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Abstract

A principle for statistical inference is developed using information theory.
The motivation is to determine probabilistic laws or theories which provide the

shortest complete description of random samples.

Estimates of probability distributions and densities are obtained which pro-
vide an asymptotically optimal summary (compression) of the observed data.
The data consist of real numbers observed to increasing accuracy. The exact
descriptions of the data require two stages: first a candidate distribution P is
described using the shortest length computer program for P on a universal com-
puter, then the second stage is the (optimum) Shannon code for the data based
on the distribution P. The logically smooth estimates are the distributions which
achieve nearly minimum two-stage description length. This approach depends
upon both the algorithmic notion of information developed by Kolmogorov and
Chaitin and the probabilistic notion of information due to Shannon. Cover, Ris-

sanen, and Sorkin have presented similar estimators.

In this thesis, convergence properties are analyzed in both parametric and
non-parametric cases. It is shown that logical smoothing empirically discovers the
law for the data. If the true distribution has a finite description, then the esti-
mate is exactly correct for all sufficiently large sample sizes. (For example, from
the shortest description of the observed motion of the planets, the true laws of
motion are disicovered.) If the true distribution is infinitely complex, then a
sequence of logically smooth estimates is shown to converge in variation distance.

Logical smoothing may be regarded as a Bayes rule. Nevertheless, the
motivation for this approach is the minimization of description length and not
any Bayesian inclinations. The proof techniques developed here for logical
smoothing apply in general to establish new consistency results for Bayes pro-

cedures.
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Chapter 1. Overview

1.1 Introduction

Let a stochastic process X;,Xs,... be governed by an unknown probability
distribution P’. We treat the general case that the sequence {X} is stationary
and ergodic as well as the specific case that the X; are independent and identi-
cally distributed (iid). The random variables X; may be scalar or vector valued.
The observed data X, consists of the sequence (X},X,,...,X,) with each X;
revealed to b, bits accuracy. Estimates of the probability distribution (and its
associated mass function or density function) are desired in order to summarize,

classify, or predict data.

We show that accurate estimates of the distribution P* can be obtained from
short descriptions of the observed data. Descriptions (or codes) are finite length
binary sequences from which the data may be recovered exactly. In particular, we
are interested in descriptions which involve candidate distribution estimates P in

a natural way.

For any candidate distribution P, there is an exact description of the data
X, in two stages. First the distribution P is described using L(P) bits. Here L{P)
is the length of a binary computer program for P on a universal computer. (A
program for a distribution P is an effective procedure for computing the probabil-
ities P(X,) to any prescribed accuracy for any X, for any n, see Section 3.3. In
particular, probabilities may be computed from density functions with simple for-
muli -~ such as the standard normal, the exponential, the Cauchy, and many oth-
ers. The length of the shortest program for a distribution is a measure of its
intrinsic complexity.) Then the second stage is a Shannon code for the data based

on the distribution P. The Shannon code assigns a finite length binary sequence
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from which the data may be recovered, once the distribution P is given. The
length of the Shannon code is [ log 1/P(X,)] bits (where log is the base 2 loga-
rithm and [y] denotes the least integer not less than y.) Thus the total two-
stage description length is I(P) + [ log I/P(Xn) 1

The logically smooth estimator is defined to be a distribution 2, which
achieves the minimum two-stage description length minp{Z(P) + [logl/PX,]] }.
Logical smoothing achieves the proper balance between low complexity and high

likelihood. Redundant or overly-complex estimates are rejected.

Other estimators P may also be called logically smooth if the corresponding
two-stage description length is not much greater than the minimum. Many
popular non-parametric estimators are numerically smooth but not logically

smooth -- they do not summarize the data (see section 1.2).

The history of the development of logical smoothing is traced in section 1.2.
Key previous work the area is by Cover, Davisson, Rissanen, and Sorkin. In
chapter 2, Bernoulli sequences or coin-flips provide a concrete example which

illustrates the principles of logical smoothing.

Compression

The data compression properties of Shannon codes are developed in chapter
3. It is shown that log 1/P%X,) provides an almost sure lower bound on the
length of any description or code for X, (Theorem 3.1). We note that the ideal
lengths [ log 1/P*(X,)] could be attained exactly only if the true distribution P*
were known. Nevertheless, Shannon codes with respect to mixtures of distribu-
tions are shown to achieve the optimum length to first order, even when the true

distribution is unknown. Such descriptions are called universal.

In practice, the only Shannon codes that can be implemented are those

which are based on distributions that can be described. The theory of comput-
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able functions (reviewed in section 3.3) characterizes those distributions that have
finite descriptions. The ideal complexity measure I{P) is the length of the shor-
test computer program that describes the distribution P. The advantage of pro-
viding such programs as prefaces to the covrresponding Shannon codes should be
clear. Instead of coding with a fixed distribution P (agreed to in advance), we are
free to code using a distribution P which depends on the data. The best such

distribution is the one which minimizes the total description length.

Good data compression entails using a distribuﬁon estimate which provides
an essential summary of the data. Indeed, the minimal program for Pn might
naturally be called a sufficient statistic for description. Because, given the first
stage, the remaining description may be regarded as conditionally maximally
complex. In fact, with probability one, for all large n, the data X is in a set of
roughly gnth typical sequences which are all nearly equally likely and which all
have complexity near the entropy nH,. (Here the discrete entropy nH, is approxi-
mately nh + nb, where h is the differential entropy rate.) Consequently, the code
which has length [ log 1/P,(X,)] near nH, amounts to giving the index of X, in

the set of typical sequences.

In section 3.4 we argue that minimum two-stage descriptions are universal.
It 1s shown that if the true distribution is computable or if it can be approxi-
mated by computable distributions in the relative entropy rate sense, then the
mintmum two-stage description is an asymptotically optimal compression of the
data (Theorems 3.4 and 3.5). In the iid case it is shown that any density which is
less than a computable function with finite integral can be arbitrarily closely

approximated by computable densities in the relative entropy sense.

Discovery

We examine the general problem of estimating the law of a stationary
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ergodic process in chapter 4. It is shown that if the true distribution has a finite
description, then the logically smooth estimate is exactly correct, 15ﬂ = P’ for all
sufficiently large n, with probability one (Theorem 4.1). Thus if the data is

governed by a computable law, then this law will eventually be discovered and

thereafter never refuted.

For instance, if the true distribution is an exponential distribution with a
computable mean (such as 3 or 2/7 or 1/In2), then the estimate exactly deter-

mines both the shape of the distribution and the true value of the parameter.

Since the estimated distribution is exactly correct, the optimal regression,
prediction, and classification functions may also be discovered. For example, if
the stock market is an ergodic process with a computable distribution, then from
the shortest description of stock market data, the optimum sequential investment

portfolio may be found so as to maximize the growth rate of capital.

The result that the shortest complete description yields the true distribution
is seen to be in agreement with the famous principle of parsimony espoused by
the fourteenth century logician William of Ockham, ‘“‘Explanations should not be
multiplied beyond necessity”’ (Nunquam ponenda est pluralitas sine necessitate,
Commentarium in Sententias 1,27, see Tornay,1938,p.9). The simplest complete

explanation is best.

The objective of empirical modeling is to find an accurate parametric family
(model) of distributions from the observed data. Parametric families which are
indexed by real valued parameters (coefficients) arise naturally from computable
distributions by translations, scalings, mixtures, etc. Often the parametric family
has a finite description (for instance, the set of translations of the standard nor-
mal distribution), even though particular members of the family are infinitely
complex (for instance, a normal with a randomly selected mean). Two approachs

to empirical modeling are suggested by logical smoothing. The first approach is
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to describe candidate parametric families and then to describe rational parameter
values that achieve nearly maximum likelihood. For smooth families, about
(1/2) log n*|]] bits should be used to describe the parameter estimates, where [ is
the observed Fisher information matrix and k is the dimension of the parameter
vector. Roughly (1/2) log n bits per parameter achieves the right tradeoff
between complexity and likelihood. A logically smooth estimated model is a
parametric family achieving nearly minimum total description length. It is
shown that for (Lebesgue) almost every parameter in @ smooth family with finite
descrigtz'on, the minimum description length based on the true family is within
2 log log n of the minimum total description length over all families (Theorem
4.4). Thus a natural estimator of parametric families is the simplest family
among all families achieving total description length within 2 log log n of the
minimum.

Another approach to empirical modeling suggested by logical smoothing is to
enlarge the collection of candidate distributions to include exchangable or station-
ary distributions ¢ which are not necessarily iid or ergodic. The logically smooth
estimator is a stationary distribution Q,  which achieves
min{ Q) + [log 1/Q(X,)]}. Stationary distributions @ are mixtures of
ergodic distributions P. There exists a unique prior probability measure v on the
space of of ergodic distributions such that Q(X,) = [P(X,) dy(P) for any X,.
The logically smooth estimate Qn has a corresponding measure v, on distribu-
tions. Ordinary parametric families are manifolds {F,;} in the space of distribu-
tions which are traced by varying the parameter vector #. Let the true distribu-
tion Py be in such a manifold, where the true parameter 6* is selected at random
according to a probability measure v* equivalent to Lebesgue measure. Suppose
that the corresponding mixture Q*= [Py dv"(f) has a finite description. There

are many computable parametric families which can model the behavior of sam-
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ples from @*. Thus Qn = Q" cannot be claimed. Indeed, there may be a simpler
family than @* that shares the same local behavior. It is shown that the decom-
position of the estimate Qn has a component which concentrates on the true
parametric family (manifold). Indeed, a component of 9, is absolutely continuous
and assigns strictly positive mass to neighborhoods of the true parameter 6% for

all sufficiently large n, with probability one (Theorem 4.2).

Density estimation

The focus of the remaining section 4.3 is the non-parametric estimation of
probaB'i’lity mass functions and density functions from independent and identi-
cally distributed samples. If the true density has a finite description, then (by
Theorem 4.1) the logically smooth estimate is exactly correct for all large n.
What about densities that are infinitely complex, but can be approximated by
densities of finite complexity? We obtain convergence results that hold for any
true density that is less than a computable function with finite integral. (For
instance, bounded densities with compact support.) The results depend on the
accuracy of the samples. Recall that each datum is observed to b, bits accuracy
to the right of the binary point. (For convenience, suppose the X; are scalar
observations; the vector case is handled similarly.) Thus the data is observed to
within intervals of width w, = 975 If the widths w, are fixed or tend slowly to
zero such that nw, — oo, then data accumulates in each interval and we essen-
tially have the discrete mass estimation problem. In this case the maximum like-
lihood estimator (the histogram) converges in variation distance and so does logi-
cal smoothing,.

On the other hand, if the cell widths w, tend more rapidly to zero such that

nw, is bounded, then the number of observations in most cells remains bounded.

Indeed, many of these small intervals remain empty. In this case the sequence of
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maximum likelihood estimators is inconsistent (in variation distance). Surpris-
ingly, the logically smooth estimator is consistent in the sense that the sequence
of variation distances, on partitions into intervals of width h, = 1/n, converges

to zero (Theorem 4.6).

These convergence results suggest a convenient definition of the density esti-
mator p, which is motivated by description length considerations. The data
X1,Xs,...,X, are first described to log n bits accuracy by minimizing the two-stage
description length. This yields estimates Pn(A) for‘the probabilities of each of
the intervals A of width 1/n. Then the remaining n(b,-log n) bits are described
in a brute force way, i.e. as though they were independent Bernoulli(1/2) random
variables. (Indeed, asymptotically these extra bits are independent Bern(1/2) and
log n is just the right depth to assure that it does not hurt to describe them in
this way.) Equivalently, the data are described using a distribution 15,l with den-
sity p, defined to be conditionally uniform within each cell of width 1/n (while
retaining the cell probabilities Pn(A))) It is shown that this density estimate p,
is consistent in Ly distance: that is, [|p,(z)-p'(z)ldz — O with probability one
(Theorem 4.6). This result contrasts sharply with the convergence results for
ordinary histograms (Abou-Jaoude,1976) and kernel density estimators (Dev-
roye,1983) where to obtain consistency, the numerical smoothing must extend

over a width h, satisfying nh, — oo.

Another simple modification of logical smoothing yields strongly consistent
density estimates. The estimate p, is defined to be a density achieving
min { ¢ L(P) + log 1/p(X,,...,X,) } where the minimum is over all computable iid
distributions P with densities p. The factor ¢ is any constant greater than one.
This modification yields estimates P, which tend to have less complexity L(P,)
than estimates obtained with ¢ = 1. The two stage description length based on

A

P, is nearly minimal. It is shown that this density estimate p, is consistent in L,
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distance: { | p* - p, | — 0 with probability one (Theorem 4.7).

Bayes rule

There are interesting connections between logical smoothing and Bayesian
inference. Minimizing the total description length L(P)+ log 1/P(X,) is
equivalent to maximizing the posterior probability of P given X, where this pos-
terior is determined by Bayes rule from the prior probability 2-LF). For the
two-stage description to be uniquely decodable, the length function L(P) must
satisfy Kraft's inequality EPTL(P) < 1, or equivalently, the prior must be
proper.ﬁ‘;The description length principle provides the rational for having a prior
as well as an objective criterion for the choice of prior probabilities. Some sub-
jectivity enters in the choice of computer, but this subjectivity is limited.
Indeed, if L(P) is the length function of a universal computer, then for any other
computer with length function L (P), say, there exists a constant ¢ such that
L' (P)>L(P)-c¢ for all P (see section 3.3). Similarly, if a statistician has prior
opinion specified by some finitely describable mass distribution ©»(P) then there

exists a constant ¢ such that the prior satisfies v(P) < 2P for all P.

We use the proof techniques developed for logical smoothing to establish new
consistency results for arbitrary Bayes procedures. Consider the iid case and sup-
pose the prior probability assigns strictly positive mass to relative entropy neigh-
borhoods of the true distribution. The sequence of posterior distributions given
real-valued samples (X;,Xj,...,X,) is shown to concentrate on the n!-smoothed
variation distance neighborhoods of the true distribution. Counterexamples are
constructed showing that concentration within tighter neighborhoods can fail.
However, if the prior ¢(P) is countable and Y p ¢*(P) is finite for some 0<a <1,
then the estimate Pn which maximizes the posterior probability is consistent in

variation distance.
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Two aspects of overfit

We often say that an estimated distribution is overfitted if it assigns high
likelihood to the data, but does not generalize to new samples similarly drawn.
Cross-validation and the criteria of Mallows and Akaike have been proposed (in
limited parametric contexts) to try to avoid this overfit (see Barron 1984). The
use of consistent estimators is one way to help prevent overfit. Indeed, strong
forms of consistency (such as convergence of the relative entropy between true
and estimated distributions) imply that with high probability, the likelihood will
not drop significantly on new samples. (Unfortunately, models selected by Mal-

lows’ and Akaike’s criteria are generally inconsistent.)

However, overfit is not synonymous with inconsistency. Overfit also entails
using a distribution which is significantly more complex than is required to accu-
rately represent the data. In this sense, kernel density estimates are overfit
(though consistent), whereas estimates based on minimum description length
properly avoid overfit (and retain the consistency). Although it is intuitively
clear that overfit involves éxcess complexity, the preponderance of previous work

has not quantified this aspect.

Three kinds of statisticians

Some rough categories are suggested for statisticians and engineers. Firstly,
there are those who limit themselves to the simplest and most thoroughly under-
stood models (for instance, linear parametric models involving the normal distri-
bution). Such models have low complexity (underfit), yet also have relatively low
likelihood (unless the true distribution is of the assumed form). Many researchers
are in this first category because they lack the creativity to invent new laws, or
the persistence to search for models that fit the data, or the willingness to let a

computer aid in the search.
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Secondly, there are those who recognize the need for accurate nonparametric
fits (consistency), but who routinely employ techniques (such as nearest neighbor
rules or kernel estimators or Dirichlet process priors) which provide little under-
standing of the data. Typically, the estimétes have limited practical usefulness
because all of the data is retained -- rather than summarized. The estimates are

overfit.

The third category of scientists are those who employ sufficient insight and
computational resources to consider a rich variety of conceivable distributions
and ﬁqgl the law which best explains the data. Both the complexity of the law
and its fit to the data are accounted for in the search for the shortest complete
description of the data. Occasionally, time constraints force the use of the rou-
tine techniques, but usually there is ample time to consider a multitude of possi-

bilities and select the best. Diligence is rewarded with discovery.

1.2 History

We begin with a brief discussion of non-parametric density estimation as it
relates to logical smoothing. For surveys on the art of density estimation see
Cover (1972), Tapia and Thompson (1978), Prakasa Rao (1983), and Devroye and
Gyorfi (1985).

Rosenblatt (1956) and Parzen (1962) initiated interest in non-parametric
density estimation with their kernel density estimator. This estimate is obtained
by convolving the sample distribution with a kernel function. A series of papers
culminating with Devroye (1983) show that the kernel density estimator is
strongly consistent in L, distance for any true density on the line if and only if
the kernel functions have width parameters A, satisfying h,—0 and nh,—co.
However, from the point of view of data compression the kernel density estimator

is very poor. Indeed, for most kernels the data locations may be exactly

- 10 -
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recovered (by deconvolution). The kernel estimate does not summarize the data.

Good and Gaskins (1971) introduced maximum penalized likelihood estima-
tors. Deunsities are penalized for their “roughness’” rather than there descriptive
complexity. De Montricher, Tapia, and Thompson (1975) show that a maximum
penalized likelihood estimator reduces to a spline with knots at the data points.

Again, such an estimate is as complex as the data.

There are some popular density estimators which may yield a simple density
estimate. For instance, consider the ordinary histogram. Abou-Jaoude (1976)
has shown that the histogram is consistent in L; distance for any density if and
only if the cell widths h, satisfy h,—0 and nh,—oco0. For conservative choices of
cell width, the histogram estimates have reasonably short descriptions; however,
the structure thus imposed can yield a significant loss in likelihood. Similar
statements hold for the density estimates based on an orthogonal series, where
the expansion is taken to an appropriate number of terms (see S. Schwartz,1967).
The total description length of the data would be nearly minimal only if the a
series were tailored to the true density. An interesting open question is whether
the number of terms (or the cell width of the histogram) which achieves the
fastest rates of convergence is also the number which achieves the right tradeoff

between complexity and likelihood.

Cover

Cover (1972) introduced a scheme for estimating densities that is similar in
spirit to logical smoothing. Briefly, the likelihood P(X,) is maximized subject to
the complexity constraint I(P) < ¢, where the constants ¢, are chosen such that
¢c,—o0 and c,/n—0. This estimator may be regarded as a special case of the
method of sieves (Grenander 1981, Geman and Hwang 1982). The L, conver-

gence of Cover’s density estimator is readily established using Chernoff tilting

- 11 -



Overview 1.2 History

arguments (see Theorem 4.7), The complexity of the density estimate is typically
near the arbitrary bound ¢,. In contrast, logical smoothing automatically deter-

mines the right complexity from the data.

A starting point for several ideas used in this thesis is a paper by Cover
(1973b).  Cover presented a sequence of hypothesis tests for whether a real
valued parameter # (such as a population mean} is in an arbitrarily specified
countable set {f;} (such as the set of computable real numbers). If the true
parameter §°is computable then Cover's procedure w‘ill estimate §° exactly for all
large n,ﬂwith probability one. Briefly, Cover’s scheme is to choose the least com-

plex 6; that lies in a small interval containing the sample mean.

Sufficient statistics for description

A notion of sufficiency of descriptions was introduced by Kolmogorov at the
1974 International Symposium on Information Theory (see Cover 1985). Discrete
X are described in two stages, using finite sets S which contain X. The total
description length is I{S) + log |S] where L(S) is the length of the shortest pro-
gram for a set S and log |5] is the number of bits required to give the index of X
in the set of cardinality |S|. (This second stage is a Shannon code with respect to
the uniform distribution on S.) A Kolmogorov minimal sufficient statistic for
description  1is the program for a set S  which achieves
min { L(S) : I{S) + log |S| = L{X) } where L(X) is the length of the shortest pro-
gram for X. Cover (1973c, 1985) argued that for Bernoulli (f) sequences
X = {Xj,...,X,) a sufficient statistic for X is a description of k= Y X, The
associated program is ‘'S is the set of all X € {0,1}" such that Y X; = k" The
two stage description length is log (k+1) + n h(k/n} (where h is the binary
entropy function} and this length is shown to be nearly minimal. (A candidate

for the minimal sufficient statistic is a description of the set of sequences with

{(1/m)} X, in a simple neighborhood of k/n with width given by the standard

-12-
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deviation, see section 2.)

Universal descriptions

Davisson (1973) is responsible for much of the theory of universal source cod-
ing. Universal codes are descriptions of data from an unknown distribution such
that the codelengths are asymptotically optimal for a large class of possible distri-
butions. Davisson employed Shannon’s definition that a sequence of codes is
optimal if the average description length (divided by the the sample size) tends to
the entropy rate. The excess average description length is called the redundancy.
Davisson suggests placing a prior v on the class of distributions and then gives
two methods for constructing universal codes. One method is to Shannon code
with respect to the mixture of distributions. Davisson recommends the mixture
based on the ‘‘least favorable” prior achieving the maximin average redundancy

(which is also minimax for compact classes, see Davisson and Leon-Garcia,1980).

Davisson (1973,p.790-791) introduced two-stage descriptions as his second
method for universal coding. The first stage describes an estimated distribution
using the Shannon code with respect to o™ (a discrete prior constructed from v);
the second stage describes the data using the Shannon code with respect to the
estimated distribution. Then Davisson (1873, Theorem 7) shows how to obtain
universal codes for the class of finite alphabet stationary-ergodic sources using a
two-stage code based on conditional histograms. Other literature on universal
coding includes Cover (1973a), Elias (1974), Trofimov (1974), Kieffer (1978),
Longo and Sgarro (1979), Davisson, McEliece, Pursely and Wallace (1981), Kri-
chevsky and Trofimov (1981), and Davisson (1983).

Rissanen

The minimum description approach to statistical inference was introduced in

the context of smooth parametric families by Rissanen (1978,1983). Rissanen

-13 -



Overview 1.2 History

assumes that a nested sequence of parametric families is known to accurately
model the data (only the parameter dimension and values are free to be
estimated) and he determines the asymptotic behavior of the minimum descrip-
tion length. He established that the priﬁcipal terms of the total description
length are (k/2) log n + log 1/P;, (X,) where k is the dimension of the parameter
vector and f; is the maximum likelihood estimate. Rissanen (1984a,b) has
shown that the minimum average code-length for any sequence of uniquely
decodable codes is given by (k/2) log n + E'log I/Pg.(Xn) + o(log n), for almost
every §* in smooth parametric families. (We obtain a strengthening of this result
to pointwise rather than average description length, see Theorem 4.3. in Section
4.2) Rissanen suggested the minimum description length as a criterion for model
selection. A similar criterion was derived from the Bayesian point of view by G.

Schwarz (1978) for Koopman-Darmois or exponential families.

Regression

A natural use of the minimum description length criterion is to select terms
in regression models. We minimize the conditional description length of the
sequence of dependent variables given the input variables. The dependent vari-
able values (each observed to b bits accuracy) may be described as follows. First
a regression function is described which involves k estimated coefficients each
determined to (1/2) log n bits accuracy. Also, the maximum likelihood estimate
of the residual error variance, which we denote by 0%, is described to (1/2) log n
bits accuracy. Then the residual errors are described using a normal distribution
with zero mean, variance 0%, and zero correlations. The total déscription length
is roughly (k+1)/21log n + (n/2)log2mes%; + nb. (A more refined analysis
involves the observed Fisher information in the description length of the parame-
ters.) Hannah (1980) considered (linear) autoregressive and moving average

models and established that the minimum description length criterion

- 14 -
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consistently estimates the parameter dimension, assuming that a bound on the
true dimension is knawn. (Our Theorem 4.2, when specialized to this context,
establishes consistency of the estimated dimension, for almost every parameter

vector, without requiring bounds on the dimension.)

The minimum description length methodology is eminently suited to situa-
sidered and where there is considerable variation in the complexity of these
models. Non-linear regression and, in particular, polynomial' regression involving
many variables is a good example. Polynomial learning networks provide a
framework fo(r the computer-aided generation and examination of a rich supply
(typically hundreds of thousands) of regression models in reasonable time (typi-
cally a few seconds on a mainframe computer). For literature on this approach
to polynomial regression see Ivakhnenko (1971), R.L. Barron et al.(1975,1984),
AR. Barron (1977,1982,1984), and Farlow (1984).

Sorkin

In the non-parametric context, logical smoothing was independently intro-
duced by Sorkin (1983) and by Barron and Cover (1983, conference presentation).
Sorkin suggested minimizing L(P) + log 1/P{X,); however, he did not interpret
this as a two-stage description length. Sorkin envisioned that physical, sociologi-
cal, and economic theories may be discovered using this principle. Indeed, our
Theorem 2 shows that discovery of the right theory is the sure consequence of

logically smooth inference.

Ockham

The principle of inference of physical laws from simple explanations, has
roots in the philosophy of William of Ockham. This fourteenth century logician

and natural philosopher stated, “What can be explained with fewer things is

- 15 -



Overview 1.2 History

vainly explained with more”’ (Frustra fit per plura quod potest fieri per pauciora).
In the Summa Totius Logicae 1,12, Ockham applied this famous razor to defend
his theory of knowledge. He maintained that a proposition abstracted by the
mind as a summary of observations is not an entity ‘‘distinct from the act of
understanding, [but rather| it is the act of understanding itself. It is needless to
have recourse to many entities when we can get along with fewer ones” (see

Tornay,1938,p.9,100-101, Loux,1974,p.74, Boehner,1957 p.xxi).

In Ockham'’s study of the theory of motion, he ‘employed his “‘razor” to cut
out needless complications in the explanations developed by his predecessors.
Concerning the motion of projectiles he declared, ‘“After the separation from the
original projector has occurred, the moving body itself is the motion on its own
account and not by some absolute force bearing upon it. To sum up: the thing
moving and the movement are thoroughly indistinguishable.” (Commentarium in
Sententias 11,26, see Tornay,1938,p.171). Thus Ockhaﬁ anticipates Descartes’
law of inertia. Duhem (1909,v.II) traces the influence of Ockham and early Ock-
hamists upon Copernicus, Galileo, Leonardo de Vinci, and Newton (see also
Tornay,1938,p.51-53,165, Moody,1935,p.307-309). For a less grandiose view of

Ockham’s influence on the history of science, see Goddu (1984).

We restate Ockham’s principle in this way: the shortest complete description
is the best understanding. For many years, scientists and engineers have been
inferring densities or laws from data according to this principle. Data are exam-
ined and a simple law is found that fits the data with high likelihood. Consistent
inference is the result, provided that the set of distributions considered is
sufficiently rich and provided that the statistician properly balances the objec-

tives of simplicity and likelihood.
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Chapter 2. Example

Coin Tossing

This section illustrates the principle that short descriptions lead naturally to
the inference of probabilities. For a concrete example, we consider sequences of
flips of a coin with unknown bias. Coin-flips are regarded as realizations of Ber-
noulli sequences or binary memoryless sources. Additional discussion of coin toss-
ing and other finite alphabet sources from the description length perspective is
found in Rissanen (1984a,b) and in the literature on universal source coding
(Cover,1972,1973, Davisson,1973, Davisson, McEliece, Pursley and Wallace,1981,
Krichevsky and Trofimov,1981). The analysis here differs from the literature in

that pointwise rather than average properties are emphasized.

Let a sequence of zeros and ones X, = (X,X,,...,X,) be the outcomes of n
tosses of a biased coin. The sample size n need not large, since the analysis here
is valid for all n. The Bernoulli model assumes that the X; are independent with
parameter 6 = Prob{X;=1}. The corresponding likelihood is PyX,) =
65(1-6)"> where S = X, is the number of ones. The maximum likelihood esti-
mate 6,5 = S/n is the relative frequency of ones. In terms of information-

theoretic quantities, the likelihood may be expressed exactly as
Py(X,) = o~ kOr)+D{brclf)) (2.1)

Here h is the binary entropy function, A(f) = 6 logl/6# + (1-6) logl/(1-6), and D
is the relative entropy function, D(6}|6) =06 logls/8 + (1-60) log(1-60)/(1-8). (An
identity similar to (2.1) holds for any finite or countable sample space, not just
zeros and ones.) By concavity of the logarithm, the relative entropy D(0,||0) is

strictly positive unless § = #,,;,. Consequently, the maximum likelihood satisfies
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Ezample Coin Tossing

The likelihood is relevant for describing the sequence X, because of the
Shannon code which has length [ log 1/P,(X,)]. From equation (2.1), this length
is within one bit of nh(6;;) + nD(6;,]|6). The data could be described using a
Shannon code based on a fixed 6 (agreed upon in advance by both the encoder
and decoder). Then the codelength exceeds the entropy by the amount
nD(0;.]]0). Consequently, this description is highly redundant, unless the guess ¢
happens to be close to 8, in the relative entropy sense. (Asymptotically, the
redundancy would be small only if we knew or cofrectly guessed the true 6°))
Now since D > 0, with equality only if § = 0, it appears at first glance that
the best Shannon code would use = 0, and hence obtain codelength which is
within one bit of nh(f,). However, for this code to be valid, the parameter 8,
must first be described (otherwise, X, could not be uniquely determined from its
code). Now about log n bits suffice to describe S and hence 6. So we have a

description of the data with total length near log n + nh(f,;).

We can do better. Instead of the maximum likelihood estimate ), we use
the simplest number # within a neighborhood of 6. As before, this number 8 is
provided as a prefix to the Shannon code based on 8, so that the overall descrip-
tion of the data is uniquely decodable. Since the relative entropy is the amount
by which the Shannon codelength exceeds nh(f,), We see that the best 8 is that
number which minimizes the sum of its description length L(B) plus the relative
entropy nD(0yg||6). If 8,4 is sufficiently close to a number 6* which is easily
described (such as 1/2, 4/7, 1/e, or 7/4), then the estimate becomes § = §* and
the minimum total description length is I{0") + [ log 1/P,;(X,)]. However,
most possible values for 6, are not close to numbers of low complexity. (Given
any n numbers, a proportion of at most 27 can have descriptions of length less

than log n — ¢. Similarly, given any M distinct intervals, a proportion of at most

27° can have members with complexity less than log M - ¢.) For most 64, a
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good @ is found to be a dyadic rational with distance at most 1//n(034) from
0pz- Here (0) = 1/(6(1-0)) is the Fisher information. Note that 1/y/nl{f);) is
the usual estimator of the standard deviation of #,;. The details showing that
the standard deviation provides the right t‘radeoﬁ' between complexity and likeli-

hood will be carried out below.

First we discuss several methods for succinctly describing the sequence X,.

In each case the total description length is nearly

1 nl

Depending on the particular coding scheme, the number [ is either the Fisher
information at the maximum likelihood, I= 1/(0;;(1-0,;)), or I = x? (in the

latter case, VI may be interpreted as the average square root of Fisher informa-

1
tions, VI = 7 = fo 1/V6(1-6) d9).
The counting code: The number of ones is described using [log(n+1]] bits,

then [log (g)'[ bits are used to give the index of the sequence X, within the set

of n—sequences having S ones. (Here (g,) = n!/(S!(n-S)!) is the number of such

sequences.) Thus the total description length is
[log (n+1)7 + [log (1. (2.3)
From Stirling’s formula for the factorial we find that
log ((g) = nh(0yy1) + (1/2) log (LByy)/27n). (2.4)

Indeed log (g,) is less than the right hand side, but not by more than (log e)/9

provided S and n-S are at least one. (This tight bound is credited to Shannon,
see Wozencraft and Reiffen,1961,p.72, and follows from the bounds on Stirling’s
formula due to Robbins,1955.) Thus the total description length in (2.3) is within
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a small constant (less than three bits) of

1. nd(f)
5 + nh(0;)

1
g 08

which is the same as expression (2.2). This counting code may be interpreted as
a two-stage code where first 63, = S/n is described, and then the data is
described using the Shannon code based on the uniform distribution on the set of

n-sequences having nf, ones.

1
The uniform mixture code: Let @ = j;)Padﬁ be the uniform mixture of Ber-
. 1
noulli distributions. Then QX,) = j(; 05(1-0)"5df = 1/((n+1)(§,)) The same
distribution is obtained by uniform selection of the number of ones S within

{0,1,...,n} and then uniform selection of X, within the set of n-sequences having

Sones. The Shannon code based on ¢ has codelength

[log 1/Q(X,)T = [ log (n+1) + log () 1. (2.5)

Note that this description length is within one bit of the counting codelength and

(by Stirling’s formula) within two bits of expression (2.2).

The Beta(1/2,1/2) mixture code: Let Q=L1Pydv(0) where v is the
Beta(1/2,1/2) distribution with density function 1/(xv@(1-6)) which is propor-
tional to the square root of the Fisher information. Then @X,)=
I'(S+1/2)(n-S+1/2)/(7T'(n+1)) and from Stirling’s formula the Shannon
codelength [ log 1/Q(X,) ] is within a small constant of

% log Z5 + nh(0y). (2.6)

This description length is the same as expression (2.2) with the average interpre-
tation of VI Note that the first term of (2.6) does not depend on ;. (Using

this fact Krichevsky and Trofimov (1981) showed that (1/2) logn is the minimax
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asymptotic redundancy. The Beta(1/2,1/2) distribution is suggested as the least
favorable prior.) Comparing 7 to /K0,;), we find that expression (2.6) is a
shorter description length when 6, is near zero or one ( 0, (1-0,74) <1/7, i.e.
0pg < .114 or 6, > .886). On the other hand, for intermediate values of 6,

the uniform mixture code has shorter length.

Two-stage codes for coin-flips: Unlike the mixture codes, the two-stage
descriptions explicitly involves inference of the parameter. Here we discuss esti-
mates 6 which achieve nearly minimum two-stage deseription length
L(6) +Tlog 1/PyX,)]. From the identity for log-likelihood, log 1/FP,X,) =
nh(0y7) + nD(0))|0), we see that minimizing the two-stage description length is
equivalent to minimizing the redundancy L(6) + nD{6,;]|6). We let 8 be the
dyadic rational of lowest denominator in an interval of width § which contains
the maximum likelihood estimator ;. Then about log“1/§ bits are sufficient to
describe 0. (Here we may set log’c = [log ¢ + 2 log log z]; a more refined
definition is given in section 4.2. In either case, the function log’z is within
2 log log z of the ordinary logarithm function log z). The interval containing 6,
is conveniently chosen to be A = [0p;,0)z+0 if 6)y < 1/2, otherwise
A = [07-6,057]. By Taylor expansion of the log-likelihood about its maximum,
we find that for 6 in A, the two stage description length approximately equals
log*1/6 + log 1/P,, (X,) + (1/2)6°nKf);) log e. Precise bounds follow from the
general fact that the relative entropy is less than the Chi-square distance: in this
case, we have D(0,]0) < (6,,-0)*L6) log e. Simple caleulus then verifies that
(to first order) the minimizing § is l/m Note that for this & the log-

likelihood log Pj(X,) is within a small constant of the maximum. Indeed, the

difference from the maximum is nD(6;||#) which is less than log e. Conse-

quently, the two-stage description length based on § is within a small constant of
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log*\/nl(0y) + nh(0y). (2.7)
This description length is within 2 log log n of expression (2.2).

Another reasonable bound on the minimum two-stage description length is
suggested by the Beta(1/2,1/2) density 1/(mV#(1-0)). Consider the quantiles of
the Beta(1/2,1/2) distribution which partition [0,1] into intervals A, i=1,2,...,Vn
each of probability l/\/; Let 6; be an endpoint of the interval A;, specifically
the endpoint which is closer to 1/2. By the mean value theorem, each A; has
width equal to 7v8(1-0)/n = 7/VnI(8) for some 0 in A; Hence the width of A, is
less than Tr/\/n_l(ﬁ_,) Let the estimate § be the point 6; corresponding to the
interval which contains the maximum likelihood 6,,;. This estimate can be
described using log*Vn bits. (If we conditioned on n we could reduce this to
[ logvn]. However, in order that two-stage descriptions correspond to a fixed
prior 2-XF) we use the unconditional description length L{P), rather than the
conditional description length IL{P|n) -- see section 3.3.) From the Chi-square
bound on the relative entropy, we find that nD(f,||6) < 72 log e. Consequently,

the two-stage description length corresponding to f is within a constant of
log* Vn + nh(0py). (2.8)

This description length is within 2 log log n of the description length (2.6) for the

code based on the Beta(1/2,1/2) mixture.

Note that the two-stage codes tend to have slightly longer description
lengths than the mixture codes, but only by a factor bounded by 2 log log .

This behavior is established for general parametric families in section 4.2.

While encoding the data, we may wish to determine which of the five coding
schemes mentioned above works best for this data. Then it is necessary to pre-
face the codes with a description of which scheme is being used -- another three

bits would suffice. Indeed, if we are armed with a universal computer then coding
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based upon any computable stationary distribution {or family of distributions)
may be considered; we need only preface the code with a description of the distri-
bution.

In the universal coding literature, codes similar to these for coin-tossing have

been constructed for any finite alphabet source. We leave the detailed example to

develop a general theory.
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Chapter 3. Description

3.1 Pointwise Optimality of the Shannon Codelength

In this section we review some basic facts from the theory of source coding
for countable alphabets which we need to analyze logical smoothing. Then we
present pointwise optimality properties of the Shannon codelength log 1/P(X)
which strengthens Shannon’s result that the minimum average codelength is the
entropy. For any uniquely decodable descriptions of sequences of random data

X

., it is shown that asymptotically log 1/P*(X,) provides an almost sure lower

bound on description length. We require no assumptions whatsoever on the true

distribution P*.

A code is defined to be a 1-1 mapping from a countable alphabet into finite
length binary sequences (codewords, descriptions). A prefir condition code is
defined as a code for which no codeword is the prefix of a longer codeword. A
code is said to be uniquely decodable if for any concatenation of codewords, there
is no ambiguity as to when one ends and the next begins. Note that prefix condi-
tion codes are uniquely decodable. From Leung-Yan-Cheong and Cover (1978,
Theorem 2) the addition of roughly log /() bits (to describe the codelength) is

enough to make a prefix condition code from any 1-1 code with lengths ().

The key result for variable length source coding is the necessary and
sufficient condition on the length function {z) for there to exist a uniquely decod-
able code. (This condition was obtained first by Kraft,1949, for prefix codes and
then by McMillan,1956, for unique decodability.) The Kraft-McMillan theorem
states that there exists a uniquely decodable code with codeword lengths I z) of and
only if the lengths satisfy Y, 29 < 1. (A simple proof is due to Karush,1961;

see Gallager,1968,p.45-49 and p. 514 for the countable case.)
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The code construction due to Shannon is this. Suppose we have a length
function /(z) which satisfies Kraft’s inequality. Let |} < L, < ... be the ordered
lengths and let j(z) be a labeling of of the alphabet such that {z) = L. The code-

word for z is the binary representation of Z‘{‘:ll 27" where the binary expansion is
carried out to /(z) bits. Note that longer codewords must increase the sum by at
least 2°42) and hence differ in the first i) places from the codeword for . Thus

Shannon’s code satisfies the prefix condition and hence it is uniquely decodable.

If P(z) is a probability mass function on the countable alphabet, then define

the description length of z given the distribution P to be

[ log 1/P(q)]

These lengths are naturally defined so as to satisfy Kraft’s inequality. The code
constructed as above with lengths [ log 1/P{z)] is called the Shannon code for z
given P (Shannon 1949, p.29). With slight modification, Shannon codes may be
computed from recursive enumerations of the probabilities to increasing accuracy.
(The modified code may have length [log 1/P(z)] + 1 for some z, see section

3.3.)

A similar code proposed by Gilbert and Moore (1959) permits the z's to
remain in some natural ordering (rather than be reordered in terms of increasing
codelengths). The Gilbert-Moore codes have fast algorithms for encoding and
decoding and have codelengths given by [log 1/P(2)] + 1. The results that we
obtain below for the Shannon codes also hold for these modified codes. The

modifications add at most one bit.

The average description length Y P*(z){(z) for any uniquely decodable code
must exceed the entropy H(P®) = Y P*(z) log 1/P*(z) (see Gallager 1968,p.50
and p.514). The Shannon code has average description length which is within one

bit of the entropy bound, provided P = P*. Otherwise, the Shannon code has
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additional average description length (redundancy) which is within one bit of the
relative entropy D(P*||P) = Y, P"(2) log P*(2)/F(2).

Similar statements hold for sequences of discrete random variables with joint
distribution P* For instance, if P* is iid and the variables are observed to fixed
accuracy, then the n—sample entropy is » times the single sample entropy. In this
case the Shannon code has average length between nH and nH + 1 (so the one
bit of excess length is insignificant). More generally, suppose P*is stationary and
ergodic. By the Shannon-McMillan-Breiman theorein, log 1/P*(X,) grows at a
linear rate: log 1/P%X,) = n(H + o(1)) almost surely where H is the entropy
rate. (Thus the likelihood is nearly constant, P*(X,) = 2-"#+o1), In particular,
the distribution is nearly uniform over a 1-€ support set of typical sequences for
which |log 1/P*(X,) - nH|< e.) If we Shannon code with respect to another dis-
tribution P which is iild or Markov then the excess description length is within
one bit of the log-likelihood-ratio log P(X,)/P(X,) which equals n(D + o(1))
almost surely, where D is the relative entropy rate of P* with respect to P. (This
result is a generalization of the Shannon-McMillan-Breiman theorem which was

recently proved in Barron 1985.)

In what follows we shall treat log 1/P*(X,) as the ideal description length or
measure of information. This we do to determine the pointwise behavior of
description lengths rather than just the average. Such results will be useful in

latter sections to obtain almost sure consistency results.

Information theorists have not been in agreement as to whether log 1/P*(X,)
rather than the entropy may be treated as the measure of information. Indeed,
Kolmogorov (1965) has said, “only the average quantity is a true measure of the
information content.” Against this view, Lemma 1 is offered below. No descrip-
tion length function, not even the shortest program for X, on a universal com-

puter (as suggested by Kolmogorov), can have lengths less than log 1/P*X,) by
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more than a logarithmic factor, except for sequences in a set of probability zero.
Moreover, this bound holds with no assumptions whatsoever on the true probabil-
ity distribution P”.

It must be understood that the pointwise measure of information
log 1/P*(X,) is with respect to the true distribution. Depending on the sequence
X,, there are many other distributions P (for instance, a point mass at the data
X,) which have Shannon codelength much less than log 1/P*(X,). However such
a ‘‘code’ is not a valid description of X -- unless it is prefaced with a description
of P. The description length principle provides necessary limitations to the prin-

ciple of maximum likelihood.

Let X, be any sequence of random variables taking values in a sequence of
countable partitions 7, of an underlying measurable space {2 with probability dis-
tribution P’. Suppose the partitions 7z, are refinements: that is, any event x, in
T, is a union of events in m, for ' > n. Let 7, = | J,7, be the union of the par-
titions, thus an event x is in 7, if it is in 7, for some n. (A space and a sequence
of partitions that satisfy all the properties we will need is as follows: 2 is the
space of infinite sequences (z;,2,,...) of real numbers and the partition 7, consists
of the cylinder sets corresponding to (z;,2,,...,2,) with each z; truncated to b, bits

accuracy.)

We argue that log 1/P*(X,) provides a lower bound on description length in

both average and pointwise senses.

Theorem 3.1: Lower bound on complexity.

Let I[x,), x, € 7, be the length function for any uniquely decodable code on
the partition m,. The description lengths {X ) ezceed log 1/P*(X,), on the aver-

age,
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E[IX,) - log 1/P(X,)] >0, (3.1)
and pointwise,
l(Xn) - lOg I/P‘(Xn) Z ~Ca (3'2)

for all n sufficiently large, with probability one. Here c, s any sequence of con-
stants for which ¥,2° < oo (for instance, ¢, = log n + 2 log log n).
If the code is uniquely decodable on m, (the union of the partitions), then the

sequence of pointwise redundancies (X,) - log 1/P*(X,) is uniformly greater than

a random variable R > —oco (which does not depend on n). Furthermore,
Einf, ([(X,) -log 1/P(X,) ) 2> - log e. (3.3)

Moreover, this inequality (3.3) also holds for the lengths IX,) = [ log 1/Q(X,) ]
of a Shannon code with respect any sub-probability measure @ on 1. The point-

wise redundancy (X,) — log 1/PYX,) is dominated from below.

Remarks: Any sequence of uniquely decodable codes on m, can be made
uniquely decodable on m, by adding ¢, bits to describe n (where ¥ 27" < 1).
The description length of n accounts for the difference in the bounds in (3.2) and
(3.3).

The Shannon codes based on a probability measure @ (on (1) are uniquely
decodable on each 7,, but in general are not uniquely decodable on =, (Kraft’s
inequality is violated when we sum over n). Nevertheless, a 1-1 code on 7, with
lengths [log 1/Q(x)] exists by the construction due to Elias (see Cover and
King,1978,p.417).

The bound ¢, in (3.2) tends to infinity, but at a rate log n which is much
slower than the typical growth rates for log 1/P*X,). For instance, if X, is
(X;,X,,...,X,) truncated to b, bits accuracy and if the X; are iid with density p”,
then the growth rate of log 1/P*%(X,) is nh(p”) + nb,, which is much greater than
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log n. (Here & is the differential entropy, A(p) = [p(z) log 1/p(z) dz.)

Lemma 1 motivates the following definitions. The pointwise redundancy is

defined to be the random variable

R(X,) = (X,) - log 1/P*(X,). (3.4)

n
Likewise the average redundancy is defined to be the expectation E(R,). We do
not require that the entropy Elog 1/P{(X,) be finite, nor that the entropy rate

exist. (Compare with Davisson’s 1973 definitions of redundancy.)

Proof of Theorem 3.1: Set Q,(x,) = 971 for X, in 7,. Then by Kraft's ine-
quality, @, is a sub-probability mass function on m,. (In the case of a Shannon
code with respect to a distribution @, we have @, (x,) < @(x,) for all x,.) Note
that the pointwise redundancy is the log-likelihood-ratio R, (X,) =
log P(X,)/@.X,). The average redundancy is the relative entropy
KR, = DPQ,) = Y, P'x,)log P(x,)/Q,(x,) which is non-negative by the
concavity of the logarithm. Thus inequality (3.1) is verified.

Let A, = { B,(X,) < —¢} be the event that the redundancy is not greater
than —¢. Then 4, = { P(X,) < 27°Q,(X,) }. Now use Markov's inequality or
note directly that P(A,) = Y4 P'(x,) <2794 Q.(x,) < 27°. Consequently,

P R(X,) < -} < 2 (3.5)

For 27°* summable, inequality (3.2) follows by the Borel-Cantelli Lemma.

The  proof of (3.3) is  similar  except that we  use
A,={ R, < -¢,ming., Ry > -¢}. These events are disjoint with union
A= {inf,R, < -c}. As before we have P7(4,) < 27°Y, Q,(x,). Summing
over n yields PY(A) < 2737 %74 @,(x,). Note that each x in 7, appears at most
once in this double sum. Thus P{A4) < 27¢Y" 27%®) < 2-¢ provided the code is

uniquely decodable on 7,. Likewise, for a Shannon code with respect to a
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distribution @ on §, we have @,(x,) < @(x,), and hence P*A) <
2% .34 Qx,) = 27°Q(A) < 27° In either case we have shown that

P inf R(X,) < -c} < 2° (3.6)

Note that this inequality is a strengthening of (3.5). Define the random variable
R to be the infimum of the pointwise redundancies R = inf R (X,). The expec-
tation ,. fER exceeds — E(R)” = —j;)ooP'{R < —c}de, which by (3.5) exceeds
—fooo2‘° = — loge. Thus the redundancy E, is dominated from below by a ran-
dom variable R and this R satisfies ER>-log e. So inequality (3.3) is verified and

the proof is complete.

Remark: In the above proof we associated mass functions with descriptions by
setting Q,(x,) = 971%) on m,. We should point out that, in general, the sequence

of mass functions @, need not be compatible with a distribution ¢ on (.

Often, the limit of the redundancies R, will be infinite. Let {2, be the
measurable subspace of {} generated by the sequence of partitions 7,. Suppose we
use a Shannon code with respect to a distribution @. To obtain finite limiting
redundancy, it is necessary that a component of @ be absolutely continuous with

respect to P*on (1, .

Lemma 3.1: Mutual singularity implies redundancy — oo.

Let R,(X,) be the pointwise redundancies for a Shannon code based on a
sub-probability measure @ on Q. If Q and P* are mutually singular on Q,, then
lim, R(X,) = oo with P*—probability one.

Proof: Note that the redundancy [log 1/Q(X,)] - log 1/P%X,) is within one
bit of the log-likelihood-ratio log P%X,)/Q(X,). The sequence of likelihood ratios
Q(X,)/P(X,) converges P*-almost surely to the density p of the absolutely con-

tinuous component of @ with respect to P*. (This fact is due to Doob 1953,
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ch.VII, sec.8 with corrections by Billingsley .1961,p.67). Here p is trivially zero if
Q and P’ are mutually singular. Thus the limit set of the redundancy is within
one bit of log 1/p, which is infinite whenever p = 0. This completes the proof of

Lemma 3.1.

Remark: When a component of @ is absolutely continuous with respect to P
this proof provides tight bounds on the limit of the redundancy. For instance, if
Q= f};dv is a mixture of distributions which assigns P* strictly positive prior
probability o(P*). Then ldg 1/Q(X,) is less than log 1/o(P*) + log 1/P(X,). So
the redundancy is less than log 1/« P*) + 1, which is finite.

On the other hand, @ and P* are often mutually singular. For instance, if
Q= dev is a mixture of mutually singular distributions on (2 (e.g. stationary,
ergodic distributions on infinite sequences) and if the prior probability of P* is
zero (e.g. v is a nonatomic prior), then @ and P* are mutually singular on () and
hence (by Lemma 3.1) the redundancy tends almost surely to infinity for any

such P*.

3.2 Pointwise Universal Coding

In chapter 2 we observed that the Shannon code with respect to a single dis-
tribution @), specifically a mixture of Bernoulli distributions, provides universally
good descriptions for data drawn from any Bernoulli distribution P*. We need a
general theory of this behavior for P* iid or stationary and ergodic. Conditions
are given on the prior which ensure that the Shannon code with respect to the
mixture ¢ has pointwise redundancy which is o(n) for a large class of true distri-

butions P*.

Let P’ and P be probability measures on a measurable space. The relative

entropy D(P’||P) is defined as
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D(P||P) = [p*log p*/p dp

where p* and p are the density functions (of P* and P) with respect to any dom-
inating measure p (such as g = P"+P). Note that if P’ has a singular com-
ponent with respect to P then D = oco. By the concavity of the logarithm, the
relative entropy satisfies D > 0, with equality if and only if P*= P. For the

relative entropy restricted to a countable partition © we write
DAPIIP) = Y 4e,PA) log PA)/P(A).

The relative entropy is approximated by it discrete counterparts in the sense that
D =sup,D, and D = lim,D, for any generating sequence of partitions. Simi-
larly, the variation distance is defined as ||P*Pj| = [|p*p|dp or equivalently
IP*P|| = sup,||P*Pll, where [[P“Pll, = 3 1c,|P(A)>-P(A)].

The pointwise redundancy R, (X,) of the Shannon code based on a distribu-
tion @ is [log 1/@QX,)] - log 1/P%X,) which is within one bit of the log-
likelihood ratio. Therefore, the necessary and sufficient condition for the average
redundancy per sample to tend to zero, lim,F(R,)/n = 0, is that the relative
entropy rate equal zero, lim(1/n)D, (P*|@) = 0. Suppose that @ is a mixture of
parametrized distributions according to some prior. In this case Davisson
(1973, Theorem 4) has an interpretation of the relative entropy rate condition in
terms of the mutual information rate between the parameters and the data. For
the pointwise redundancy to be o(n), we find weaker and more readily verified

conditions on the prior.

Henceforth we assume that the probabilities P* P,etc. are defined on a
measurable sequence space ). In particular, {2 is assumed to be the space of
infinite sequences (z;,%,,...) with coordinates taking values in a standard Borel
space X (a space which is isomorphic to a Borel subset of the real liﬁe). The res-

triction of a distribution P to the (sigma-field of) events determined by
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coordinate variables X;,X,,...,X, is denoted by P,. Priors v are understood to be
sub-probability measures on a measurable space of distributions P.

Let {r,} be a refining sequence of countable partitions which generate X.
The data X, take values in a partition m, of {2 which consists of cylinder sets
specified by having the first n coordinates be events in 7,. The coordinates of the
data X, are denoted XS”),XE"),...,X(,?). We may always take the following case: X
is the real line, 7, consists of dyadic intervals of width 97b and the event X" is
the real number X; observed to b, bits accuracy.

Consider first the special case that P*is an iid distribution on 2. Thus the
random variables X; are independent with identical marginal distribution P;. If
P is also iid then the relative entropy satisfies D(P,||P,) = nD(Pj||P;) and the

variation distance satisfies ||P;—P,|| < n||P{-P4l|-

We establish conditions on the prior which guarantee that the redundancy of

the Shannon code with respect to the mixture distribution is reasonably small.

Theorem 3.2: Redundancy = o(n); iid case.
Let R(X,) be the pointwise redundancies for a Shannon code with respect to
a mizture @, = [P,u(dP) of iid distributions P. Then for the redundancy per

sample to tend to zero

1,(X,)
m

n

=0 P"almost surely,

1t 1s sufficient that either of the following conditions hold:

(A) The prior assigns strictly positive mass to the relative entropy sets:

v{P: D(P{||P;) < €} > 0, for all ¢>0,

or

(B) The prior assigns enough mass to the vartation distance neighborhoods
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in the sense that there exists e, with ¥ €, < oo such that
o{ P n||P{-Py|| < €,} = e,

For convergence of R,(X,)/n to zero in probability, the weaker condition that

o{P: n||P{-Py||<e} = e, for all >0, is sufficient.

Remarks: Similar conditions were introduced by L. Schwartz (1965) for the
problem of Bayes consistency. The proof of Theorem 3.2 is based on her analysis
(Schwartz,1965,p.22-24). Recent results (Barron 1985) on the domination of log-

likelihoods are also required.

The solutions to most problems in information theory have been character-
ized by the reemergence of information-theoretic quantities such as the entropy,
the relative entropy, and the mutual information. In that regard the sufficiency
of the relative entropy condition (A) is no surprise. What is surprising is that
relative entropy condition is not necessary. The redundancy per sample
(1/n)log(P1(X,)/ @X,)) can converge to zero almost surely even when the relative
entropies D(Py[[P;) are infinite for v-almost every P. It is sufficient that the prior
assign enough mass to the set of distributions P with ||P{—P;||<e/n. Neverthe-
less, the relative entropy condition (A) is more readily verifiable. We only need
to know that the prior assigns some mass to relative entropy neighborhoods, it

matters not how much.

Proof of Theorem 3.2: The redundancy R, (X,) is within one bit of the log-
likelihood  ratio  log(P*(X,)/AX,))- For any €¢>0 we  want
log(P*(X,)/ @(X,)) < ne or equivalently 2™Q(X,)/P(X,) > 1 for all large n.
Now Q@Q(X,) is given by the mixture Q(X,) = [P(X,)u(dP). Let N be the set

{ P: D(P{]|P;) < €}. Restricting the integral to this set yields

2 Q(X, 2> [ (2" P(X,)/ P'(X,))o(dP) = ngn(€~D>v(dP) (3.7)
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Here D is defined by D = (1/n)log(P*(X,)/P(X,)). Now we use the appropriate

law of large numbers to show that D tends to the relative entropy D(Pj||P;) .

Expanding D we see that
D= 33 log (PO PO

which is the average of n independent terms. For each term ¢ the sequence
log(P*(X{")/P(X{")) is dominated (by an integrable random variable) and is
almost surely convergent with limit given by log p(X;)/p(X;) (Barron 1985,

Lemma 2). So by the strong law of large numbers for dominated variables,

lim D = E log p*(X;)/p(X,) = D(P’||P) P*-almost surely.

n—0C

Thus for each P in N the integrand in (3.7) tends P’ almost surely to infinity.
Consequently (by Fubini’s theorem) there is a set of sequences with P* probabil-
ity one for which lim (2"P(X,)/P1(X,)) = oo for v-almost every P in N. Since

the integrand is non-negative, Fatou's lemma yields
liminf(2" Q(X.,)/P'(X,) > [ Jiminf(2™P(X.,)/P'(X,)) dP) = oo,

provided o(/N) > 0. Therefore condition (A) implies that the redundancy satisfies
R,/n — 0 P*almost surely.

Now consider the variation distance condition. Let N, = {P:||P*-P||, <e}.
We show in general (without restrictions on the distribution) that the redundancy
R,(X,) is less than 2 + log 1/v(V,) except in a set of probability less than e.
Then condition (B) implies that log 1/9(N,) = o(n), (because ||[P*-P||, <
[|1Pa—P,ll < n||P{—F;|] in the iid case).

The redundancy R, (X,) is less than 1 + log P*(X,)/@(X,) which is less than
1+ log P(X,)/ QX,|N,) + log 1/v(N,) where Q(X,|N,) = f P WdP)/ Y IV,)

is the conditional mixture. Thus it is enough to show that PY(X,) < 2Q(X,|N,)
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except in a set of probability no more than e. Again we use a variant of
Markov’s inequality. The event P%X,) < 2Q(X,|N,) is the same as the event
PX,) < 2(PYX,)-Q(X,|N,)) which has probability no more than

23, (P (%)= Qx| N,) T = |[P-Q(|N,)

Tn

— 1, (PP dP)/ N I,
< [, 1Pl 4P/,

< €.

Thus the redundancy R,(X,) is less than 2 + log 1/¢(N,) except in a set of prob-
ability less than e. If log 1/¥(N,) = o(n) for all ¢>0, then the redundancy
satisfies R,(X,)/n — 0 in probability. If also ¢, is summable, then by the Borel-
Cantelli Lemma R, (X,)/n — 0 almost surely. This completes -the proof of

Theorem 3.2.

Remark: In the above proof we invoked the strong law of large numbers to show
that the relative entropy density (1/n)log P{(X,)/P(X,) converges almost surely
to D(P{]|P;). The assumption was that both P* and P were iid. The generaliza-
tion to stationary and ergodic P* and stationary Markov P was recently obtained
in Barron (1985). The upshot is that (1/n)log P(X,)/P(X,) converges P*-a.s. to

the relative entropy rate

lim — log P{X,)/P(X,) = D*(P"||P)

n—oo N

Here the relative entropy rate is defined as D* = lim,E log p(X,|X;,.... X, 1)
where p(X,|Xj,...,X, ;) denotes the ratio of conditional densities of P* with
respect P. Equivalently, D®(P*||P) = E log p(X,,+1/X1,---+X,) + L, where m is

the Markov order for P and [, is Shannon’s conditional mutual information
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L, = 1X}; X 0 Xmy3r-+| %o, --» X na1) (I, depends only on P* and is a measure of
conditional dependence. If I, is finite for some m, then [, decreases to zero as
m—o0.) We see that P*is closely approximated by a Markov distribution P only
if the Markov order m is sufficiently large (that I, is near zero) and if the relative
entropy between the m'™ order conditional distributions is made sufficiently
small. Armed with these results, we extend Theorem 3.2 to more general

processes.

Theorem 3.2: Redundancy = o(n); general case.

If P* is stationary and ergodic and if for each €>0 the prior v asstgns strictly
positive mass to the set of stationary Markov distributions P for which

D®(P*||P)<e, then the pointwise redundancy R,(X,) for the Shannon code based
on @, = [P, v(dP) satisfies lim R (X, )/n =0, P*-almost surely.

If P is any probability measure on (1, and if the prior v satisfies

WP P=Pll, < €,} = e " for a summable sequence c,, then the pointwise

redundancy satsifies imR (X,)/n = 0, P*-almost surely.

3.3 Computability and Complexity

In the preceding two sections we treated a code as a 1-1 (and uniquely
decodable) mapping from a countable alphabet into finite length binary
sequences. However, practical codes must satisfy an additional requirement.
There must be effective procedures for encoding and decoding. (The necessity of
computable codes is noted in Elias 1975.) Consider Shannon’s code construction
which we discussed in section 4. Encoding and decoding algorithms are readily
designed, provided there is a recursive enumeration of the length function. In the
case of the Shannon code with respect to a probability distribution P, we require

that P be computable. Previously, computable distributions have been
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introduced in the context of complexity -based definitions of randomness by
Martin-Lof (1966), Schnorr (1977), and Schnorr and Fuchs (1977). In this section

we review the necessary theory of computability and complexity.

Let {0,1}” denote the set of finite length sequences of zeros and ones (includ-
ing the empty string A). Let M be a partial recursive function from {0,1}* into a
countable set {z}. (Here {z} may be {0,1}° or the integers, or 7, -- the union of
the partitions in section 3.2.) The binary strings in the domain of M are called
programs. Of special interest are the partial recursive functions with domains
that satisfy the prefix condition: no program is the prefix of another. The algo-

rithmic complexity of a symbol z with respect to M is defined as follows:
LyAz) = length of the shortest program ¢ such that M(¢) = «,

if there is no such program then Ly{z) = oo.

There exists a universal complexity measure Ly, that is, there is a partial
recursive function U such that for any other partial recursive function M, there is

a constant (), such that
Lifz) < Lifz) + Oy for all z. (3.8)

The definition of algorithmic complexity and the proof of universality is due to
Kolmogorov (1965). Similar formulations independently appeared in Solomonoff

(1964) and Chaitin (1966,1969).

The notion of partial recursive functions was first defined by Kleene (1936)
who showed that a function is partial recursive if and only if it is computable by
a Turing machine. A Turing machine is a simple model for digital computation
developed by Turing (1936). The key property that Turing established is the
existence of a universal Turing machine U. The universal machine can simulate

the computation of any other Turing machine M. By providing a code for M of
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length C), as a prefix to the programs of . M, the universal machine is seen to

satisfy property (3.8) and hence it provides the universal measure of complexity.

“Turing’s analysis exposes the reasons why no computation procedure, in the
sense of an unambiguous set of instructions which a human being could follow
without using any imagination, is likely to be one which a Turing machine could
not carry out.” (Crossley et.al.,1972). Thus Church (1936) was led to his Thesis
that no computational procedure will be considered as an algorithm unless it can
be presented as a Turing machine. Independently, Post (1936,1943) developed an
equivalent model of computability. Since then numerous other classes of reason-
able computing machines have been proposed, but none has been found that is
not Turing-computable (see Robinson,1950, Markov,1954, Chomsky,1959, Min-
sky,1967, Rogers,1967, Hopcroft and Ullman,1969). Even modern high-level com-
puter languages, such as Pascal, may be used as a basis for the exposition of com-
putability theory (see Kfoury, Moll, and Arbib,1982). With some effort, we could
use any of these models of computation to define the algorithmic complexity of
probability distributions. For definiteness, we use modified Turing machines

similar to the machines proposed by Chaitin (1975,1976).

Our Turing machines may be visualized as follows. There are three tapes (a
program tape, a work tape, and an output tape), ten commands, and a table
indexed by finitely many states. The program tape contains a binary program ¢
of finite length. Initially, the leftmost bit is in position to be read by the
machine. The read command shifts the program tape one bit to the left. The
work tape and output tape are initially all blank have no length constraints. The
commands to shift right, shift left, write 0, write 1, and write blank all apply to
the work tape. The output 0, output 1, and output comma commands write a
zero, one, or comma and shift the output tape one bit to left. The tenth possible

command is to halt. The table determines the specific function implemented by
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the Turing machine. The entries in the table give the next state and the next
command as a function of the current state and the contents of the current posi-
tions of the input and work tapes. Each such table defines a different machine M.
(There are (10k)%* Turing machines with k states.) The first state in the table
indicates the initial state. The execution then proceeds according to the above
prescription, one step at a time. At any time ¢ the output tape displays a finite

set of strings in {0,1}* with the strings delineated by commas.

let MY(¢) be the finite set of strings output by the computer M up to time ¢
when its program is ¢. Let M(¢) = | J, M(¢). Thus M(¢) is the output of the
computer M when given the program ¢. If M halts on the program ¢, then the
output M(¢) is necessarily a finite set of strings in {0,1}". If M does not halt on
#, then M{¢) denotes the possibly infinite set of strings recursively enumerated by
M with program ¢. If the machine does not read all of the program ¢ or if it
shifts past the end of the program, then ¢ is not a valid program and M(¢) is
undefined. Note that by construction, the programs in the domain of M satisfies
the prefix condition. These properties were observed by Chaitin (1976).

Chaitin (1975, Theorem 2.2, 1976,Theorem 1) established the existence of a
universal Turing machine U with a prefix domain. The Chaitin complexity of a

set A of strings is defined as

length of shortest program ¢ such that Ui¢) = A
oo, if there is no such program.

L(A) = Li{A) :{

The recursively enumerable sets are defined to be those possibly infinite sets A
such that I(A) < co. As Chaitin (1976) noted, this is equivalent to the standard
definition of recursive enumeration.

The Chaitin complexity is a universal complexity measure (Chaitin,1976,
Theorem 1). For any other prefix domain computer M, there exists a constant

Cjssuch that
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IL(A) < L{A) + Cyy for all recursively enumerable sets A. (3.9)

This universality is established in the standard way. The Turing machine U is of
the form given above (three tapes, ten commands, finitely many states) and its
state table is constructed so that U can simulate any other such Turing machine.
Any program for U begins with a prefix condition code for the table defining
some other machine M and then follows with a program for M. Corresponding to
the shortest program for A on M we have a program on U of length L,{A) + Oy

Consequently (3.9) holds and U is universal.

For finite sets A, we define L(A4) to be the length of the shortest program for

A that runs in time less than or equal to £. Thus
LY(A) = min {length(¢): U{(¢) = A}.

Note that LY A) is a monotone function which decreases to L(A) as t—oo. The
computation of a set A is said to be feastble in time ¢ if LYA) < co. Thus L)
measures the complexity of feasible computations. However, unlike I{-), the
time-constrained complexity is not universal. The speed of computations depends

on the choice of computer.

For sets A which consist of a single finite length string, Chaitin (1975) esta-
blished the dramatic relationship L{A) & log 1/P(A) where P(A) is the probabil-
ity that a universal prefix domain machine computes A when it is given a random
program (Bernoulli(1/2) sequence). Here =~ means to within an additive con-
stant. However, Chaitin (1976) also showed that no such relationship holds for

sets A which contain one infinite string or more than one finite string.

Now we build up the necessary definitions of computable functions which
take on integer, rational, or real values. Let IN be the set of positive integers
{1,2,...}. Let 7 denote the binary representation of integers z. An integer-valued

function f(z), z € N is said to be a computable function if its graph {Z, f(z)} is a

- 41 -




Description 3.8 Computability and Complexity
recursively

enumerable set. The graph is the set of all ordered pairs (Z, f(z)). The complex-

ity of a function fis defined to be the Chaitin complexity of its graph:

Lf) = LA) for A= {7, [(2)}. (3.10)
Similarly, if {2} is any other countable space (such as the rationals), then label
the z's with a binary string 7 (a 1-1 coding of {z} into {0,1}"). Then the com-
plexity of a rational-valued function fon {z} is also defined as in (3.10).

Consider a real-valued function fon a countable space {z}. Let ¢(z,a) be a

rational-valued function on {z} X N which approximates fto all accuracies a:
lg(z,0) — f(2)] < 27 for all z,a. (3.11)

Then the complexity of real-valued function fis defined to be the complexity of

the simplest rational-valued function satisfing (3.11):
L(f) = min{L(g): g satisfies (3.11)}. (3.12)
A real-valued function fis said to be computable if I{f) < oo.

Finally, the complexity of a probability measure P on a measurable space {2
is defined to be the complexity of the real-valued function log 1/P restricted to
the countable space m, = | j,7, where 7, is a sequence of countable partitions
which generate (2. From (3.10) and (3.12), we see that the complexity I{P) is the
length of a program for a (prefix domain universal computer) which recursively
enumerates (a binary string representation of) the infinite set {x,a,P%x)}, where
P%(x) = ¢g(x,a) is the simplest rational-valued function which approximates P(x)

in the sense that
[log 1/FP(x) - log 1/P%(x)| < 2°° (3.13)
for all x in 7, and all accuracies a. If there is such a recursive enumeration, then

the probability distribution P is said to be computable. Note that for large g,
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inequality (3.13) amounts to requiring that- P%x) be close to P(x) to within a

multiplicative factor of 1 + 27%

Shannon codes revisited

Recall from section 4, that for any length function [z) (on a countable
space) which satisfies Kraft’s inequality, there is a Shannon code given by the
first () bits in the binary representation of ) 274¢) where the sum is over all
7 that precede z in a list ordered in terms of increasing length {z). Moreover,
Shannon codes with lengths lx{z) = [ log 1/P(z)] were defined based on proba-
bility measures P (on the countable space {z}]. Here we discuss how to obtain
Shannon codes from a recursive enumeration of the set {z,a,P%z)} where P*

satisfies (3.13).

Note that if the real number log 1/P(z) is not an integer, then there exists

an accuracy a sufficiently large that

[og 1/P(a)] = [ log 1/P*(#)].
However, if log 1/F(z) is an integer, then the sequence of approximating intervals
(defined in (3.13)) always straddle the integer. Hence the integer part is never
resolved. We circumvent this difficulty by slightly modifying the Shannon
codelength. Simply fix an accuracy e > 1 and define ~P(:l:) to be the corresponding

lower bound on the probability. Specifically, define

P(z) = PYz)(1-279). (3.14)
Then Shannon code with respect to P. The codelengths are

I{z) = [log 1/P(z)]. (3.15)
These codelengths exceed [ log 1/F(z)] by at most one bit.

It remains to show that we can recursively enumerate the set {z,ix(z)} in
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order of increasing codelength. We use the fact that the probabilities sum to one.
To find the shortest codelength, proceed as follows. Pick z,a arbitrarily and let
¢ = PYz)(1-27%. Run the enumeration of {z,a,P%z)} while summing the approx-
imate probabilities (replacing the less accurate terms with more accurate ones as
we proceed) until the sum of the probabilities is determined to be greater than
1-¢. This implies that the z with the shortest codelength is in the finite set of z's
that have been seen so far. For these z’s compute the lengths lp(z) and find the
shortest. Thus we have the first (z,{p(z)) in the new enumeration. In general the
algorithm subtracts the (approximate) probabilities corresponding to the lengths

enumerated so far and then finds the next largest codelength, etc.

Two-stage programs

We note that there exists a constant C' such that for every computable prob-
ability distributions P on a countable set {z}, and for every z, there is a com-

puter program for the data z with length
C+ LP) + lp2). (3.16)

Here L(P) is the length of a program which recursive enumerates the probability
distribution (to arbitrary accuracies) and Ig{z) = [ log 1/P(z)7] is the length of
the Shannon code for the data z. (By the prefix condition, these may be con-
catenated without ambiguity.) The constant C'is the number of bits of a preface
which indicates what should be done with the remaining bits of the program. It
instructs the computer that it should read the remaining bits, then run the recur-
sive enumeration, while summing the 2-°°delensths for 2’5 in order of increasing
codelength, until the binary representation of the sum equals the Shannon code-

word, then output the corresponding data z and halt.

Henceforth we ignore the constant C' and the tilde in equations (3.15) and

(3.16) -- our estimates are not effected. We still refer to I{FP) + [ log 1/P(z)] as
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a description length: note that Kraft's inequality is still satisfied. We do not
drop the integer part notation [ ]. It serves as a constant reminder that we are
directly minimizing integer description lengths. (The interpretations of
min{I{P) + [ log 1/P(z) ]} as a modified likelihood principle or as a Bayes rule
are mathematically important and statistically revealing but motivationally

secondary to the description length interpretation.)

Toward practicality
Given data X, let P achieve min{Z(P) + [ log 1/P(X)]}. Can a minimizing
distribution P be found in finite time? In computable time? The answers are yes

to the former but an unfortunate no the the latter.

Probabilities P(X) are computed by running a recursive enumeration of P
until the triple (X,a,P(X)) is output for a given accuracy ¢ in an specified for-
mat. Of course not all programs are recusive enumerations of sub-probability
distributions. Some programs will never halt or never output an acceptable triple
for X. Some programs will output a probability P X) that is not consistent with
previously enumerated probabilities (e.g. the total mass assigned might be greater
than one.) If the inconsistency occurs for z’s already enumerated, then such pro-
grams can be ignored. However, if as yet unseen outputs are inconsistentA, then
we could be fooled into nonsense estimators. A solution to this problem is to
append to all programs a routine of fixed length which modifies the outputs of
unacceptable programs to force consistency with the probabilities enumerated

thus far. Acceptable outputs are left untouched.

The search for the minimizing distribution P proceeds as follows. List the
computer programs in order of increasing length. Given data X begin to execute
all the programs in a diagonal fashion. As soon as a program (of length L{P))
produces an acceptable output P(X), we need not check any program of length
longer than L(P) + [ log 1/P(X)]. This bound is refined as more programs are
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considered. At time t the distribution with shortest L(P) + [ log 1/P(X)] is
denoted by FP.. Now at some (finite but uncomputable) time {X) a program
achieving minp { L{P) + [log 1/P(X)] } halts and hence P = P for all time

t > H{X). Thus the logically smooth estimate is found, but we never know when.

3.4 Logical Data Compression

Here we present universal coding properties of logical smoothing. The point-
wise redundancy is shown to be o(n) for any true distribution which can be
approximated by computable distributions in the relative entropy sense. Further-
more, we show that iid distributions with densities are approximated accurately
(in the relative entropy sense) by computables (unless the density has peaks or
tails undominated by computable functions). Thus data drawn from any reason-

able density is described with asymptotically negligible redundancy.

First note that if the true distribution P* is computable, then there is a
two-stage description using L(P*) + [ log 1/P*X,) ] bits. Thus for a computable
distribution P’ the pointwise redundancy of the minimum two-stage description
is bounded by the constant L(P’) + 1. In section 4.2, it will be shown that for
parametric families, the pointwise redundancy is of order log n. Here we treat
redundancy for the general non-computable case.

We assume (as in section 3.2) that {2 is a space of infinite sequences with
coordinates in a standard Borel space X. The n-sample of data X, takes values
in a partition 7, of {1 which consists of cylinder sets specified by having the first
n coordinates be events in refining partitions 7, which generate X. For instance,
X may be the real line and 7, the partition into dyadic intervals of width 97t
Then the data X, in 7, are determined by real numbers X;,X,,...,X, observed to

b, bits accuracy.
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Let I' = {P} be a countable set of computable probability distributions on
Q. This T is the list of candidate estimates. For each distribution P in T', let
L(P) denote the length of a prefix domain computer program for P. For distribu-
tions P not in I', set L{P) = 0.

Let B(x,) = min{L(P) + [log 1/FAx,)] : PET} be the minimum two-
stage description length for x, in 7,. By definition, the pointwise redundancy 1is
given by R,(x,) = B(x,) - log 1/P*(x,).

A stationary ergodic distribution P* on () is said to be approximated by
computable distributions in the relative entropy rate sense if for any €>0, there
exits a computable stationary Markov distribution P in I' such that
D*®(P"||P)<e. This is equivalent to infppD*°(P’||P) = 0. (The relative entropy
rate D> was defined in section 3.2.)

Using Theorem 3.2 on the redundancy of mixture codes, we establish the fol-

lowing Theorem. Recall that the pointwise redundancy is the number of excess

bits beyond the ideal length log 1/P{(X,).

Theorem 3.3: Redundancy = o(n) for two-stage descriptions.

If P* is a stationary ergodic distribution which can be approzimated by com-
putable distributions in the relative entropy rate sense, then the pointwise redun-
dancy R,(X,) = min{l(P) + [log 1/AX,)]} -log 1/P(X,) of the minimum
two-stage description satisfies

RTL(XfL)

n

lim =0 P"almost surely.

Proof: Define the sub-probability measure @ = E2‘2L(P ) P. Note that
RX,) = E2‘2L(P JP(X,) may be regarded as an average of 27 XP)P(X,) with
weights 2-LP).  The average does mnot exceed the maximum. Thus

QX,) < maxp{2HP)P(X_)}. Taking logarithms yields
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Note that the left side of this inequality is within one bit of the minimum two-
stage description length. Hence the Shannon code with respect the distribution @
provides an upper bound on the minimum two-stage description. But by
Theorem 3.2, the redundancy using @ is o(n). Therefore, the redundancy of the

minimum two-stage description is also ofn).

A ‘more direct proof is as follows. For any €>0, let P be such that L(P) is

finite and D®°(P*||P) <e. Then the redundancy per sample satisfies

R(X,) _ L(P)+1 + Lo P;(Xn)
n n n P(X,)

The first term in the upper bound tends to zero and the second term tends to
D®(P*||P) almost surely as n—oo. Thus limsupR,/n < D®<e. Since ¢ is arbi-
trarily small, limR,/n = 0 almost surely. This completes the proof of Theorem

3.3.

Remarks: We define the closure in the relative entropy sense of the set I" of can-

didate distributions to be

T = { P* inf D®(P*|P) = 0 }.
(P inf D¥(P|P) = 0}

Thus T is the set of all distributions P* that can be approximated by computable
distributions in the relative entropy sense. Theorem 3.3 shows that the minimum
two-stage description is asymptotically optimal (to first order) for any distribu-
tion P*in T

Can every distribution be approximated by computables in the relative
entropy sense or are there distributions which remain unapproachable? Consider
the iid case and restfict attention to probability density functions (with respect

to Lebesgue measure on the real line). Let I' be the set of densities p with com-
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putable distribution functions. (If a density function is computable then so is the

distribution, but the converse need not hold.) Recall that the relative entropy

between densities is defined as D(p*|p) = [p* log p*/p.

Theorem 3.4: Approximating densities.

A density function p* is approximated by density functions with computable
distributions in the relative entropy sense, i.e., inf ,D(p*||p) = 0, if and only if
there exists a density function p with a computable distribution for which the rela-

tive entropy D(p*||p) is finite. Thus

. . if D(p||p) < oo for some p
1171611( D(pTlp) = o0 otherwise.

In particular, if p* is less than a computable function with finite integral, then

inf,D(p||p) = 0.

Remarks: Thus I' includes all bounded densities with compact support, all
bounded densities with tails which decrease faster than some computable and
integrable function, and unbounded densities with computable and integrable

bounds on the peaks.

Proof of Theorem 3.4:

The second claim is proved as follows. Let ¢(z) be a computable, integrable
function for which p(z) < ¢(z) for almost all  and let ¢ = [¢{z)de. Then
p(x) = ¢(z)/c is a computable probability density function. Moreover, the den-
sity ratio p*(z)/p(x) is bounded by the constant ¢. Hence p is a density for which
the relative entropy D(p”|p) is finite. (In fact, D{p*||p) is less than log ¢).

Now we show that finite D implies the existence of computable distributions
for which D is arbitrarily small. Let pfz) be a density function for which the

relative entropy D(p*||po) is finite and the distribution P, is computable. Using a
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step function () which takes on rational values on a finite set of intervals with
rational endpoints, we construct a density p(z) = po(2)2¥(®/c, where
c= | po(a:)2¢(")da:, for which the relative entropy D(p°||p) is as small as desired.
Then the distribution P satisfies P(A) = P,(A)2"/¢ for any set A in an interval

for which ¢(z) = r. Clearly the distribution P is computable.

Consider the relative entropy D(p‘l|p). Let h(z) = log p*(z)/pe(z) be the log-
likelihood-ratio. The relative entropy satisfies

¥

D(p'|lp) = Elog ”7

— Elog L¢
& Do 9

= E (k) + log ¢

< E || + log c.

To make the relative entropy small, we design the step function ¥ not only to
approximate A in the L; sense, but also to have ¢ = [po 2% not much bigger than

one. The proof uses standard approximation techniques from real analysis.

Given any integer k>1, let n> log k be sufficiently large that the integrals
f|¢|>"p0’ f|z|>n|h|dp" and flhl>nlh|dP' are each less than 1/k Let 6>0 be
sufficiently small that if B is any set with Lebesgue measure m(B)<é then
P (B) < 1/nk and PoB) < 27"/k (such a § exists by the absolute continuity of
the distributions P* and Po).

We define a function A which is a truncated version of k. For |z}>n, set
h(z)=0. For |z]<n, let the function h(z) be A(z) clipped at +n, that is h = h for
|h|<n, k= n for A>n, and h = —n for h<-n. Note that & approximates A in

the sense that [|h-h |dP* < f|z|>n|hl dP* + 2 f|h|>n|hl dP* < 3/k.
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Let ¢(z) = E,-N=1r,-IA‘(x) be a simple function such that ¢(z) < h(2)+1/k for
|zj<n. Specifically, set N=2nk, r/=(i-1)/k-n, and A;= {z: n<h<r+1/k,
|z|<n} for +=1,2,..,N. For each set A, let R; be a disjoint union of intervals
with rational endpoints such that the Lebesgue measure of the symmetric
difference A;AR; is less than 6/N (such approximating sets R; exist by the
measurability of the A;). Set ¥(z) equal to the step function E.iﬁiIR,(x) clipped
at +n.”Then 9 is a computable function agreeing with ¢ except in a set B with
measure m(B) < m({ J{A4;AR;)) < 6. Furthermore, ¥ approximates h in the
sense that [|h-9|dP* < 1/k+ 2ndeP' < 3/k. Moreover, ¢ approximates h,
since by the triangle inequality f|h—¢IdP' < f|h—/7]dP'+ f]/?—wldP', which is
less than 6/k.

Now we examine ¢ = [po 2¥. Note that by construction the function
po(2)2%(2) is less than or equal to the probability density p*(z) = po(2)2H?) except
possibly for 2z satisfying |z|>n, h(2)<-n, or z in the set B. Thus the integral
[po2¥ is bounded by [p*+ flfvl>np0 + fh<-np° 2" + fB po2™ which is less than

1+ 1/k+ 2"+ 2"Py(B) < 1 + 3/k. Therefore

D(p*|lp) < [|h-9|dP* + log ¢

6 3
2 1+ 2
< p + log(1 + k)

12
<=

Taking & to be as large as we wish, we have a computable distribution P with
density p that is arbitrarily close to the uncomputable density p* in the relative

entropy sense. This completes the proof of Theorem 3.4.

We conclude that the redundancy of the minimum two-stage description is

asymptotically negligible for any density function p* (except for those unusual
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densities which are infinitely far from every computable density). Therefore, the

minimum two-stage description is a universal code for data compression.
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Chapter 4. Inference

Thus far, the focus of this thesis has been discussion of the asymptotics of
the lengths of descriptions. Now we bring statistical considerations to the fore-
front. We ask, ‘“Are the distributions which minimize the description length

accurate estimates of the true distribution?” Affirmative answers are provided in

the computable, parametric, and non-parametric cases. We shall see that

information-theoretic principles are crucial to addressing the questions of statisti-

cal inference as well as the questions of data compression.

Throughout this chapter we assume that the measurable space (2, on which
the distributions are defined, is a space of infinite sequences (z;,%,,...) with coordi-
nates taking values in a standard Borel space X. ({1 is endowed with the product
sigma-field.) Moreover, it is assumed that the random data X, takes values in
refining partitions 7, which generate the sequence space (2. (For instance, the
partition 7, of {1 may consist of cylinder sets with the first n coordinates given
by events in refining partitions r, which generate X. Furthermore, the space. X
may be the real line and the partitions 7, may consist of dyadic intervals of
width 27 In which case, the data X, consist of real numbers X; X, ..., X,
observed to b, bits accuracy.) The true probability distribution (or law) P* on 2

is assumed in all cases to be stationary and ergodic.

4.1 Computable Laws

The true distribution P* is here assumed to be computable (see section 3.3
for a definition of computable distributions). We note that every distribution
that has been effectively described by statisticians is indeed computable. More-
over, for effectively described parametric families, the distribution is computable
whenever the parameter values are computable. (On the other hand, distribu-

tions with randomly selected parameters are not computable with probability
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one, but we shall handle that case in the next section.) Examples of computable
distributions include the uniform, the Gamma, the Student ¢, Pearson’s distribu-
tions, and many others. Indeed, the number of computable distributions is
countably infinite.

Let I" denote a countable collection of candidate distributions P. We assume
that each P in I' is a computable sub-probability measure on 2 and that each P
is stationary and ergodic. In the ideal case, I' consists of all such computable dis-
tributions. Or I" may be restricted to a list of distributions which would be rea-
sonable in a specific case. For instance, I' may be all computable iid distributions
with densities.

For each distribution P in T, there is a description length I{P) which is the
length of a prefix condition code or computer program for P. Then using the
Shannon codes, there are two-stage descriptions of the data X, with total length
I(P) + [log 1/P(X,)]. The estimated distribution P, is a distribution which
achieves min{L(P) + [ log 1/AX,)] : P €'} -- the minimum two-stage descrip-
tion.

The most important property satisfied by our estimator is the following.

Theorem 4.1: Empirical Revelations.

If the true distribution P* ts a computable distribution (in T'), then the esti-

mate P, ts exactly correct,

A

P

P,

n
for all sufficiently large n, with P* probability one.

At the risk of multiplying explanations beyond necessity, we give three
different proofs of this theorem. In this way we demonstrate various tools for
examining the minimum description length. The first proof is perhaps the sim-

plest. The second proof has a Bayesian viewpoint. The third proof avoids the
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use of martingale theory in the iid case.

First Proof: Consider the Shannon code based on the distribution
Q = EQ‘L(P)P, where the sum is over all P in I" which are not identical to P~
(By Kraft’s inequality ETL(P) < 1, so the mixture @ is a valid sub-probability
distribution.) Since each stationary, ergodic distribution P (which is not equal to
P*) must be mutually singular with respect to P, the mixture distribution @ is
also m;;cually singular with respect to P* on the sequence space {1. Hence, by
Lemma 3.1, the redundancy [log 1/Q(X,)] - log 1/P*(X,) tends almost surely

to infinity. Thus for all n sufficiently large,
L(P") + [log 1/P(X,)] < [log 1/Q(X,) ]

< min{IP) + [ log 1/P(X,)] : P#£P"}

Here the second inequality follows from the fact that the sum
QX,) = Y2 UPP(X,) exceeds its maximum term. Thus the two-stage descrip-
tion using the true distribution P* is uniformly shorter than all other two-stage
descriptions. Therefore, the minimizing distribution 15,z is the true P*. This com-

pletes the first proof.

Second Proof of Theorem 4.1: This proof is substantially due to Doob (1949).
Regard 2747 ) as a prior probability on distributions and consider
Prob{P=P"X,}, the conditional probability that the random distribution P
equals P” given the data X,. This conditional probability is equal to the ratio of
the joint likelihood 2"MPIPY(X.) to the marginal likelihood 2-2FIPY(X,)
+ Q(X,). (Here @ is the mixture defined above.) With respect to the joint dis-
tribution of P and {Xj,X,,...}, the conditional probability Prob{P=P*X,} is a
martingale which converges almost surely to the indicator function that P equals

P*. Hence, with respect to P’ it converges almost surely to one. But
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Prob{P=P*X,} > 1/2 is equivalent to 2-XF)IP(X,) > Q(X,). Hence, for all
sufficiently large n, the joint likelihood at P* is greater than the sum of all the
other joint likelihoods. Taking logarithms and rounding up to integer lengths, we

have that
LPY) + [log 1/P(X,)] < min{L(P) + [log 1/P(X,)] : PAP")

Thus P* achieves the minimum description length. To see that eventually P*is
the uniéue minimizing distribution, let n be large enough that Prob{ P=P*|X,} is
greater than 2/3. Then the joint likelihood 2~ XFIP*X ) is at least two times as
large as all other joint likelihoods. So the description length using P*is at least
one bit less than all others. Therefore, Pn equals P* and this completes the second

proof of Theorem 4.1.

Third Proof of Theorem 4.1: This proof avoids martingalé theory in the 1id
case. Instead, we use the monotone convergence theorem and the strong law of
large numbers. Note that Pn = P’ for all large n, with probability one, if and
only if the probability of error P'{Pn # P* for some n>k } decreases to zero as
k—oco. By the union of events bound, this probability of error is less than
3 p P(Ay(P)), where the sum is over all P not equal to P*. Here Ay(P) is the
event that for some n>k  the description  lengths satisfy
LP)+ Jlog1/PX,)] < L(P*)+ [log 1/P(X,)], which happens only if the
log-likelihood-ratio satisfies log PY(X,)/P(X,) < -L(P)+c¢. (Here ¢ = I(P*+1.)
But these log-likelihood-ratios tend almost surely to infinity (either by martingale
properties as in Lemma 3.1, which holds in general, or by log P%(X,)/P(X,)
= n(D + o(1)) with D>0, which holds for P iid or Markov -- see equation (3.8)).
Consequently, the probabilities P*(A(P)) decrease to zero as k—oo. Moreover, as
shown in the proof of Theorem 3.1, the probabilities P*A(P)) are dominated by

PY(Aq(P)) < 2°UP*¢ which is summable in P. Thus, by the monotone conver-
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gence theorem, lim; ¥ p P{AWP)) = Y, p imPY{AP)) = 0. Therefore, except
for sequences in a set of zero probability, Pn = P”* for all large n. This completes

the third proof of Theorem 4.1.

4.2 Parametric Laws

One aim of statistical inference is to determine suitable models or parametric
families“of distributions to explain data. We do not assume that a correct model
is known. Instead, we consider every conceivable parametric family (in a count-
able list of candidate families) so as to find the family which yields the best
description of the data.

What happens if the true distribution is a member of one of the families on
the list? We show that although the true family is not unique, the estimator
identifies a simple family which contains the true distribution.

Let P denote the space of all stationary and ergodic probability distribu-
tions on (). We regard parametric families { P, : 6 € O} as manifolds in the space
P. A parameter space © is a subset of R¥ for some dimension k, ie., each fis a
parameter vector with real-valued coordinates.

We suppose that the true distribution P*is in some parametric family {P; :
f € ©}. Thus P*= P,. where #* is the true parameter vector. The results we
obtain hold for all #* except those in a set of zero measure with respect to a prior
measure v”. (The prior v* may be equivalent to Lebesgue measure on 6). The
property that makes possible the discovery of parametric families is the assump-
tion that the mixture distribution Q"= [P;dv*(0} is computable. Note that Q*

may be computable even if Fy. is not.

In general, priors v are probability measures on P, the space of stationary,

ergodic distributions. (We need that P is a measurable space; indeed, P inherits
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the sigma-field of Borel sets from () in the usual way, i.e. ergodic distributions
correspond to sets of infinite sequences which have the appropriate limiting rela-
tive frequences of events.) Parametric families correspond to priors which are con-
centrated on a manifold. In particular, a prior v on the parameter space © of a
family {P,} is also to be regarded as a prior on the space P. Such a prior
assigns zero probability to the set of distributions not in {F,;}. Mixture distribu-
tions are expressed as Q" = [Pdv’(P) as well as Q" = [P,dv’(f). The global view
of priors permits comparison of the sets of distributions on which they concen-

trate.

In trying to estimate a parametric family, we are confronted with the follow-
ing difficulty. There are many parametric families which intersect a given family
{P;} at Pj. Indeed, the points of intersection might even include a whole seg-
ment of the manifold, {FP,: § € N}, where N is a neighborhood of 6. For exam-
ple, suppose the true distribution is iid Gaussian with unknown mean 6* and unit
variance. As an alternative family consider {P, : § € R} where, for all # outside
[0,1], the distribution is Cauchy with location 6, but for 8 in [0,1], the distribution
is Gaussian. If ” happens to be in [0,1], these families are statistically indistin-
guishable. Nevertheless, logic dictates that the simplest family which intersects
P’ is preferred.

One way to use parametric families to describe data is to try the two-stage
descriptions based on mixture distributions ¢ = dev where we are free to try a
multitude of priors v corresponding to various families. (Latter we will discuss
two-stage descriptions where the first stage involves both a description of the
family and a description of a parameter value.)

The mixture distributions are remarkably general. Indeed, any stationary
distribution @ on 2 has an ergodic decomposition @ = f Pdv for some prior v

(Oxtoby 1952). Thus a stationary distribution @ may be regarded as the
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(unconditional) distribution on infinite sequences that obtains when first a sta-
tionary, ergodic distribution P is chosen at random according to a prior v and
then (conditionally) the data sequence is drawn according to P. Mixtures of sta-
tionary, ergodic distributions are stationary but not ergodic (unless the prior v is
degenerate).

Our inference of parametric families proceeds‘ as follows. We try the two-
stage "descriptions based on stationary distributions @ and determine a stationary
distribution @, which achieves the minimum. Corresponding to Q, is a prior 7,
such that Qn = deT‘J,,. This ¥, may be regarded as an estimated prior on distri-

butions which we hope is partially concentrated on the true manifold.

In particular, let I' be any countable collection of stationary distributions @
on {1. For each @, let L(Q) denote the length of a prefix condition code or com-
puter program for @. Ideally, I' consists of all computable stationary distribu-
tions and I{ Q) denotes the length of the shortest program for @, but we are not
restricted to this case. For each @ in I' there is a two-stage description of the
data X, with length Z{ @) + [ log 1/Q(X,)]. We let @, be a distribution achiev-
ing the minimum two-stage description length min{Z{@) + [ log 1/@(X,)1}. The
estimate Q, differs from the P, obtained in the previous section because we are

no longer restricted to ergodicity. Let Qn = dei),, be the ergodic decomposition
of the estimate Qn.

For any pirior v, let v = v* + v* denote the decomposition into components
v** and v which are (respectively) absolutely continuous and singular with
respect to v’. The absolutely continuous component »%* is concentrated with v*
on the manifold (for if B is the set of distributions not on the manifold, then
v(B) = 0 implies v*(B) = 0). Likewise, Q* = [Pdv* and @ = [Pdv* are the
absolutely continuous and the singular components of Q@ = dev with respect to

QR = de-v’. Because of the high dimensionality of the space of all ergodic
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distributions, most priors v are singular (i.e. v* is zero} with respect to priors
which are supported on low dimensional manifolds. Surprisingly, our estimated
prior 9, is not singular with respect to v”".

Ideally, we would like for the estimated prior ¢, to be equivalent to (mutu-
ally absolutely continuous with) the prior »* on the true manifold {F,;} in a
neighborhood of #*. For then 9, and v* would agree as to which distributions are
possible "and impossible in this neighborhood. We show that these properties

nearly hold for large n.

Theorem 4.2: Finding simple but accurate families.

Suppose that Q" = [Pdv” is a computable distribution on the list T’ and that
the prior v* is concentrated on a manifold {P,}. Let Q, = [Pdb, be a distribu-
tion which achieves the minitmum two-stage description length. Then the
estimated prior 9, has an component 9° on the manifold which is al;solutely con-
tinuous with respect to v* and which assigns strictly positive mass to {Py: 0 € N}
for all sufficiently large n, with Py probability one, for any neighborhood N of 07,
for v* almost every 6*.

Moreover, the singular component is asymptotically negligible in the sense
that lim Q3(X,)/Q.(X,) = 0 with probability one. Furthermore, the estimated
posterior distribution 0,(B | X,) fP dvn/fP )dv, asymptotically concen-
trates on neighborhoods of 0%, in the sense that lim 9,(B | X,) = 1, with P, prob-
ability one, where B={Py: 6 € N} for any neighborhood N of 0°, for v almost

every 0°.

Proof: Since Qn achieves the minimum two-stage description length we have

that L(Q,) + [log 1/Q,(X,)] does not exceed L(Q*) + [log1/Q*X,)] and

hence
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0X )2 1% > Q1(x,)2e (4.1)

where ¢ = L(Q") + 1. We show that the right side of (4.1) is significantly
greater than QfL(Xn)fL(Q"). Indeed, by mutual singularity on 2, the ratio
(N (X,)219)/ Q*(X,) tends to zero with Q* probability one. (Here the sum is
over all Q@ in T' and @° denotes the singular component with respect to @*.) Now

the sum exceeds the Qn term. Therefore,

o

lim =0

and from inequality (4.1),

o GX)
" QX

with @* probability one and hence with P, probability one, for v* almost every
8*. Hence, for all large n, the estimated prior 9, (and its absolutely continuous
component ¥;°) assign positive probability to the manifold on which v* concen-
trates. It remains to examine the behavior in neighborhoods of 6”.

Consider a fixed set N in the true parameter space © and condition on the
event that the random #* is in N. Then the distribution for the data is
QY = fBPdv'/v’(B) where B= {P,: 6 € N}. For each Q, let @V = chPdv be
the distribution obtained by removing the component on the set
B={P,:60€ N}. Then @Y is mutually singular with respect to each Q" and
hence the ratio ()] QV(X,)219)/ QN(X,) tends to zero with QY probability one.

So as before we have

and from inequality (4.1},
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ANc .
limw =0 (4.2)
n Qu(Xy)

with QY probability one, and hence with P;. probability one for v* almost every
6 in N.

By assumption, the parameter space © for the true family is a subset of the
Euclidean space R* for some k. Therefore there exists a countable basis {N},
that is,w‘;a countable collection of sets such that for any parameter 6° there is a
sequence of neighborhoods N, in {N} which contain §* and have diameter

decreasing to zero as j—oco.

Consequently, from (4.2), the event (M), lim,( Q{,"‘(X,,)/Q,,(Xn)) Ijremy =0
has @* probability one and hence P,. probability one for v* almost every 6.
Therefore, letting N be any neighborhood of 6*, we have that
limQN(X,)/0,(X,) =0 or equivalently limé (BX,) = 0 with Pﬂy. probability
one, for v* almost every §”. Thus the estimated prior 9, is asymptotically concen-
trated on the true family in neighborhoods on the true parameter. This com-

pletes the proof of Theorem 4.2.

Remarks: Theorem 4.2 may be used to obtain a stronger conclusion in certain
contexts. For instance, suppose the list of candidate families {FP,} is reduced to a
set of families that have no non-trivial intersection. Then the true family is

discovered for all large n, with probability one, for almost every parameter value.

The mixture distributions may be used to obtain lower bounds on the
minimum two-stage description length min{I(P) + [log 1/P(X,)]} where the
minimum is over stationary and ergodic distributions P. If the prior v is con-
tinuous, i.e., it contains no mass points, then the mixture Q* = dev' is mutu-
ally singular (on (1) with respect to each P. Hence the following result is

obtained as a special case of either Lemma 3.1 or Theorem 4.2.

- 62 -




Inference 4.2 Parametric Laws

Lemma 4.1: The continuous mixture bound on two-stage descriptions.

Let Q" = [Pdv* denote the mizture distribution with respect to a prior v*
which contains no mass points. Then the minimum two-stage description length
BX,) = min{l(P) + [ log 1/AX,J]}  exceeds the Shannon  codelength
[log 1/Q*(X,)] for all large n, with P* probability one, for v* almost every P’
Indeed the redundancy B(X,) — log 1/ Q*(X,) tends to infinity with probability one.

ThlS result is especially useful for smooth parametric families for which the

mixture likelihoods Q(X,) = [Py(X,)dy(0) can be evaluated exactly or at least

closely approximated.

Description length for smooth families

In this section we show that if {F;} is a’computable family which satisfies
appropriate smoothness conditions then there is a two-stage description of the
data X, with length within 2 log log n bits of (k/2) log n + log 1/P;_(X,), where
6,4 is the maximum likelihood parameter estimate and k is the dimension of the
parameter vector. Moreover, this same length (k/2)log n 4 log 1/P; (X,) is
asymptotically within a constant of the Shannon codelength log 1/Q(X,) with
respect to the mixture distributions @ = [P;v(6)df for continuous prior density
functions (). But by Lemma 4.1 (also Theorem 3.1), log 1/Q(X,) is an asymp-
totic lower bound on the minimum description length, for data drawn from Py
for (Lebesgue) almost every 6"  Consequently, it is shown that
(k/2) log n 4 log 1/, (X,) is an asymptotically achieved lower bound on the

minimum description length.

Example

Suppose the distribution on sequences in (2 is 1id according to the Gaussian
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distribution with density function py(z) = (1/V27)exp {~(2-6)?/20}. Here 0 is
the mean or location parameter and o2 is the variance or scale parameter. In this
example we regard o2 as a known computable number, whereas 6 is unknown
(and likely to be uncomputable). For the sequence of real-valued variables

X;,Xs,-..,X,, the joint density function is given by

1 - — 2 0_2
po( X1, X,) = ( e V(X072
- 2o

= Py (X X P
(X X,

where 0,47 = (1/7)Y 2_,X; is the maximum likelihood parameter estimate. (For
more general families a similar result holds by a second order Taylor expansion,

in which case 1/0? is replaced with the Fisher information.)

Let v(f) be a prior density function on the parameter 6. (We will need v to
be continuous and strictly positive.) Consider the mixture distribution

Q= ngv(ﬁ) df. This mixture has a joint density function given by
q(Xl"")Xn) — fpﬂ(Xl77Xn)v(6)d0

— Py (Xiyeo Xy) [0S 127 gy p.

Note that the integrand is insignificant except in a neighborhood of 8, (within
which 9() will be nearly constant). Therefore the following approximation is to

be expected,

qXq,...,.X,) =~ Pﬁm(Xlr"an)”(eML) f ¢~ M-0u)/20° 4

= Dol Xl 0y (4.3

Indeed, this approximation is a special case of Laplace’s method of integration

which is quite accurate in general for approximating mixture densities (see Lem-
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mas 4.2 and 4.3, below).

Suppose that the observed data is X, = (X}X3,...,.X%) where X? is X;
observed to b = b, bits accuracy. It will be shown (Theorem 4.3>) that if

b,—oo then the approximations for densities also hold for the probabilities, i.e.,
PX,) % Py, (X,)e " Pl (1.4)

and

271'0'2 )1/2.
n

(4.5)

QAX,) = Py, (X,)u(0p)(

The length of the Shannon code with respect to ¢ is now approximated.
Taking logarithms in (4.5) yields

1
QX,)

1 n
~ — log + log
1 2 2102

1 1
[log W Xy 9

If in place of 0,; we use any 6 which differs from 057 by DO mor‘e than o/V/n,
then by the expansion (4.4), the approximation (4.6) remains accurate to within
(1/2) log e bits.

Surprisingly, the terms in the expansion (4.6) are suggestive of a ‘“‘two-stage”
description of the data. A distribution P; is described as follows. First the fam-
ily (in this case iid Gaussian) and the prior v are described using
I{Gauss.) + L(v) bits (these lengths should be added to both sides of (4.6)).
Then using the prior v we describe the parameter value 6 which is the maximum
likelihood estimate given to &, = [log‘ \/ﬁ/a] bits accuracy. Roughly, the term
log 1/v(6)y) corresponds to the bits to the left of the binary point and the term

= 1/2 log n/o® corresponds to the bits to the right of the binary point. In
particular, let N be the dyadic interval of width 27¢ which contains ,,;, where the
constant ¢ is chosen such that log 1/4{(#) does not significantly vary within such

intervals (for non-Gaussian cases we will also need to assume that N is small
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enough that the Fisher information does not vary significantly within N). This
interval N is described using about log 1/(9(6,4)27°) = ¢ + log 1/48,) bits for
the Shannon code based on the prior v. The remaining (k, — ¢) bits of  may
then be given, once the integer k, = logv'n/o is described. Now integers k are
exactly described using log® k = [ log & + 2 log log k] bits for the Shannon code
with respect to the mass function P(k) = 1/Klog k)* for k>2. Finally the fact
that # is within ¢/V/n of the maximum likelihood estimate (and the expansion as
in (4.3)) implies that the Shannon code with respect to P; has codelength
[ log 1/Py(X,) ] near log 1/Py, (X,). Putting it all together, we have a two-
stage description of the data with length within a term of order log log log Vn of

the following

Vn vn

+ log AL log log AAL log (4.7)
o o

log

U Opaz) Py (X,)

At first the iterated logarithm may seem to be more accurate an expansion
than necessary. But note that without the log log \/;/a term, the two-stage
description length as in (4.7) would be within a constant of the Shannon
codelength based on the continuous mixture as in (4.6), which would violate
Lemma 4.1. The unexpected dividend of our analysis is that we can assert that
the two-stage description length in (4.7) is within log log Vn/o of the minimum
two-stage description length over all families. Thus we have presented a distribu-
tion which achieves nearly minimum description length. This is a surprising
result because we know that to find the exact minimum would require unbounded
computational resources.

Now we present the tools needed to handle smooth families in general. The
following Lemma is patterned after a result in Tierney and Kadane (1984,
Theorem 1). The proof is fairly standard and hence omitted. Additional useful

background is in Polya and Szego (1972, Pt.II, problem 201 and solution), and in
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De Bruijn (1958, chapter 4). The function g,(f) in the Lemma will be used to
denote log-likelihood-ratios in the succeeding development. Similarly, ¢(¢) will be

the relative entropy and G(6) will be the Fisher information matrix.

Lemma 4.2: Laplace’s method of integration.
Let g.(0), ¢(0) and v(0) be functions on RF. Suppose the following conditions

are salisfied.

(i) g,(0) and g(0) are twice continuously differentiable tn a neighborhood of 0.
The matrices of second partial derivatives are denoted G,(0) and G(6)

respectively.
(71) g(0) has a unique minimum at 6* and det G(6") > 0.
(1) lim,, g,(0") = ¢(9").
(iv) G,(0) — G(6) uniformly on a neighborhood of 6”.

(v) For any 6> 0, there exists c(6) > O such that if |0-0% > 6, then
g.(0) > g0 + ¢(8) > 0, for all large n.

(vi) v(0) ts continuous, integrable, and v(6*) > 0.

Then for all large n, g,(0) has a unique minimum at 8 and 0,7 — 0" as n—oo.

The function g,(6) satisfies
1 R
9.(0) = 0a(0p) + 5(9—9ML)T G (0-Opp)(1+€,) (4.8)

where G = G(0)y) and the factor €, tends to zero as 0—fy; — 0 and n—oco.

Furthermore,

1/2

[ Do0)dg = ey, ) [ nkdletc‘:] (@2 (1+0(1)  (49)

where o(1) — 0 as n — oo.
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We note that lim, G (8y4) = lim, G(0,4) = G(8%). Therefore, the approxi-
mations remain valid with either G,(8,;) or G(8%) in place of G. Also 0,; may
be replaced with any @ for which |8 — 8| = o(1/Vn).

Now we provide conditions on parametric density functions that ensure the
applicability of Laplace’s method. Let {P;: 6 € ©}, © C RX, be a parametric
family of iid distributions with density functions py(z). Let X;,X, ... be indepen-
dent random variables with common density function p*(z). (The true distribu-
tion P* need not be in the family.) The observed data is assumed to be of the
form X, = (X", Xp",..., X(®) where X{" is a small interval containing X; In par-
ticular, X{") is in a countable partition 7, of the line. We require that the max-

imum width of intervals in 7, tend to zero as n—oco.

Let g(0) = Elog p'(X)/ps(X) be the relative entropy which we will need to
be finite for some open set of parameters §. The assumptions will also ensure
that ¢(f) is twice continuously differentiable. We let G(6) be the corresponding

matrix of second partial derivatives (9%/ 90,0;) 9(9).

Theorem 4.3: Approximations for smooth likelihoods.

Suppose the following conditions are satisfied by a parametric family of densi-

ties py(z).

(1) The derivatives (8/90,)py(z) and (82/80]-0k)pg(x) exist and are continuous
on the set {(0,z) : |6-0" <68} for some §>0.

(2) g(9) has a unique minimum at 0* and det G(9*) > 0.

(8) The derivatives (82/80]-0k)10g 1/py(z) and ((8/89;)log 1/pi(2))? are locally
dominated in the sense that there exists §>0 and ¢(z) with finite Ec(X)
for which |(82/80j6’k)10g 1/py(2 )| and ((8/00)log 1/py(# ))? are less than
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¢(z) for all |0-0"] < 6 and |2 —2| < 6.

p'(X) oo
(4) Elog m > .

(5) |01|im pg(2) = 0 for all .

(6) v(0) is continuous, integrable, and »(6%) > 0.

Then with probability one, there exists a unique 0p; maximizing the likelthood
PyX,) for all large n. The mazimum likelihood estimate 0, ts consistent, i.e.,

lim, 0,7 = 6 almost surely. Let G = G(0)y). The log-likelihood satisfies

log + 5 (0-0) TG (B-03g)(1e,)  (4.10)

T W
Pﬂ(xn) Pb’ML(Xn)

where €, — 0 almost surely as |0-0,,7] — 0 and n — co. Furthermore, the mizture
distribution @ = [ Pyu(0)d0 satisfies
1/2

_ (2m)
QX)) = Po (X)ul0sa) |22 (1 + of) (.11

where o(1) — 0 almost surely as n—co.

Remarks: The approximations remain valid with G = G(0y41) replaced by the
Fisher information G(6*) or the observed Fisher information G,(6y;) (the matrix
with  entries (1/n)(82/89j9k)10g 1/PyX,)). Note that by (4.10), if
§ = 037 + O(1/V'n) then the log-likelihood at @ differs from the maximum by at

most a constant.

Proof: We show that the assumptions (1)-(6) imply the satisfaction of the condi-
tions (i)-(vi) of Lemma 4.2 with g, given by g¢,(0) = (1/n) log P(X,)/PyX,).
The verification of conditions (i), (ii), and (vi) is immediate. Condition (iii) holds

by the strong law of large numbers for dominated variables applied to
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9,07 = (1/n) ¥ log P4 (X{")/P,{X{"). (The domination of the variables
log P*(X{) )/Pa-(){(,“) for each fixed index ¢ is a consequence of Barron 1985,

Lemma 2.)

The verification of condition (iv) is the most difficult step. We need to show
that the  matrix G, (f) with  entries ‘(l/n)(82/8010k)10g 1/Py(X,)
=(l/n)2,’-‘=1(82/6010k)10g 1/Py( X"} converges to G(6) uniformly on a neighbor-
hood of 8*. First consider the densities. From calculus we have

0 1 -1 0

lo = z
56, 8 2@ — i) 06,7

and

L 1 -1 __52_ ;
%&mMﬂ_mmWﬂMﬂ%(ﬂM )| 5

Similarly we calculate the derivatives of log 1/P4(A) for any compact interval A.

The first derivatives are given by

9 S

log =
a0, Py(A) Py(A) 06;

Fy(A)

—l

fA 60
and second derivatives are given by

J1og i = | e nta) 4 (112)
80,0, ° PyA) Py(A) 4890, '

| m g | ma a4

Here we employed exchanges in the order of differentiation and integration
(which are valid since the derivatives are continuous and hence uniformly con-

tinous on the compact set {(6,z) : |§-0°]<é, 2€A4}). Now we simplify expression
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(4.12) as follows

o2 1 [ 8 1 | pela)dz
lo = lo - R, 4.13
503, S Fa) ~ 1a\F0g; % o) Paa) (4.13)

where the remainder term R is given by

Rj = fA [ 889]- log Pa(lX)H ‘9891= log Pa(X)] Fy(A

py( )d:c

flw mmJP f[wf%muﬂ (4.14)

Examining the terms in (4.13) and (4.14) we see that the integrals are all finite
(from assumption 3). Let A = X be a sequence of sets decreasing to X. By a
standard generalization of the Lebesgue density theorem (as in Ash, 1972, p.78),
each of the (normalized) integrals on X(") tends almost surely to the integrand at

X. Consequently,

lim & log ! = 0" log !
n 000, Pa(X(")) 80,9y po(X)

with P, probability one and hence P* probability one (since finite relative entropy
g(8) = D(P°’||Py) implies that P* is absolutely continuous with respect to Fy).
Note also that the terms in (4.13) and (4.14) involve averages with respect P,

conditioned on the set A. Now averages are less than suprema, so we have

62 1 62 1 1
log < sup| |+ 2 sup]—log |'s p| —_—
py(z) 59k ®el2)

8919*. Pg(A) €A 00 9}: 0( ) |

Consider the interval X{" in 7_ that contains the random variable X. Let N be

large enough that the maximum width interval in 7, is less than § for all n> N.

Then, X" is a subset of {z]|z-X]|<&}. Therefore,

E sup o log 1
>N | 0600 n)
-7 < 6 JUk Pa(X( )
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o2 1
<E 1 2F
S B0 | | s e s >']
|6-8°| <5 |6-0°| <5 |6-6°| <5
52 P 1 P 1
<E ] 2 ] E ] 2
sup| 307, g )I + [Esup(ag o8 )) S“p(aok og (x))]
< 3Ec(X) < co.

Thus (8%/80,0,)log 1/Py(Xt™) is locally dominated.

For convenience set @&

Gi(0) = E(0%/09,9,) log p*(X)/py(X) = (6%/09,6)) Elog p*(X)/py(X).  The

exchange of expectation and derivative is valid by application of the mean value

W0) = E(8%/808,) log 1/py(X).  (Note that

and dominated convergence theorems.) Given any ¢>0 and any 6 satisfying
|0-0*1<6/2, the monotone convergence theorem shows that there exists §6)>0

sufficiently small and M(6) sufficiently large that

and

Now {0 : [0-6"1<6/2} is a compact set covered by | J,{¢ : |0 -0]|<8(f)}. There-
fore there exists a finite subcovering U},\,l’f:l{() : 16—-6™<6(6™)}. Then by the

strong law of large numbers,

— o’ lo l__¢
n 800, ° PyX,

limsup sup [
n |6-8°1< 8/2

. 18 02 1
< limsup max su log — G0
= TP 1<m<M |o- a"’|<p5(o"’)[ ,El 00,6, pﬂ(xgn)) )
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: 1 9° 1
- ] — G0
< max llmsup mp sZu - [59;01: og P ) Gl )l :
|6-67< 6(67)
=max E su o° log 1 - (0)] (with probability one)
m nZN%)ﬂ'") 09,6, P,(x™") 7k
|6-67| < 6(67)
< 2e.

Therefore the positive part of (1/n)(62/0010k) log 1/Py(X,) - G;(0) converges to
zero uniformly in a neighborhood of §* with probability one. Similarly the nega-
tive part converges uniformly. Thus condition (iv) is verified. Finally condition
(v) follows from assumptions (4) and (5) as in Wald’s proof of the consistency of

the maximum likelihood estimate (Wald 1949, extended by Wolfowitz 1949).

Since the conditions for Lemma 4.2 are now verified, the results (4.10) and (4.11)

follow by Laplace’s method. This completes the proof of Theorem 4.3.

A computable parametric family {P,: 6 € 8}, © € R* is here defined as a
family of distributions for which there exists a recursive enumeration of the set
{8,2,a,P§(2)} for all rational # in ©, all X in x,, (the union of the partitions ),
and all accuracies a. Let © be the set of rational parameters in 6. We assume
that © is the closure of ©. The likelihood P,(X,) is assumed to be continuous on

O for each z, so that it extends uniquely to all # in 6.

The results of this section are summarized by the following theorem.

Theorem 4.4: Description length for smooth families.

Let {Py: 8 € 8} be a computable parametric family of 11d distributions with
density functions py(z) which satisfy the smoothness assumptions of Theorem 4.3.
Assume also that the prior density y(0) is computable and let @ = [P;(0)dd be

the mizture distribution. Set

1 n*det G
L,= —~log —— + lo
3 18 o g

+ log

1 1
"0rz) Py (Xy)
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Then the minimum two-stage description length minp{L(P) + [log 1/P(X,)]} is
between L, and L, + 2 log log n + ¢ for all large n, with Pj. probability one, for

almost every 0.

Proof: This theorem is an immediate consequence of the following 3 results.

(a) There exists a two-stage description of X, with‘ length less than
L,+ 2loglog n+ c.
(b) The Shannon code with respect to the mixture @ has length
log 1/Q(X,) = L, + o(1).
(¢) The minimum two-stage description length exceeds log 1/Q(X,) with P,.
probability one, for almost every parameter 6.

Recall that (b) is from Theorem 4.3 and that (c) is from Lemma 4.1. It remains
to establish (a). The proof parallels the argument given for the univariate case
(see also Rissanen 1983). First a constant number of bits are used to describe the
family and the prior. Then log 1/%(fy;) + kc bits are used to describe a small
cube with sides of width 27° which contains 0,,; and within which »«{(f) and G(6)
(the Fisher information) do not significantly vary. Fixing a representative f in
the cube, we consider the orthogonalization G(f) = UT\U where U is an ortho-
normal matrix and X is the diagonal matrix of eigenvalues. The components ~0j of
the rotated parameter vector 6 = U, are then described to k; = log 1/A; bits
accuracy, resulting in a loss in log-likelihood of at most (n/Q)EJ-)\J-AJ-Z. We set
A= 1/\/5)\—1 or equivalently k; = (1/2)log n\;. The number of these small cells
is H;?:l(l/AJ-) = n#%(detG)Y/2. To give the index of the cell containing #* (and
hence to describe a simple parameter vector 0 in this cell) requires at most
log n*/2(det G)'/2 + 2 log log nk/z(detG)l/2 bits. Consequently the length of the
description of both P; and X, is within a constant of L, 4 2 loglog n. This

completes the proof of Theorem 4.4.
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4.3 Non-parametric Laws

In this section we establish convergenée of the logically smooth estimate Pn
to nearly any true distribution P*. The emphasis will be on the iid case with
density function p* and on obtaining consistency as strong or nearly as strong as
convergence of the variation distance. (The variation distance is the L, distance
between the densities.) Our starting point is the work of L. Schwartz (1965). She
showed-.that if there exist uniformly consistent tests, then Bayes rules are con-
sistent. Our essential contribution is the discovery of some uniformly consistent

tests in the non-parametric context.

Recall the set-up of section (3.2). Stationary and ergodic distributions P are
defined on a space ( of infinite sequences (z;,2,,...) with coordinates in a standard
space X. If P is a distribution on (), we denote by P, the distribution for
(Xq,X5,...,X,). The random data X, takes values in a sequence of refining parti-
tions m, which generates (). In particular we assume that the partition 7, con-
sists of cylinder sets with the first n coordinates in the product of refining parti-
tions 7,, where the sequence 7, generates X. Thus if (Xj,X,,...) is a random
sequence in (), then at time n, the observed data are X, = (Xﬂ"),Xg"),...,X(n”))
where X" is the cell in 7, which contains X

In section 3.2 we examined the redundancy [ log 1/Q(X,)] -log 1/P%(X,)
of the Shannon code based on @, = fN P, v(dP) where v is a prior on a measur-
able space of distributions and N = {P:D®(P"||P) < ¢, for P iid or Markov}. We
showed that if ®(V) > 0 then the redundancy is of order o(n). Thus if if N, is
any sequence of (possibly shrinking) neighborhoods which contain N, then the
redundancy of the Shannon code based on the mixture Q, = anPn v(dP) is also

of order o(n). Equivalently,

fNP(Xn)v(dP) > P1(X,)27%" almost surely. (4.186)
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On the other hand, we would expect to have greater redundancy if the Shannon
code were based on @, = fB"P" v(dP) where B, = N is the set of distributions
outside the neighborhood N,.

We show that a sufficient condition for large redundancy is the existence of a
uniformly consistent sequence of tests of the hypothesis P = P”* versus the com-
posite hypothesis P € B,. We consider tests of the form: decide P = P* if and
only if"X, is in an acceptance region A, (where A, is a set in the field generated
by 7,). The probability of error is P*(AS) if P = P*or P(A,) if Pis in B,. Ran-
domized tests are also permitted. In this case the acceptance region A,(S,)
depends on a random variable S, which is independent of X (and independent of
P). Let Ps denote the distribution of S,. The (average) probability of error is
then given by P{X,€A,(S,)} = [P(A,(s))Ps(ds) for Pin B, and P*{X,€A%(S,)}
= [P*(A{(s))Ps(ds) for P= P*. Note that randomized tests include non-
randomized tests as a degenerate case.

A sequence of tests is said to be consistent for P* versus B, if the probability
of error tends to zero for each P. It is uniformly consistent if there exists r, — co

such that

PHX,€A4S,)} < 2™ and Sup P{X,€A,(S,)} <2 (4.17)
€ B,

The sequence of tests is uniformly ezponentially consistent if (4.17) holds for
r, = nc for some ¢ > 0. We remark that in the iid case with fixed B, = B (not
depending on n), L. Schwartz (1965) showed that if a test is uniformly consistent
then it is uniformly exponentially consistent. In that context, she also obtained

results analogous to the following Lemma.
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Lemma 4.3: On uniformly consistent tests and redundancy

If there exists a uniformly consistent test of P = P* versus P € B,, then the
redundancy R, (X,) = [ log 1/Q,X,)] - log 1/P*(X,) of the Shannon code based
on @, = fB P,v(dP) satisfies R (X,) > r,—c, except for X, in a set of P* proba-

2—c,l+1

bility less than for any c,, less than r,. In particular, if the test is uniformly

exponentially consistent then the per sample redundancy ts almost surely bounded

away from zero, i.e., for some >0, R(X,)/n > ¢ for all large n. Equivalently,
f, PIX,) WdP) < PX,) 2™ (4.18)

for all large n, with P* probability one.

Proof: Consider the event {R,(X,) < r,—c,} that the redundancy is not greater
than r,—c,. Note that this event is contained’ in B, = {P(X,) < @.X,)2™"}.
Clearly, the set E, has the property that when it is intersected with any A, (in
the field generated by m,), the probability satisfies P*E [)A,)
< Q. (E,MA,)2™ . We find that

PYR,(X,) < r-c,} < PI(E,)
PYE,NA,) + PAS)
< @u(A4,)27" + PY(AY)
= [ P(A,)o(dP) 2" + P'(A3).

Conditioning on S, = s and applying this inequality with A,(s) yields

PHR(X,) < rmea} < fp P(A(8))(dP) 277 + PU(AL(s))-

Note that the left side does not depend on s. Averaging the right side with

respect to Pg yields
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PYR,X,) < rpc} < [ PIX,€A4,(S,)}o(dP) 27" + P{X,€A(S,)}
S 2—r,. 2r,.—c,, + 2—7‘,l

< 2 497

Thus R,(X,) is greater than r —c, except in a set of probability less than gt

In particular if the test is uniformly exponentially consistent, then r, = 2ne for
some ¢ > 0. For ¢, = ne we find that (4.18) holds except in a set of probability
less than 2°". Hence (4.18) holds eventually almost surely by the Borel-Cantelli

lemma. This completes the proof of Lemma 4.3.

Remarks: Thus if there exists a uniformly exponentially consistent sequence of
tests of P* versus the complement of (possibly shrinking) neighborhoods N,, then
the codelengths based on mixtures of distributions in NV, are asymptotically less

than the codelengths based on mixtures in B, = N,. Moreover, the difference
log 1/ anP(Xn)v(dP) ~log 1/ fMP(Xn)v(dP) tends to infinity as n—oo0, with proba-
bility one. Indeed, from (4.16) and (4.18) we find that the ratio
anP(Xn) dv/fM P(X,) dv tends to infinity. Therefore, the posterior distribution

1s asymptotically concentrated on the neighborhoods IV, in the sense that

PX v(dP
YN, |X,) = f — 1 P’ almost surely (4.19)

[ X

Likewise for a countable prior which assigns mass »(P) = 27X to a list
I' = {P} of distributions, we have that all two-stage description lengths
L(P) + [ log 1/P(X,)] based on distributions P in B, = N are uniformly greater
than log 1/P%X,) + ne for all large n. Indeed, these two-stage description lengths

are all greater than log 1/) pep P(X,)u(F) (since a sum is greater than its maxi-

mal term), which by Lemma (4.3) is greater than log 1/P%(X,) + ne. On the
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other hand if infpey D®(P*|[P) = 0, then by Theorem 3.3 (Section 3.4), for any
0< 6< ¢ the minimum two-stage description length is less than log 1/P%X,) + né
for all large n with probability one. Thus any distribution 15" which achieves the
minimum two-stage description length will be in the neighborhood N, for all
large n. Note also that any distribution having two-stage description length
within n(¢—6) of the minimum will also be in /V,. Thus we have established the

following Lemma.

Lemma 4.4: Consistent tests imply consistent estimates.

Suppose there exists a uniformly exponentially consistent sequence of tests of
the hypothesis P* versus the composite hypothesis P € N. Suppose also that P*
is approximated by distributions on the countable list T' in the relative entropy rate
sense. Then there exists ¢ >0 sufficiently small, such that for all large n, if Pn 1S
any estimated distribution with two-stage description length within ne of the
minimum min{L(P) + [ log 1/P(X,)] : P €T}, then the estimate P, is in the set
N,

n

Now we restrict attention to the iid case. To avoid unnecessary notation we
use P (rather than P;) to denote a marginal distribution on X as well as to
denote the distribution on the sequence space 2. (The distinction should be clear
from the context.) Recall from section 3.2 that the relative entropy between dis-
tribution restricted to a countable partition § of X is given by DygF||P") =
Y aepP(A) log A A)/P*(A). Similarly the variation distance on 3 is ||[P*P||; =
Y. aepl P(A)-P(A)|. Csiszar (1967) and Kullback (1967) established the inequality

D> d2/2 between the relative entropy D and the variation distance d.
Consider the B,~variation neighborhoods given by N, = {P: ||P*-P||5 <e¢}

where 3, is a partition of the space X. If 3, is a sequence of refining partitions
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which generates X, then the sequence of neighborhoods N, shrink to the varia-
tion distance neighborhood {P: ||P*-P|| < €}, which in turn includes the set
N = {P: D(P’||P) < €%/2}. Uniformly consistent tests do not exist if we use
variation distance or relative entropy neighborhoods. We show that for natural

choices of ,, uniformly consistent tests do exist for P* versus Vi,

Note that there are two sorts of partitions involved in our analysis: the par-

titions "7, within which our observations X(») live and the partitions g,
corresponding to the hypothesis tests under consideration. We assume that our
observations are sufficiently accurate for the test. Specifically, 7, is assumed to
be a refinement of 3,. If the data partition 7, is rather course, e.g. if the cell
widths w, satisfy nw,—oo, then we are essentially in the discrete case and we
may as well set 3, = 1,. However, if the data are observed to high accuracy, e.g.

if the cell widths of 7, satisfy nw,—0, then we are essentially in the continuous

case. We wonder how refined can be 3, so that we still have consistency.
Given a sequence X, in g7, we let Py be the fype or empirical distribution

on f,, ie., Px(a) is the relative frequency of occurrence of a in the sequence

(X{" Xt .. X{")). For a partition with m cells, the number of types is given by

n

n+m-1
( m__l )'
- Lemma 4.5: A uniformly consistent test for distributions.

Let 3, be a countable partition of the line into intervals of width w, such that
nw,—o0 as n—oo. 1Then for any e>0 there exists a uniformly exponentially con-
sistent test of the hypothesis P* wversus the composite hypothesis N,
= (P ||P"Pl5,> o).

Remarks: A test statistic that works is given by ||P*-Px||s with the acceptance

region A, = {X,:||P~Px]|s < 6} where 0<é6<e. In the proof we will find it
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convenient to use [|[P*-Px |3 ¢ where B,(C) is a finite partition obtained from f3,

by lumping all cells outside a large set C into one cell of low probability.

Proof: We prove a more general result than stated in the Lemma. The
space X need not be the real line. The general assumption is that for any ¢>0
there exists a set C having probability P(C) > 1- ¢/4 such that if m = m, is
the number of cells of 3, which intersect C, then m/n — 0. For the real line we
set C = {|X]<¢} with large ¢, then m/n = ¢/(nw,) which tends to zero as n—oo
provided nw,—oco.

Let 3,(C) be the partition into m, + 1 cells consisting of the m_ cells which
intersect C together with one cell which includes all the rest. The variation dis-
tance on B, satisfies [|[P-P||z = 23 ,c5(P{a)-F(a))* which is no more than
2% e, (0(P(a)-Pla))* + 2P(C*) which is less than [[P*-Pl|g ) + €¢/2. There-
fore the set of alternatives N, = {P:||P*-P||5 >¢} is contained in the larger set
N; = {P:|[P™-P||g g=>€/2}. Consequently, we may restrict attention to finite
partitions with m, = o(n) cells. We show that for any sequence of partitions f,
of X into m = m, cells with m/n — 0, and for any >0 there exists a uniformly

exponentially consistent test of P* versus N = {P||P™-P| >¢}.

For any sequence X, in A7 and any iid distribution P we have

P(X.) o "P5) * DalPeIF)

where H(P) = Y ,c5 Pa) log 1/P(a) is the entropy. This simple fact is readily

P
seen from grouping the product as A(X,) = J],es.H ) n 5l . A direct conse-

P
quence is that the number of sequences of a given type Py is less than QnH( x)

(see Csiszar and Korner 1981, Lemma 2.3). Thus we have
H(Px )+ D,, Py, 1PN

PA)= ¥ 2

X.EA4,
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and hence

-nDy (Q|P)

P4 X 2 (4.20)

QeA,
where A, is the set of types Py for sequences X, in A, (see Csiszar and Korner
1981, Lemma 2.6). This useful inequality (4.20) holds for any set A, in the field
generated by 7, In particular for A, = {X,: ||P*-Px]|s <6}, we have

A, ="{types Q: ||P>-Q||5,<6}. By the triangle inequality ||@-Plls,

> ||[P*-Pl|5, — |[P*~Ql|s, which is greater than ¢-6 > 0 for @ in A,/ and P in
N:. Therefore for any P in N, we have
-nD P
VBRI T
QEA)
-2 11Q-PIf3
< ypor
QeA/
— ()
< Y2
QEA,
n+m (e’
< | )2 2
=Y m

Here m = m, is the number of cells in the partition. The number of types is less
than (n-ri—nm) < olmtmH(m/(ntm)) o g2uH(m/n)  where  H(a) = a log 1/a
+ (1-a) log 1/(1-e), 0<a<1, is the binary entropy function. We note that H(«)

decreases to 0 as @ — 0. Let ¢ satisfy 0 < ¢ < (1/2)(¢-6)°. Since m,/n — 0

we have that 2H(m/n) is less than (e-6)> — ¢ for all large n. Consequently,

~n{{e-8)-2Hmn))

sup P(A,) < 2 < 2

Pen;

for all large n. Similarly for 0 < ¢ < (1/2)8%, we have
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1
—nD Py - -n=§
pag <y o I by o gne
QEAY

for all large n, since m,/n — 0. This completes the proof of Lemma 4.5.

Lemma 4.6: A uniformly consistent test for densities.

Let 3, be a countable partition into intervals of width w, such that w, is pro-
portz'on;l to 1/n (or 0< ¢ < nw, < ¢, for all large n). Suppose P* has a
bounded density function p*(z) with finite mean [zp*(x)dz. Then there exists a

uniformly exponentially consistent test of the hypothesis P* wversus N

= {P: ||[P~Fll2 €}.

Roughly the test statistic that works is of the form Eaeﬂ,(enP’(a)l{aempty} - 1),
except that we truncate to a finite partition and randomize the number of sam-
ples that are used in the test. Note that data does not accumulate in cells of
width 1/n, so the ordinary tests involving the sample distribution do not work

here.

Proof: Let 3,) be the set of all cells in §, which intersect {|X]<c}. We let R
denote the union of the remaining cells. The constant ¢ will be specified later.
The number of cells in £, is no more than a multiple of n, indeed
m, < (2¢/¢;)n. Let ¢* be the bound on the density function p*. Then we have

that P*(a) is less than ¢*w, < ¢*cy/n for all cells ain 3, .

Let S, be a Poisson(nX\) random variable with 0<\<1 and let the random
variable MV(a) be the number of occurrences of the symbol @ in the sequence of

observations indexed from 1 to S, where S, = min{S,,n}. The test statistic is

Tn, = E (en)‘P’(a)I{N(a) =0} 1] ’
o€,/
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and the acceptance regions are of the form A,(S,) = {X,: T,/ < né}.

First we argue tlrat the Poisson(n)\) variable S, is less than n except in a set
with exponentially small probability. Indeed P{S,>n} = P{exp(tS,)>exp(tn)}
which by Markov's inequality is less than exp(-tn) F exp(tS,). But the moment
generating function of the Poisson is known to be E exp(tS,) = exp(ni(e-1)).
Thus P{S,>n} < exp(-n(t-(e'~1)\)). The best t is seen to be ¢t =1In 1/, in

Ad-Ind) — o7 where r = A—1- In X is strictly

which ¢ase the bound becomes e ™
positive for 0 <A <1.
Let T, and T, denote the test statistic with and without the truncation of
S, at n. We have
PY(T, > n8} < PY(T, > né} + e

and
P{T,! < n6} < P{T, < né} + ™
So 1t suffices to examine 7, with no truncation of S,.
With respect to P’, the cell counts Ma) are independent Poisson random
variables with parameter nAP*(a). Thus P*{MNa) = 0} = ¢™F (9, Let E* and
E denote expectation with respect to P* and P respectively. Then

E: Tn — Et g, (en)\P.(a)I{N[a) — 0} _ 1)

— 2 [en)\P'(a)e-n)\P'(a) -1 )

Similarly, with respect to P the cell counts /V(a) are independent Poisson(nX\P(a))

random variables. Thus

ET,= Y} ((em(P(a-Pa)) _ 1 ] i (4.21)
a€f/
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We now show that E T, exceeds a small multiple of n. Consider .the sets
G, = {a€B, : P'a) > Pla)} and F,= {a€B,' : P’(a) < P(a)}. Note that
||[P*~Pi|5 may be expressed as 23 ,c5(P%(a)— Pla))* which is no more than
2(P(G,)-P(G,)) + P(R). Writing (4.21) as a sum over G, plus a sum over F,
and applying Jensen's inequality, we obtain the following

ET,= ¥ (exp(m\(P{a)-P(d))) - U+ T (exp(n\(PY ~1)
a€ G, a€EF,

> |G,y S (Pa-R@) - 1]+ R explyy 5 (Pla)-Fa) -

IGnI e€G, aEF,
> |G, expyp(GIPPllaPUR) -] + IF]| expl T 3 1IP*Plla) -

Here |G,| and |F,| denotes the cardinality of the sets G, and F,. Now using the

familiar inequalities e -1 > z + 22/2 and e -1 > -z, we obtain -

1, s 1(n\)2 1, .., . 1, .,
ET, > |m\2)1PPly - PR) + 222 Ly pepy, - Pr)2| - [Py,
2 2 |G| "2 2

_ 1)1 (SIP™Pls, - PR ~ sxP'(R)

2 7G|
1 (n)\)? 1, .. .
> LI PP, - PRI - mPR)

n
(2
> n\ ——(=)? - 2P(R)
4c 2
for IP"—P Ilg 2e Recall that-E" 1X | is finite by assumption. By Markov’s

inequality cP*(R) < cP {I1X I1>c} <E'IX I7{ x>y which is made less than

€=c A €/64 by choosing ¢ sufficiently large. Consequently for all P in NF we

have

ET, > 2n\¢
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Finally we invoke Hoeffding’s inequality (Hoeffding 1963, Theorem 2) for
sums of bounded independent random variables. If V; are independent random

variables with bounds o; < V;<7;, then for S = Y .V; and ¢{>0

P{S-ES> t} < exp[ E%Fa)?_]

where ¢ ranges over a finite index set. Applying Hoeffding’s inequality to the sum

T = eepr ("7 Iy = oy — 1) yields for 0 < 6§ < 2\¢'

P{T, < n6} = P{H(T,-ET,)>ET,- né}

S PAT,-ET,) 2 nb }

_9(nd )2
< exp[ ————Eae% P.(a)]

< e—na

uniformly for all P in N, where §' = 2Xe’ - § and a < (cl/c)e_zc'c2 (& )2

Similarly for the P* probability of error,

R ~2(n5)2
PAT, 2 8} < el <=1

< e—na

where a < (¢;/c)e 2 2. We conclude that T,! is a uniformly exponentially

consistent test as desired. This completes the proof of Lemma 4.6.

The consequences of Lemmas 4.4, 4.5, and 4.6 for consistency of estimates
are summarized as follows. We assume that X;,X,,... are independent with distri-

bution P*. The data X, is (X{?,...,X(")), where X{? is the cell in a partition 7,
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which contains X;. For the next two theorems the partition 3, has cell widths w,
which satisfy nw, — co. Or if P* has a bounded density with finite mean, the
cell widths may satisfy ¢;/n < w, < ¢;/n for some constants ¢;>¢;>0. We
assume that 7, refines §,. The cell widths of 7, may be arbitrarily small. Recall

that if v is a prior on a measurable space of distributions P then the posterior

distribution given data X, is o{ B|X,) fP(X JW(dP)/ [P(X,)WdP).

1

Theorem 4.5: Bayes consistency in n~'—variation distance.

Let v be a prior on 11d distributions which asstgns strictly positive mass to the
relative entropy neighborhoods {P: D(P'||P) < €}. Then the posterior distribu-
tion given data X, is asymptotically concentrated on B,—variation neighborhoods

N, = {P: ||P*-Hl|5 < €} in the sense that

Y N,X,) = 1 P”almost surely.
Moreover, if v 1s a countable prior and if Pn mazimizes the posterior probability
vy P|X,) then

HP'—PnHﬂn — 0 P*almost surely.

Theorem 4.6: Non-parametric consistency of logical smoothing.

If the density p* has finite relative entropy from some computable density (in
particular if p(z) is less than some computable integrable function) and if Pn 18
any distribution  for which the two-stage description is less than

min{L{P) + [ log 1/PAX,) ]} + o(n), then

||P'-Pn||ﬂ” — 0 P?*almost surely.

Moreover, if Pn s modified to be flat (conditionally uniform) tn each cell of B,

while preserving the probabilities of these cells, then the corresponding density p,

18 consistent tn L, distance

- 87 -




Inference 4.3 Non-parametric Laws

f Ip" (x)=p,(x)ldx 0 P almost surely.

Proof of Theorems 4.5 and 4.6: Uniformly exponentially consistent tests for P’
versus {P : UP —P || g, =€ are demonstrated in Lemmas 4.5 and 4.6. Recalling
the remarks preceding Lemma 4.4, it follows that v(N, 1X,)— 1 and B, is con-

sistent in B, -variation. Moreover, by the triangle inequality

J1p"G)—p,(x)dx NP =B 1l + 3 fA Ip* (x )—(P" (A ) u(A ) dx
A'€B,

The first term in the bound we have shown to converge. The second term is a
“bias” associated with probability histograms and it tends to zero as shown in
Abou-Jaoude (1976). (Note that here we may have less bias since nw, may be
bounded, whereas for ordinary histograms consistency requires nw,, — oo). There-
fore, the logically smooth density estimate 5, is consistent in L, distance. This

completes the proof.

Remarks: The almost-sure convergence of v (N 1X,, ) to one for any fixed partition
B establishes weak consistency (the sequence of posterior distributions converges
weakly to point mass at P* ). This generalizes the result of Freedman (1963) who
showed weak consistency under the additional assumptions that the data partition
, =7 is fixed (i.e.,, the discrete case) and that the entropy
H=3%,P (A)log1/P"(A) is finite. These assumptions are now seen to be
extraneous. Moreover, Theorem 4.5 shows that stronger forms of consistenc& also
hold. L. Schwartz (1965) is often credited with extending Freedman'’s result to the
non-discrete case. However, she assumed but did not demonstrate the existence of

a uniformly consistent test.

Why does our method obtain convergence in B, —variation using cells of
width w, proportional to 1/n, but not using narrower cells? Surprisingly, if

liminf nw,, = 0, there does not exist a uniformly exponentially consistent test for
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P versus {P : IP"—=P || 8, > ). This is shown by constructing a Bayes estimate

which is inconsistent in 8, —variation (even though the relative entropy neighbor-
hoods are assigned positive mass). Indeed, the prior is constructed to assigns mass
to countably many distributions 7,, Qy ,, k=1,2,..2", n=1,2,... The distribu-
tions labeled P, tend to 2" in the relative entropy sense whereas the others labeled
Qr , are highly oscillatory distributions which are far from P". Indeed the foil
distributigns Qr », are randomly constructed to assign either Qy , (a)=0 or
Qr »(a)=2P"(a) for each a € B,, according to the outcome of independent Ber-
noulli(1/2) coin-flips. The prior assign mass 27 /n? to each Q, ,, for k=1,2,..,2".
But the prior on the good distributions P, is set to drop off exponentially fast. The
proof of inconsistency involves random coding techniques borrowed from

Shannon’s channel coding theory. The details will appear in a later paper.

There is also a description length justification for quantization using cells of
width equal to 1/n. For smooth densities the extra bits of accuracy beyond log n
are shown to be asymptotically incompressible Bernoulli(1/2) random variables.
Therefore, we expect to have nearly minimal two-stage description length by using

a distribution ﬁn which is conditionally uniform in each cell of width 1/n.
Let X ;,X,,... be independent random variables with density function p (x ).
Let X, =(X,...X,,) and let X% = (X% ,..,X?) where X? is the dyadic interval of

width w = 1w, = 27" which contains X .

Lemma 4.7: Approximating probabilities with densities.

Suppose that the density function p (x ) is continuously differentiable and that
for any & > 0, there exists g(x) with finite Eg(X) such that 1p'(x)/p(X)| and
lp'(X)p(x )l are less than g(x) for al 1x—x | < &. Let ¢ = flp’(x)ldx. If
w, — 0, then we have

b
1 P(X?)
[ 1n
n—oeo NW, w:p (Xn )
-89 -
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with probability one.

Remarks: Thus if nw, is bounded by €then P(X?) and w™p (X,, ) agree to within
a multiplicative constant e *€/2, Moreover, the Shannon codelength based on P
given by [log 1/P(X2)] is within 1+ c € bits of the density approximation
log 1/p (X, ) + nb,.

Consider the conditional distribution P(X21X!)= P(X?)/P(X}!) where
b, >1,. This is the distribution for the n (4, —{, ) remaining bits past X!. Note
that the same p (X, ) appears in the density approximation to both P(X?) and

P(X}), so the density term vanishes when approximating the ratio. From (4.22)

we obtain

log 1/P(X21X ) —n(b,~1,) | <c loge (4.23)

limsup nli
n

where h, =27

. If nh, is less than ¢ then (4.23) shows that the brute force
description using n (b, —L, ) bits to describe X2 given X! is within 1 + ¢ elog e bits

of the optimum conditional codelength | log 1/P (X2 1X})].

Proof of Lemma 4.7:

Given any >0, let 8 be sufficiently small that there is a function g (x ) which
dominates both I1p'(x)/p(x)l and 1p'(x)/p(x)l and which has expectation
Egs(X)KLE Ip(X)p(X)I +e=c + e. Let X® be the dyadic interval of width
2o containing X . Choose w = 27® to be less than 8. Then by Jensen’s inequality

and the mean value theorem we obtain

P(Xb)_l 1 p(x)dx

wp (X ) HV xt p(X)

1n

>1f p(x)dx
Xb

1 d ~
- lx—X ldx su 1 21n p(x)1
w ‘/:Yb Ii—-XII)SS 0x P
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_1rv
V‘/;)xa’xg(X)

W
= 7g(X).

On the otherhand, from ln x < x—1 and the mean value theorem we obtain

P(x%) o P(X®)—w p(X)

b= S =70

_ lebp(x)—p(X)dx

S%g(X).

Therefore, assuming that w,, = 27% tends to zero, we have

P(X}) n P(xP)
limsup | In —— "~ _ | = limsup 1 > LIRS :
n—eo NIW, wrp (X,) =1 Wn wap (X))

, 1< 1
< hin—?;.}p 75’1 58 (Xx;)

1 1
= _ X)) < =(c + e
2E(g( )) < 2(c €)
Letting € —» O completes the proof of Lemma 4.7.

Finally we examine some density estimation schemes which are related to
logical smoothing. Let ' ={P, : k=1,2,...} be a countable list of distributions on
the measurable space X . Each distribution is assumed to have a density function
Dr With respect to some sigma-finite measure u. The joint density functions are
e (%, ) = TI/21px () for x, = (x;,x,..,x, ). Let the data X,X,,... be indepen-

dent random variables with density p~. This true density p~ need not be on the
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list T. However, we do assume that p” méy be approximated in the relative

entropy sense by densities in T (recall section 3.4).

Theorem 4.7: The consistency of Cover’s density estimator

Let p be a density estimate which achieves min { log 1/p, (X, ): k < 2}

where c,— o and c¢,/ln—>0 as n-—o oo, Then the L, distance

n

f lp* (x Y=p (x )i u(dx ) tends to zero with P" probability one.

Remarks: Thus if we restrict attention to densities p with complexity L (p) less
than ¢, (as suggested in Cover 1972), then the sequence of densities which minim-
ize log 1/p(X,, ) is consistent in L distance (since the number programs with
length less than c, is less than 27). Moreover, the proof of Theorem 4.7 is easily
modified to show that any sequence of densities p, for which log 1/p, (X, ) is
within o (n ) of min { log 1/p (X, ): L(p) < c,} is also consistent in I, distance.
In particular, the logically smooth density estimate which minimizes

L(p)+logl/p(X, ) subject to L (p )<c, is consistent in I, distance.

Proof of Theorem 4.7: The 1. ; distance f Ip—q | is equivalent to the Hellinger
distance defined by d%(p,q)= f(\/]T—\/? )2, Indeed, d%(p.,g) < flp—q I <
2d (p ,q ) (see Kraft 1955 or Pittman 1979, p.7). Thus it is equivalent to prove con-

vergence in Hellinger distance.

Let >0 be given and set 0< e<8. The assumption that p~ is approximated in
the relative entropy sense by densities on the list, ensures that p(X,) exceeds
p (X,J)e ™€ for all large n with probability one. We show that p (X, )e "¢
exceeds max{p, (X, ) : k <2 and d%(p" ,p; )>8} except in a set A, with exponen-
tially small probability. It then follows by the Borel-Cantelli Lemma that
d¥p” ,p)<S8 for all large n with probability one. Indeed, by the union of events

bound we have
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P (A,) ST P{p (X,) <e™p, (X,)} (4.24)

where the sum is over all k <2°* for which d%(p",p, )>8. Applying standard

bounds (as in Chernoff 1952) to the terms in the above sum yield

P* { P*(Xn) < enepk (Xn )}< ene/z f(pk (XTL )p*(xn ))1/2dxn
=2 ([p, Gop G 2ax

Le™ (6—&)/2_ (4.25)

The last inequality follows from f(pkp* W2=1—-(12)dXp" p,) e /P

< e %2, Summing over k as in (4.24) yields
P (An ) < 2fn o —n(8—€)/2

which tends to zero exponentially fast since c,/n— 0. Consequentially,
d*(p”,p )<8& for all large n with probability one. Thus Cover’s density estimate is

consistent in L, distance. This completes the proof of Theorem 4.7.

The same proof technique also yields a result on the consistency of Bayes esti-
mates with a countable prior. Again we assume that the true density p~ is approx-

imated in the relative entropy sense by densities in the countable set {p, }.

Theorem 4.8: On Bayes consistency for root summable priors

Let p be a density estimate which achieves max, Vv, pr (X, ) or equivalently
min{ log 1/v;, + log 1/p, (X, )} where v, >0 and ¥ ; (v; )* < oo for some 0<w<1.

Then

lim f Ip" (x)—p(x)tuldx)=0 P’ almost surely.

n —eco

In particular, suppose the density estimate p, is defined to achieve

min{cL (P ) + log 1/p (X, )} where ¢ >1 and the minimum is over computable iid
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distributions with densities. Note that 274 is root summable with a=l/c.
Thus the sequence of modified logically smooth density estimators p,, is consistent

in L distance.

Proof of Theorem 4.8: As before, we show convergence in the Hellinger distance
which is equivalent to convergence in L ;. Without loss of generality assume that
1/2<a<]. Given any 8>0 set 0< e<8(1—a)/c. Again, the assumption that p~ is
approximated in the relative entropy sense ensures that max; v p; (Xn) exceeds
p*(Xn Je "€ for all large n with probability one. So it remains to show that
p (X, e ™€ exceeds max{v, p, (X,,): d*(p" ,p, )8} except in a set with exponen-
tially small probability. Using the union of events bound as in (4.24) it is enough

to show that the following sum is exponentially small
TP P (X)) < e v, p (X)) (4.26)

where the sum is over all £ such that d%(p”,p, )>8. As in (4.25) these terms are

1/2,-n (S—e)/z.

not greater than e? =v, By Markov’s inequality they are also not

greater than e® = v, e™€, Now min{a b} < Ba+(1-8)b for 0<B<1. In particular,

choosing B=2a~—1 yields
P {p* (Xn ) € en€ Ve Pa (Xn )} < min{ vkl/z e_n(S—E)/z, vy e™ ¢
= minfe?, e}
< eBa+1-Rb
= vk(1+B)/2 e Bnep—n(1-BX8—€)/2

_ vka e " [(l—a)S—ae].

Summing over ¥ we have that expression (4.26) is less than ce " [(1-edb—ecel hich
is exponentially small (here ¢ = },v,*). Consequently, the Bayes density esti-

mate p is consistent in L, distance. This completes the proof of Theorem 4.8.
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Conclusions

Inference and data compression are intimately related. The common
goal is to find a sufficient summary of the data. Exact descriptions of data
have informative and uninformative parts. For stochastic data, we have
shown that there is no loss in assuming that the informative part is the
description of a probability distribution. The uninformative part is then the
best code for the data given the distribution (namely, the Shannon code
with length equal to minus the logarithm of the likelihood). Thus the goal
of data summarization leads to logical statistical inference. The estimates of
probability distributions and densities which provide the best summaries of
data are those for which the total description length is minimized. We have

shown that these estimates consistently infer the true laws.

Some suggestions for additional investigation are to determine whether
the mode of convergence can be refined in the non-parametric case, to deter-
mine rates of convergence, to investigate logically smooth regression, and to
continue the search for feasible estimators achieving nearly minimal

description length.
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