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The Annab; of Probability 
1986, Vol. 14, No. 1, 336-342 

ENTROPY AND THE CENTRAL LIMIT THEOREM' 

BY ANDREW R. BARRON 

Stanford University 
A strengthened central limit theorem for densities is established showing 

monotone convergence in the sense of relative entropy. 

1. Introduction. The probability density function f,(x) for the stan- 
dardized sum of i.i.d. random variables with finite variance is shown to converge 
to the normal density function +(x) in the sense of relative entropy: Jfflog fJ4) 
-- 0 provided the relative entropy is finite for some n. Furthermore, the relative 
entropy decreases along the powers of two subsequence nk = 2k. The classic 
results of L1 convergence of the densities (Prohorov, 1952) and convergence in 
distribution follow as corollaries via the inequality (Jif, - 4)1)2 < 2Jfflog f"/1. 
The proof of our result does not involve the usual Fourier transform technique, 
but follows instead from fundamental properties of Shannon entropy and Fisher 
information. 

Motivations for showing convergence of the relative entropy Dn = Jfflog fJ4) 
are well known. For tests of hypotheses (such as 4 verses f1,), the relative entropy 
is the exponent in the probability of error [Stein's lemma, see Chernoff (1956)]. 
From information theory, the relative entropy Dn is the least upper bound to the 
redundancy (excess average description length) of the Shannon code based on the 
normal distribution when describing quantizations of samples from f". Our 
characterization of the central limit theorem resembles the second law of thermo- 
dynamics. Indeed, the decrease of the relative entropy Dn to zero is equivalent to 
the increase of the entropy Hn =-Jfflog f& to the entropy of the normal. 

Linnik (1959) used the information measures of Shannon and Fisher in a proof 
of convergence in distribution. Renyi (1970, page 601) states that Linnik estab- 
lished convergence of Jfflog &n/ to zero. A reading of Linnik reveals that 
convergence was established only for densities of truncated random variables 
smoothed by the addition of independent normal random variables. We show 
that Dn -- 0, provided it is finite for some n. No smoothness conditions are 
required of the density f& for this convergence to hold. 

Recently Brown (1982) gave an elegant proof of convergence in distribution 
based on the decrease of Fisher informations. We extend Brown's argument to 
show that the Fisher informations converge to the reciprocal of the variance (as 
suggested by the Cramer-Rao bound). The link between Fisher information and 
relative entropy is the unexpected identity given below. 
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2. Entropy and information. Let X be any random variable with finite 
variance. The relative entropy D is defined as follows. If X has a density 
function f (x), then D(X) = ff(x)logf(x)/1(x) dx where 4 is the normal den- 
sity with the same mean and variance as f; otherwise D(X) = 0o. The Shannon 
entropy H(X) = - ff log f satisfies H = (1/2)log2 7ea2 - D where a2 is the 
variance. By concavity of the logarithm, D is nonnegative and equals zero only if 
f = 0 a.e. Consequently, the normal has maximum entropy for a given variance. 

Let Y be a random variable with continuously differentiable density g(y) and 
finite variance a2. Define the standardized Fisher information 

J(Y) = a2E(p(Y) -po(Y)) 

where p = g'/g is the score function for Y and p, = 0'/+ is the (linear) score 
function for the normal with the same mean and variance as Y. The Fisher 
information I(Y) = Ep2(Y) satisfies I = (J + 1)/a2. Since J ? 0 with equality 
only if g = 4, the normal has minimum Fisher information for a given variance 
(whence the Cramer-Rao inequality I ? 1/a2). The standardized informations D 
and J are translation and scale invariant. 

LEMMA 1. Entropy is an integral of Fisher informations. Let X be any 
random variable with finite variance, then 

I ~~~~dt 
(2.1) D ( X ) = | J(X + ,-tZ) dt 

Jo ~~~~2t' 

where Z is an independent normal random variable with the same mean and 
variance as X. 

Equation (2.1) is derived in Section 4 from the corresponding differential 
equation (d/dt)D(Yt) = J(Yt)/2t where Yt = ViX + A1D-tZ and 0 < t < 1. 

Two basic convolution inequalities are needed in the proofs. Let X and Y be 
random variables as above and suppose that the density for Y has a bounded 
derivative. Let V be any random variable independent of X and Y. Then 
convolution increases entropy and decreases Fisher information: 

(2.2) H(X+ V) 2 H(X) and I(Y+ V) < I(Y). 

Equality holds if and only if V is almost surely constant. These inequalities 
follow from the convexity of the functions x log x and x2 and are well known. 

More specialized convolution inequalities will also be needed. Let Y1 and Y2 be 
independent random variables having densities with bounded derivatives and let 
ai ? 0, a, + a2 = 1, then I( aj Y1 + a2Y2) < aj1(Y1) + a21(Y2) [see Stam (1959) 
and Blachman (1965)]. Hence if Y1 and Y2 have the same variance, 

(2.3) J( a1 + a2Y2) < aJ(YD + a2J(Y2). 

Equality holds if and only if Y1 and Y2 are normal. An immediate consequence of 
Lemma 1 is the inequality D( ra1X1 ?+ a X2) < a1D(Xl) + a2D(X2) for any 
independent random variables X1, X2 having the same finite variance. This 
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inequality for D may also be deduced from Shannon's entropy power inequality 
(Shannon, 1948, Stam, 1959, and Blachman, 1965). 

3. Strengthened central limit theorem. Let X1, X2, ... be independent 
and identically distributed (i.i.d.) random variables with mean zero and variance 
a2 and let Sn = i XlX/ VI be the standardized sum. Let Z be an independent 
normal random variable with mean zero and variance a2. 

The following lemma states convergence of the Fisher informations. 

LEMMA 2. Let S,, be the standardized sum and let Sn, = dt Sn + 1D- tZ for 
fixed 0 < t < 1. Then nJ(Sn) is a subadditive sequence, that is (p + q)J(Sp+q) 
< pJ(SP) + qJ(Sq). In particular, J(S2n) < J(Sn). Furthermore, the stan- 
dardized Fisher information converges to zero 
(3.1) lim J(Sn) = 0. n coo 
Equivalently, the sequence of Fisher informations I(Sn) converges to the 
Cramer-Rao bound 1/a2. 

The subadditivity follows from the convolution inequality (2.3). Brown (1982) 
used I(Sn) > 1(S2n) to conclude I(Sn) - 1(S2?n) -O 0 and from this obtained 
convergence of Sn in distribution. Inequality (2.2) implies that the sequence I(Sn) 
is bounded. The subadditivity and boundedness implies that the limit exists and 
equals the infimum (Gallager, 1968, page 112). Brown conjectured but did not 
obtain lim 1(5,) = 1/a2 In Section 4 we use Brown's argument plus uniform 
integrability to complete the proof. 

The main result of this note follows. The density function fn for the stan- 
dardized sum Sn converges to the normal density 4 in the sense of relative 
entropy. 

THEOREM. Let Sn be the standardized sum. Then nD(Sn) is a subadditive 
sequence. In particular D(S2n) < D(Sn). Furthermore, the relative entropy con- 
verges to zero 
(3.2) lim D(Sn) = 0 

n coo 

if and only if D(Sn) is finite for some n. Equivalently, the entropy H(Sn) 
converges to the normal entropy (1/2)log2 7ea2, provided the entropy is finite for 
some n. 

PROOF. The limit exists: Using Lemma 1 the inequalities for D follow 
directly from the inequalities for J. Thus nD(Sn) is subadditive. In particular 
D(Smp) < D(Sp). Let p be such that D(Sp) < infnD(Sn) + e. Write n = mp + r 
where the remainder r is less than p. Using inequality (2.2) we find D(Sn) < 
D(Sjnp) - (1/2)log(1 - r/n) which is less than D(Sp) - (1/2)log(1 - p/n). Let- 
ting n -s o then e -- 0 yields lim D(S,,) = inf D(S,,). 

The limit is zero: From Lemma 1 we have D(Sn) = J0 J(Sn,) dt/2t. Consider 
the powers of two subsequence n = 2k. From Lemma 2, J(S1 )I0 and hence 
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D(Snk) ,O by the monotone convergence theorem, provided D(S') is finite for 
some n. The entire sequence has the same limit as the subsequence, hence 
lim D(S) = 0. a 

COROLLARY. Suppose the entropy H(S,) is finite for some n. Then S, has a 
density function fn which converges to 4 in the L1 sense, 

(3.3) limfl (x) - (X)I dx = O. 

Furthermore, the quadratic log o(S,) is a consistent approximation of the 
log-likelihood log fn(S). Indeed the difference converges in L1 (and hence in 
probability), 

(3.4) lim Ellog f,,(Sj - logo (SJ)I = 0. 

PROOF. Immediate from the inequalities (JLo - qI)2 ? 2D and JpIlog p/qI 
< D + (2D)1/2 for any probability densities p and q where D = Jp log p/q. The 
first inequality is due to Csiszar (1967) and Kullback (1967). The second in- 
equality follows from Jp(log p/q) - = lAP log q/p < P(A)log Q(A)/P(A) < 
Q(A) - P(A) = (1/2)J p - qj, where A = {x: q(x) > p(x)} and P and Q are 
the distributions corresponding to the densities p and q. Similar bounds, but 
with a constant larger than 2, were given by Pinsker (1964). 0 

REMARKS. These conclusions are stronger than the classic result of conver- 
gence in distribution which states that limlFn(A) - 4(A)i = 0 for fixed sets 
A with boundary measure zero. Indeed, the L1 convergence of the densities 
is equivalent to the uniform setwise convergence of the distributions, 
limnsupAiEn(A) - D(A)l = 0 where the supremum is over all Borel sets A. 
[Hence limIEn(An) - D(An)l = 0 for arbitrarily varying sets An.] Another char- 
acterization of convergence in distribution is that 
(3.5) lim Eh(Sn) = Eh(Z) 

for all bounded uniformly continuous functions h. A consequence of convergence 
in relative entropy is that (3.5) holds for any measurable function h for which 
Ee`h(z) is finite for all a in some neighborhood of zero [see Csiszair (1975)]. In 
particular, (3.5) holds for functions h(x) bounded by some multiple of x2 + 1. 

4. Verification of the details 

PROOF OF LEMMA 1. We show that D(X) = JJ J(Yt) dt/2t where Yt = ViX + 
1 - tZ. The differential equation (d/dt)D(Yt) = J(Yt)/2t for 0 < t < 1 follows 

by change of variables from de Bruijn's identity (d/dT)H(X + ZT) = I(X + 
ZT)/2 (Stami, 1959 and Blackman, 1965) where ZT is an independent normal 
random variable with mean zero and variance T. For T > 0, de Bruijn's identity 
holds without conditions on the distribution of X other than finite variance. 
[Stami (1959) asserts that de Bruijn's identity holds for random variables having 
a strictly positive differentiable density with finite Fisher information. We show 
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this is enough to conclude validity for any random variable X. Simply fix a such 
that 0 < a < Xand define Xa = X + Za. Then Xa satisfies Stam's conditions, so 
(d/dT)H(Xa + ZT-a) = I(Xa + Z-a)/2 which reduces to de Bruijn's identity 
for arbitrary X. For a direct proof involving several exchanges of differentiation 
and expectation, each justified by the mean value and dominated convergence 
theorems, see Barron (1984).] 

Inequality (2.2) implies the integrand J(Yt)/t is bounded by 1/1 - t. Hence 
we may integrate the derivative on [a, b] (where 0 < a < b < 1) to obtain 

(4.1) D(Yb) DY) = |J(Yt) dt/2t. 

Now D(Ya) < log 1/ 1 - a from inequality (2.2), thus lim a OD(Ya)= 0. Also 
D(Yb) < D(X) + log1/ $, so lim SUpblD(Yb) < D(X). Note that limb lYb = 
X in probability and hence in distribution, so liminfblD(Yb) ? D(X) by the 
lower semicontinuity of the relative entropy. Thus limb lD(Yb) = D(X). If the 
integral on (0,1) is finite, then letting a -* 0 and b -* 1 in (4.1) we obtain the 
desired result D(X) = foJ(Yt) dt/2t. If the integral is infinite, then by Fatou's 
lemma D is also infinite. This completes the proof of Lemma 1. C 

To prove Lemma 2, we extend the arguments of Brown (1982). First we state 
his contribution. 

BROWN'S RESULT. Fix Tr> 0 and set Yk = S2k + ZT. Let Pk = gk/gk be the 
score function for Yk. Note that Yk,1 = (Yk + Yk,)/ v' where Yk is an indepen- 
dent copy of Y,. The score for Yk-l is the conditional expectation: Pk? I(yk? I) = 

E[(Pk(Yk) + Pk(Yk'))/ v I Yk? 1]. Hence the score of the sum Pk ?1( Yk , 1) provides 
the best estimate of the sum of the scores in the sense of minimum mean-squared 
error. The corresponding pythagorean relation yields I(Yk) - I(Ykl) = 

E[(pk(Yk) ? Pk(Yk))/ Vi - Pk?l(Yk?)]2. This difference sequence must converge 
to zero, since the sequence I(Yk) is decreasing and bounded. Therefore 
E[(pk(Z7/2) ? pk(Z~/2))/ v'P - pk1l((Z7/2 ? Z/72)/ v'F)]2 also converges to zero, 
since the density for Yk = S2k + ZT is bounded below by a multiple of the normal 
(0, T/2) density. But for an arbitrary function v with finite Ev2(Z), the mean- 
squared error of estimation of v(Z) + v(Z') using any function of the sum 
Z + Z' is shown to exceed a multiple of the mean-squared error using the best 
linear estimate. Consequently, Brown established that 

(4.2) lim E(Pk(ZT/2) - PO(Z/2 ))2 = 0 
k-oo 

and furthermore, since the score is the derivative of the logarithm of the density, 
the sequence of densities gk for Yk = S2k + ZT satisfies 

(4.3) gk(Y) -* k(Y) 

uniformly on compact subsets. Here 0 is the normal (0, a2 + r) density. Brown 
used (4.3) and let T -* O to prove convergence in distribution. We use (4.2) and 
(4.3) plus a uniform integrability argument to identify the limit of the Fisher 
informations. 
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PROOF OF LEMMA 2. We show that lim I(S,,) = 1/a2. Let gk = gk , be the 
density for Yk = S2k + Za. Note that the Fisher information satisfies I(Yk) = 
Ep2(Yk) = Jp2,g*/' do where I is the nomal (0, 2 + T) distribution. From (4.2) 
the score Pk converges to p4, in normal (0, T/2) probability and hence in (F 
probability. From (4.3) and Scheffe's lemma Jf ik - PI -- 0 and hence gk/4. -+ 1 
in (F probability. The product of sequences convergent in probability is also 
convergent in probability. Thus p2kgkl/ converges to pa in (D probability. Conse- 
quently, 

(4.4) lim fP29k-doF fp2 d 
kazoo k 

( 
provided the integrand p2k/p is uniformly F-integrable. By Lemma 3 the 
integrand is less than a multiple of gk,27/k. From inequality (2.2) H(S2k + Z2) ? 

H(Z2,), we find that the relative entropy J(gk 27/)log(gk,2,/k) d(D is bounded. 
But bounded relative entropy implies uniform integrability of the density ratio 
by a standard argument (Billingsley, 1979, page 188). Hence Equation (3.4) is 
valid, which means lim I(Yk) = 1/(a2 + 4). By change of variables lim I(S2k) = 

1/a2 where Sn = ?Sn + /1 - t Z. By subadditivity, the entire sequence has the 
same limit as the subsequence, hence lim I(S,,) = 1/a2. C 

In the above proof we used the following simple result. 

LEMMA 3. Let g, be the density for Y = X + Z, where X is an arbitrary 
random variable and Z, is an independent normal (0, Or) variable. Then (g,(y))2 
<CTg2T(y)g9(y) where cT = 4r;e- 1/X. 

PROOF. Let 4T denote the normal density function for Z,. The normal 
density has a bounded derivative 44(z) = - zT(z)/T and hence the density 
gr(y) = EOT(y - X) has a bounded derivative g'(y) = EpT(y - X). (The im- 
plicit exchange of limit and expectation is valid by application of the mean value 
and bounded convergence theorems.) Thus (gT(y))2 = (E(y - X)4}/2(y- 
X ),12( y - X)/T )2 and by the Cauchy-Schwartz inequality this does not exceed 
E(y - X)24,(y - X)gT(y)/IT2 which is less than cTE(02T(y - X)g7(y)= 

cTg2T(y)gT( y). This is the desired result. [1 

5. Examples. For the relative entropy to be finite for some n it is sufficient 
but not necessary for the density to be bounded for some n. By modifying an 
example in Kolmogorov and Gnedenko (1954, page 223), we find unbounded 
densities for which the relative entropy either becomes finite or remains infinite. 

Let fr(X), r > 0 be the family of probability density functions proportional to 
XI - 11(logjxj - 1)1 +r on lxi < e- 1. This density has entropy H( fr) = - X for r < 1 
and H( fIr) = -(r2(r - 1))-1 - log r/2 for r > 1. The n-fold convolution fr(') 
exceeds a multiple of fnr(X) and is less than a multiple of fnr(x/n) for x in a 
neighborhood of zero. Consequently, the entropy H( fr(n)) is infinite (- x) for 
n < 1/r and finite for n > 1/r. Therefore, the standardized n-fold convolution 
converges to the normal density in the relative entropy sense, although the 
density remains unbounded for all n. 
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For an example where convergence in the relative entropy sense fails, let fr(x), 
r > 0 be proportional to IXI- /logjXI- (log logjXI-1),r on IxI < e-e. This den- 
sity is more sharply peaked and has entropy H( fIr) = - X for all r > 0. Also, the 
n-fold convolution fr(n)(X) exceeds a multiple of fnr(X) for x in a neighborhood of 
zero. Therefore, the entropy H( fr(n)) is infinite for all n and the density does not 
converge in the relative entropy sense. A consequence is that the normal density 
provides an inefficient description of samples from fr(n). Indeed, the Shannon 
redundancy is infinite. 

Acknowledgment. Professors Tom Cover and Imre Csiszatr are acknowl- 
edged for their helpful suggestions. Cover showed that Shannon's entropy power 
inequality implies the monotonicity of the entropy and he posed the problem of 
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