5nǫ2

2σ2
.

We choose ǫn such that this (5/(2σ2))nǫ2n ≤ α log(#F0). Thus, in accordance with
[44], if N (ǫn) is an available lower bound on #F0, to within a constant factor, a minimax
lower bound ǫ2n on the L

2(P ) squared error risk is determined by matching

ǫ2n ≍ σ2 logN (ǫn)

n
,

Solving this, we find that

ǫ2n ≍
(
σ2B2A log(din/A+ 1)

n

)1/2

≍
(
σ2B3/2√v log((

√
B/

√
v)din + 1)

n

)1/2

.

This quantity is a valid lower bounds on Rn(Gv) to within constant factors, provided
N (ǫn) is a valid lower bounds on the ǫn-packing number of Gv. Checking that ǫn >

B/(din/A+ 1)A/4 yields the condition din > cA(n/σ2)1/AB2/A [log(din/A+ 1)]−1/A − A
for some universal constant c > 0.
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Remark 5. The lower bound on din is needed to ensure that the lower bounds for the
packing numbers take on the form T logN instead of T log(N/T ). We accomplish this by
imposing T ≤

√
N . Alternatively, any upper bound of the form Nα, α ∈ (0, 1) will work

with similar conclusion, adjusting lower bound (31) by a factor of
√
1− α, with corre-

sponding adjustment to the requirement din > cA(n/σ2)1/AB2/A [log(din/A+ 1)]−1/A−A.

A Appendix

A.1 Additional Example Average Variation Calculations

The reader may be interested in a couple of example settings where the weight ma-
trices are the same across the layers. Each Wℓ is equal to a din × din matrix Q for
ℓ = 2, 3, . . . , L. We either approximate or explicitly calculate the average variation (in
accordance with its form in (13)). First, recall a basic fact from the theory of nonneg-
ative matrices [25, Theorem 8.3.1] which says that if Q is a nonnegative matrix with
eigenvalues λ1, λ2, . . . , λdin , then the spectral radius ρ(Q) = max{|λ1|, |λ2|, . . . , |λdin |} is
an eigenvalue of Q, i.e., its largest eigenvalue is real and nonnegative.

(A) Irreducible matrices: SupposeQ is an irreducible matrix with nonnegative entries
and maximum eigenvalue 1. In the parlance of deep networks, irreducibility here
means that for each pair of node indices j and k, there is a path (j1, j2, . . . , jℓ−1, jℓ)
emanating from k = jℓ and flowing into j = j1 such that the product of their
corresponding weights wj1,j2wj2,j3 · · ·wjℓ−1,jℓ is strictly positive.

By [25, Theorem 8.4.4], Q (resp. Q⊤) has a unique eigenvector u (resp. v) with
strictly positive components, corresponding to the largest eigenvalue 1. The Cesàro
average of products of Q is a semi-convergent matrix and by [25, Theorem 8.6.1],
we have the limit

lim
ℓ→+∞

1

L

L∑

ℓ=1

Qℓ =
uv⊤

〈u, v〉 ,

where the convergence rate (with respect to any matrix norm) is O(1/L).

Hence the entry-wise ℓ1 norm of Cesàro averages

V
out

=

∥∥∥∥∥
1

L

L−1∑

ℓ=0

W0W1 · · ·Wℓ

∥∥∥∥∥
1

=
1

L
W0 +

∥∥∥∥∥
1

L

L−2∑

ℓ=0

W0W1Q
ℓ

∥∥∥∥∥
1

,
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and

V
in

=

∥∥∥∥∥
1

L

L−1∑

ℓ=0

Wℓ+1Wℓ+2 · · ·WL

∥∥∥∥∥
1

=
1

L
‖W1Q

L−1‖1 +
∥∥∥∥∥
1

L

L−1∑

ℓ=1

Qℓ

∥∥∥∥∥
1

converge to
〈u,W0W1〉‖v‖1

〈u, v〉
and

‖u‖1‖v‖1
〈u, v〉 ,

respectively, as L approaches infinity. Consequently, for large L, V is approximately
equal to √

W0〈u,W1〉‖u‖1‖v‖1
〈u, v〉 .

(B) Projection matrices: Suppose Q is a projection matrix, i.e., Q2 = Q and has

nonnegative entries. Then V
out

= 1
LW0 +

1
LW0‖W1‖1 + L−2

L W0‖W1Q‖1 and V
in

=
1
L‖W1‖1 + L−1

L ‖Q‖1, which means that V is equal to

√
1

L
W0 +

1

L
W0‖W1‖1 +

L− 2

L
W0‖W1Q‖1 ×

√
1

L
‖W1Q‖1 +

L− 1

L
‖Q‖1

≈
√
W0‖W1Q‖1‖Q‖1

A.2 Supplementary Proofs

Lemma A.1. Suppose a is a d0 dimensional row vector and Ak are dk−1 × dk matrices
for k = 1, 2, . . . ,m. The following inequalities hold:

‖aA1A2 · · ·Am‖1 ≤ ‖a‖1‖A1A2 · · ·Am‖1,∞ (A.1)

≤ ‖a‖1‖A1‖1,∞‖A2‖1,∞ · · · ‖Am‖1,∞, (A.2)

‖A1A2 · · ·Am‖1 ≤
√
dm‖A1‖σ‖A2‖σ · · · ‖Am‖σ , (A.3)

‖A1A2 · · ·Am‖1 ≤ ‖A1‖1‖A2‖1 · · · ‖Am‖1, (A.4)

and
‖A1A2 · · ·Am‖1 ≤ d0

√
dm‖A1‖σ‖A2‖σ · · · ‖Am‖σ. (A.5)
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Proof. Suppose A is an d0 × dm matrix with entries aj1,j2 = A[j1, j2]. Since ‖aA‖1 ≤
‖a‖1‖A‖1,∞, where ‖A‖1,∞ = maxj1

∑
j2
|aj1,j2 |, we have

‖aA1A2 · · ·Am‖1 ≤ ‖a‖1‖A1A2 · · ·Am‖1,∞, (A.6)

which shows the first inequality in (A.1). Since ‖ · ‖1,∞ is an induced matrix norm, it is
sub-multiplicative [25, Example 5.6.5], and hence we have the further bound involving
the product of the norms (A.2).

By [25, Exercise 5.6.P5 and 5.6.P23], ‖A‖1,∞ ≤ √
dm‖A‖σ and hence

‖A1A2 · · ·Am‖1,∞ ≤
√
dm‖A1A2 · · ·Am‖σ, (A.7)

which is further upper bounded by the products of the individual norms,

√
dm‖A1‖σ‖A2‖σ · · · ‖Am‖σ , (A.8)

again, since ‖ · ‖σ is also an induced matrix norm and hence is sub-multiplicative. Taken
together, inequalities (A.7) and (A.8) imply (A.3).

Inequality (A.4) follows from the fact that the entry-wise ℓ1 matrix norm is sub-
multiplicative [25, Example, p. 341].

Finally, (A.5) can be shown by noting that ‖A1A2 · · ·Am‖1 is bounded by

d0‖A1A2 · · ·Am‖1,∞,

and then using inequalities (A.7) and (A.8) to bound ‖A1A2 · · ·A2‖1,∞ by√
dm‖A1‖σ‖A2‖σ · · · ‖Am‖σ.
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