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1. Introduction. We describe the multivariate adaptive polynomial syn- 
thesis (MAPS) method of multivariate nonparametric regression and compare 
it to the multivariate adaptive regression spline (MARS) method of Friedman 
(1990). Both MAPS and MARS are specializations of a general multivariate 
regression algorithm that builds hierarchical models using a set of basis 
functions and stepwise selection. We compare polynomial and spline bases in 
this context. Our experience is that there is no substantial difference in the 
statistical accuracy for the data sets that we have investigated, provided that 
some care is taken in the choice of the model selection criterion. It is argued 
that the polynomial methods, with a smaller set of basis functions to select 
from at each step, should yield a computationally faster algorithm. 
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A potential difficulty of either polynomial methods with high-order terms or 
spline methods with closely spaced knots is the high sensitivity of the esti- 
mated response to slight changes in the inputs. We advocate the use of a 
roughness penalty in the performance criterion that forces smoother models to 
be accepted. A consequence of this roughness penalty in the polynomial case is 
that large coefficients in high-order terms are avoided. We believe that the 
MARS algorithm could also benefit from the use of the roughness penalty. 

Polynomial networks are synthesized by a simple variant of the algorithm. 
In particular, an option of the MAPS algorithm is to allow the outputs of 
tentatively selected models to be considered along with the original explana- 
tory variables as inputs for subsequent steps of the algorithm. This algorithm 
exhibits many of the properties of more complicated polynomial networks and 
other "neural" networks for multivariate regression. For an overview of 
statistical learning networks, see Barron and Barron (1988). 

The advantage of adaptively synthesized model structure compared to fixed 
model structure is the opportunity to seek out accurate lower dimensional 
nonlinear models in the high dimensional space of functions of several vari- 
ables. MARS, MAPS and some adaptive network techniques have the potential 
for selecting accurate yet parsimonious models in these high dimensional 
settings. 

2. Adaptive regression. Multivariate adaptive regression is a stepwise 
procedure for the automatic selection of basis functions from observed data. 
The selected basis functions Bm(x) yield models of the form 

M 
fM(x,O) = E Om B m(x) 

for x in R. These models are fit to observed data (xe,Yi )Ni 
Briefly, the forward algorithm takes the following form. The initial function 

estimate is taken to be a constant by setting B(x) = 1. Then the following 
steps are repeated until a model selection criterion stops the growth of the 
model. From a list of candidate basis functions FM, we choose one or two new 
basis functions BM+ 1(X), BM+2(X) to append to the current list of basis 
functions {B1(x), B2(X), ..., BM(x)1 and then regress the data onto the span of 
the new list. At each step we adopt the choice of basis functions that provide 
the best improvement in a model selection criterion. 

The key to the algorithm is the specification of a parsimonious yet flexible 
set FM of candidate basis functions (or pairs of candidate basis functions) from 
which the new terms BM+ 1(x) and in some cases BM+2(x) are selected. Naive 
choices of F, such as the set of all polynomial terms in n variables up to a 
given degree, are exponentially large sets in the dimension n and, conse- 
quently, would be computationally prohibitive in moderately high dimensions. 

Friedman's strategy is to adapt the set FM of candidate basis functions to 
the current list of terms, by taking the set of products of terms in the current 
list with one-dimensional basis functions. In particular, MARS (with q = 1) 
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takes FM to be the set of pairs of candidate terms Bm(x)[ ? (xj - t)] + for 
i = 1, 2, .. ., M and j = 1, 2,. .., n with the restrictions that xj is not already 
in a factor of Bi(x) and t is in a list of candidate knot locations determined by 
the sample quantiles of xj. 

The MAPS algorithm, in its simplest form, takes FM = {Bi(x)xj: i = 
1, .. ., M, j = 1, . .. , n}. Thus each step of the MAPS procedure yields a 
polynomial, where in one coordinate the degree is incremented by one. Experi- 
mentation has revealed that in some cases it is better to introduce pairs of 
basis functions B (x)xj and Bi(x)xj2 on each step. This has two benefits: first, 
it tends to orient the search in early steps toward models with low interaction 
order that are more reliably estimated and second, it avoids some of the traps 
of stepwise selection. [For instance, if y = x 2 and x1 is symmetrically dis- 
tributed about the origin, then the linear regression of y onto the span of 
{1, x1} is constant and, consequently, without forced consideration of higher- 
order terms, the stepwise algorithm would stop with a constant as its best 
estimate.] With this modification, each step of the MAPS algorithm selects 
BM+ 1(x) and BM? 2(X) from the set 

Fm = {Bi(x)xj, Bi(x)xf: i = 1, .. ., M, j = 1,.. ., n}. 

Here the second new term may be rejected from inclusion at the current step if 
it does not yield an improvement in the performance criterion, whereas the 
first new term may be rejected only after consideration of the performance 
with both new terms. 

As in Friedman's MARS algorithm, MAPS provides an option to restrict the 
order of interaction of candidate terms to be not greater than a specified limit 
mi. Here mi = 1 yields an additive polynomial, mni = 2 allows cross terms 
B(x) = xi[ilx and mi = n allows general polynomial terms B(x) X= 12 ... 

xrn to eventually be synthesized by the algorithm. Even with mi = n, the 
algorithm often stops before such high-order interactions are considered. 

Following the completion of the forward stepwise algorithm, it is advisable 
to perform a backward stepwise pass that at each step removes the term that 
permits the best improvement in the performance criterion for the remaining 
terms. This backward pass is implemented by Friedman. With the backward 
pass implemented, one is free to allow the forward pass to proceed past the 
point at which the performance criterion is optimized with respect to forward 
selection. Extraneous terms are left to be removed by the backward pass 
provided their removal is determined to be beneficial. At the present time, we 
have only implemented the forward stepwise synthesis in the MAPS program. 

We hasten to point out that stepwise selection procedures cannot in general 
be guaranteed to provide the best set of terms of a given size; see, for instance, 
Cover (1974). To get the best set of terms essentially exhaustive subset 
selection procedures would be needed. Such exhaustive procedures are feasible 
for certain linear regression problems, but they are not feasible for multivari- 
ate nonlinear regression, because of the exponential explosion of number of 
terms from which the subsets are selected. Therefore, stepwise selection is a 
necessary compromise in the multivariate nonlinear case. 
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In the related context of iterative L2 approximation of functions, a recent 
result of Jones (1990) states that if the target function is in the closure of the 
convex hull of a given set of functions with bounded norm, then the squared 
norm of the error is of order 0(1/m) for an m-step forward stepwise selection. 
That result can be adapted to the context of adaptive polynomial regression 
with F equal to all polynomial terms up to a given degree, to yield bounds on 
the statistical risk. Thus forward stepwise selection can yield a reasonably 
accurate set of terms even if it is not, strictly speaking, the best set of terms. It 
is not clear whether theory analogous to that provided by the result of Jones 
can be developed that applies to the smaller sets of candidate terms used by 
MARS or MAPS. 

The approximation capabilities of polynomials and splines are known in the 
case of complete bases (in which all polynomial terms up to a prescribed order 
are included). These results show, for instance, that for any given k ? 1, if 
f(x) is a k times differentiable function on [0, 1]', then there exists a polyno- 
mial fk(x) = Exx ... *x-, where the sum is for all r = (r1, . . ., r") with 
0 < rj < k, for which the L2 approximation error is bounded by 

f (f (x) -fk(x)) dx < k + dx 
[01]n -kxx (2k + 1)!4k df(= ())dd 

This particular bound is a specialization of the multivariate extension in Sheu 
(1989) of a bound due to Cox (1988). It shows the exponential convergence rate 
of polynomial approximation for analytic functions, assuming that the norm of 
the k partial derivatives is bounded by a multiple of k!. Spline approximations 
of a fixed order q, which are chosen to have roughly the same number of basis 
functions kn, are not capable of the same accuracy. The integrated squared 
error saturates at the slower polynomial rate (1 /k )2q; see for instance, 
Schumaker (1981). 

Unfortunately, there is not yet an analogous theory for the approximation 
with subsets of the complete set of basis functions. An exception is the case of 
additive approximation. For instance, to approximate the additive part of a 
function, the best additive polynomial approximation [which uses only nk + 1 
terms instead of (k + 1)n terms], achieves the same accuracy as derived above 
by Sheu, whereas spline approximation again saturates at the slower rate. It 
also may be possible to use the theory to characterize the error of approxima- 
tion of the second-order interaction component of a function. Such a theory 
would hopefully show that parsimonious approximation is possible for all 
function with negligible higher-order interactions. 

3. Complexity penalties for adaptive regression selection. At each 
step of the adaptive regression algorithms, terms are chosen to optimize a 
statistical performance criterion. The criterion depends on the average-squared 
residuals (ASR) but incorporates a modification to penalize the number of 
parameters. 
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There is a proliferation of criteria that have been proposed for model 
selection. They can be roughly categorized into two groups. The first group 
seeks to estimate the mean-squared error of prediction MSEPM, N = E(Y - 

fM(X,0))2 or related quantities of cross-validation, where X, Y denotes a 
sample drawn independently of the training data. The idea is that the best 
model is the one with the minimum MSEPM,N* Criteria that estimate the 
MSEP can be interpreted as adding a penalty to ASR which is roughly equal to 
2(M/N) times an estimate of the variance of the error incurred by the best 
function of x, where M is the number of parameters and N is the sample size. 
A representative criterion in this group is the generalized cross-validation 
(GCV), a modification of which is used by Friedman in his MARS program. For 
models of the form fM(x, 0) = E M= lOi B(x), the generalized cross-validation 
(not accounting for the selection bias) takes the form 

ASR 
GCV = 2 

(1 - MIN 

where ASR = (1/N)E Y - fM(Xi, 0))2 is the average-squared residual. See, 
for instance, Eubank (1988) for properties of the generalized cross-validation 
and its relationship to other criteria, including Mallows' Cp, Akaike's final 
prediction error FPE and Akaike's information criterion AIC. The predicted- 
squared error PSE criterion studied in Barron (1984) is defined as PSE = 
ASR + 2(M/N)cr2, where a2 is either the known error variance E(Y - 

E(YIX))2 or a rough estimate of it provided prior to the stepwise selection 
process. Under certain formulations, it is equivalent as a selection criterion to 
Cp and AIC. The final predication error FPE = ASR(1 + M/N)/(1 - MIN), 
is the minimum variance unbiased estimator of the mean-squared error of 
prediction, in the case of a correctly specified model and Gaussian errors. A 
surprising fact, shown in Barron (1984), is that for reasonable choices of a 2 
PSE is a more accurate estimate of the mean-squared error of prediction for a 
given model. 

All of these criteria that estimate MSEPM, N for each model M have the 
problem that they are not necessarily uniformly accurate if too large a set of 
candidate models is considered. This leads to the problem of selection bias. The 
minimized criterion value may be significantly smaller than the value for the 
best model, and the selected model may be overfit. 

At first we ran our MAPS program with the GCV criterion, to facilitate 
comparison with the MARS procedure, believing that more conservative crite- 
ria would probably not be necessary in our case. However, as the results show 
in Section 5, we encountered persistent problems of overfit. This overfit 
invariably occurred whenever the selection was taken over a very large set of 
candidate terms, a large fraction of which are spurious. Friedman avoids the 
overfit problem by modifying the GCV criterion. He replaces the number 
of parameters M with an associated cost C(M) in the expression GCV = 
ASR/(1 - C(M)/N)2, where C(M) is between 3M and 5M. After encounter- 
ing the overfit problems with the ordinary GCV, we found greater success 
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using criteria which are specifically designed for selection and not just for the 
estimation of risk. 

This second group of criteria, to which we turned our attention, includes 
criteria designed to approximate the test statistic that minimizes the overall 
probability of error in a Bayesian formulation of the model selection problem 
[such as the BIC of Schwarz (1978)] or seeks to approximate the length of an 
asymptotically optimal information-theoretic code that describes the observed 
response values given the explanatory variables [such as the MDL criterion of 
Rissanen (1983)]. For either case, there is a formulation in which the domi- 
nant terms of the statistic define a criterion equivalent to the following: 

M 
BIC = MDL = ASR + _U2 In(N). 

N 
This criterion is similar to the first group of criteria, but it incorporates a 
penalty which is a factor (')In N greater. For N between 50 and 400, the 
factor (')In N is between 2 and 3. So for conservative values of oa2 (values 
believed to be not smaller than the true error variance), the BIC/MDL criteria 
and Friedman's modification of the GCV criterion should give similar results. 
Indeed, it appears that in practice, Friedman's modified GCV is closer to the 
BIC/MDL criterion than the original GCV criterion upon which the modifica- 
tion is based. 

The MAPS algorithm is set up to compute any of the previous criteria, GCV, 
FPE, PSE and MDL, as well as the AIC and BIC criteria that obtain when the 
error variance a 2 is regarded as an unknown parameter. An option selects 
which criterion is used for the minimization. 

For theoretical properties, the work of Shibata (1981) and Li (1987) demon- 
strates an asymptotic optimality property satisfied by any of the criteria in the 
first group [with penalty equal to 2(M/N) times a consistent estimate of o-2]. 
In particular, Li (1987) gives conditions such that if MSEM N = E( fM(X) - 
f(X))2 denotes the mean-squared error in the estimation of f(X) = E(YIX) by 
a linear model M fit by ordinary least squares, then the mean-squared error 
MSEM N incurred by the selected model M satisfies MSE, N/MSEMN, N 
1 in probability as N -* oo, where MSEMN N = minM MSEM N. The minimiza- 
tions are assumed to be taken for a fixed sequence of lists of models HN, 
rather than for an adaptively determined list. The theory assumes a condition 
that effectively limits the asymptotic number of candidate linear models that 
may be considered. Namely, the quantity EMeHN(MSEM, NN) must be 
negligible (as N -- cc), for some r for which the 2rth moment of the distribu- 
tion of the error (Y - E(YIX)) is finite. For very large sets of candidate 
models, this quantity is not negligible and the theory is not applicable. Indeed, 
in this case, significant selection biases can occur that are characterized by a 
tendency to overfit. Another implication of Li's condition is the requirement 
that the mean-squared error for the best sequence of models MSEMN, N tends 
to zero slower than the rate (1/N) that is achieved if the true function were 
finite-dimensional. In the case that the true function f(X) is in one of the 
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finite-dimensional families, it is known that models selected by criteria in the 
first group have nonzero probability of asymptotically selecting an overfit 
model. 

Asymptotic theory for model selection by the more conservative BIC or 
MDL criteria is given in Barron and Cover (1990) and Barron (1989, 1990). 
This theory gives conditions such that the mean-squared error of the selected 
model MSEM, N converges to zero at rate bounded by MSE MN N + 

(MN/N)ln N. Convergence at this rate holds in both parametric and nonpara- 
metric cases and holds without restriction on the number of candidate ;iAodels. 
As for the Shibata and Li theory, it is assumed that the criterion is optimized 
for a fixed sequence of lists of models, indexed by the sample size, rather than 
optimized stepwise for an adaptively determined set of models. Nevertheless, it 
suggests useful guidelines that might also be appropriate in the adaptive 
context. Chief among these is the need for care in the choice of criteria when a 
very large number of candidate models are considered. Somewhat larger 
penalties are required for accurate model selection in this case. 

4. Roughness penalty for polynomial smoothing. Essential to poly- 
nomial methods of regression in the presence of noise and/or model uncer- 
tainty is the use of a criterion which incorporates a roughness penalty. In 
particular, the MAPS algorithm chooses the parameters of each model so as to 
minimize 

ASR + RP, 
where ASR is the average-squared residual 

I N2 
ASR = - E (yi - f(xi,0)) 

and RP is the roughness penalty 
I N2 

RP = 5 E VX f(Xi ~ 0) 

Then ASR + RP is used in place of the average-squared residuals ASR in the 
model selection criteria discussed in the preceding section. 

Here 8 is a parameter that controls the smoothness of the model. One 
interpretation of the roughness penalty is that it captures the sensitivity of the 
average-squared error to slight changes in the input variables. If the inpuus are 
permitted to be changed from xji to xji ? U, then ASR + RP is an estimate of 
the average squared error that would be incurred by the function when 
perturbed inputs. The 8 may often be set by the scientist or engineer who 
supplies the data as quantifying the size of changes in the input that should 
not be accompanied by significant changes in the response. Or it may be set by 
the statistician by inspection of a few runs to determine the one with which he 
is most satisfied. The selection of 8 may also be automated by generalized 
cross-validation, but at considerable additional computational expense. 
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There is a relationship between polynomial smoothing and smoothing 
splines. The second order smoothing spline arises as the solution to the 
problem of minimization of 

lN 
N (yi -f(Xi)) + 8211Vf(x)112. 

For smoothing splines, the minimization is taken over all continuously differ- 
entiable functions f(x). In contrast, for polynomial smoothing, the integral is 
replaced, for convenience, with the sample average and the minimization is 
taken over the restricted class of polynomial functions with specified bases. It 
is our experience that polynomial smoothing approximates the capabilities of 
spline smoothing, while providing advantages of speed of computation, due to 
the reduced size of the dimension of the linear system that is solved to obtain 
the polynomial approximation. 

It is seen that polynomial smoothing with a roughness penalty is a general- 
ized form of ridge regression. For a linear model 

m 

f(x,0) = jBj(x), 
j=1 

the roughness penalty is a positive-definite quadratic function of the parame- 
ters 0 = (01,..., m)T, 

RP = OTRO 
where R is the m by m matrix with entries 

1 N n Bj(xi) dBk(Xi) 
Rjk =852HE E 

i=1 d=1 XXd d 

The roughness penalty prevents the estimation of models with large coeffi- 
cients for terms that contribute large derivatives. With polynomial basis 
functions Bj(x), each derivative aBj(xi)/axd is also a polynomial but with the 
degree reduced by one in the coordinate Xd. The larger derivatives are typically 
associated with the higher-order terms. 

The set of equations to be solved for 0 is obtained as follows. Let V= 
(1/N)BTB and c = (1/N)BTy be defined as in Friedman, equation (49), 
where y = (Y1, .. . , yN)T. Assume that the sample average of the response 
variable has been subtracted off so that y = (1/N)E j1yj = 0 and let y2 = 
(1/N)IIy 12 denote the sample variance of y. The penalized average-squared 
residual may then be expressed as the following quadratic function of 0, 

ASR + RP = (1/N)lly - B0112 + OTRO 
=5C72 + OTVO - 2CTO + OTRO 

-2 + OTVO - 2CTo, 

where V = V + R. The parameter vector 0 which minimizes this expression is 
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found by solving the modified normal equations 

VO = c. 

Each new basis function introduces a new row and column of R and V, so the 
solution may be updated by Cholesky decomposition in the same manner as 
explained by Friedman. 

In its simplest form, the roughness penalty treats each of the variables 
equally. More generally, it may be desirable to associate a parameter 8d,i for 
each value Xd, i of the explanatory variables. The roughness penalty then takes 
the form 

1N n (af (xi,o0)2 RP = E E I2 
N. i1d==1 

di 
Xd / 

In like manner, the expression for the matrix R is modified to bring 2d,i 
inside the double summation. The choice 8d, i = x allows the penalty to be 
scaled to the observed spread of the explanatory variables as measured by the 
standard deviation A2. Alternatively, it may be desirable to let ad i be propor- 
tional to the magnitude of the observed values of the variables, that is 

5d,i = Xd,i15. 

The latter choice helps to mitigate the effect of extreme observations. Also, in 
the case of polynomial basis functions, it allows the entries in the matrix R to 
be determined as a weighted sum of entries of the matrix V, thereby avoiding 
much of the additional computational expense otherwise associated with the 
use of the roughness penalty. Specifically, R may be expressed as 

n 

Rjk = 2 E rjdrkdVjkX 
d=1 

where rjd denotes the exponent of variable Xd in the basis function Bj(x) = 
xj1 x r. . Note that the off-diagonal entries R1k of the matrix R are zero 
for those pairs of basis functions Bj and Bk that share no common factors. 
The largest entries are typically on the diagonal and correspond to the terms 
with large exponents. 

Some of the characteristics of the roughness penalty are incorporated in 
Friedman's MARS algorithm. He adds a small multiple of the diagonal entries 
of V to numerically stabilize the resulting modified normal equations. 

5. Experimental results. First, we took 10 replications of the simulated 
data from Friedman's Section 4.2, each with a sample of size N = 200. In this 
example, the dependence of y on x1, . .. , x10 is additive, as given in Friedman's 
equations (56) and (57) and the inputs are drawn uniformly over the unit cube 
[0, 1110. For each replication, the observed response was scaled to have sample 
mean zero and sample variance one, but the input variables are left unscaled. 
The parameter for the roughness penalty was set to be 8 = 0.01, a moderately 
small value that allows for the high gradients of the response near xl = 1.0 



76 DISCUSSION 

TABLE 1 
Summary of the results of MAPS modeling with the unmodified GCV criterion on Friedman's 

additive data (Section 4.2) 

mi ISE MSEP GCV TERMS 

1 0.030(0.010) 0.16(0.01) 0.15(0.01) 12.0(1.4) 
2 0.053(0.018) 0.18(0.02) 0.14(0.01) 17.3(2.9) 
10 0.086(0.037) 0.21(0.31) 0.13(0.01) 20.7(5.2) 

and near X2= in equation (56). The generalized cross-validation GCV 
(without modification) was used as the selection criterion. The results of the 
10 MAPS runs for each interaction limit mi = 1, 2, 10 are summarized in 
Table 1. Depicted are the averages and standard deviations based on the 10 
runs of the standardized integrated-squared error (ISE), the standardized 
mean-squared error of prediction (MSEP), the generalized cross-validation 
(GCV) and the number of selected terms (TERMS). In accordance with the 
definitions in Friedman, the integrated-squared error and the mean-squared 
error of prediction are computed using knowledge of the true function and 
5,000 new sample points for Monte Carlo integration. 

The results in Table 1 may be compared with those reported in Friedman's 
Table 4 in the N = 200 case. It shows that when the unmodified GCV 
criterion is used, if the model is forced to be additive, the polynomial method is 
nearly as good as the spline method; however, in the case that interaction 
terms are considered, mi = 2, 10, we have noticeably worse integrated-squared 
error. The large average numbers of terms 17.3 and 20.7 reveal that the 
polynomial models are overfit using the unmodified GCV criterion. Indeed, the 
first 11 or 12 terms were almost exclusively additive terms in the meaningful 
variables (x1 through X5), but the additional terms chosen in the mi = 2 and 
mi = 10 case were almost exclusively spurious cross product terms and terms 
involving the nuisance variables x6 through x1o. This large number of spuri- 
ous models contribute to the large selection bias that results in overfit with the 
unmodified GCV criterion. 

We then repeated the experiment using the more conservative BIC/MDL 
criterion. In the definition of the BIC/MDL, we used the known variance of 
the noise o.2 = 1. The results are summarized in Table 2. The results in Table 
2 for adaptive polynomial modeling compare quite favorably with those for 
adaptive splines in Friedman's Table 4. Indeed, the averages and standard 
deviations of the integrated-squared error and the mean-squared error of 
prediction are either equally good or slightly better in every case. The most 
noticeable improvement is in the case that arbitrary interactions are allowed 
(mi = 10). With the BIC/MDL criterion, almost all of the spurious interaction 
terms are rejected. 

Next, we drew one sample of size 100 in accordance with Friedman's 
example 4.3. Again there are 10 variables. The first two variables contribute to 
the response through a term which is a sinusoidal function of the product 
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TABLE 2 
Summary of the results of MAPS modeling with the BIC/MDL criterion on Friedman's additive 

data (Section 4.2) 

mi ISE MSEP BIC, MDL TERMS 

1 0.025(0.006) 0.155(0.006) 0.16(0.01) 11.1(1.3) 
2 0.030(0.007) 0.159(0.007) 0.16(0.01) 11.5(1.6) 

10 0.031(0.007) 0.160(0.007) 0.16(0.01) 11.3(1.6) 

x1x2. The remaining contributions are additive, specifically, a quadratic term 
in x3 and linear terms in x4 and x5. (Admittedly, the polynomial terms in the 
true response give polynomial modeling an unfair advantage for this example.) 
The other variables x6 through x10 are not used by the true response. We set 
a = 0.01, o = 1.0, mi = 2 and standardized the observed response. With the 
BIC/MDL criterion, the terms and coefficients for the normalized model are 
given in Table 3 in the order in which they are selected. (The model is 
expressed in standardized form; it is unitized by multiplying by cry = 5.8189 
and then adding y= 15.0549.) The criteria values suggest that the MAPS 
model and the MARS model are roughly equally accurate for this sample from 
Section 4.3. 

Table 3 shows that apparently meaningful terms were selected by the MAPS 
algorithm with the BIC/MDL criterion, with the exception of the third term, 
which is a quadratic in X4 while the true response is linear in x4. It is 
anticipated that this term would be removed by a backward stepwise selection. 
When the unmodified GCV is used as the criterion, six more terms are 

TABLE 3 
Coefficients and exponents of the selected polynomial terms for the model in Example 4.3 

Term Coefficient xi x2 X3 X4 X5 X6 X7 X8 X9 X10 

1 - 1.6809 0 0 0 0 0 0 0 0 0 0 
2 2.0970 0 0 0 1 0 0 0 0 0 0 
3 - 0.3138 0 0 0 2 0 0 0 0 0 0 
4 0.2363 0 1 0 0 0 0 0 0 0 0 
5 - 0.2508 0 2 0 0 0 0 0 0 0 0 
6 - 0.3203 1 0 0 0 0 0 0 0 0 0 
7 0.3347 2 0 0 0 0 0 0 0 0 0 
8 -4.0523 0 0 1 0 0 0 0 0 0 0 
9 3.9369 0 0 2 0 0 0 0 0 0 0 

10 0.7853 0 0 0 0 1 0 0 0 0 0 
11 - 0.0794 2 1 0 0 0 0 0 0 0 0 
12 - 6.9382 2 2 0 0 0 0 0 0 0 0 
13 6.9397 1 1 0 0 0 0 0 0 0 0 

GCV BIC, MDL 
0.041 0.049 
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TABLE 4 
Portuguese olive oil 

Method #Variables GCV CV Error CV 

MAPS (mi = 2) 7 0.15 0.22 0.036 

selected, all of which involve interactions with the extraneous variables x6, x7, 
xg and x1o. Evidently, the extraneous variables introduce two many diverse 
candidate terms for the GCV to provide a uniformly accurate criterion. 

Finally, we considered the Portuguese olive oil data, a copy of which was 
obtained from Friedman. We standardized the response variable to have 
sample mean zero and sample variance one. Inspection of the data set shows 
that the variables are rounded to the nearest one-tenth, so we set ( = 0.05, 
accordingly. Using a 10-fold cross-validation as explained in Friedman, we ran 
MAPS 10 times each with 41 or 42 observations removed, using the unmodi- 
fied GCV criterion and a maximum term limit of 30. The resulting standard- 
ized average-squared residual (CV) and relative frequency of misclassifications 
(error CV) on the cross-validated data is given in Table 4. Also shown is the 
unmodified GCV and number of variables obtained from the MAPS procedure 
with all observations included. With the GCV criterion, the MAPS procedure 
hit the maximum term limit of 30. (Subsequent runs with an increased term 
limit stopped at 42 terms, fueling suspicion of overfit). Despite the excessive 
number of terms selected with the unmodinfed GCV criterion, the cross-valida- 
tion results in Table 4 for MAPS are as good as obtained by Friedman in Table 
13 with MARS and the least-squares criterion. Nevertheless, improved cross- 
validation results may be possible with MAPS using a more conservative 
performance criterion. 

In Table 5, we show the selected model, when MAPS is run with the 
BIC/MDL criterion and o2 = 0.03 (which corresponds to a standardized 
variance of 0.18). Here we standardized both the observed explanatory vari- 
ables and the response variables to have sample mean zero and sample 
variance one. In this case a more parsimonious model (16 terms) is selected. 
The values of the BIC/MDL and GCV criteria for this selected model appear 
to be reasonable, but we have not yet completed the 10-fold cross-validation of 
models selected by BIC/MDL to provide additional confirmation of the appar- 
ent accuracy. 

6. An adaptive network example. In this last section, we illustrate a 
simple feedforward polynomial network. This is created using an option of the 
MAPS algorithm. With the feedforward network option, each step of the 
algorithm augments the X matrix with the current model output for consider- 
ation at subsequent steps. The set of candidate new terms, when submodel 
outputs are fed forward, is determined as before. An exception is that terms 
which are linear in a previous model output are not permitted, since such a 
term would introduce a linear dependence with other terms still on the term 
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TABLE 5 
Coefficients and exponents of the selected polynomial terms for the Portuguese olive oil data 

Term Coefficient X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 Xll X12 X13 

1 -0.5731 0 0 0 0 0 0 0 0 0 0 0 0 0 
2 0.2923 0 1 0 0 0 0 0 0 0 0 0 0 0 
3 0.2829 0 2 0 0 0 0 0 0 0 0 0 0 0 
4 0.3247 0 2 0 0 0 0 0 0 0 0 0 0 0 
5 -0.0088 0 0 0 0 0 1 0 0 0 0 0 0 0 
6 0.0588 0 0 0 0 0 2 0 0 0 0 0 0 0 
7 -0.2483 0 1 0 0 0 0 0 0 0 0 0 1 0 
8 - 0.0794 0 2 0 0 0 0 0 0 0 0 0 2 0 
9 - 0.0417 0 2 0 0 0 0 0 0 0 0 0 3 0 

10 - 0.0417 0 2 0 0 0 0 0 0 0 0 0 0 1 
11 -0.7796 0 3 0 0 0 0 0 0 0 0 0 0 0 
12 0.0527 0 4 0 0 0 0 0 0 0 0 0 0 0 
13 0.1896 0 5 0 0 0 0 0 0 0 0 0 0 0 
14 -0.0520 0 2 0 0 0 0 0 0 1 0 0 0 0 
15 -0.0264 0 0 0 0 0 2 0 0 0 0 0 1 0 
16 0.0440 0 4 0 0 0 0 0 0 0 0 0 0 1 

GCV BIC, MDL 
0.159 0.188 

list. Consequently, we require previous model outputs to be initialized in the 
list as a nonlinear product with itself or with other variables. 

Table 6 depicts the results using the Portuguese olive oil data with the 
network option and the BIC/MDL criterion. Here the outputs from model 3 
and model 6 were selected by the criterion to be input to subsequent models. 
The bases functions for models 3 and 6, respectively, are the same as the first 

TABLE 6 
Coefficients and exponents of the selected polynomial terms with the feedforward network option, 

for the Portuguese olive oil data 

Term Coefficient x1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 m3 m4 m6 m8 M10 

1 -0.71278 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
2 - 0.25350 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
3 0.07698 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
4 0.18919 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 
5 - 0.00770 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
6 0.02824 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 
7 1.89370 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 
8 0.49567 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 
9 -1.26261 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 
10 0.32184 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5 0 0 
11 -0.05317 0 2 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

Effective #Parameters GCV BIC, MDL 
14 0.14 0.174 
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3 and first 6 terms in Table 6. However, the coefficients for these submodels 
are somewhat different than for the final linear combination in model 11. 

The effective number of parameters of the network for use in the perfor- 
mance criteria is defined as the number of coefficients directly computed in the 
present model plus a times the number of parameters in submodels that feed 
into the present model. For the results in Table 6, we are using a = 0.3. When 
a step of the algorithm selects a pair of terms, only the output with both 
included is passed as an input to subsequent models; this explains why there is 
no M2, M5, M7, or m9 in Table 6. 

The results with the network option for the olive oil data show a slight 
improvement in the values of the criteria. It is interesting that in Table 6, the 
algorithm proved eager to include successive powers of an intermediate output, 
rather than successive powers of a single variable as in Table 5. Cross-valida- 
tion values have not yet been computed for the models in Tables 5 and 6. We 
suspect that the CV will be slightly better but not substantially better than 
reported in Table 4. 

The network option also was tried on the data from Sections 4.2 and 4.3. In 
both of these cases, no factors were selected from the list of previous models. 
So in these cases, the result of the network synthesis algorithm reverts to the 
results obtained with the conventional adaptive selection algorithm. This is 
not surprising since the synthetic examples in Sections 4.2 and 4.3 are defined 
directly as a sum of terms rather than indirectly through a composition. 
Experience has shown, as reported in Barron, Mucciardi, Cook, Craig and 
Barron (1984) and Barron and Barron (1988) that network methods frequently 
provide useful answers for large dimensional data from real engineering and 
scientific problems for which conventional linear techniques have not been as 
successful. 

7. Conclusions. Adaptive synthesis of nonlinear models is essential in 
those empirical modeling contexts where scientific or engineering considera- 
tions do not provide a complete parametric solution, and where the high 
dimensionality of the space of candidate inputs prohibits the use of other 
nonparametric smoothing techniques. 

The techniques that gain widest acceptance among empirical modelers are 
those that are statistically accurate, computationally reasonable, flexible to use 
in diverse contexts and (sometimes most importantly) well understood by the 
scientist or engineer and his clients. The paper by Jerry Friedman goes a long 
way toward making a powerful technique clearly understood. Also, the thor- 
oughness of his methodological and experimental studies of a statistical model- 
ing technique provide an excellent prototype for what, hopefully, will be many 
more such papers in the field. 

The preliminary comparison provided here of adaptive regression splines 
with adaptive polynomial smoothing on several data sets suggests that the 
spline method does not provide any substantial gain in accuracy over the 
polynomial method. This should provide some pause for the empirical modeler 
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who is debating whether to switch from the more customary polynomial 
models to the sometimes less familiar splines. 

In addition to the known approximation capabilities, polynomial models 
have in their favor the relative ease of interpretation in many scientific and 
engineering contexts. Against polynomial models has been the fact that least 
squares polynomials are prone to wild extrapolative behavior in the high-order 
case. Here we have pointed out that the simple device of a roughness penalty, 
familiar to spline smoothers, can be used for polynomial smoothing to mitigate 
this wild behavior. We recommend properly smoothed and adaptively synthe- 
sized polynomial modeling as a serious competitor to adaptively synthesized 
splines. 

Notes added in proof. Some additional computer runs were completed 
after first submission of this discussion. In particular, the experiments using 
Friedman's Example 4.2 and a sample size of N = 200 were repeated using 
100 replications (instead of just 10) to obtain a more reliable assessment of 
performance of the MAPS algorithm. This time no upper limit was imposed on 
the number of terms to be selected by the criteria. Again, substantial overfit 
problems occurred with the use of the unmodified GCV criterion. It selects an 
average of 15.2, 23.2 and 32.3 terms in the cases of mi = 1 (no interaction), 
mi = 2 (second order interaction) and mi = 10 (arbitrary interactions permit- 
ted), respectively. The average integrated-squared error is excellent in the 
mi = 1 case (ISE = 0.025), as predicted by the theory of Li, but breaks down in 
the mi = 2 case (ISE= 0.058) and mi = 10 case (ISE= 0.111) due to the 
excessive number of spurious terms that the GCV criterion accepts in these 
cases. In contrast, the BIC/MDL criterion consistently selects a moderate 
number of terms (an average of 11.7, 11.7 and 11.8 terms with a standard 
deviation of 1.6, 1.6 and 1.7 terms in the mi = 1, mi = 2 and mi = 3 cases, 
respectively). Moreover, no breakdown in performance occurs as we increase 
the number of candidate terms. The average and standard deviation of the 
integrated-squared error is 0.031 (0.012) for mi = 1, 0.032 (0.012) for mi = 2 
and 0.033 (0.014) for mi = 10. To compare with Friedman's spline method, 
the corresponding values that he reports in Table 3 are 0.026 (0.011), 0.033 
(0.021) and 0.037 (0.017), respectively, which show a somewhat greater diver- 
gence of ISE values for mi = 1, 2 and 10. In this example, the polynomial and 
spline methods achieve about the same overall performance, provided a suit- 
able model selection criterion is used (BIC/MDL or modified GCV). These 
results confirm the preliminary conclusions reached using the smaller number 
of replications. 

We also had opportunity to try a tenfold cross-validation experiment on the 
Portuguese Olive Oil data using models selected by the BIC/MDL criterion 
instead of by the GCV criterion as in Table 4. We use the CV statistic to give 
an estimate of the mean-squared error of prediction. In this case, the CV 
statistic improved to 0.17 instead of 0.22 and the GCV of the selected model is 
0.16 instead of 0.15. This illustrates the fact that while the selection of models 
and the estimation of mean-squared error of prediction are essentially separate 
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goals, the former can have noticeable impact on the latter. For the model 
selected by MDL, the value of GCV = 0.16 is a reasonably good estimate of 
CV = 0.17; whereas, for the model selected by GCV, the minimum GCV value 
of 0.15 does not give as good an estimate of the corresponding CV = 0.22. 
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