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Exact Minimax Strategies for Predictive Density
Estimation, Data Compression, and Model Selection

Feng Liang and Andrew Barron, Senior Member, IEEE

Abstract—For location and scale families of distributions and re-
lated settings of linear regression, we determine minimax proce-
dures for predictive density estimation, for universal data compres-
sion, and for the minimum description length (MDL) criterion for
model selection. The analysis gives the best invariant and indeed
minimax procedure for predictive density estimation by directly
verifying extended Bayes properties or, alternatively, by general
aspects of decision theory on groups which are shown to simplify
in the case of Kullback–Leibler loss. An exact minimax rule is gen-
eralized Bayes using a uniform (Lebesgue measure) prior on the
location and log-scale parameters, which is made proper by condi-
tioning on an initial set of observations.

Index Terms—Haar measure, Hunt–Stein, invariance, Kull-
back–Leibler divergence, minimum description length (MDL),
minimax risk, predictive density estimation, universal coding.

I. INTRODUCTION

L ET be a random vector to which we
wish to assign a distribution given observed data

. For each model it is assumed that there is a para-
metric family of distributions and with densities

and depending on a -dimensional parameter
vector which takes values in a parameter space , possibly
consisting of all of . To each choice of predictive distribution

with density we incur a loss given by the Kull-
back–Leibler information divergence

(1)

and a resulting risk . Our in-
terest is in the minimax risk

(2)

and in the determination of a predictive distribution that
achieves it for location and scale families of distributions. Also
of interest is the maximin risk defined as the supremum over
choices of proper prior distributions on of the Bayes average
risk.

We provide exact solution to this minimax problem for
certain families of densities parameterized by location or scale.
To show exact minimaxity, we use methods from statistical
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decision theory adapted to the information-theoretic choice
of loss. In particular, we identify constant risk procedures
and find among them the procedure which is extended Bayes
and hence minimax. Auxiliary to this demonstration of the
minimax procedure, it follows that the minimax value is equal
to the maximin value for such location and scale problems
conditioning on .

Implications are discussed for predictive density estimation,
for universal data compression, and for the minimum descrip-
tion length (MDL) criterion.

A. Density Estimation

In density estimation, our aim is to estimate the density func-
tion for using the data in the absence of knowledge of

. Estimators are required to be nonnegative and to in-
tegrate to one for each , and as such can be interpreted as
predictive densities for given . The risk function is the ex-
pected Kullback–Leibler loss defined before. It may be
customary to use plug-in type estimators ,
however, one finds that optimal density estimators (from Bayes
and minimax perspectives) take on the form of an average of
members of the family with respect to a posterior distribution
given . We remind the readers of the Bayes optimality prop-
erty: with prior and Kullback–Leibler loss, the Bayes risk

is minimized by choosing to be
the Bayes predictive density

(3)

as shown in [18], [1], [13], [5].
A procedure is said to be generalized Bayes if it takes the

same form as in (3), with a possibly improper prior (i.e.,
might not be finite), but proper posterior (i.e.,

is finite for each ) [21]. Such general-
ized Bayes procedures arise in our examination of minimax
optimality.

Asymptotics of the Kullback–Leibler risk for large sizes of
the conditioning sample and smooth parametric families of
densities have been explored by Hartigan in [26]. He identifies
the second-order asymptotic risk as a function of the parameters
and the choice of prior. His asymptotics provide a differential
inequality which may be used to identify asymptotically min-
imax procedures, as further illuminated in [2]. A formulation of
cumulative Kullback–Leibler risk was considered earlier in [14]
and asymptotically minimax procedures were identified therein.
Here we establish for particular types of parametric families
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exact minimax procedures, valid for all finite sample sizes, not
only asymptotically.

For location families with Kullback–Leibler loss, the min-
imax procedure is the generalized Bayes procedure
using a uniform (Lebesgue) prior. A similar conclusion holds
for a univariate scale parameter with the minimax
procedure using a uniform prior on . Likewise, when one
has both multivariate location and univariate scale

parameters, the minimax procedure uses a Lebesgue
product measure for and . These procedures have
constant risk. As we shall discuss, there is more than one way to
proceed in the establishment of minimaxity. Here we emphasize
simple information-theoretic identities and inequalities to show
the procedures are extended Bayes.

Families defined by other groups of transformations in-
cluding linear transformations and affine transformations,
may also be addressed in part by the information-theoretic
techniques. For theses families, the procedure that is identified
is minimax among invariant procedures, but not necessarily
minimax over all procedures. Additionally, in Appendix D we
point to general group-theoretic abstraction which yields the
prior of best invariant procedures.

In the location family case, as we have said, the minimax
procedure is based on the uniform prior. This is so no matter
whether one is doing parameter estimation or density estima-
tion. In the case of parameter estimation with squared error loss,
the use of this prior produces Pitman’s procedure which is best
invariant [42] and minimax [23]. We note a relationship be-
tween these estimators. If the family is such that given the
random variable (with ) has mean , then (for every
conditioning size ) our minimax density estimator has mean

equal to the posterior mean of given . That
is, our minimax density estimator is a density function centered
(in mean) at Pitman’s estimator of location. For scale problems,
Pitman’s [42] best invariant procedures (for estimation of var-
ious functions of scale with corresponding invariant loss func-
tions) do naturally involve the same prior (which makes the
log-scale be uniform), however, the scale of our minimax den-
sity estimates for Kullback–Leibler loss does not appear to cor-
respond to any of the standard Pitman estimators of scale.

B. Data Compression and Information Capacity

An objective of data compression is to provide a uniquely de-
codable code for data , given the value of . Such codes cor-
respond to probability measures for given (or innocuously
more generally subprobability measures summing to not more
than 1) via the Kraft–McMillan theorem [15]. If is known,
codes of optimal expected length are based on the true condi-
tional distribution , whereas in universal data compres-
sion [45], [34], [51], [18], [15], [5], without knowledge of the
parameter , a choice of predictive distribution is used to
construct the code instead.

The expected Kullback–Leibler loss arises as the excess
average code length (redundancy). Indeed, If is dis-
crete, provides the code length in bits and
the redundancy

(4)

is the Kullback–Leibler loss. If is continuous valued with a
density, such redundancy arises for each choice of discretization
(that is, for each rule of quantization or partition of the space for

). Now if the codes are constructed from a predictive distribu-
tion that has a density function , then the integral giving
the Kullback–Leibler loss as in expression (1) arises as the least
upper bound (supremum) of the redundancies for the collection
of all discretizations of (see, e.g., [41], [35], [24] or refer-
ences cited therein). Furthermore, this Kullback–Leibler inte-
gral arises as the limit of the redundancies as the discretizations
become infinitessimally fine [16], [17], [56]. Thus, it is now cus-
tomary in universal data compression, following [45], to refer to
the Kullback–Leibler loss as the redundancy for both discrete
and continuous settings.

Of particular interest in universal data compression is the de-
termination of a distribution that provides the minimax re-
dundancy [18], [49], [19], [14]. The minimax redundancy in the
unconditional case is and in the
conditional case it is given by (2).

Bayes optimal codes play a central role in universal data com-
pression. For each proper prior on the parameter space, the
Bayes codes are based on the Bayes predictive density (as in
(3)) and the Bayes risk is equal to Shannon’s conditional mu-
tual information between the parameter and the sample

The Bayes story for unconditional redundancy is comparable.
In the absence of prior knowledge, to focus greater attention
on some parts of the parameter space, one may study the max-
imin value , which is recognized as the informa-
tion capacity of the family of distributions in the unconditional
case [18], [14], [15]. In accordance with game theory and statis-
tical decision theory [7], [21], the minimax and maximin values
agree, , as shown in the unconditional setting in [22],
[49], [19], [27].

Minimaxity of the unconditional redundancy is a workable
criterion for parametric families with parameter spaces that are
not too extensive [34], [58], [14], [48]. In this literature, a key
quantity, shown to determine the minimax unconditional redun-
dancy in large sample cases, is the integral over the parameter
space of the square root of Fisher information. Indeed, Jeffreys
prior (proportional to the square root of the determinant of the
Fisher information) provides asymptotically maximin and min-
imax procedures for the unconditional redundancy, if the param-
eter is restricted such that the Jeffreys integral is finite [14]. (This
prior is historically important [30], [25] because of a local in-
variance property—small diameter Kullback–Leibler balls have
approximately the same prior probability in different parts of the
parameter space.) Unfortunately, for various unbounded param-
eter spaces, including location and scale families, the minimax
unconditional redundancy is infinite. We shall see that condi-
tioning on initial data not only provides a finite minimax ex-
pected redundancy, but also an exact minimax procedure (even
in the case of finite samples) for location and scale families.

There is a simple relationship between unconditional and
conditional redundancies. The total Kullback divergence (un-
conditional redundancy for the description of and ) has a
decomposition as a sum of a divergence for the description of
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(this is the part that is unbounded as a function of location
or scale parameters) plus an expected conditional divergence
for the description of given (this is the part made constant
in our setting for each conditioning sample size that is not
too small). Procedures that are minimax for unconditional and
conditional redundancy can be rather different. Indeed, a rule
that produces constant total redundancy (if possible) does not
necessarily make the terms in the decomposition constant as
well. A consequence is that minimax conditional redundancy
procedures (or their limits as studied in [26], [2]) do not have
to match with the use of Jeffreys prior. It happens for location
or for scale that our exact minimax rules for conditional re-
dundancy do correspond to the use of Jeffreys improper prior.
However, in joint location and scale cases the exact minimax
procedure uses a prior that is not proportional to the square-root
determinant of the information.

Universal data compression provides the foundation for the
MDL criterion for model selection, as arise in particular in prob-
lems of linear regression, which provides location and scale type
families to which our theory is adapted.

C. Minimum Description Length

Consideration of model selection in linear regression from the
MDL perspective began in Rissanen [44]. Suppose we have a
total of observations predicted using given -dimensional
explanatory vectors for with normal errors

. If is fixed and is estimated, these models lead to
description length criteria of the form

(5)

where is the by information matrix. When
several candidates are available for the explanatory variables ,
the model selection criterion picks out the subset of the variables
that leads to the shortest total description length achieving the
best tradeoff between sum of squared errors and the complexity
of the model.

In Rissanen’s original two-stage code formulation, the pa-
rameter is estimated by least squares (maximum likelihood)
and his complexity penalty term corresponds to the length of
description of the coordinates of the maximum-likelihood es-
timate to certain precision. Various values for have arisen
in the literature corresponding to different schemes of quantiza-
tion of , or to the use of mixture or predictive coding strategies
rather than two-stage codes [47], [5]. Asymptotics in have
also played a role in justifying the form of the criterion [5]. Ris-
sanen has also developed Bayes and predictive formulations of
the MDL criterion [47]

Previous work in information theory has identified the role
of the information matrix in asymptotically optimal two-stage
codes [3], in stochastic complexity (Bayes mixture codes) [3],
[46], [13], and in asymptotically minimax codes [14], [48]. For
the regression problem, Jeffreys prior is improper, as the in-
formation matrix is constant (not depending on ), commensu-
rate with infinite minimax redundancy on unbounded parameter
spaces.

In this paper, we obtain an explicit exact minimax optimal
MDL criterion for any such regression problem, when one con-
ditions on initial observations with at least as large as the
parameter dimension .

The paper is arranged as follows. In Section II, we study the
best invariant predictive densities, which have constant risk. An
information inequality is shown to reveal the best invariant pre-
dictive density as the one which is Bayes with an uniform prior.
In Section III, we prove that this procedure is minimax with
Kullback–Leibler loss for location families, scale families, and
multivariate location with univariate scale families, by directly
demonstrating an extended Bayes property. Section IV extends
the results to the linear regression problem. Section V considers
general aspects of decision theory on groups which are shown
to simplify in the case of Kullback–Leibler loss. Discussion and
conclusion are given in Section VI followed by Appendices.

II. BEST INVARIANT STRATEGIES

Our goal here is to find the best invariant estimator or coding
strategy .

Consider first location families. We are to observe
and want to encode or provide predic-

tive distribution for the future observations ,
where , with unknown . We assume
that and have a known
joint density . Then the joint density for and is given
by

We use and as shorthand notations for
and , respectively. When the con-

text is clear, we will write as and write as
.

We allow our procedures to be subprobability densi-
ties, that is, . This provides a closer correspon-
dence with Kraft’s inequality for the coding story. Nonetheless,
the Kullback–Leibler loss is always improved by renormaliza-
tion of a strict subprobability density, though the renormaliza-
tion might impact the invariance. Nonetheless, the best invariant
rule (even within the class of subprobabilities) will be seen to be
a particular probability density.

Definition 1: A procedure is invariant under location shift,
if for each and all , .

That is, adding a constant to the observations
shifts the density estimator for by the same

amount . Consequently, if we shift both and by the same
amount, the value of is unchanged

(6)

Proposition 1: Invariant procedures have constant risk.
Proof: By the invariance of , the risk is equal to

(7)

a quantity not depending on , therefore, has constant risk.
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Now we derive the best invariant procedure. The idea is to ex-
press the risk in terms of transformed variables that are invariant
to the location shift. Applying the invariance property (6) with

in (7), we obtain

where and for ,
which have a distribution not depending on . We will show
that the conditional density of given
provides the optimal . Indeed, for any , the risk satisfies

(8)

because the difference

is an expected Kullback–Leibler divergence that is greater than
or equal to zero, and it is equal to zero (i.e., achieves the smallest
risk) if and only if .

Next we solve for . Note that the map-
ping from to has unit Jacobian. So the joint
density is given by . Integrating
out , we obtain

(9)

Use the fact that for and
, then (9) is equal to

Changing the variable of integration to , we have
(9) equal to . Similarly, . Thus,
the conditional density for given (expressed as a function of

and ) is the ratio

(10)

which we denote by . One can check that is an
invariant procedure under location shift. Our analysis at in-
equality (8) and the following show that this predictive density

has the smallest risk among all invariant estimators. It is also
the unique best invariant one due to the strict convexity of the
Kullback–Leibler loss.

Proposition 2: The unique best invariant predictive density
for a location family is

(11)

The procedure which we have showed to be the best in-
variant can be interpreted as a generalized Bayes procedure with
uniform (improper) prior on (Lebesgue measure) for
location families. Bayes prediction densities are not invariant
in general, except for certain improper priors, identified in [25]
as relatively invariant priors, for which ,

e.g., . A corollary then of Proposition 2 is that the
relatively invariant prior with the smallest constant risk is the
uniform prior on .

Analysis of groups of transformations provides means to
study invariant estimators in more general settings. For the
location families we consider here, the group of transforma-
tions is the location shift operating on the sample space of
observations and and it induces group operations on the
spaces of the parameter and of the procedure . The uniform
prior, which we identify to provide the best invariant procedure,
is an invariant prior (unique up to a multiplicative constant)
for the parameter space under location shift. Under general
conditions, the best invariant estimator is the generalized Bayes
estimator using the (right) invariant prior (“right” is specified
here because some transformations, such as the affine groups,
will yield different priors when being applied on the right or
on the left). For such general treatment, one may see [6, pp.
410–412] which we specialize to Kullback–Leibler loss in our
Appendix D.

The demonstration of best invariance we give here (in Sec-
tion II) is based on the information inequality as in inequality
(8), which directly quantifies the excess risk of any nonoptimal
invariant rule as a Kullback–Leibler divergence, in a manner
analogous to Pitman’s analysis for squared-error loss [42] (cf.
[21, pp. 186–187]). As in the squared-error case, the informa-
tion inequality method does extend to other cases beyond that
of location families, as subsequently given in Proposition 3.

Some particular cases we consider include.

1) Linear transformation family: , ,
where is a nonsingular matrix and

Specially, when , it is called a univariate scale
family. A procedure is invariant under linear transfor-
mation if for any nonsingular
matrix and all , .

2) Affine family: , ,
, nonsingular matrix

A procedure is invariant if

for any and nonsingular matrix , and all , .
3) Multivariate location with univariate scale: same as in the

case of affine families with , but with scalar

A procedure is invariant if

for any and nonzero scalar , and all , .

Proposition 3: The unique best invariant predictive den-
sity is a generalized Bayes (taking the form (3)) with prior

for a linear transformation family, with prior
for an affine family, and with prior
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for a multivariate location with univariate
scale family.

For the proof, see Appendix C.

A. Examples

The best invariant estimator is calculated for some ex-
amples in which we have observations
and want to estimate the density for the next observation .
Let be the th-order statistic (the th smallest value) among

.

• Shifted exponential family:

if

if

• Uniform family (with scale parameter):

Even though can take any value in except , we will
know is positive or negative once one observation is
given. Here suppose is positive, then ranges from
to

if

if

In Fig. 1, we plot the true density (solid line) and the
best invariant estimator (dashed line) for the above two
families for and .

• Normal Location: , unknown, and
fixed with

This is the normal density with mean

and a slightly larger variance .

• Normal location and scale: , ,
, both unknown

where

is the sample variance. Thus,

is assigned a predictive distribution which is the multi-
variate distribution with degrees of freedom.

• Uniform on Parallelograms:

where and is a 2 2 matrix with determinant
not equal to 0. Conditioning on at least three observations,
one can show that the best invariant density estimation
is constant in the convex hull spanned by the observations,
and tapers down toward zero as one moves away from the
convex hull.

III. MINIMAX AND EXTENDED BAYES STRATEGIES

Since the risk is constant for invariant predictive density es-
timators, the best invariant estimator is the minimax proce-
dure among all invariant procedures. If a constant risk proce-
dure is shown to have an extended Bayes property then it is,
in fact, minimax over all procedures, and we shall demonstrate
such extended Bayes properties in standard transformation fam-
ilies in this section. Alternatively, Hunt–Stein theory provides
means by which to show under some conditions the best in-
variant estimator is in fact minimax over all rules, as we shall
develop in Section V for application to our situation. But first, it
is fruitful to see directly by information inequalities given here
that in standard transformation families the best invariant rule is
extended Bayes. In some respect this is more than a demonstra-
tion of minimaxity as it explicitly prescribes sequences of priors
for which the Bayes risk is close to the minimax value.

Definition 2: A predictive procedure is called extended
Bayes, if there exists a sequence of Bayes procedures
with proper priors such that their Bayes risk differences go
to zero, that is,

as

For a procedure that has constant risk , the extended
Bayes property is the existence of a sequence of proper priors
with Bayes risk converging to , which implies
minimaxity.

Theorem 1: Assume for the location family that at least one
of the has finite second moment. Then, for any di-
mension , under Kullback–Leibler loss, the best invariant pre-
dictive procedure as in (11) is extended Bayes for se-
quences of priors that we exhibit. Hence, it is minimax.

Proof: We take a sequence of priors to be the normal
distributions with mean zero and variance (broader tail priors
which allow a relaxing of the moment condition are considered
in Appendix B).

The Bayes risk difference is equal to

where in the expectation , also denoted , the distri-

bution of is taken to be a mixture with respect to the
prior .
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Fig. 1. Plot of true density versus q . Top: shifted exponential family. Bottom: uniform family with scale parameter.

By the chain rule of information theory, the Bayes risk dif-
ference is less than or equal to the following total Bayes risk
difference (conditioning only on ):

where we use at the last equality. The vari-
able on which to condition is chosen to be one for which the
variance is finite (here , without loss of generality).
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Invoking Jensen’s inequality in both terms (using convexity
of ), we get that the Bayes risk difference is less than or
equal to

(12)

where in the second term is the mixture
giving the distribution of . Next we do a change of variables,
where for each we replace and with and

. So (12) becomes

(13)
So is extended Bayes, and therefore minimax (as per
Lemma 4 of Appendix A).

Remark: A similar but more involved argument using prior
with tails that decay at a polynomial rather than expo-

nential rate (e.g., Cauchy priors) shows that a finite logarithmic
moment (that is, finite for some ) is sufficient
for minimaxity of the best invariant rule (see Appendix B).

Next we consider extended Bayes and minimaxity for the
cases of univariate scale (Theorem 2) and multivariate location
with univariate scale (Theorem 3). The technique that we used
in deriving the upper bounds for the Bayes risk differences in
the proof for Theorem 1 turns out to be very useful for other
cases too. So we summarize a key step in this technique as a
more general lemma below.

Lemma 3: (Bayes Risk Difference Bound): Suppose there is
a parametric family . Let and be two
priors ( proper, possibly improper) on and let
be a function of with density for which the posterior

is proper, that is, is finite for all .
Then the Bayes risk difference satisfies the following inequality:

where denotes the expectation with respect to the poste-
rior of given when has prior and denotes the ex-
pectation with respect to the prior on .

Proof: By definition, the risk difference
is equal to

which is upper-bounded by

(14)

due to the result from information theory (as can be verified
by a chain rule) that for two density functions , , if is
a function of with corresponding densities and , then

.

Similarly to the proof for Theorems 1, we express the first
term of (14) as a conditional expectation and then apply Jensen’s
inequality using the convexity of

Apply the same steps on the second term of (14), we have

So the Bayes risk difference is less than or equal to

which completes the proof.

Theorem 2: Assume for the scale family (i.e., general linear
transformation family with and ) that there exists

such that is integrable. Then, under the
Kullback–Leibler loss, the best invariant predictive procedure

is extended Bayes and hence minimax.
Proof: We take a sequence of proper priors to be

proportional to , where . For
small, these priors have behavior close to that of improper

prior .
By Lemma 3 with and , we have the

risk difference less than or equal to

(15)

We change the integration variable inside the brackets above
to for any given . Calculation reveals that the
posterior density (given ) for is indeed indepen-
dent of . Thus,

Apply another change of variable from to , then we
have (15) equal to

(16)

By the fact that , (16)
is less than or equal to , which goes to zero when

goes to zero by our assumption.

Theorem 3: For the multivariate location with univariate
scale family, conditioning on at least two observations
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, assume that there exist and
such that , ,

and are integrable, where and are inde-
pendent copies of and , respectively, and denotes the
th coordinate of the -dimensional vector . Then, under the

Kullback–Leibler loss, the best invariant predictive procedure

is extended Bayes and hence minimax.
Proof: We take the proper prior to be the

product of priors on and which we used in the proofs for
location families (Appendix B, Theorem 1 ) and scale families
(Theorem 2). That is, and

(17)

This provides our sequence of proper priors with behavior close
to that of the improper prior .

Without loss of generality, we assume the indices , , and
in the assumption are equal to , , and . Apply Lemma 3 with

and , where is the first coordinate of
. Then the Bayes risk difference is less

than or equal to

(18)

In a manner similar to the previous proofs, for given and
, we change variable to with

The corresponding Jacobian is equal to . We
find that the joint density for is independent of
and has the same distribution as . Replace by

and , then we have (18)
equal to

(19)

By the proof for Theorem 1 (in Appendix B) and Theorem 2,
we know that the quantities above go to zero if

and go to zero when goes to infinity.
Since is finite,
goes to zero. Using the triangle inequality and the inequalities

for positive , that and
, we obtain

where the last two terms in the final expression will go to zero
since

and are integrable by assumptions. For the first
term , we consider the integration over
and separately. When

Thus,

which goes to zero when goes to infinity. On the other hand,
the integral over the range is equal to

(20)

Change the variable to , then (20) is equal to

Divide the integration range into two parts and
. Applying inequalities for

and for , we have the integral (20) is
less than or equal to which goes to
zero if , or equivalently, ,
as is true if, for example, .

Since the minimax procedure has constant risk and is ex-
tended Bayes, an immediate corollary of Theorems 1–3 is that
the maximin value is equal to the minimax value for those
location and scale problems conditioning on data .

Next we show that the minimax risk is infinite without
conditioning on enough initial observations. Here the minimal
number of initial observations required is one for location or
scale families, and two for multivariate location with univariate
scale families.

Proposition 4: For the location or scale families, the min-
imax risk (using Kullback–Leibler loss) is infinity if one does
not condition on any observations. For multivariate location
with univariate scale families, the minimax risk is infinity if
conditioning on less than two observations.
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Proof: When there is no conditioning, the conclusion is a
special case of a result given by Haussler ([27, Lemma 4]) on the
unconditional minimax risk. It is stated there that the minimax
risk is infinity if the parametric family is
not uniformly tight, where uniformly tight means for every

there exists a compact set of the sample space such that
for all . It can be verified that location

or scale families are not uniformly tight. For example, consider
any location family. For any and any compact
with . Let be a ball centered at origin
with radius so large that . Let , then
is not more than

since the shift of the ball is in .
Therefore, the location family is not uniformly tight and the
uncondition risk is infinity. The scale case is similar.

Next we show that, for multivariate location with univariate
scale families, the minimax risk is infinity when one conditions
on only one observation. The risk of an estimator is equal
to

where is the entropy of and is a
random variable equal to with distribution not depending
on . Using Jensen’s inequality, the risk is greater than or equal
to

(21)

where denotes (the
expectation may also depends on , but such a dependence is
irrelevant to this proof). Observe that the function is a prob-
ability density function, that is,

Let , which has density ,
then our lower bound on the risk is

where the last term is the Kullback risk of the estimator
(based on no data) of the scale family of the densities for .
So by the result for the unconditional risk for scale families, its
supremum over is infinity.

IV. EXACT MINIMAX RULES FOR REGRESSION

We consider a linear regression model

where is a -dimensional input vector, and
is the random error. Our interest is in finding the exact min-

imax coding strategy (or predictive density estimator) for linear
regression models. We use for the initial

data, for the data for which we want to pre-
dict the distribution, and , for the corresponding errors. Let

denote the matrix with as its th column. Similarly,
we have denote the matrix with as its th column.

Assume is modeled by a distribution with density
. Then the density for is given by

(22)

which is different from the ordinary location families we studied
before, but similar analysis can be applied and it reveals that
the exact minimax strategy is the Bayes procedure with uniform
prior over the parameter space , conditioning on at least

observations.

Theorem 4: Assume that for the parametric family given
in (22) with there exists a -element subset from

, denoted by , such that the errors
have finite second moments and that the

matrix composed by the vectors is nonsingular.
Then the procedure

is extended Bayes with constant risk and hence minimax for
Kullback–Leibler loss.

Proof: First observe that is invariant to shift of by
if is correspondingly shifted by , that is,

By invariance, it is easy to show that has constant risk.
Next we show that is extended Bayes. Take normal priors

as in the proof for Theorem 1. Let and take the
reduced set of conditioning variables to be .
Then by Lemma 3

(23)

For now (while working with the reduced set of conditioning
variables), let denote the matrix which
is nonsingular by our assumption. Change variables with

and . We find the posterior distribution of
given is independent of and has the same distribution as

. So the right-hand side of inequality (23) is
equal to

which goes to zero when goes to infinity since is nonsingular
and has finite second moment by our assumptions. Thus,
is extended Bayes with constant risk, hence minimax.
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In ordinary linear regression models, we often assume
that the errors ’s and ’s are distributed as independent

.
1) Known : The minimax predictive density for future
observations based on the past observa-

tions is

(24)

where denotes the density function for . Note that

RSS

where is the information matrix,
is the least squares estimate of based on the

observations , and RSS is the residual sum
of squares (RSS). Similarly simplifying the numerator of (24),
we have the following expression for predictive density
and MDL code length:

RSS RSS (25)

where

and

RSS

respectively, are the information matrix and the residual sum of
squares using all observations.

For regression model selection, we are looking for the optimal
subset of to predict . Here “optimal” means the resulting
model has the shortest description length. We use to index
the possible subsets (or models). The code length for the
minimax coding strategy given in (25) for each subset can
be used as the criterion for model selection. Since the first term

is shared by all models, we omit it from the final
MDL criterion

RSS RSS
(26)

where denotes the description length for the model index
. When a uniform distribution is used to code the model index
, the description length is the same for each subset and

therefore it can be omitted from the final criterion.
If we set , then the main penalty

terms in (26) are

where is equal to the number of variables included in model
. If is nearly constant (not depending strongly on )

this penalty is roughly in agreement with penalty in
simplified MDL or Bayesian information type criterion (BIC).
Nonetheless, for some ’s (e.g., those evolving according to
some nonstationary time series models), the sum may
grow at faster rates, e.g., of order rather than , leading to

of order rather than . In gen-
eral, it is better to retain the determinant form of
the penalty rather than the sometimes inaccurate approximation

.
2) Unknown : In this case, we find that the minimax pro-

cedure is the generalized Bayes procedure with a uniform
prior on the location and log-scale parameters (Theorem 5)

RSS
RSS

which leads to the following MDL criterion:

RSS RSS

Theorem 5: For the regression model with , as-
sume is modeled by normal with mean and
unknown variance . Then

is minimax under the Kullback–Leibler loss.

We omit the proof for Theorem 5 here, which is similar to
the proof for Theorem 3 (for detail, see [39]). It also can be
regarded as a special case of a general proof we will give in the
next section.

V. HUNT–STEIN ANALYSIS

There is a fairly general strategy, with several different partic-
ularizations [32], [33], [57], [11], [8], [54], [36], [38], by which
to demonstrate under certain conditions that the best invariant
procedure is minimax among all procedures, in group-theoretic
settings. In addition to topological conditions on the param-
eter and action spaces, the key condition, used in essentially
all versions of this strategy, is the so-called amenability of the
transformation group . One way of stating amenability is that
there exists a sequence of probability measures on that are
asymptotically invariant, that is, tends
to zero as for each in for bounded continuous func-
tions . The groups we have studied here are amenable.

In brief, the strategy is as follows. One considers an arbi-
trary given procedure (not necessarily invariant) and shows
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that there is an invariant procedure for which its constant risk
is not more than the maximum risk of the given procedure. The
idea is that one can consider transformations of the given proce-
dure, here denoted for in , and create rules that are closer
to invariant by averaging with respect to to produce a se-
quence of procedures . Each of these will have
risk functions less than or equal to the maximum of the risks
of the by the convexity of the loss function (in nonconvex
loss cases randomized decision rules are used which provide a
linearization of the loss). If one can establish that along some
subsequence there is a limiting procedure that is invariant
and that has risk not more than the risks of the then one is
done.

We note that the estimators correspond to probability distribu-
tions (either by direct setup of the problem or by introduction of
randomized rules). So extraction of the limit requires considera-
tion of limits of probability measures. Difficulties can arise, e.g.,
in extracting a weak limit, from a mass leaking toward infinity.

The device championed in Strasser [54] and LeCam [36] is
to consider averaged risks as linear both with respect to priors
and with respect to randomization rules, so as to embed the
problem in a setting of complete bilinear forms for which lim-
iting bilinear forms can be extracted (in their case by appealing
to a Markov–Kakatani fixed point theorem which also provides
the invariance of the limit). Under further conditions which one
must check in any problem at hand, they then show that there
is an ordinary randomized statistical procedure whose risk is
bounded by what is given by the extracted limiting bilinear form.
The conditions entail compactness of level sets of the loss func-
tion in certain topologies.

We provide a simplification that covers cases of interest here.
The idea is to consider problems for which the action space
can be extended from collections of probability measures to the
class of subprobability measures on given spaces, permitting
consideration of vague convergence, and loss functions such as
Kullback–Leibler which are convex and lower semicontinuous
with respect to vague convergence. Then the extraction of the
limiting measure and the verification that it provides a proce-
dure with risk not larger than the are both automatic.

Vague convergence is for measures on sample spaces of suit-
able structure, such as the Euclidean space for the random vari-
ables in our setting (or more generally locally compact
topological spaces possessing a countable base). Here and in
what follows we will use the notational convention that

for nonnegative finite measures and integrable . A
sequence of measures is said to converge vaguely to a lim-
iting measure if for each function that is bounded, contin-
uous, and becomes zero outside some compact set (depending
on ) one has (see, e.g., [12], [31]). It
is analogous to weak convergence except that in vague conver-
gence, mass is permitted to leak away. For general bounded
continuous (not necessarily compactly supported) one has

. For example, even if every
, the limit can be less than , where .

The fundamental usefulness of the notion of vague convergence
is that for every sequence with bounded there is a
vaguely convergence subsequence (see, for instance, [43], [31],
[12]).

Our other main tool is lower semicontinuity of the relative
entropy . It is well known in the case of weak conver-
gence. In Appendix E, we show it also holds true for vaguely
convergent sequences .

General Group Setup: For the predictive density estimation
problem, we have random variables and a probability
density function with respect to Lebesgue measure,
where takes values in a parameter space . We denote the
corresponding joint distribution as . Given , and with

unknown, we want to predict the distribution of . The action
space contains all subprobability measures on , that is, the

measure of the whole space is not more than . Decision
procedures correspond to predictive distributions (also known
as transition measures) that are subprob-

ability measures on for each and measurable functions of
for each measurable set of .

Let be a group which acts on the left of the three spaces
, , and . The actions on the sample space and the pa-

rameter space are denoted by and . The group action
on any is defined such that for any bounded measurable
function we have .

The decision problem we consider is invariant because the
model is invariant, that is,

and the loss function is invariant, that is, for any probability
distribution on and any action

For any procedure and we use to denote a
transformed procedure such that for any measurable set

For bounded measurable functions , the transformed
procedure gives integral . A
procedure is said to be invariant if for every in we have

for every except on a Lebesgue null set of .
It is said to be almost invariant if the null set depends of .

A group is amenable if there is a sequence of probability
measures on that is asymptotically invariant in the sense
that for every and every bounded measurable function
on

(27)

Theorem 6: We have a family of densities pos-
sessing a group structure as indicated above and we are esti-
mating the conditional density with Kullback–Leibler
loss. Suppose that the marginal densities are continuous
and (at at least one parameter point) strictly positive in . If is
amenable, then for any procedure , there exists an invariant
procedure , such that

(28)

Proof: For any procedure , the result is trivial if
, so assume . Let
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be the density of the absolutely continuous part of
with respect to Lebesgue measure. Since is assumed
absolutely continuous, the singular part of does not
contribute to the Kullback–Leibler loss. So it is enough to show
the result for procedures with no singular part. Likewise,
if the procedure is a strict subprobability measure, then we may
improve the Kullback–Leibler loss for every such and every

, by normalizing the procedure. So it is enough to show the
result with restricted to be a proper predictive distribution
with a predictive density that integrates to . (Subprobability
measures may reappear when we extract .)

Let be the predictive densities of such a procedure. Fix
a particular value of , say , for which the density

is strictly positive for all . Let be the joint
measure constructed to have marginal density and
conditional density . Now the risk of the procedure
at , usually expressed as , may be
also expressed as the total relative entropy between these joint
distributions .

Define a sequence of measures on with marginal
density equal to and transition measure given by the fol-
lowing:

By convexity of the Kullback–Leibler divergence, we have

Let be a vague subsequence limit of the sequence , that
is, there is a subsequence such that
for every that is bounded, continuous, and compactly sup-
ported. By lower semicontinuity we have

(29)

Since this is finite, has a nonzero absolutely continuous
component with density . Though all the marginal
densities of are equal to , the marginal density

is less than or equal to for almost every ,
which can be seen from properties of vague convergence. In-
deed, for bounded continuous functions of the
first argument,

and since this is true for all such functions, we have
for almost every .

Thus, considering the predictive density
, we see that it is a subprobability density (in-

tegrating to not more than one) for almost every . It gives a
representation of via the product of the density for
and the subprobability density . Thus, we have risk

Next we consider invariance of a procedure with this risk.
Toward that end we work with the full measure and not just
its absolutely continuous part. A standard transition measure

construction shows that there exists a family of regular transition
measures that permit the representation

Taking note again that the marginal of is absolutely con-
tinuous with respect to , we have in the same way that there
is a family of subprobability transition measures that

permit the representation for bounded

measurable . The procedure is the right one to work with.

Its risk , which depends only on its absolutely con-
tinuous component, is what we have bounded above.

It may be tempting to renormalize now to integrate to
and improve the risk further. However, such renormalization

may disrupt the invariance property that we will next establish.
Next we show that is almost invariant. Let de-

note its transformation by . By the positivity of , it suf-
fices to show for every bounded continuous and compactly sup-
ported that

(30)

The right-hand side of (30) is equal to ,
which is the limit of for . Recall
that is built from averaging transformed procedures.
Let for in , then

. By definition of the trans-
formed procedure, followed by a change of variables, the
left-hand side of (30) is

Denote the function inside the brackets in the equation above by
. This function is compactly supported (since is), so when

is continuous, we recognize as
the limit for of , which in the same way
is the value obtained when the procedure

is transformed by , namely, .
By amenability, the limit of is zero,

so this shows that the almost invariance (30) holds.
Finally, there must be an invariant procedure with risk that is

as good as almost invariant . The reasoning here is in ac-
cordance with [37, Sec. 6.5]. Indeed, by a standard Fubini trick,
since has measure zero for every ,
so also, the set where invariance fails has
measure zero, using the product of Lebesgue measure for and
a sigma-finite measure on the group . Likewise, for almost
every , the slices has measure .
The measure is chosen, such as a Haar measure, to be such that
it and its transformed measures are mutually absolutely contin-
uous. One takes to be an everywhere positive probability
density with respect to , and let
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Then is almost everywhere equal to , it shares the
same risk, and for almost every , simultane-
ously for all in . Since the null set does not depend on , that
satisfies the definition of invariance. If desired, one may also re-
place by any fixed invariant procedure when is in that
null set, so as to arrive at a final procedure that is everywhere
invariant, for all and all in , and has the same risk as .

We have demonstrated a valid procedure (as a subprobability)
that is invariant and that has risk at bounded by the maximal
risk of the original procedure. Finally, by the invariance, the risk
at all other points is the same. Hence, we have that the maximal
risk of the original procedure is never less than the risk of some
invariant procedure. This completes the proof.

Comment: With these results, minimaxity in the class of all
procedures is shown to coincide with the best invariant rule. This
is because the maximal risk of any noninvariant procedure is
shown to be never better than the risk of some invariant rule.

In each case studied, and in accordance with general theory
as in Appendix D, the best invariant rule among all subprobabil-
ities is indeed a proper probability distribution integrating to
(posterior Bayes with respect to right Haar measure). Thus, the
side excursion into consideration of subprobabilities should be
regarded as merely a convenient technical matter to ensure that
we would be able to demonstrate the existence of the limiting

. In the end, proper invariant procedures are found that are at
least as good.

An advantage of the result in this section is its degree of gen-
erality. For instance, no moment condition is required, and it
does not require calculations on a case-by-case basis other than
demonstration of the group structure. While it does provide min-
imaxity of best invariant rules in some desirable generality that
covers our contexts of interest, compared to what we devel-
oped in Section III, the result here, like other Hunt–Stein strate-
gies, are perhaps less revealing in that it is an existence proof
depending on comparatively more involved measure-theoretic
matters. In contrast, in Section III we provided information in-
equalities which provide a concrete strategy to exhibit directly
the extended Bayes conclusion for the best invariant procedure
for particular sequences of proper priors.

VI. DISCUSSION AND CONCLUSION

In this paper, we considered the problem of finding exact
minimax universal coding strategies conditioning on some ini-
tial observations, for ordinary location and scale families and
for linear regression models. The minimax predictive density
estimator (under Kullback–Leibler loss) is a Bayes estimator
with uniform prior over the location and log-scale parameters.
It provides an exact minimax optimal strategy for density esti-
mation and for the MDL criterion for model selection in linear
regression.

Here we mention some additional related topics.
The technique used in our proof for the minimaxity for lo-

cation families (Theorem 1 and 1 ) also provides the admissi-
bility of in dimension , but not in higher dimensions. This
is similar to what arises in parameter estimation, for it is known

that under certain moment conditions the best invariant esti-
mator for a one-dimensional location parameter is admissible
[53], [9]. However, in some cases, such as normal location fam-
ilies, the sample mean is not admissible for dimension three or
higher, as shown by Stein [52], [29] (with extension to inad-
missibity of best invariant estimators for various families and
loss functions in dimension at least three in [9]). Furthermore,
for the multivariate normal location problem of dimension at
least five, Strawderman [55] showed that certain proper Bayes
priors produce improved risk. It is intriguing to ask whether an
analogous conclusion holds for the predictive density estimation
using Kullback–Leibler risk. A solution is given in one of the
authors’ dissertation [39], in which a proper Bayes estimator is
shown to be minimax and produce smaller risk everywhere than
the constant risk minimax density estimator for normal location
families, provided that the dimension is bigger than four.

Issues also arise as to whether it is possible to improve on
the density estimator in combined location and scale families.
Results of Brown [10] may be relevant here. He shows that
the best invariant scale estimators are biased and inadmissible
for all loss functions for scale estimation that possess suitable
invariance properties, with the sole exception being a loss
function for scale estimation due to Stein, associated with
Kullback–Leibler loss of plug-in estimators of scale in Normal
families. We note that best invariant predictive densities provide
improved Kullback–Leibler risk compared to estimators which
plug-in invariant estimators of scale. However, it has not been
addressed whether the best invariant (and minimax) estima-
tors of the density in combined location and scale families is
admissible.

Concerning model selection settings, when multiple models
(indexed by ) are available for prediction and/or compression,
instead of picking just one model, one may create in some cases
a superior adaptive procedure by Bayes model averaging [28].
When such a data compression procedure provides small redun-
dancy simultaneously for all models, it is called twice-univer-
sality [50], [40], which may be revealed by an Oracle inequality
via the index of resolvability [13], [4]. Bayesian model aver-
aging requires choices of predictive distributions for given
and as well as posterior probability weights for given .
For location and scale models (as in regression) the problem
of choice of predictive distributions may be addressed by using
minimax distribution for each model. However, at the level of
detail of exact minimaxity there is no obvious choice of best pos-
terior weight for given . A possible formulation would be to
find the adaptive procedure that minimizes the (maximal) addi-
tional expected Kullback–Leibler divergence beyond the min-
imax value for each family

Such a procedure could be said to be exact minimax for the
problem of twice-universal coding.

APPENDIX A

First for completeness we give a standard fact from statistical
decision theory (cf. [21, p. 91, Theorem 3])
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Lemma 4: If procedure is extended Bayes and has constant
finite risk, then is minimax.

Proof: Let denote the constant risk of , then

where is any Bayes risk. The extended Bayes property
implies the existence of a sequence of proper priors with Bayes
risk converging to , hence is minimax.

APPENDIX B
Here we relax the moment assumption in Theorem 1.

Theorem 1 : Assume for the location family that at least one
of the has finite expectation of . Then,
under Kullback–Leibler loss, the best invariant predictive pro-
cedure as in (11) is minimax for any dimension .

Proof: Choose priors with polynomial tails
. Continue the calculation from (13)

where we use the triangle inequalities and the fact that for ,
positive, . Since is
monotone decreasing with and it is integrable when by
our assumption, the risk difference goes to zero when goes to
infinity, as a result of the Monotone Convergence Theorem.

APPENDIX C

We give the proof for Proposition 3 using Pitman’s technique
which he developed from mean-squared error and we are here
adapting to the Kullback–Leibler risk. The ideas from the loca-
tion case are carried over to other transformations.

Proof

Using the invariance property, we can show that invariant pro-
cedures have constant risk which is equal to

(31)

For linear transformation families, let denote
, the matrix with in the th column for
. Define

(32)

Note that those variables are invariant to linear transformation
of the and , so that

(33)

where is the matrix formed from the initial portion
of .

Apply the invariance property, then in a manner similar to the
proof for location families (Proposition 2), we find that the best
invariant estimator satisfies

(34)

where is the th column of the identity matrix and
.

Next we derive the expression (in terms of and ) for both
sides of (34). By the mapping between , , and , given in
(32), the joint density for , , and is given by

where denotes the absolute value of the determinant of the
matrix and comes out as the Jacobian. Rewriting

and using (33) and changing the variables of integration
to , a matrix, we obtain

Then the conditional distribution is equal to

On the other hand, using the equalities in (33) and the invari-
ance property of , we have the left-hand side of (34) equal to

. So

For the other two transformation families, once we define
and , the remaining proofs are the same as the one given above.

For the affine families, we define

where is the row vector of all ones and, thus,
is the matrix with identical columns .

For multivariate location with univariate scale families, define
a scalar random variable which is the first coordinate of the
vector . The remaining coordinates divided by

is defined to be (thus, ). Then we
define

(35)

APPENDIX D

Here we give a general group-theoretic framework that en-
compasses the best invariant calculations of Section II. Let
be a group of transformations acted on the sample space, param-
eter space, and action space in the same manner as described in
Section V.
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A couple of assumptions will be needed and it is easy to
check that they are satisfied by all the cases we considered in
Section II. Suppose that and are isomor-
phic, such that

where denotes the composition of two group elements,
denotes a group action on a parameter, and is the

result of group operation in . Assume that each transformation

has differential with Jacobian denoted by . We regard
as being generated as with

, that is,

(36)

Recall that a predictive distribution is invariant if for any
measurable set , , that is,

(37)

We further assume that where has the
same space as . The transformation is assumed to be
a triple of transformations on , , and independently,
that is,

When the context is clear and we do not need to make distinc-
tions between , , and , we simply denote them all by

. Due to the independence between the three transformations,
we have equal to , where we
use the same notation to denote the Jacobians for each of
the transformations of , , and .

Recall that a main technique we used in Section II is an appli-
cation of a transformation based on a portion of (i.e., ) to
yield variables not depending on . Likewise, here we assume
that

has a distribution not depending on . In particular, is
also equal to

It should be noted that for affine families, is not equal to
the first variables because they are not the same space as

, but rather corresponds to their sample mean and sample
standard deviation. Similarly for multivariate location with uni-
variate scale families.

Our aim is to use the information-theoretic tools to confirm
that the generalized Bayes rule with right Haar measure is the
best invariant rule with Kullback–Leibler loss. First, similarly

to what we showed for location families, we can show that the
risk is constant and equal to

(38)

To derive the best invariant estimator, one may apply invariance
property (37) with in (38), define

and , and then obtain

where is the identity of the group

. Let denote the conditional density for given
deduced from , then the risk above is equal to

where the first term is a constant not depending on and the
second one is an expected Kullback–Leibler distance which
is nonnegative. So achieves the smallest risk if and only if

. Denote such an estimator by . Recalling
that is also equal to and using the in-

variance property, we have that .
So

(39)

To get the final expression for , we need to write the
right-hand side of (39) in terms of and . We first work on

. Since

In the integration above, is just a dummy variable of inte-
gration. Make the change of variables where
is the new variable of integration and is the true observed
value of . Then becomes

(40)

where we use (36) and the chain rule of Jacobians

Before we show that the ratio of the two Jacobians within
the integral in (40) is a right invariant measure on , we recall
some standard results on right and left invariant measures. In
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the following, the right and left invariant densities are denoted
by and , respectively.

• Result 1 (R1): Connection between Jacobians and in-
variant densities (see [6, pp. 408–409])

It follows that where is the identity
of the group . For example, under our assumptions on ,
we have where is the Jacobian for
the transformation evaluated at .

• Result 2 (R2): where is called
the modulus and satisfies (see
[20, p. 8]).

• Result 3 (R3): where is a con-
stant (see [6, p. 411]).

Now return to (40). The ratio between two Jacobians within
the integral is equal to

by ( R1)

by (R2)

by ( R 3)

where is a constant that may depend on . So we have

(41)

Similarly, we have

(42)
Combining (39), (41), and (42), we obtain

as the best invariant estimator as claimed.

APPENDIX E

Here we give two basic results for relative entropy concerning
an extremal characterization and lower semicontinuity with re-
spect to vague convergence.

Let and be positive measures on a measurable space .
The relative entropy is defined by
when and , otherwise. It is nonnegative
when and in such case it is equal to zero only
when .

The following is a familiar characterization of relative en-
tropy, expressed here for unnormalized measures.

Lemma 5: (Extremal Characterization): Consider functions
for which is integrable and is integrable. Then

for every such , the relative entropy satisfies the inequalities

with equality in the first case when is proportional to
and equality in both cases when . Consequently

where the supremum is over any class of nonnegative func-
tions such that the class of functions is dense for all positive
functions in and the class of functions is dense in

. (When , the supremum may be restricted to
any class of functions for which is a point of density
in and is a point of density of the in

.)
The second expression represents as a supremum

of functionals linear in and .
Proof: Consider and in . Define a positive

measure to have density with respect to .
Then , so is nonnegative. The chain rule
of densities gives

Throwing away the first term on the right since ,
we have

with equality only when , that is when is proportional
to . Equality is also reached in the limit if a supremum
is taken over a class of functions which includes as a
cluster point as indicated. For the other set of expressions use

. Now equality holds
for , and it is reached in limit by suprema of the
lower bounds in the same way. This completes the proof.

Our key result of this appendix is the lower semicontinuity of
relative entropy where the convergence for the second measure
may be taken in the vague sense rather than the weak sense.
As needed to support these notions of convergence, is as-
sumed to be a locally compact topological space with a count-
able base (such as a Euclidean space). Vague convergence of

to some means that tends to for every
bounded continuous and compactly supported , and allows a
limit with . Weak convergence of to
some means not only that vague convergence holds but also
that .

Lemma 6: (Lowers Semicontinuity): Suppose that and
are sequences of positive finite measures which converge

vaguely to and , respectively, and suppose the sequence
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satisfies . Suppose also that there is an
upper bound . Then

Proof: First we refine the bounds from the previous
lemma. Let and be finite nonnegative measures with

, and let and be their densities with respect to
some measure which dominates both, so that

Under the indicated condition on the space , it is sigma-com-
pact. That is, as for Euclidean spaces, there is an increasing se-
quence of compact sets whose limit is , and for each compact

in this sequence we can arrange to have a continuous func-
tion with values satisfying equaling in
and tapering so that it is zero for any point in outside the next
compact set. Split

For the second part on the right side we use the lower bound
which is at least

where is the continuous and decreasing function on the
nonnegative reals which is equal to for , equal to

for , and equal to for .
For the first part write it as

the relative entropy between the measures with densities and
. So by Lemma 5, we have that the preceding expression is

where the supremum over is taken over all functions for which
is bounded and continuous. So adding the lower bounds

on the first and second parts of the decomposition of , we have
the inequality for any such

Note that , , and are bounded continuous and com-
pactly supported and on the right side we have a supremum of
integrals of such. Thus, applying the inequality for vaguely con-
vergent and we have that

The next reasoning is similar to above steps but now applied
to and . Pick a dominating measure for and (it
may also dominate all the and if we like) and let and

be the associated densities. Using the preceding lemma once

more (now for the measures with densities and ) plus
the hypothesis regarding and

, this bound becomes

which we may write as

Now take the limit for a sequence of such functions increasing
to . Noting the positivity of the integrand, we may employ
monotone convergence to obtain

which, since , is equal to . Thus, we con-
clude that

as desired.

Remark: In Section V, we apply the lower semicontinuity in
the case of a fixed probability measure and measures in the
set of finite measures with bound .

Corollary: In the space of positive measures with bound
, for any positive constant , and any fixed finite prob-

ability measure , the level sets are
compact in the vague topology.

Proof: Let be any sequence of such positive measures
with bound in the information ball . Since
the measures have the sequence bounded, there will exist
a vague subsequence limit . Let be such a subsequence.
Since the measures are in the information ball, by lower semi-
continuity we have

So for any such sequence of in the information ball, there is
a subsequence limit in the same ball. Thus, the information ball
is compact.

Remarks: This implies for a fixed target distribution ,
the compactness of that part of the action space of predictive
subprobability measures for which the loss is bounded by a
constant.

One may also examine, for a fixed probability , the com-
pactness of the set of all probabilities for which the loss

. In this case, the set of such is tight, because,
taking , the boundedness of the integral of

(by ) implies the uniform integrability
of the random variables which is the same as tightness of
the probabilities . Thus, any vague limit of a sequence of such

is also a weak limit, and hence by lower semicontinuity is
also in the ball.
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Thus, both information balls (for proba-
bilities with fixed ) and (for subprob-
abilities with fixed ) are compact in the vague topology.

The link with the invariance characterization of minimax pro-
cedures is that the lower semicontinuity of the loss function
or (what amounts to the same) the compactness of information
balls, is at the heart of what is required for application of either
the abstract Hunt–Stein results of [54], [36], or our simplified
Hunt–Stein derivation for relative entropy loss.

Nonetheless, explicit demonstration of the extended Bayes
property (and hence minimaxity) of the best invariant proce-
dures is often possible by our information bound on the Bayes
risk difference (Lemma 3), without any measure-theoretic or
topological abstraction.
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