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Abstract-Our presentation deals with function 
estimation by neural networks. Mean square er- 
ror bounds are given for the case when the target 
function is in the convex hull of ellipsoids multi- 
plied by a scalar constant. When the target func- 
tion is not in this class but is bounded, we bound 
the difference between the mean square prediction 
error compared to the best approximation error of 
the target function (the expected regret). We also 
give a general theorem that gives the convergence 
rate of the expected regret when the functions are 
estimated by penalized least squares criteria. 

I. INTRODUCTION 

We consider function estimation by feedforward sig- 
moidal neural networks. A single hidden layer feedfor- 
ward sigmoidal network is a f d y  of functions fT(X) 
of the form 

T 
f T ( 2 , e ) = C q d ( a i ' x - - b i ) , s E R d  (1) 

i= 1 

parametrized by 8 = (ai, b;, q)E1. A two hidden layer 
sigmoidal network takes the form 

Ti Tz 

i=l j=1 
fTl,Tz(xie) = cqd(caji~(wji+bji)-di)iz E Rd* 

(2) 
It is parametrized by 8 = (ai,di, b j i , u j i ,  cji)z1;21. 
We use the unit step sigmoid d(z)  = l{,>o) through- 
out this paper. 
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The target function f' is estimated from data 
(Xi ,K)zl ,  an independent random sample of size 
N from a joint probability distribution P x , ~  with 
f*(z) = E[XJX; = x] and f* is in 132(Px). We 
are given a sequence of models 3 M  (consisting of 
a family of functions) indexed in a countable index 
set M .  For each model, we estimate ~ M , N  to min- 
imize the empirical loss Cg,(yi - f ( X i ) ) 2  over 
choices of f E 3 M  and then we pick M and f = 
jk,N to minimize the penalized squared error crite- 

convexity of the class uM 3 M  consisting of the union 
of our models 3 M 1  for M E M .  In our analysis 
we exitmine the risk compared to the best possible 
in 3 = closure(UM3M) (where the closure is taken 
in &(Px)). We build classes of neural network es- 
timators that satisfy the conditions on the sequence 
of models 3 M  and apply a general theorem bounding 
the risk of penalized least squares estimators under 
entropy conditions on the component models. 

We extend the estimation bound results of Barron [l] 
to the case of unit step sigmoids and that of Lee et 
a1 [4] to include a penalty term. The result for two 
hidden layer network estimators is also new. We are 
able to obtain the risk bounds based on unexpectedly 
accurate and parsimonious neutal net approximations 
for balls and ellipsoids in Rd developed by the authors 

rion + xi=,(x N - f M , N ( x i ) ) '  +penN(M). We require 

[31. 

11. MAIN RESULTS 

A .  Summary 

Let 3v be the closure (in &(Px)) of the class of all 
single layer neural nets, with a given bound V on the 
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sum of the absolute value of the outer weights. We 
give a penalized least squares estimator ff and show 
that if f E 3 v  then the mean square prediction er- 
ror Ellf - is bounded above by KV2 (w)*. 
Let Vf,X denote the variation off with respect to half- 
spaces, which is the smallest number such that f/V' is 
in the closure of the convex hull of signed indicators of 
half-spaces. We show that the mean squared error be- 
tween fp and f is bounded by KV' (y) t + ?. 
When the target function has variation Vf,& with re- 
spect to a class & of ellipsoids, we show with a two 
hidden layer network estimator ffl,f2 that Ellf - 
f..l,p211$ 5 Kd3/2V,,?E (y)'. 

B. A Risk Bound 

Consider a sequence of models 3 M  (consisting of a 
family of functions) indexed in a countable index set 
M. For each model, we estimate ~ M , N  to minimize 
the empirical loss & zcl(K - f ( X i ) ) 2  over choices 
of f E 3 M  and then we pick &f and f = f*,N to 
minimize the penalized squared error criterion 

l N  
- X(K - ~ M , N ( X J ) '  + penN(M>. (3) 

We also require convexity of the class U M  3 M  consist- 
ing of the union of our models 3 M ,  for M E M .  

In our analysis we examine the risk compared to 
the best possible in 3 = c1osure(UM M )  (where the 
closure is taken in &(Px)). Let f; in 3 achieve 
E(Y - fj(X))2 = i n f f E r E ( Y  - f ( X ) ) 2 .  We define 
the loss function (regret) 

i=l 

r(f) = r(f , f*)  
:= E(Y - f ( X ) ) 2  - E(Y - f>(X>)2 (4) 

and the empirical loss function 
. N  

(5 )  
The relative regret r ( f ,  f*) measures the regret in L2 
approximation of f* by f compared to the best a p  
proximation in 3, 

r(f, f*) = Ilf* - f l l X  - gi$ Ilf* - 911; 

= I l f *  - flli - Ilf * - f>llf- (6) 

We define an index of resolvability 

RN,M(f *) := fpk { r ( f i  f*) -k penN(M)} * (7) 

Let 
R N ( ~ * )  := min R N , M ( ~ * )  

MEM 
be the minimum value of the resolvability and let a 
function that minimizes this resolvability be denoted 
by fh.. 
For N E {1,2,..-} and x,y E R N ,  let 

l N  
dil (z, Y) := - Ixi - y i (  

i=l 

For U RN,  e > 0, we say that C C RN is an 11 

e-cover of U if for all x E U, there exists y E C such 
that dll (x, y) 5 e. The 11 covering number N(e, U) 
is the smallest number of 11 balls that forms an 11 

€-cover of U. Thus N(E, .FMI~)  is the 11 €-covering 
number of 3 ~ 1 ~  given the data E X N .  Suppose 
- x = (z~,-.-,zN) E X N  is given, then elements of 
3 ~ 1 ~  will be functions in 3 M  evaluated at the points g, 
for example (f(xl),-..,f(zn)). Define " ( E ,  M) := 
SUP,EXN NN (€7 3 M l g ) .  

The following theorem bounds the expected regret un- 
der certain conditions. It relates the convergence rate 
of the expected regret to a multiple of the index of 
reslvability. First we cover the case that there is a 
k e d  upper bound B to the values of BO and BM for 
all M E M .  Next we cover the case that BM is un- 
bounded for M E M .  

Theorem 1 

i. Let the data be (Xi,Y,)cl, independent with 
probability distribution Px,y, f*(x) = E(Y,IX, = 
z), and 1x1 5 B, I f 1  5 B for d l  f E FM, 
for M E M ,  and If71 5 B and suppose that 
3 = closure UM 3 M  is convex. Suppose ~ M , N  

and the penalty penM,N are chosen to satisfy 
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then the estimator f = fk,N that minimizes the 
penalized squared error has expected regret com- 
pared to the best f E 3 that is bounded by 

where c1 = 20992. 

ii. Let the data be (Xi,x)gv=,, independent with 
probability distribution Px,~, f*(z) = E(Y,JX, = 

for M E M ,  and l f > l  5 B1 and suppose that 
3 = closure U M  FM is convex. Suppose for ~ M , N  

and the penalty penM,N are chosen to satisfy 

z), and 1x1 I Bo, If1 5 BM for all f E 3 M 1  

3 (penN(M) - - l3liBL) N )  
5248BG 

I 1, 

(10) 

then the estimator f = fk,N that minimizes the 
penalized squared error has expected regret com- 
pared to the best f E 3 is bounded by 

E[r(f&)] 5 7RN(f *I* (11) 

C. Remark 

If each term in the summand (8) is a function of M ,  
say g(M), with EM g(M) 5 1 and if an upper bound 
fl is available for N ,  then we can take the penalty to 
be 

(12) 
One can intepret g(M) as a prior distribution on M 
and l/fl&(*, M) as a prior on the functions in 
3 M *  

D. Estimation with Single Hidden Layer Networks 

In this section, we apply the result from Theorem 1 
to estimation with single hidden layer neural networks 

with step activation functions. The range of the ob- 
served responses yi is assumed to be in [-Bo, Bo] and 
the estimated single layer network takes the form (1). 

Let 
T 

37' := z ci4(C& ' z - bi)  : ai E Rd, bi, q E R { i=l 

be the class of single layer nets with T hidden units 
with no restrictions on the magnitude of the parame- 
ters. The subclass 3B,T of networks with a bound on 
the sum of absolute values of output weight is 

1 T T 

FB,T := z + X q 4 ( u i .  z - bi) : 1 ~ 1  5 B . { i= 1 i= 1 

The closure of the class of single hidden layer neural 
networks 3 B  with sum of absolute values of output 
weights bounded by B is 3 B  := B Z i E { 4 ( u .  x - b) : 

When B is fixed, the convex target class 3 is 3 B  = 
closure (UT 3B.T) .  Then the indices for application of 
Theorem 1 are integers M = {1,2, ...}. The penalty 
takes the form penB,N(T) = XBim, lnN, where K is 
a constant and m T  is the dimension of the parameter 
space. 

Let 3 v  be the closure (in &(Px)) of the class of all 
single layer neural nets, with a given bound V on the 
sum of the absolute value of the outer weights. Denot- 
ing the penalized least squares estimator by f+, we see 
that if f E 3v then the mean square prediction error 
El( f - f9JJi is bounded above by KV2 (v) '. 
We also consider the case that B is not fixed but rather 
is part of the model specification and we allow the 
penalized criterion to make selection among indices 
M = (B,T)  in M = {1,2, ...}2. In particular it will 
contain the target function f * which we have assumed 
to be bounded by Bo. In this setting we obtain con- 
sistent estimation for all bounded functions with rate 
controlled by the index of resolvability which expresses 
the trade-off for each model 3B,T between its squared 
approximation error and the log Z1-covering number 
divided by sample-size. In particular, when f has fi- 
nite variation Vf with respect to half-spaces, we get 
a trade-off of order 4 plus V/ (5) In ( N )  as long as 
the candidate models include those with B at least V' . 

U E Rd,b E R}, which iS the Closure Of U T F B , T .  
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The mean squared error between fp and f is bounded 

The model selection allows such trade-off without prior 
knowledge of Vf. When the variation Vf is infi- 
nite the resolvability bound expresses the trade-off be- 
tween the appoximation squared error [ I f  - ~ T , B  [ l 2  and 
B2 (3) In (N) + $. In this case (Vf = 00) the crite- 
rion will determine from the data the value of B and 
T that d i v e s  a desirable trade-off. As N goes to in- 
finity, the resulting B and T will diverge to infinity (to 
allow the approximation error to go to zero) while 
and $ will  tend to zero. 

E. Estimation with Two Hidden Layer Networks 

As before, the target function f is estimated from data 
(Xi, Y,)El, an independent with distribution P x , ~  
and f*(z) = E[Y,IXi = 4. The range of the observed 
responses Y ,  is assumed to be in [-Bo, Bo] and the 
estimated two layer network takes the form (2). 

A class of two hidden layer neural networks 3B,T1,Tz, 

with Tl hidden units in the outer-layer and T2 hidden 
units in the inner layer is defined to be 

: c , , l ,BJ .  i= 1 

We may restrict lwij[ 5 1 since 4(z)  = d(kz )  
for hard-limiter sigmoids (unit-step functions) when 
k > 0. h t  GB be the ClOSUre Of ~ T ~ , T ~  FB,Tl,Tz. 
Thus our candidate model classes are 3 B , M  = {f : 
f E ~B,T,,T,). The set M Of indices M con- 
sists Of d l  (Ti,T2) and 38 = ClOSU~eU~3B,M = 
closureUTl,Tz F B , T ~ , ~ .  Here we will focus for sim- 
plicity on the case that B is fixed. The penalty 
for application of takes the form penB,,(T1,T2) = 
K B 1 y , T x  ~n N, where mTl,Tz is the dimension of the 
parameter space. 

Denote the penalized least squares estimator by fpl,p2. 
If $ f is in the class H (determined by convex com- 

bination of signed indicators of ellipsoids), then f * is 

bound in [3, Theorem 41 on the approximation error, 
we obtain 

in 3 B  = CIOSUreUTl,Tz 3B,Tl,Tz by [2], [3]. Using the 

Optimizing over TI and T2 yields K’djI2 B2 (v) ’ as 
an upper bound to the mean squared error Ellf* - 
ffl,pz[l;. The bound tends to zero as N + 00. The 

optimal values of 2’1 and Tz are of order 2 (A) ’ and 

d (A) ’ respectively. 

111. CONCLUSIONS 

Risk bounds are given for neural network estimators 
for certain classes of functions : functions that are in 
the closure of the convex hull of signed indicators of 
half-spaces and functions in the convex hull of indica- 
tors of ellipsoids. As the case of convex combinations 
of indicators of ellipsoids illustrates, two hidden layer 
networks provide accurate estimators in cases where 
accurate one layer representations are not necessarily 
available. 
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