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Abstract— For the additive white Gaussian noise channel
with average codeword power constraint, sparse superposition
codes provide codewords as linear combinations of subsets of
vectors from a given dictionary. Both encoding and decoding
are computationally feasible. An adaptive successive decoder is
developed, with which communication is shown to be reliable
with error probability exponentially small for all rates below the
Shannon capacity.

I. INTRODUCTION

The additive white Gaussian noise channel is basic to Shan-
non theory and underlies practical communication models.
Sparse superposition codes for this channel are analyzed.
Theory and practice are linked by devising fast coding and
decoding algorithms and by showing sparse superposition
codes from moderate size dictionaries with these algorithms
achieve nearly exponentially small error probability for any
communication rate below the Shannon capacity. A companion
paper [10] gives reliability bounds for optimal least squares
(minimum distance) decoding, whereas the present work
provides comparable bounds for fast decoding algorithms.
The strategy and its analysis merges modern perspectives on
information theory and term selection in statistical regression.

In the familiar communication set-up, an encoder is to
map input bit strings u = (u1, u2, . . . , uK) of length K
into codewords which are length n strings of real numbers
c1, c2, . . . , cn of norm expressed via the power (1/n)

∑n
i=1 c

2
i .

The average of the power across the 2K codewords is to be
not more than P . The channel adds independent N(0, σ2)
noise to the codeword yielding a received length n string Y . A
decoder is to map it into an estimate û desired to be a correct
decoding of u. Block error is the event û 6= u. When the
input string is partitioned into sections, the section error rate
is the fraction of sections not correctly decoded. The reliability
requirement is that, with sufficiently large n, the section error
rate is small with high probability or, more stringently, the
block error probability is small, averaged over input strings
u as well as the distribution of Y . The communication rate
R = K/n is the ratio of the number of message bits to the
number of uses of the channel required to communicate them.

The supremum of reliable rates of communication is the
channel capacity C = (1/2) log2(1 + P/σ2), by traditional
information theory as in [63], [23]. This problem is also of
interest in mathematics because of relationship to versions of
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the sphere packing problem as described in [20]. For practical
coding the challenge is to achieve arbitrary rates below the
capacity, while guaranteeing reliable decoding in manageable
computation time.

In a communication system operating at rate R, the input
bit strings arise from input sequences u1, u2, . . . cut into
successive K bit strings, each of which is encoded and sent,
leading to a succession of received length n strings Y . The
reliability aim that the block error probability be exponentially
small is such that errors are unlikely over long time spans. The
computational aim is that coding and decoding computations
proceed on the fly, rapidly, with the decoder having not too
many pipelined computational units, so that there is only
moderate delay in the system.

The development here is specific to the discrete-time chan-
nel for which Yi = ci + εi for i = 1, 2, . . . , n with real-
valued inputs and outputs and with independent Gaussian
noise. Standard communication models, even in continuous-
time, have been reduced to this discrete-time white Gaussian
noise setting, or to parallel uses of such, when there is a
frequency band constraint for signal modulation and when
there is a specified spectrum of noise over that frequency
band, as in [39], [36]. Solution to the coding problem, when
married to appropriate modulation schemes, is regarded as
relevant to myriad settings involving transmission over wires
or cables for internet, television, or telephone communications
or in wireless radio, TV, phone, satellite or other space
communications.

Previous standard approaches, as discussed in [36], entail
a decomposition into separate problems of modulation, of
shaping of a signal constellation, and of coding. As they
point out, though there are practical schemes with empirically
good performance (including LDPC and Turbo codes), theory
for practical schemes achieving capacity is lacking. In our
approach, shaping is built directly into the superposition code
design. With the decoder we develop, it amenable to the
desired analysis, providing the first theory establishing that
a practical scheme is reliable at rates approaching capacity
for the Gaussian channel.

A. Sparse superposition codes:

The framework for superposition codes is the formation of
specific forms of linear combinations of a given set of vectors.
We have a list (or book) X1, X2, . . . , XN of vectors, each with
n coordinates, for which the codeword vectors take the form
of superpositions

β1X1 + β2X2 + . . .+ βNXN .
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The vectors Xj provide the terms or components of the
codewords with coefficients βj . By design, each entry of these
vectors Xj is independent standard normal and the sum of
squares of the coefficients matches the power requirement P .
The choice of codeword is conveyed through the coefficients,
in particular through the subset of terms for which the coef-
ficient is non-zero. The received vector is in accordance with
the statistical linear model

Y = Xβ + ε,

where X is the matrix whose columns are the vectors
X1, X2, . . . , XN and ε is the noise vector with distribution
N(0, σ2I). The book X is called the design matrix consisting
of p = N variables, each with n observations, and this list of
variables is also called the dictionary of candidate terms.

For subset superposition coding a subset of terms is ar-
ranged, which we call sent, with L coefficients non-zero, with
specified values. The message is conveyed by the choice of the
subset. Denote B = N/L to be the ratio of dictionary size to
the number of terms sent. When B is large, it is a sparse
superposition code, in which the number of terms sent is a
small fraction L/N = 1/B of the dictionary size.

Organization of the encoder and decoder is simplified by
focussing on what we call a partitioned superposition code.
The book X is split into L sections of size B, with one
term selected from each, yielding L terms in each codeword.
Likewise, the coefficient vector β is split into sections, with
one coordinate non-zero in each section to indicate the selected
term.

As discussed further below, partitioned superposition codes
began in work on the capacity region of multi-user Gaussian
channels [22], [30]. The L terms of our single-user code
correspond via rate-splitting to the superimposed codewords
of L messages in that multi-user theory. We are indebted
to several ideas that arise from that work, including the
particular variable power allocation and successive decoding
which is a forerunner of our adaptive successive decoder.
Sparse superposition models have long been used in the fields
of statistical modeling, sparse signal recovery and compressed
sensing. Some work adapting compressed sensing models to
communications for the Gaussian channel is in [67], with a
number of subsequent developments we shall discuss. Never-
theless, practical schemes with analysis proving rates up to
capacity with exponentially small error probability have not
previously been developed for the Gaussian channel.

For sparse superposition codes with a specified number L
of terms selected, the set of permitted coefficient vectors β
is not an algebraic field, that is, it is not closed under linear
operations. In particular, summing two coefficient vectors with
distinct sets of L non-zero entries does not yield another such
coefficient vector. Hence our linear statistical model does not
correspond to a linear code in the sense of traditional algebraic
coding.

In the codes considered here, it is known in advance to the
encoder and decoder what will be the coefficient magnitude if
a term is sent. In the simplest case, the values of the non-
zero coefficients are the same, with βj =

√
P/L 1j sent.

Optionally, the non-zero coefficient values could be +1 or −1

times specified magnitudes, in which case the superposition
code is said to be signed and then the message would conveyed
by the sequence of signs as well as the choice of subset. For
simplicity we focus in this paper on the unsigned case in which
βj is non-negative.

Partitioning allows for variable power allocation, in which
βj =

√
Pj 1j sent with Pj equal to a prescribed value P(`) for

j in section `, where
∑L
` P(`) = P . Thus

∑
j sent Pj = P , no

matter which term is selected from each section. Set weights
π(`) = P(`)/P also denoted πj = Pj/P for j in section `. For
any set of terms, its size induced by the weights is defined as
the sum of the πj for j in that set. We study both the case
of constant power allocation and the case that the power is
proportional to e−2 C `/L for sections ` = 1, 2, . . . , L. These
variable power allocations are used in getting the rate up to
capacity.

Most convenient with partitioned codes is the case that the
section size B is a power of two. Then an input bit string u
of length K=L log2B splits into L substrings of size log2B
and the encoder becomes trivial. Each substring of u gives
the index (or memory address) of the term to be sent from
the corresponding section. This makes the encoding especially
straightforward. In contrast, for general subset coding, map-
ping from an input bit string u of length K = log

(
N
L

)
into a

selection of a size L subset out of N is possible, though not
so direct.

As we have said, the rate of the code is R = K/n input
bits per channel uses and we arrange for arbitrary R less than
C. For the partitioned superposition code this rate is

R =
L logB
n

.

Control of the section size B and the number of sections
L (and hence control of the dictionary size N = BL) is
critical to computationally advantageous coding and decoding.
If L were constant then for rate R, the section size would
exponentially large B = 2nR/L, an ultra-sparse case, as arises
in the mentioned multi-user theory. In the extreme of L = 1,
the design X is the whole single-user codebook, with its 2nR

columns as the codewords, but the exponential size makes its
direct use impractical. At the other extreme there would be
L=K = nR sections, each with B = 2 candidate terms in
subset coding or two signs of a single term in sign coding
with B= 1; in which case X would be the generator matrix
of a linear code.

Between these extremes, the section size B is free to
be chosen, though typically sensible values for practice are
that it be of order n or a low-order polynomial in n. The
corresponding number of sections for a specified code rate is
then L = Rn/ logB of order n/ log n.

It is in this regime that we construct computationally fea-
sible, reliable, high-rate codes with codewords corresponding
to linear combinations of subsets of terms in moderate size
dictionaries, with fast decoding algorithms. For the decoder
we develop here, at a particular sequence of rates approaching
capacity, the error probability is shown to be exponentially
small in L/(logB)3/2.

For high rate, near capacity, we require B to be large
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compared to (1+snr)2 and for high reliability we also require
L to be large compared to (1+snr)2, where snr = P/σ2 is
the signal to noise ratio.

We use a random design matrix. Entries of X are drawn
independently from a normal distribution with mean zero and
a variance 1 so that the codewords Xβ have a Gaussian shape
to their distribution and so that the codewords have average
power near P . Other distributions for the entries of X may
be considered, such as independent equiprobable ±1, with a
near Gaussian shape for the codeword distribution obtained
by the convolutions associated with sums of terms in subsets
of size L. Certain other structured designs have been studied
in the signal recovery literature, as we shall discuss, but it
remains open whether such can achieve rates up to capacity
with analogous control of error probability.

There is some freedom in the choice of scale of the
coefficients. Here we arrange the coordinates of the Xj to
have variance 1 and set the coefficients of β to have sum of
squares equal to P . Alternatively, the coefficient representation
may be simplified by arranging the coordinates of Xj to be
normal with variance Pj and setting the non-zero coefficients
of β to have magnitude 1. One may use whichever of these
scales is convenient to an argument at hand.

B. Summary of findings:

We describe and analyze a fast sparse superposition decoder
by a scheme we call adaptive successive decoding.

For computation, it is shown that with a total number of
simple parallel processors (multiplier-accumulators) of order
nB, and total memory work space of size n2B, it runs in a
constant time per received symbol of the string Y .

For the communication rate, there are two cases. First, when
the power of the terms sent are the same at P/L in each
section, the decoder is shown to reliably achieves rates up to
a rate R0 = (1/2)P/(P+σ2) which is less than capacity. It is
close to the capacity when the signal-to-noise ratio is low. It
is a deficiency of constant power allocation with our scheme
that its rate will be substantially less than the capacity if the
signal-to-noise is not low.

To bring the rate higher, up to capacity, we use variable
power allocation with power P(`) proportional to e−2 C`/L,
for sections ` from 1 to L, with improvements from a slight
modification of this power allocation for `/L near 1.

To summarize what is achieved concerning the rate, for each
B ≥ 2, there is a positive communication rate CB that our
decoder achieves with large L. This CB depends on the section
size B as well as the signal to noise ratio snr = P/σ2. It
approaches the Capacity C = (1/2) log(1+snr) as B increases,
albeit slowly. The relative drop from capacity

∆B =
C − CB
C

,

is accurately bounded, except for extremes of small and large
snr, by an expression near

(1.5 + 1/ν) log logB
logB

,

where ν = snr/(1 + snr), with other bounds given to
encompass accurately also the small and large snr cases.

Concerning reliability, a positive error exponent function
E(CB − R) is provided for R < CB . It is of the order
(CB −R)2

√
logB for rates R near CB . The sparse super-

position code reliably makes not more than a small fraction
of section mistakes. Combined with an outer Reed-Solomon
code to correct that small fraction of section mistakes the
result is a code with block error probability bounded by an
expression exponentially small in L E(CB−R)

√
logB, which

is exponentially small in n E(CB−R)/
√

logB. For a range
of rates R not far from CB , this error exponent is within a√

logB factor of the optimum reliability exponent.

C. Decoding sparse superposition codes:

Optimal decoding for minimal average probability of er-
ror consists of finding the codeword Xβ with coefficient
vector β of the assumed form that maximizes the posterior
probability, conditioning on X and Y (sometimes called the
MAP estimator). This coincides, in the case of equal prior
probabilities, with the maximum likelihood rule of seeking
such a codeword to minimize the sum of squared errors in fit
to Y . This is a constrained least squares regression problem
minβ ‖Y−Xβ‖2, with the constraint on the coefficient vector
that it correspond to a codeword (also called minimum distance
decoding). There is the concern that this exact least squares
decoding is computationally impractical. Performance bounds
for the optimal decoder are developed in the companion paper
[10], achieving rates up to capacity in the constant power
allocation case. Instead, here we develop a practical decoder
for which we can still establish desired reliability and rate
approaching capacity in the variable power allocation case.

The basic step of the decoder is to compute for a given
vector, initially the received string Y , its inner product with
each of the terms in the dictionary, as test statistics, and see
which of these inner products are above a threshold. Such a
set of inner products for a step of the decoder is performed
in parallel by a computational unit, e.g. a signal-processing
chip with N = LB parallel accumulators, each of which has
pipelined computation, so that the inner product is updated as
the elements of the string arrive.

In this basic step, the terms that it decodes are among those
for which the test statistic is above threshold. The step either
selects all the terms with inner product above threshold, or
a portion of these with specified total weight. Having inner
product XT

j Y above a threshold T = ‖Y ‖τ corresponds to
having normalized inner product XT

j Y/‖Y ‖ above a threshold
τ set to be of the form

τ =
√

2 logB + a,

where the logarithm is taken using base e. This threshold may
also be expressed as

√
2 logB (1+δa) with δa = a/

√
2 logB.

The a is a positive value, free to be specified, that impacts
the behavior of the algorithm by controlling the fraction
of terms above threshold each step. We find that an ideal
value of a is moderately small, corresponding to δa near
0.75(log logB)/ logB, plus log(1 + snr)/ logB when snr
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is not small. We find that 2δa near 1.5 log logB/ logB plus
4C/ logB constitutes a large part of the above mentioned rate
drop ∆B .

Having the threshold larger than
√

2 logB implies that the
fraction of incorrect terms above threshold is negligible. Yet
it also means that only a moderate fraction of correct terms
are found to be above threshold each step.

A fit is formed at the end of each step by adding the terms
that were selected. Additional steps are used to bring the total
fraction decoded up near 1.

Each subsequent step of the decoder computes updated test
statistics, taking inner products of the remaining terms with
a vector determined using Y and the previous fit, and sees
which are above threshold. For fastest operation these updates
are performed on additional computational units so as to allow
pipelined decoding of a succession of received strings. The
test statistic can be the inner product of the terms Xj with
the vector of residuals equal to the difference of Y and the
previous fit. As will be explained, we find a variant of this
statistic to be somewhat simpler to analyze.

A key feature is that the decoding algorithm does not pre-
specify which sections of terms will be decoded on any one
step. Rather it adapts the choice in accordance with which
sections have a term with an inner product observed to be
above threshold. Thus one may call our class of procedures
adaptive successive decoding.

Concerning the advantages of variable power in the parti-
tioned code case, which allows our scheme to achieve rates
near capacity, the idea is that the power allocations propor-
tional to e−2C`/L give some favoring to the decoding of the
higher power sections among those that remain each step. This
produces more statistical power for the test initially as well as
retaining enough discrimination power for subsequent steps.

As we review, such power allocation also would arise if
one were attempting to successively decode one section at
a time, with the signal contributions of as yet un-decoded
sections treated as noise, in a way that splits the rate C into
L pieces each of size C/L; however, such pre-specification
of one section to decode each step would require the section
sizes to be exponentially large to achieve desired reliability.
In contrast, in our adaptive scheme, many of the sections are
considered each step. The power allocations do not change
too much across many nearby sections, so that a sufficient
distribution of decodings can occur each step.

For rate near capacity, it helpful to use a modified power
allocation, with power proportional to max{e−2C `−1

L , ucut},
where ucut = e−2C(1 + δc

)
with a small non-negative value

of δc. Thus ucut can be slightly larger than e−2C . This
modification performs a slight leveling of the power allocation
for `/L near 1. It helps ensure that, even in the end game, there
will be sections for which the true terms are expected to have
inner product above threshold.

Analysis of empirical bounds on the proportions of correct
detections involves events shown to be nearly independent
across the L sections. The probability with which such propor-
tions differ much from what is expected is exponentially small
in the number of sections L. In the case of variable power
allocation we work with weighted proportions of events, which
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Fig. 1. Plot of the function gL(x). The dots indicate the sequence qadj
1,k for

the 16 steps. Here B = 216, snr = 7, R = 0.74 and L taken to be equal
to B. The height reached by the gL(x) curve at the final step corresponds to
a weighted correct detection rate target of 0.993, un-weighted 0.986, for a
failed detection rate target of 0.014. The accumulated false alarm rate bound
is 0.008. The probability of mistake rates larger than these targets is bounded
by 4.8× 10−4.

are sums across the terms of indicators of events multiplied
by the weights provided by πj = Pj/P . With bounded ratio
of maximum to minimum power across the sections, such
weighted proportions agree with un-weighted proportions to
within constant factors. Moreover, for indicators of indepen-
dent events, weighted proportions have similar exponential tail
bounds, except that in the exponent, in place of L we have
Lπ = 1/maxj πj , which is approximately a constant multiple
of L for the designs investigated here.

D. An Update Function:

A key ingredient of this work is the determination of a
function gL : [0, 1] → [0, 1], called the update function, which
depends on the design parameters (the power allocation and
the parameters L, B and R) as well as the snr. This function
gL(x) determines the likely performance of successive steps
of the algorithm. Also, for a variant of the residual-based
test statistics, it is used to set weights of combination that
determine the best updates of test statistics.

Let q̂totk denote the weighted proportion correctly decoded
after k steps. A sequence of deterministic values q1,k is
exhibited such that q̂totk is likely to exceed q1,k each step.
The q1,k is near the value gL(q1,k−1) given by the update
function, provided the false alarm rate is maintained small.
Indeed, an adjusted value qadj1,k is arranged to be not much less
than gL(qadj1,k−1) where the ‘adj’ in the superscript denotes an
adjustment to q1,k to account for false alarms.

Determination of whether a particular choice of design
parameters provides a total fraction of correct detections
approaching 1 reduces to verification that this function gL(x)
remains strictly above the line y = x for some interval of
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the form [0, x∗] with x∗ near 1. The successive values of the
gap gL(xk) − xk at xk = qadj1,k−1 control the error exponents
as well as the size of the improvement in the detection rate
and the number of steps of the algorithm. The final weighted
fraction of failed detections is controlled by 1− gL(x∗).

The role of gL is shown in Fig 1. Provision of gL(x) and
the computation of its iterates provides a computational devise
by which a proposed scheme is checked for its capabilities.

An equally important use of gL(x) is analytical analysis
of the extent of positivity of the gap gL(x) − x depending
on the design parameters. For any power allocation there
will be a largest rate R at which the gap remains positive
over most of the interval [0, 1] for sufficient size L and B.
Power allocations with P(`) proportional to e−2C`/L, or slight
modifications thereof, are shown to be the form required for
the gap gL(x)− x to have such positivity for rates R near C.

Analytical examination of the update function shows, for
large L, how the choice of the rate R controls both the size of
the shortfall 1−x∗ and the minimum size of the gap gL(x)−x
for 0 ≤ x ≤ x∗, as functions of B and snr. Thereby bounds
are obtained on the mistake rate, the error exponent, and the
maximal rate for which the method produces high reliability.

To summarize, with the adaptive successive decoder and
suitable power allocation, for rates approaching capacity, the
update function stays sufficiently above x over most of [0, 1]
and, consequently, the decoder has a high chance of not more
than a small fraction of section mistakes.

E. Accounting of section mistakes:
Ideally, the decoder selects one term from each section,

producing an output which is the index of the selected term.
It is not in error when the term selected matches the one sent.

In a section a mistake occurs from an incorrect term above
threshold (a false alarm) or from failure of the correct term
to provide a statistic value above threshold after a suitable
number of steps (a failed detection). We let δ̂mis refer to the
failed detection rate plus the false alarm rate, that is, the sum
of the fraction of section with failed detections and the fraction
of sections with false alarms. This sum from the two sources of
mistake is at least the fraction of section mistakes, recognizing
that both types can occur. Our technique controls this δ̂mis by
providing a small bound δmis that holds with high probability.

A section mistake is counted as an error if it arises from
a single incorrectly selected term. It is an erasure if no term
is selected or more than one term is selected. The distinction
is that a section error is a mistake you don’t know you made
and a section erasure is one you known you made. Let δ̂error
be the fraction of section errors and δ̂erase be the fraction of
section erasures. In each section one sees that the associated
indicators of events satisfy the property that 1erase+21error is
not more than 1failed detection + 1false alarm. This is because
an error event requires both a failed detection and a false
alarm. Accordingly 2δ̂error + δ̂erase is not more than δ̂mis,
the failed detection rate plus the false alarm rate.

F. An outer code:
An issue with this superposition scheme is that candidate

subsets of terms sent could differ from each other in only a

few sections. When that is so, the subsets could be difficult to
distinguish, so that it would be natural to expect a few section
mistakes.

An approach is discussed which completes the task of
identifying the terms by arranging sufficient distance between
the subsets, using composition with an outer Reed-Solomon
(RS) code of rate near one. The alphabet of the Reed-Solomon
code is chosen to be a set of size B, a power of 2. Indeed
we arrange the RS symbols to correspond to the indices of
the selected terms in each section. Details are given in a later
section. Suppose the likely event δ̂mis < δmis holds from the
output of the inner superposition code. Then the outer Reed-
Solomon corrects the small fraction of remaining mistakes so
that we end up not only with small section mistake rate but
also with small block error probability. If Router = 1 − δ
is the communication rate of an RS code, with 0 < δ < 1,
then the section errors and erasures can be corrected, provided
δmis ≤ δ.

Furthermore, if Rinner is the rate associated with our inner
(superposition) code, then the total rate after correcting for the
remaining mistakes is given by Rtotal = RinnerRouter, using
δ = δmis. Moreover, if ∆inner is the relative rate drop from
capacity of the inner code, then the relative rate drop of the
composite code ∆total is not more than δmis + ∆inner.

The end result, using our theory for the distribution of
the fraction of mistakes of the superposition code, is that
for suitable rate up to a value near capacity the block error
probability is exponentially small.

One may regard the composite code as a superposition
code in which the subsets are forced to maintain at least a
certain minimal separation, so that decoding to within a certain
distance from the true subset implies exact decoding.

Performance of the sparse superposition code is measured
by the three fundamentals of computation, rate, and reliability.

G. Computational resource:

The main computation required of each step of the decoder
is the computation of the inner products of the residual vectors
with each column of the dictionary. Or one has computation
of related statistics which require the same order of resource.
For simplicity in this subsection we describe the case in which
one works with the residuals and accepts each term above
threshold. The inner products requires order nLB multiply-
and-adds each step, yielding a total computation of order
nLBm for m steps. As we shall see the ideal number of steps
m according to our bounds is not more than 2 + snr logB.

When there is a stream of strings Y arriving in succession
at the decoder, it is natural to organize the computations in
a parallel and pipelined fashion as follows. One allocates m
signal processing chips, each configured nearly identically, to
do the inner products. One such chip does the inner products
with Y , a second chip does the inner products with the
residuals from the preceding received string, and so on, up
to chip m which is working on the final decoding step from
the string received several steps before.

Each signal processing chip has in parallel a number of
simple processors, each consisting of a multiplier and an
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accumulator, one for each stored column of the dictionary
under consideration, with capability to provide pipelined ac-
cumulation of the required sum of products. This permits the
collection of inner products to be computed online as the
coordinates of the vectors are received. After an initial delay
of m received strings, all m chips are working simultaneously.

Moreover, for each chip there is a collection of simple
comparators, which compare the computed inner products to
the threshold and store, for each column, a flag of whether it
is to be part of the update. Sums of the associated columns
are computed in updating the residuals (or related vectors) for
the next step. The entries of that simple computation (sums
of up to L values) are to be provided for the next chip before
processing the entries of the next received vector. If need
be, to keep the runtime at a constant per received symbol,
one arranges 2m chips, alternating between inner product
chips and subset sum chips, each working simultaneously, but
on strings received up to 2m steps before. The runtime per
received entry in the string Y is controlled by the time required
to load such an entry (or counterpart residuals on the additional
chips) at each processor on the chip and perform in parallel the
multiplication by the associated dictionary entries with result
accumulated for the formation of the inner products.

The terminology signal processing chip refers to compu-
tational units that run in parallel to perform the indicated
tasks. Whether one or more of these computational units fit
on the same physical computer chip depends on the size of
the code dictionary and the current scale of circuit integration
technology, which is an implementation matter not a concern
at the present level of decoder description.

If each of the signal processing chips keeps a local copy of
the dictionary X , alleviating the challenge of numerous simul-
taneous memory calls, the total computational space (memory
positions) involved in the decoder is nLBm, along with space
for LBm multiplier-accumulators, to achieve constant order
computation time per received symbol. Naturally, there is the
alternative of increased computation time with less space;
indeed, decoding by serial computation would have runtime
of order nLBm.

Substituting L = nR/ logB and m of order logB we
may reexpress nLBm. One sees that the total computational
resource required (either space or time) is of order n2B for
this sparse superposition decoder. More precisely, to include
the effect of the snr on the computational resource, using the
number of steps m which arise in upcoming bounds, which
is within 2 of snr logB, and using R upper bounded by
capacity C, we have the computational resource of nLBm
memory positions bounded by Csnr n2B, and a number LBm
of multiplier-adders bounded by Csnr nB.

In concert with the action of this decoder, the additional
computational resource of a Reed-Solomon decoder acts on
the indices of which term is flagged from each section to
provides correction of the few mistakes. The address of which
term is flagged in a section provides the corresponding symbol
for the RS decoder, with the understanding that if a section
has no term flagged or more than one term flagged it is
treated as an erasure. For this section, as the literature on RS
code computation is plentiful and yet undergoing continuing

development, we simply note that the computation resource
required is also bounded as a low order polynomial in the
size of the code.

H. Achieved rate:

This subsection discusses the nature of the rates achieved
with adaptive successive decoding. We achieve not only fixed
rates R < C, but also rates R up to CB , for which the gap
from capacity is of the order near 1/ logB.

Two approaches are provided for evaluation of how high
a rate R is achieved. For any L, B, snr, any specified error
probability and any small specified fraction of mistakes of the
inner code, numerical computation of the progression of gL(x)
permits a numerical evaluation of the largest R for which
gL(x) remains above x sufficiently to achieve the specified
objectives.

The second approach is to provide simplified bounds to
prove analytically that the achieved rate is close to capacity,
and exhibit the nature of the closeness to capacity as function
of snr and B. This is captured by the rate envelope CB
and bounds on its relative rate drop ∆B . Here we summarize
contributions to ∆B , in a way that provides a partial blueprint
to later developments. Fuller explanation of the origins of these
contributions arise in these developments in later sections.

The update function gL(x) is near a function g(x), with
difference bounded by a multiple of 1/L. Properties of this
function are used to produce a rate expression that ensures
that g(x) remains above x, enabling the successive decoding to
progress reliability. In the full rate expression we develop later,
there are quantities η, h, and ρ that determine error exponents
multiplied by L. So for large enough L, these exponents can
be taken to be arbitrarily small. Setting those quantities to
the values for which these exponents would become 0, and
ignoring terms that are small in 1/L, provides simplification
giving rise to what we call the rate envelope denoted CB .

With this rate envelope, for R<CB , these tools enable us
to relate the exponent of reliability of the code to a positive
function of CB−R times L, even for L finite.

There are two parts to the relative rate drop bound ∆B ,
which we write as ∆shape plus ∆alarm, with details on these
in later sections. Here let’s summarize these contributions to
express the form of our bound on ∆B .

The second part denoted ∆alarm is determined by optimiz-
ing a combination of rate drop contributions from 2δa, plus
a term snr/(m−1) involving the number of steps m, plus
terms involving the accumulated false alarm rate. Using the
natural logarithm, this ∆alarm is optimized at m equal to an
integer part of 2 + snr logB and an accumulated baseline
false alarm rate of 1/[(3C + 1/2) logB]. At this optimized
m and optimized false alarm rate, the value of the threshold
parameter δa is

δa =
log
[
msnr(3 + 1/2C)

√
logB/

√
4π
]

2 logB

and
∆alarm = 2δa +

2
logB

.
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At the optimized m, the δa is an increasing function of snr,
with value approaching 0.25 log[(logB)/π]/ logB for small
snr and value near

.75 log logB + 2C − 0.25 log(4π/9)
logB

for moderately large snr. The constant subtracted in the
numerator 0.25 log(4π/9) is about 0.08. With δa thus set, it
determines the value of the threshold τ =

√
2 logB(1+δa).

To obtain a small 2δa, and hence small ∆alarm, this bound
requires logB large compared to 4C, which implies that the
section size B is large compared to (1+snr)2.

The ∆shape depends on the choice of the variable power
allocation rule, via the function g and its shape. For a specified
power allocation, it is determined by a minimal inner code
rate drop contribution at which the function has a non-negative
gap g(x)−x on [0, x∗], plus the contribution to the outer code
rate drop associated with the weighted proportion not detected
δ∗ = 1−g(x∗). For our determination of ∆shape, we examine
three cases for power allocation and, for each snr, pick the
one with the best such tradeoff, which includes determination
of the best x∗. The result of this examination is a ∆shape

which is a decreasing function of snr.
The first case has no leveling (δc = 0). In this case the

function g(x)−x is decreasing for suitable rates. Using an
optimized x∗ it provides a candidate ∆shape equal to 1/τ2

plus ξC/(τC), where ξC is an explicitly given expression with
value near

√
2 log(C+1/2) for large C. If snr is not large, this

case does not accomplish our aims because the term involving
1/τ , near 1/

√
2 logB, is not small enough for our purposes.

Yet with snr such that C is large compared to τ , this ∆shape

is acceptable, providing a contribution to the rate drop near
the value 1/(2 logB). Then the total rate drop is primarily
determined by ∆alarm, yielding, for large snr, that ∆B is
near

1.5 log logB + 4C + 2.34
logB

.

This case is useful for a range of snr, where C exceeds a
multiple of

√
logB yet remains small compared to logB.

The second case has some leveling with 0< δc < snr. In
this case the typical shape of the function g(x)−x, for x in
[0, 1], is that it undergoes a single oscillation, first going down,
then increasing, and then decreasing again, so there are two
potential minima for x in [0, x∗], one of which is at x∗. In
solving for the best rate drop bound, a role is demonstrated
for the case that δc is such that an equal gap value is reached
at these two minima. In this case, with optimized x∗, a bound
on ∆shape is shown, for a range of intermediate size signal to
noise ratios, to be given by the expression

2
ν logB

{
2 + log

(1
2

+
ντ

4C
√

2π

)}
+

1
2 logB

,

where ν = snr/(1+ snr). When 2C/ν is small compared
to τ/

√
2π, this ∆shape is near (1/ν)(log logB)/(logB).

When added to ∆alarm it provides an expression for ∆B ,
as previously given, that is near (1.5+1/ν) log logB/ logB
plus terms that are small in comparison.

The above expression provides our ∆shape as long as snr is
not too small and 2C/ν is less than τ/

√
2π. For 2C/ν at least

τ/
√

2π, the effect of the log logB is canceled, though there is
then an additional small remainder term that is required to be
added to the above as detailed later. The result is that ∆shape

is less than const/ logB for (2C/ν)
√

2π at least τ .
The third case uses constant power allocation (complete

leveling with δc = snr), when snr is small. The ∆shape is
less than a given bound near

√
2(log logB)/ logB when the

snr is less than twice that value. For such sufficiently small
snr this ∆shape with complete leveling becomes superior to
the expression given above for partial leveling.

Accordingly, let ∆shape be the best of these values from
the three cases, producing a continuous decreasing func-
tion of snr, near

√
2(log logB)/ logB for small snr, near

(1 + 1/snr) log logB/(logB) for intermediate snr, and near
1/2 logB for large snr. Likewise, the ∆B bound is ∆shape+
∆alarm. In this way one has the dependence of the rate drop
on snr and section size B.

Thus we let CB be the rate of the composite sparse superpo-
sition inner code and Reed-Solomon outer code obtained from
optimizing the total relative rate drop bound ∆B .

Included in ∆alarm and ∆shape, which sum to ∆B , are
baseline values of the false alarm rates and the failed detection
rates, respectively, which add to provide a baseline value δ∗mis,
and, accordingly, our ∆B splits as δ∗mis plus ∆B,inner, using
the relative rate drop of the inner code. As detailed later, this
δ∗mis is typically small compared to the rate drop sources from
the inner code.

In putting the ingredients together, when R is less than CB ,
part of the difference CB−R is used in providing slight increase
past the baseline to determine a reliable δmis, and the rest of
the difference is used in setting the inner code rate to insure a
sufficiently positive gap g(x)−x for reliability of the decoding
progression. The relative choices are made to produce the best
resulting error exponent L E(CB−R) for the given rate.

I. Comparison to optimal least squares:

It is appropriate to compare the rate achieved here by our
practical decoder with what is achieved with theoretically op-
timal, but possibly impractical, least squares decoding of these
sparse superposition codes, subject to the constraint that there
is one non-zero coefficients in each section. Such least squares
decoding provides the stochastically smallest distribution of
the number of mistakes, with a uniform distribution on the
possible messages, but it has an unknown computation time.

In this direction, the results in the companion paper [10], for
least squares decoding of superposition codes, partially com-
plement what we give here for our adaptive successive decoder.
For optimum least square decoding, favorable properties are
demonstrated, in the case that the power assignments P/L are
the same for each section. Interestingly, the analysis techniques
there are different and do not reveal rate improvement from
the use of variable instead of constant power with optimal
least squares decoding. Another difference is that while here
there are no restrictions on B, there it is required that B≥Lb
for a specified section size rate b depending only on the
signal-to-noise ratio, where conveniently b tends to 1 for large
signal-to-noise, but unfortunately b gets large for small snr.
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For comparison with our scheme here, restrict attention to
moderate and large signal-to-noise ratios, as for computational
reasons, it is desirable that B be not more than a low order
polynomial in L.

Let ∆ = (C − R)/C be the rate drop from capacity,
with R not more than C. It is shown in [10] that, for a
positive constant c1, the probability of more than a fraction
δmis of mistakes, with least squares decoding, is less than
exp{−nc1 min{∆2, δmis}}, for any δmis in [0, 1], any positive
rate drop ∆ and any size n. This bound is better than obtained
for our practical decoder in its freedom of any choice of
mistake fraction and rate drop in obtaining this reliability. In
particular, the result for least squares does not restrict ∆ to be
larger than ∆B and does not restrict δmis to be larger than a
baseline value of order 1/ logB.

It shows that n only needs to be of size
[log(1/ε)]/[c1 min{∆2, δmis}] for least squares to achieve
probability ε of at least a fraction δmis mistakes, at rate that is
∆ close to capacity. With suitable target fractions of mistakes,
the drop from capacity ∆ is not more than

√
(1/c1n) log 1/ε.

It is of order 1/
√
n if ε is fixed; whereas, for ε exponentially

small in n, the associated drop from capacity ∆ would need
to be at least a constant amount.

An appropriate domain for comparison is in a regime
between the extremes of fixed probability ε and a probability
exponentially small in n. The probability of error is made
nearly exponentially small if the rate is permitted to slowly
approach capacity. In particular, suppose B is equal to n or a
small order power of n. Pick ∆ of order 1/ logB to within
iterated log factors, arranged such that the rate drop ∆ exceeds
the envelope ∆B by an amount of that order 1/ logB. We can
ask, for a rate drop of that moderately small size, how would
the error probability of least squares and the practical method
compare? At a suitable mistake rate, the exponent of the error
probability of least squares would be quantified by n/(logB)2

of order n/(log n)2, neglecting loglog factors. Whereas, for
our practical decoder the exponent would be a constant times
L(∆−∆B)2(logB)1/2, which is of order L/(logB)1.5, that
is, n/(log n)2.5. Thus the exponent for the practical decoder
is within a (log n)0.5 factor of what is obtained for optimal
least squares decoding.

J. Comparison to the optimal form of exponents:
It is natural to compare the rate, reliability, and code-size

tradeoff that is achieved here, by a practical scheme, with what
is known to be theoretically best possible. What is known
concerning the optimal probability of error, established by
Shannon and Gallager, as reviewed for instance in [58], and
recently refined in [3], is that the optimal probability of error
is exponentially small in an expression n E(R) which, for R
near C, matches n∆2 to within a factor bounded by a constant,
where ∆ = (C−R)/C. Per [3], this behavior of the exponent
remains valid for ∆ down to the order remaining larger than
1/
√
n. The reason for that restriction is that for ∆ as small as

order 1/
√
n, the optimal probability of error does not go to

zero with increasing block length (rather it is then governed
by an analogous expression involving the tail probability of
the Gaussian distribution, per [58]).

Our bounds for our practical decoder do not rely on
asymptotics, but rather finite sample bounds available for all
choices of L and B and inner code rates R ≤ CB , with
blocklength n = (L logB)/R. Our overall error probability
bound is exponentially small in an expression of the form
L min

{
∆,∆2

√
logB

}
, provided R is enough less than CB

that the additional drop from CB−R is of the same order
as the total drop ∆. Consequently, the error probability is
exponentially small in

n min
{

∆
logB

,
∆2

√
logB

}
.

Focussing on the ∆ for which the square term is the minimizer,
it shows that the error probability is exponentially small in
n(C −R)2/

√
logB, within a

√
logB factor of optimal, for

rates R for which CB−R is of order between log logB/ logB
and 1/

√
logB.

An alternative perspective on the rate and reliability tradeoff
as in [58], is to set a small block error probability ε and seek
the largest possible communication rate Ropt as a function of
the codelength. They show for n of at least moderate size, this
optimal rate is near

Ropt = C −
√
V√
n

√
2 log 1/ε,

for a constant V they identify, where if ε is not small the√
2 log 1/ε is to be replaced by the upper ε quantile of the

standard normal. For small ε this expression agrees with
the form of the relationship between error probability ε and
the exponent n(C−Ropt)2 stated above. The rates and error
probabilities we achieve with our practical decoder have a
similar form of relationship but differ in three respects. One
is that we have the somewhat smaller n/

√
logB in place of

n, secondly our constant multipliers do not match the optimal
V , and thirdly our result is only applicable for ε small enough
that the rate drop is made to be at least ∆B .

From either of these perspectives, we see that to gain
provable practicality we pay the price of needing blocklength
larger by a factor of

√
logB to have the same performance as

would be optimal without concern for practicality.

K. On the signal alphabet and shaping:

From the review [36], as we have said, the problem of prac-
tical communication for additive Gaussian noise channels, has
been decomposed into separate problems, which in addition to
modulation, include the matters of choice of signal alphabet,
of the shaping of a signal constellation, and of coding. Our
approach merges the signal alphabet and constellation into
the coding. The values of codeword symbols that arise in our
codes are those that can be realized via sums of columns of the
dictionary, one from each section in the partitioned case. Some
background on signalling facilitates discussion of relationship
to other work.

By choice of signal alphabet, codes for discrete channels
have been adapted to use on Gaussian channels, with varying
degrees of success. In the simplest case the code symbols take
on only two possible values, leading to a binary input channel,
by constraining the the symbol alphabet to allow only the
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values ±
√
P and possibly using only the signs of the Yi. With

such binary signalling, the available capacity is not more than
1 and it is considerably less than (1/2) log(1+snr), except
in the case of low signal-to-noise ratio. When considering
snr that is not small it is preferable to not restrict to binary
signalling, to allow higher rates of communication. When
using signals where each symbol has a number M of levels,
the rate caps at logM , which is achieved in the high snr limit
even without coding (simply infer for each symbol the level to
which the received Yi is closest). As quantified in Forney and
Ungerboeck [36], for moderate snr, treating the channel as a
discrete M -ary channel of particular cross-over probabilities
and considering associated error-correcting codes allows, in
theory, for reasonable performance provided logM sufficiently
exceeds log snr (and empirically good coding performance
has been realized by LDPC and turbo codes). Nevertheless, as
they discuss, the rate of such discrete channels remains less
than the capacity of the original Gaussian channel. Recent
quantification of how small is the gap between the capacity
and the mutual information of an M -symbol input distribution
is in [74] and [1].

To bring the rate up to capacity, the codeword choices
should form a properly shaped multivariate signal constella-
tion, that is, the codeword vectors should approximate a good
packing of points on the n−dimensional sphere of squared
radius dictated by the power. An implication of which is that,
marginally and jointly for any subset of codeword coordinates,
the set of codewords should have empirical distribution not far
from Gaussian. Such shaping is likewise a problem for which
theory dictates what is possible in terms of rate and reliability
[36], but theory has been lacking to demonstrate whether there
is a moderate or low complexity of decoding that achieves such
favorable rate and error probability.

Our sparse superposition code automatically takes care of
the required shaping by using linear combinations of subsets a
given set of real-valued Gaussian distributed vectors. For high
snr, in the role of logM being large compared to log snr
is in our case replaced by having L large and having logB
large compared to C. These sparse superposition codes are not
exactly well-spaced on the surface of an n−sphere, as inputs
that agree in most sections would have nearby codewords.
Nevertheless, when coupled with the Reed-Solomon outer
code, sufficient distance between codewords is achieved for
quantifiably high reliability.

L. Relationships to previous work:

We point out several directions of past work that connect to
what is developed here. There is some prior work concerning
computational feasibility for reliable communications near
capacity for certain channels.

In some cases, instead of fixing snr and considering rates
less than C = (1/2) log(1 + snr), the codes are equivalently
examined by fixing a target rate R, which would be capacity
for snr∗ = e2R − 1, and examining reliability for all snr at
least snr∗.

Turbo codes, also called parallel permuted convolutional
codes, have empirically good performance [13], e.g., for rate
1/2 codes for snr not much above what would correspond

to capacity. Typically they have a signed binary input sets,
nevertheless, these codes are intended for additive noise chan-
nels such as Gaussian and the decoder makes use of the real-
valued received symbols in its iterations [42]. The presence of
some low weight codewords [57] is demonstrated to produce
a floor to the bit error probability that is an impediment to
the demonstration of reliability that will scale favorably with
increasing code-size n. Increasing the number of parallel codes
improves the minimum distance as shown in [43], nevertheless,
demonstration that the error probability is exponentially small
with n for all rates less than capacity (i.e. for all snr > snr∗)
remains elusive, even for these moderate target rates. The fact
that current designs are for rate targets less than 1 need not
be an ultimate impediment as one can use the superposition
strategy and rate splitting to produce much higher rates of the
same fractional drop from capacity in high snr cases as hold
in low snr cases.

Building on Gallager’s low density parity check codes
[38], iterative decoding algorithms based on statistical belief
propagation in loopy networks have been empirically shown in
various works to provide reliable and moderately fast decoding
at rates near the capacity for various discrete channels, and
mathematically proven to provide such properties in the special
case of the binary erasure channel in [51], [52]. Theory for
expander codes for the binary symmetric channel is found in
[64], [75], [6], [7] including error exponents for reliability
at rates up to capacity in [6]. Error exponents for randomly
filled low density generator matrices is demonstrated in [48].
Though substantial steps have been made in the analysis of
belief networks (message passing algorithms), as summarized
for instance in [61], there is not mathematical proof of the
desired computational properties and reliability properties at
rates near capacity for the Gaussian channel.

An approach to reliable and computationally-feasible decod-
ing, originally restricted to binary signaling, is in the work on
channel polarization. Error probability is demonstrated there at
a level exponentially small in n1/2 for fixed rates less than the
binary signaling capacity. In contrast for our scheme, the error
probability is exponentially small in n/(logB)0.5 and hence
exponentially small in n1−ε for any ε>0 and communication is
permitted at higher rates, approaching capacity for the Gaus-
sian noise channel. In recent work Abbe and Telatar [2] adapt
channel polarization to achieve the sum rate capacity for m
user binary input multiple-access channels, with specialization
to single-user channels with 2m inputs. Subsequent to the
initial development of the methods of the present paper, Abbe
and one of us [1] have recently demonstrated discrete near-
Gaussian signalling that adapts channel polarization to the
Gaussian noise channel.

The analysis of concatenated codes in Forney [35] is an
important forerunner to the development of code composition
we give here. For the theory, he paired an outer Reed-Solomon
code with concatenation of optimal inner codes of Shannon-
Gallager type, while, for practice, he paired such an outer
Reed-Solomon code with binary inner codes based on linear
combinations of orthogonal terms (for target rates K/n less
than 1 such a basis is available), in which all binary coefficient
sequences are possible codewords. A refinement of the Forney
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theory is in [6], using binary expander inner codes for the
binary symmetric channel paired with an outer Reed-Solomon
code.

A challenge concerning theoretically good inner codes is
that the number of messages searched is exponentially large
in the inner codelength. Forney made the inner codelength
of logarithmic size compared to the outer codelength as a
step toward practical solution. However, caution is required
with these strategies. If the rate of the inner code has a small
relative drop from capacity, ∆ = (C−R)/C, then for moderate
reliability the inner codelength would need to be of order
at least 1/∆2. So with these the required outer codelength
becomes exponential in 1/∆2.

To compare, for the Gaussian noise channel, our approach
provides a practical decoding scheme for the inner code. We
permit use of inner and outer codelengths that are comparable
to each other. One can draw a parallel between the sections
of our code and the concatenations of Forney’s inner codes. A
key difference is our use of superposition across the sections
and the simultaneous decoding of these sections. Challenges
remain in the restrictiveness of the relationship of the rate
drop ∆ to the section sizes. Nevertheless, particular rates are
identified as practical and near optimal.

Ideas of superposition codes, including rate splitting, parti-
tioning, successive decoding and variable power allocation for
Gaussian noise channels, began with Cover [22] in the context
of multiple-user channels, as we have said. Let’s amplify that
relationship here. In his broadcast channel setting what is
sent is a sum of L codewords, one for each message, and
the users are sorted, the last one needing to fully decode
the partitioned superposition code. Here we are putting that
idea to use for the original Shannon single-user problem. The
purpose here of computational feasibility is different from
the original multi-user purpose which was characterization
of the set of achievable rates. Variable power assignments,
such as we use, yield equal rate R/L for each portion of
the code corresponding to a section (or individual code) size
B = 2nR/L for R up to the total capacity. Such B would
be exponentially large in n if L were fixed. Instead, we
have L of order n to within a log factor, so that B is of
a manageable size. Also, as we have said, adaptation rather
than pre-specification of the set of sections decoded each step
is key to the reliability and speed of our scheme.

The superposition code ideas originating in [22] were ap-
plied also for achieving the sum rate in Gaussian multiple-
access channels, see, e.g. [30], and for random access channels
[34]. In the multiple-access rate region characterizations of
[62] and [18], rate splitting is in some cases applied to
individual users. So the applicability of superposition of rate
split codes (with associated partitioning and variable power
allocation) for a single user channel at rates up to capacity
has been noted, starting from both broadcast and multiple
access perspectives. However, feasibility has been lacking in
the absence of demonstration of reliability at high rate with
superpositions from polynomial size dictionaries with fast
adaptive decoders.

It is an attractive feature of our solution for the single-user
channel that it should be amenable to extension to practical

solution of the corresponding multi-user channels, namely, the
Gaussian multiple access and Gaussian broadcast channel.

Convex optimization and compressed sensing: Our first
efforts in attempting to provide a practical decoder, reliable
at rates up to capacity, involved trying to adapt existing
results on convex optimization, sparse approximation, and
compressed sensing. With focus on rate in comparison to
capacity, the potential success and existing shortcomings of
these approaches are discussed here.

Relevant convex optimization concerns the problem of least
squares convex projection onto the convex hull of a given set
of vectors. If there is the freedom to multiply these vectors by
a specified constant, then such convex projection is also called
`1-constrained least squares, basis pursuit [19], or the Lasso
[66], though there are certainly a number of relevant precursors
on such optimization. Formulation as an `1-penalized least
squares is popular in cases of sparse statistical linear modeling
and compressed sensing in which the non-zero coefficient
values are unknown, whereas `1-constrained least squares is
a more natural match to our setting in which the non-zero
coefficient values are known.

The idea with such optimization is to show with certain
rate constraints and dictionary properties that the convex
projection is likely to concentrate its non-zero coefficients on
the correct subset. Completion of convex optimization to very
high precision would entail a computation time in general of
the order of N3. An alternative is to perform a smaller number
of iterations, such as we do here, aimed at determining the
target subset.

One line of work on sparse approximation and term se-
lection concerns a class of iterative procedures which may
be called relaxed greedy algorithms (including orthogonal
matching pursuit, also called the orthogonal greedy algorithm,
related to forward stepwise regression) as studied in [47],
[8], [56], [49], [9], [45], [70], [76], [77]. In essence, each
step of these algorithms finds, for a given set of vectors, the
one which maximizes the inner product with the residuals
from the previous iteration and then uses it to update the
linear combination. The relaxation property, in optimizing the
linear combination with previous contributions, is that those
contribution can be down-weighted in the presence of the new
vector.

These procedures adapt to two purposes of relevance to
the decoding task. First a relaxed greedy algorithm solves,
to within specified precision, for the least squares convex
projection onto the convex hull of a given set of vectors as
shown in [49] and a variant of it solves for the `1 penalized
least squares solution as shown in [45], with quantification of
the `2 accuracy of sparse approximators obtained in k steps
[8], [49], [9], [45], with no assumptions concerning the size
of inner products of the vectors.

Second, results on the correctness with high probability of
the k term selection with such algorithms are obtained in [70]
using orthogonal matching pursuit with random designs and
in [76] using forward-backward stepwise regression with an
assumption that the design satisfies what is called a restricted
isometry property (RIP), satisfied with high probability by
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the independent Gaussian and ±1 random designs. The RIP
property is also satisfied by certain deterministic designs as
reviewed in [14], [46]. With the constants currently available
with these analyses in the additive Gaussian noise case studied
in [70], [76] the application of these results does not yet permit
rates up to capacity.

Each pass of a relaxed greedy algorithm is analogous to the
steps of the decoder studied here. Applied to the communi-
cation task with partitioned superposition codes, the convex
hull corresponds to the coefficient vectors which are non-
negative and sum to 1 in each section (a cartesian product of
simplices), for which the vertices correspond to the codewords.
Each step finds in every section the term of highest inner
product with the residuals from the previous iteration and
then uses it to update the linear combination. Accordingly, its
computation time is linear in N times the number of iterations
(and these computations are parallelizable in the same manner
as previously discussed).

The essential difference between the above-mentioned it-
erative algorithms and our decoder is that each step we
achieve relaxation by keeping the coefficients at 0 in sections
for which all the inner products remain below threshold.
Accordingly, section moves, when they occur, are to vertices
of the constituent simplices, and there are no interior moves.

We have conducted additional analysis of convex projection
(`1-constrained least squares) in the case of equal power
allocation in each section. With the Gaussian design and
Gaussian noise, an approximation to the projection can be
characterized which has largest weight in most sections at
the term sent, when the rate R is less than R0; whereas
for larger rates the weights of the projection are too spread
across the terms in the sections to identify what was sent.
(As that analysis is lengthy and does not get the rate up to
capacity we will not include it here.) To get to the higher
rates, up to capacity, one cannot use such convex projection
alone. Variable section power may be necessary in the context
of such algorithms. We have found it advantageous to conduct
a more structured iterative decoding, which is more explicitly
targeted to finding vertices, as presented here.

With this backdrop, it is natural to look further at the
fields of statistical term selection, sparse signal recovery, and
compressed sensing and ask whether the desired results of
practical achievement of rate up to capacity could be obtained
by appealing to other existing conclusions.

Adaptation of sparse signal recovery theory to communica-
tions for the Gaussian noise channel begins, as we have said,
with Tropp [67] and Gilbert and Tropp [41], by a scheme
which may be regarded as a sparse signed superposition code
using a dictionary of specified properties (an control of inco-
herence, assuming small maximum pairwise inner products).
Analogous signal recovery frameworks are in [27], [28] and
[37]. These works examine the reliability properties in the
worst case over choices of arbitrary subsets of specified size
and show that subsets up to size of order near

√
n can be

reliably decoded by convex projection. Unfortunately, this
would correspond to communication rates that are vanishingly
small, of order near 1/

√
n.

Positive rate is realized by looking at the average probability

of error over random choices of subsets of a specified size.
From an n by N dictionary of specified properties, random
subsets up to size of order n/ logN are reliably decoded. Work
in this direction is in [68], [69] and especially [15], showing
that a coherence property of the dictionary implies reliable
determination of random subsets of that size by `1 penalized
least squares. The relationship between random subsets of
columns a fixed dictionary of specified properties and the
subsets of columns of a Gaussian matrix is explored in [40].

Use of a random dictionary, especially Gaussian, is in [26],
[16], [70], [33], [72], [73]. These works show that reliable
determination of L terms from n noisy measurements, does
allow L to be of order n/ logN , and is achieved either
by orthogonal matching pursuit as in [70] or by convex
optimization with an `1 control on the coefficients, though
the results of [72], [73] show that the `1 constrained convex
optimization does not perform as well as the information-
theoretic limits. Of course, with an average over the ensemble
of random dictionaries, the average case error probability over
subsets of size L is the same as the average error probability
for an specific such subset. Again these random dictionary
conclusions translate into saying that the communication rate
with procedures based on convex optimization is positive.
However, the gaps between constants in the upper and lower
bounds (corresponding to achievability and converse results,
respectively) correspond to saying that reliability with rates
up to capacity is not identified by application of these works.
Our work takes it further, identifying practical strategies that
do achieve up to the information-theoretic limits.

A caveat in these discussions is that the aim of much
(though not all) of the work on sparse signal recovery, com-
pressed sensing, and term selection in linear statistical models
is distinct from the purpose of communication alone. In partic-
ular rather than the non-zero coefficients being fixed according
to a particular power allocation, the aim is to allow a class of
such coefficients and still recover their support and estimate
the coefficient values. This leads to constants in the converse
bounds obtained in Wainwright that are distinct from Shannon
capacity, and are not overcome by specialization of his bounds
to either the fixed non-zero coefficient value case or to a
specific variable coefficient value assignment. Furthermore, the
inferiority of the `1 constrained convex optimization that he
demonstrates is also an obstacle to communication at capacity
by such schemes. Another source of distinction in the rates
one would obtain by apply such results and the capacity rate
here is that we only require the sparse superposition decoder
to identify most of the columns of the superposition, with the
remaining errors corrected using the outer code.

The conclusion of the present paper concerning commu-
nication rate in the language of sparse signal recovery and
compressed sensing are summarized as follows. A number
of terms (columns) selected from a dictionary is linearly
combined and subject to Gaussian noise. Suppose a large value
B of the order of a polynomial in n is specified for the ratio of
the number of variables divided by the number of terms. For
signals Xβ satisfying our Gaussian design, high-probability
recovery of these terms (with a negligible fraction of mistakes)
from the received noisy Y of length n is possible provided the
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number of terms L satisfies L ≥ Rn/ logB. Our interest is
in the constant R achievable by practical schemes. Accurate
recovery is possible provided R < R0 in the equal power
allocation case. For the variable power designs we give here,
recovery by other means is possible at higher R up to the
capacity C.

Though we are not fond of the term, one can call the
supremum of the constants R for which a number of terms
L of size Rn/ logB be reliable recovered by a practical
algorithm, the compressed sensing capacity. It can be said
that for our designs, the compressed sensing capacity is equal
to the Shannon Capacity.

We mention relevant converse results from the theory of
joint source and channel coding subject to a Hamming distor-
tion which applied to the problem of recovery of a specified
fraction of terms in a sparse linear model in [60]. There they
study the case that the ratios n/N and L/N are fixed at
constant levels. If the distortion level related to the mistake rate
were likewise fixed at a positive constant level, it would follow
that the optimal rates would be distinct from the Shannon
channel capacity. In our case the n/N = (logB)/(RB) and
L/N = 1/B and the distortion level are all arranged to
become small with increasing B, and the Shannon capacity
becomes the limiting rate for large B.

As various colleagues have pointed out, relationships of our
decoder to other settings can be seen in the problems of multi-
user detection [71], term selection by forward selection in
regression [29], screening in high-dimensional regression [31],
multiple comparison hypothesis testing [12], and the sequential
detection algorithm of [55]. In these settings, when dealing
with a large number of hypotheses, there is a recent focus
on the need to track the fractions of false discoveries and
failed detections, especially in iterative algorithms, rather than
overall error probability in a one-shot analysis.

Outline of paper: After some preliminaries, section III de-
scribes the decoder. In Section IV we analyze the distributions
of the various test statistics associated with the algorithm. In
particular, the inner product test statistics are shown to de-
compose into normal random variables plus a nearly constant
random shift for the terms sent. Section V demonstrates the
increase for each step of the mean separation between the
statistics for terms sent and terms not sent. Section VI sets
target detection and alarm rates. Reliability of the algorithm
is established in section VII, with demonstration of exponen-
tially small error probabilities. Computational illustration is
provided in section VIII. A requirement of the theory is that
the decoder satisfies a property of accumulation of correct
detections. Whether the decoder is accumulative depends on
the rate and the power allocation scheme. Specialization of
the theory to a particular variable power allocation scheme is
presented in section IX. The closeness to capacity is evaluated
in section X. Lower bounds on the error exponent are in
section XI. Refinements of closeness to capacity are in section
XII. Section XIII discusses the use of an outer Reed Solomon
code to correct any mistakes from the inner decoder. The
appendix collects some auxiliary matters.

II. SOME PRELIMINARIES

Notation: For vectors a, b of length n, let ‖a‖2 be the sum of
squares of coordinates, let |a|2 = (1/n)

∑n
i=1 a

2
i be the aver-

age square and let respectively aT b and a·b = (1/n)
∑n
i=1 aibi

be the associated inner products. We sometimes find it more
convenient to work with |a| and a · b.

Setting of Analysis: The dictionary is randomly generated.
For the purpose of analysis of average probability of error or
average probability of at least certain fraction of mistakes, we
investigate properties with respect to the joint distribution of
the dictionary and the noise.

The noise ε and the Xj in the dictionary are jointly
independent normal random vectors, each of length n, with
mean equal to the zero vector and covariance matrixes equal
to σ2I and I , respectively. These vectors have n coordinates
indexed by i = 1, 2, . . . , n which may be called the time index.
Meanwhile J is the set of term indices j corresponding to the
columns of the dictionary, which may be organized as a union
of sections. The codeword sent is from a selection of L terms.
The cardinality of J is N and the ratio B = N/L.

Corresponding to an input, let sent = {j1, j2, . . . , jL} be
the indices of the terms sent and let other = J − sent
be the set of indices of all other terms in the dictionary.
Component powers Pj are specified, such that

∑
j sent Pj =

P .The simplest setting is to arrange these component powers
to be equal Pj = P/L. Though for best performance, there
will be a role for component powers that are different in
different portions of the dictionary. The coefficients for the
codeword sent are βj =

√
Pj 1j sent. The received vector is

Y =
∑
j

βjXj + ε.

Accordingly, Xj and Y are joint normal random vectors,
with expected product between coordinates and hence ex-
pected inner product E[Xj · Y ] equal to βj . This expected
inner product has magnitude

√
Pj for the terms sent and 0

for the terms not sent. So the statistics Xj · Y are a source of
discrimination between the terms.

We note that each coordinate of Y has expected square
σ2
Y = P + σ2 and hence E[|Y |2] = P+σ2.

Exponential bounds for relative frequencies: In the dis-
tributional analysis we shall make repeated use of simple
large deviations inequalities. In particular, if q̂ is the relative
frequency of occurrence of L independent events with success
probability q∗, then for q < q∗ the probability of the event
{q̂ < q} is not more than the Sanov-Csiszàr bound e−LD(q‖q∗),
where the exponent D(q‖q∗) = DBer(q‖q∗) is the relative
entropy between Bernoulli distributions. Some may recognize
this bound by the method of types, as in [25],[23], though with
a multiplicative factor of L+1 out front. That it is true without
such a multiplier follows from a simple convexity argument as
in [24] or by identification that the exponent of the Cramer-
Chernoff bound takes the form of the relative entropy. The
information theoretic bound subsumes the Hoeffding bound
e−2(q∗−q)2L via the Csiszàr-Kullback inequality that D exceeds
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twice the square of total variation, which here is, D ≥
2(q∗−q)2. An extension of the information-theoretic bound
to cover weighted combinations of indicators of independent
events is in Lemma 47 in the appendix and slight dependence
among the events is addressed through bounds on the joint
distribution. The role of q̂ is played by weighted counts for j
in sent of test statistics being above threshold.

In the same manner, one has that if p̂ is the relative
frequency of occurrence of independent events with success
probability p∗, then for p > p∗ the probability of the
event {p̂ > p} has a large deviation bound with exponent
DBer(p‖p∗). In our use of such bounds, the role of p̂ is played
by the relative frequency of false alarms, based on occurrences
of j in other of test statistics being above threshold. Naturally,
in this case, we arrange for p and p∗ both to be small, with
some control on the ratio between them. It is convenient to
make use of lower bounds on DBer(p‖p∗), as detailed in
Lemma 48 in the appendix, which include what may be called
the Poisson bound p log p/p∗+p∗−p and the Hellinger bound
2(
√
p −

√
p∗)2, both of which exceed (p − p∗)2/(2p). All

three of these lower bounds are superior to the variation bound
2(p− p∗)2 when p is small.

III. THE DECODER

From the received Y and knowledge of the dictionary,
decode which terms were sent by an iterative procedure we
now specify more fully.

The first step is as follows. For each term Xj of the
dictionary compute the inner product with the received string
XT
j Y as a test statistic and see if it exceeds a threshold

T = ‖Y ‖τ . Denote the associated event

Hj = {XT
j Y ≥ T}.

In terms of a normalized test statistic this first step test is the
same as comparing Z1,j to a threshold τ , where

Z1,j = XT
j Y /‖Y ‖,

the distribution of which will be shown to be that of a standard
normal plus a shift by a nearly constant amount, where the
presence of the shift depends on whether j is one of the terms
sent. Thus Hj = {Z1,j ≥ τ}. The threshold is chosen to be

τ =
√

2 logB + a.

The idea of the threshold on the first step is that very few
of the terms not sent will be above threshold. Yet a positive
fraction of the terms sent, determined by the size of the shift,
will be above threshold and hence will be correctly decoded
on this first step.

Let thresh1 = {j ∈ J : 1Hj = 1} be the set of terms
with the test statistic above threshold and let above1 denote
the fraction of such terms. In the variable power case it is a
weighted fraction above1 =

∑
j∈thresh1

Pj/P , weighted by
the power Pj . We restrict decoding on the first step to terms
in thresh1 so as to avoid false alarms. The decoded set is
either taken to be dec1 = thresh1 or, more generally, a value
pace1 is specified and, considering the terms in J in order of
decreasing Z1,j , we include in dec1 as many as we can with

∑
j∈dec1 πj not more than min{pace1, above1}. Let DEC1

denote the cardinality of the set dec1.
The output of the first step consists of the set of decoded

terms dec1 and the vector F1 =
∑
j∈dec1

√
Pj Xj which

forms the first part of the fit. The set of terms investigated in
step 1 is J1 = J , the set of all columns of the dictionary. Then
the set J2 = J1− dec1 remains for second step consideration.
In the extremely unlikely event that DEC1 is already at least
L there will be no need for the second step.

A natural way to conduct subsequent steps would be as
follows. For the second step compute the residual vector

r2 = Y − F1.

For each of the remaining terms, i.e. terms in J2, compute the
inner product with the vector of residuals, that is, XT

j r2 or its
normalized form Zrj = XT

j r2 /‖r2‖ which may be compared
to the same threshold τ =

√
2 logB + a, leading to a set

dec2 of decoded terms for the second step. Then compute
F2 =

∑
j∈dec2

√
Pj Xj , the fit vector for the second step.

The third and subsequent steps would proceed in the same
manner as the second step. For any step k, one computes the
residual vector

rk = Y − (F1 + . . .+ Fk−1).

For terms in Jk = Jk−1 − deck−1, one gets threshk as the
set of terms for which XT

j rk /‖rk‖ is above τ . The set of
decoded terms is either taken to be threshk or a subset of it.
The decoding stops when the size of the cardinality of the set
of all decoded term becomes L or there are no terms above
threshold in a particular step.

A. Statistics from adaptive orthogonal components:

A variant of the above algorithm from second step onwards
is described, which we find to be easier to analyze. The idea
is that the ingredients Y , F1, . . . , Fk−1 previously used in
forming the residuals may be decomposed into orthogonal
components and test statistics formed that entail the best
combinations of inner products with these components.

In particular, for the second step the vector G2 is formed,
which is the part of F1 orthogonal to G1 = Y . For j in
J2, the statistic Z2,j = XT

j G2/‖G2‖ is computed as well
as the combined statistic Zcomb2,j =

√
λ1Z1,j −

√
λ2Z2,j ,

where λ1 = 1− λ and λ2 = λ, with a value of λ to
be specified. What is different on the second step is that
now the events H2,j = {Zcomb2,j ≥ τ} are based on these
Zcomb2,j , which are inner products of Xj with the normalized
vector E2 =

√
λ1 Y/‖Y ‖−

√
λ2G2/‖G2‖. To motivate these

statistics note the residuals r2 = Y − F1 may be written
as (1− b̂1)Y − G2 where b̂1 = FT1 Y/‖Y ‖2. The statistics
we use in the variant may be viewed as approximations to
the corresponding statistics based on the normalized residuals
r2/‖r2‖, except that the form of λ and the analysis are
simplified.

Again these test statistics Zcomb2,j lead to the set thresh2 =
{j ∈ J2 : 1H2,j = 1} of size above2 =

∑
j∈thresh2

πj .
Considering these statistics in order of decreasing value, it
leads to the set dec2 consisting of as many of these as we
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can while maintaining accept2 ≤ min{pace2, above2}, where
accept2 =

∑
j∈dec2 πj . This provides an additional part of the

fit F2 =
∑
j∈dec2

√
Pj Xj .

Proceed in this manner, iteratively, to perform the following
loop of calculations, for k ≥ 2. From the output of step k−1,
there is available the vector Fk−1, which is a part of the fit, and
for k′ < k there are previously stored vectors Gk′ and statistics
Zk′,j . Plus there is a set dec1,k−1 = dec1∪. . .∪deck−1 already
decoded on some previous step and a set Jk = J − dec1,k−1

of terms for us to test at step k. Consider, as discussed further
below, the part Gk of Fk−1 orthogonal to the previous Gk′
and for each j not in deck−1 compute

Zk,j = XT
j Gk/‖Gk‖

and the combined statistic

Zcombk,j =
√
λ1,k Z1,j −

√
λ2,k Z2,j − . . .−

√
λk,k Zk,j ,

where these λ will be specified with
∑k
k′=1 λk′,k = 1. These

positive weights will take the form λk′,k = wk′/sk, with
w1 = 1, and sk = 1 + w2 + . . . wk, with wk to be specified.
Accordingly, the combined statistic may be computed by the
update

Zcombk,j =
√

1− λk Zcombk−1,j −
√
λk Zk,j ,

where λk = wk/sk. This statistic may be thought of as
the inner product of Xj with a vector updated as Ek =√

1− λkEk−1 −
√
λkGk/‖Gk‖, serving as a surrogate for

rk/‖rk‖. For terms j in Jk these statistics Zcombk,j are compared
to a threshold, leading to the events

Hk,j = {Zcombk,j ≥ τ}.

The idea of these steps is that, as quantified by an analysis
of the distribution of the statistics Zk,j , there is an increasing
separation between the distribution for terms j sent and the
others.

We let threshk = {j ∈ Jk : Zcombk,j ≥ τk} and abovek =∑
j∈threshk

πj and for a specified pacek, considering these
test statistics in order of decreasing value, we include in deck
as many as we can with acceptk ≤ min{pacek, abovek},
where acceptk =

∑
j∈deck

πj . The output of step k is the
vector

Fk =
∑
j∈deck

√
Pj Xj .

Also the vector Gk and the statistics Zk,j are appended to
what was previously stored, for all terms not in the decoded
set. From this step we provide update to the set of decoded
terms dec1,k = deck−1 ∪ deck and the set Jk+1 = Jk − deck
of terms remaining for consideration.

This completes the actions of step k of the loop.
To complete the description of the decoder, we will need to

specify the values of wk that determine the λk and we will
need to specify pacek. For these specifications there will be
a role for measures of the accumulated size of the detection
set accepttotk =

∑k
k′=1 acceptk′ as well a target lower bound

q1,k on the total weighted fraction of correct detection (the
definition of which arises in a later section), and an adjustment
to it given by qadj1,k = q1,k/(1+f1,k/q1,k) where f1,k is a target

upper bound on the total weighted fraction of false alarms. The
choices we consider take wk = sk− sk−1 to be increments of
the sequence sk = 1/(1−xk−1ν) that arises in characterizing
the above mentioned separation. In the definition of wk we
take xk−1 as either accepttotk−1 or qadj1,k−1, both of which arise
as surrogates to a corresponding unobservable quantity which
would require knowledge of the actual fraction of correct
detection through step k − 1.

There are two options for pacek that we describe. First,
we may arrange for deck to be all of threshk by setting
pacek = 1, large enough that it has essentially no role and
deck = threshk, and with this option we set wk as above
using xk−1 = accepttotk−1. This choice yields a successful
growth of the total weighted fractions of correct detections,
though to handle the empirical character of wk there is a slight
cost to it in the reliability bound, not present with the second
option.

For the second option, we may let pacek = qadj1,k −q
adj
1,k−1 be

the deterministic increments of the increasing sequence qadj1,k ,
with which it is shown that abovek is likely to exceed pacek,
for each k. When it does then acceptk equals the value pacek,
and cumulatively their sum accepttotk matches the target qadj1,k .
Likewise, for this option, wk is set using xk−1 = qadj1,k−1.
It’s deterministic trajectory facilitates the demonstration of
reliability of the decoder.

On each step k we decode a substantial part of what
remains, because of growth of the mean separation between
terms sent and the others, as we shall see.

The algorithm stops under the following conditions. Natural
practical conditions are that L terms have been decoded, or
that the weighted total size of the decoded set accepttotk has
reached at least 1, or that no terms from Jk are found to have
statistic above threshold, so that Fk is zero and the statistics
would remain thereafter unchanged. An analytical condition
is the lower bound we obtain on the likely mean separation
stops growing (captured through qadj1,k no longer increasing), so
that no further improvement is theoretically demonstrable by
such methodology. Subject to rate constraints near capacity,
our best bounds occur with a total number of steps m equal
to an integer part of 2 + snr logB.

Up to step k, the total set of decoded terms is dec1,k,
and the corresponding fit fitk may be represented either as∑
j∈dec1,k

√
Pj Xj or as the sum of the pieces from each step

fitk = F1 + F2 + . . .+ Fk.

As to the part Gk of Fk−1 orthogonal to Gk′ for k′ < k,
we take advantage of two ways to view it, one emphasizing
computation and the other analysis.

For computation, work directly with parts of the fit. The
G1, G2, . . . , Gk−1 are orthogonal vectors, so the parts of Fk−1

in these directions are b̂k,k′Gk′ with coefficients b̂k,k′ =
FTk−1Gk′/‖Gk′‖2 for k′ = 1, 2, . . . , k−1, where if peculiarly
‖Gk′‖ = 0 we use b̂k,k′ = 0. Accordingly, the new Gk may
be computed from Fk−1 and the previous Gk′ with k′<k by

Gk = Fk−1 −
k−1∑
k′=1

b̂k,k′ Gk′ .
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This computation entails the n−fold sums of products FTk Gk′
for determination of the b̂k,k′ . Then from this computed Gk
we obtain the inner products with the Xj to yield Zk,j =
XT
j Gk/‖Gk‖ for j in Jk.
The algorithm is seen to perform an adaptive Gram-Schmidt

orthogonalization, creating orthogonal vectors Gk used in
representation of the Xj and linear combinations of them,
in directions suitable for extracting statistics of appropriate
discriminatory power, starting from the received Y . For the
classical Gram-Schmidt process, one has a pre-specified set
of vectors which are successively orthogonalized, at each step,
by finding the part of the current vector that is orthogonal to
the previous vectors. Here instead, for each step, the vector
Fk−1, for which one finds the part Gk orthogonal to the
vectors G1, . . . , Gk−1, is not pre-specified. Rather, it arises
from thresholding statistics extracted in creating these vectors.

For analysis, look at what happens to the representation of
the individual terms. Each term Xj for j ∈ Jk−1 has the
decomposition

Xj = Z1,j
G1

‖G1‖
+Z2,j

G2

‖G2‖
+ . . .+Zk−1,j

Gk−1

‖Gk−1‖
+ Vk,j ,

where Vk,j is the part of Xj orthogonal to G1, G2, . . . , Gk−1.
Since Fk−1 =

∑
j∈deck−1

√
Pj Xj it follows that Gk has the

representation

Gk =
∑

j∈deck−1

√
Pj Vk,j ,

from which Zk,j = V Tk,jGk /‖Gk‖, and we have the updated
representation

Xj = Z1,j
G1

‖G1‖
+. . .+Zk−1,j

Gk−1

‖Gk−1‖
+Zk,j

Gk
‖Gk‖

+Vk+1,j .

With the initialization V0,j = Xj , these Vk+1,j may be thought
of as iteratively obtained from the corresponding vectors at the
previous step, that is,

Vk+1,j = Vk,j −Zk,j Gk/‖Gk‖.

These V do not actually need to be computed, nor do we
need to compute its components detailed below, but we do use
this representation of the terms Xj in obtaining distributional
properties of the Zk,j .

B. The weighted fractions of detections and alarms:

The weights πj = Pj/P sum to 1 across j in sent and they
sum to B−1 across j in other. Define in general

q̂k =
∑

j∈sent∩deck

πj

for the step k correct detections and

f̂k =
∑

j∈other∩deck

πj

for the false alarms. In the case Pj = P/L which assigns equal
weight πj = 1/L, then q̂k L is the increment to the number
of correct detections on step k, likewise f̂k L is the increment
to the number of false alarms. Their sum acceptk = q̂k + f̂k
matches

∑
j∈deck

πj .

The total weighted fraction of correct detections up to step
k is q̂totk =

∑
j∈sent∩dec1,k

πj which may be written as the
sum

q̂totk = q̂1 + q̂2 + . . .+ q̂k.

Assume for now that deck = threshk. Then these increments
q̂k equal

∑
j∈sent∩Jk

πj1Hk,j
.

The decoder only encounters these Hk,j = {Zcombk,j > τ}
for j not decoded on previous steps, i.e., for j in Jk =
(dec1,k−1)c. For each step k, one may define the statistics
arbitrarily for j in dec1,k−1, so as to fill out definition of the
events Hk,j for each j, in a manner convenient for analysis.
By induction on k, on sees that dec1,k consists of the terms j
for which the union event H1,j ∪ . . . ∪ Hk,j occurs. Because
if dec1,k−1 = {j : 1H1,j∪...∪Hk−1,j

= 1} then the decoded set
dec1,k consists of terms for which either H1,j ∪ . . . ∪Hk−1,j

occurs (previously decoded) or Hk,j ∩ [H1,j ∪ . . . ∪Hk−1,j ]c

occurs (newly decoded), and together these events constitute
the union H1,j ∪ . . . ∪Hk,j .

Accordingly, the total weighted fraction of correct detec-
tions q̂totk may be regarded as the same as the π weighted
measure of the union

q̂totk =
∑
j sent

πj1{H1,j∪...∪Hk,j}.

Indeed, to relate this expression to the preceding expression
for q̂totk , the sum for k′ from 1 to k corresponds to the rep-
resentation of the union as the disjoint union of contributions
from terms sent that are in Hk′,j but not in earlier such events.

Likewise the weighted count of false alarms f̂ totk =∑
j∈other∩dec1,k

πj may be written as

f̂ totk = f̂1 + f̂2 + . . .+ f̂k

which when deck = threshk may be expressed as

f̂ totk =
∑
j other

πj1{H1,j∪...∪Hk,j}.

In the distributional analysis that follows we see that the
mean separation is given by an expression inversely related
to 1 − q̂totk−1ν. The idea of the multi-step algorithm is to
accumulate enough correct detections in q̂totk , with an attendant
low number of false alarms, that the fraction that remains
becomes small enough, and the mean separation hence pushed
large enough, that most of what remains is reliably decoded
on the last step.

The analysis will provide, for each section `, lower bounds
on the probability that the correct term is above threshold by
step k and upper-bounds on the accumulated false alarms.
When the snr is low and we are using constant power
allocation, these probabilities are the same across the sections,
all of which remain active for consideration until completion
of the steps.

For variable power allocation, with P(`) decreasing in `,
then for each step k, the probability that the correct term is
above threshold varies with `. Nevertheless, it can be a rather
large number of sections for which this probability takes an
intermediate value (neither small nor close to one), thereby
necessitating the adaptive decoding. Most of our analysis
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proceeds by allowing at each step for terms to be detected
from any section ` = 1, 2, . . . , L.

C. An optional analysis window:

For large C, the P(`) proportional to e−2C`/L exhibits a
strong decay with increasing `. Then it can be appropriate
to take advantage of a deterministic decomposition into three
sets of sections at any given number of steps. There is the set
of sections with small `, which we call polished, where the
probability of the correct term above threshold before step k
is already sufficiently close to one that it is known in advance
that it will not be necessary to continue to check these (as
the subsequent false alarm probability would be quantified
as larger than the small remaining improvement to correct
detection probability for that section). Let polishedk (initially
empty) be the set of terms in these sections. With the power
decreasing, this coincides with a non-decreasing initial interval
of sections.

Likewise there are the sections with large ` where the
probability of a correct detection on step k is less than the
probability of false alarm, so it would be advantageous to
still leave them untested. Let untestedk (desirably eventually
empty) be the set of terms from these sections, corresponding
to a decreasing tail interval of sections up to the last section
L.

The complement is a middle region of terms

potentialk = J − polishedk − untestedk,

corresponding to a window of sections, leftk ≤ ` ≤ rightk,
worthy of attention in analyzing the performance at step k.
For each term in this analysis window there is a reasonable
chance (neither too high nor too low) of it being decoded by
the completion of this step.

These middle regions overlap across k, so that for any term
j has potential for being decoded in several steps.

In any particular realization of X,Y , some terms in this
set potentialk are already in dec1,k−1. Accordingly, one has
the option at step k to restrict the active set of the search to
Jk = potentialk ∩ decc1,k−1 rather than searching all of the
set decc1,k−1 not previously decoded. In this case one modifies
the definitions of q̂totk and f̂ totk , to be

q̂totk =
∑
j sent

πj1{∪k′∈Kj,k
Hk′,j}

and

f̂ totk =
∑
j other

πj1{∪k′∈Kj,k
Hk′,j}

where

Kj,k = {k′≤k : j ∈ potentialk′}.

A refined analysis given later quantifies benefits of this re-
striction, particularly concerning improved bounds on the total
false alarms and corresponding improvement to the rate drop
from capacity, when C is large.

IV. DISTRIBUTIONAL ANALYSIS

In this section we describe the distributional properties of
the random variables Zk = (Zk,j : j ∈ Jk) for each k =
1, 2, . . . , n. In particular we show for each k that Zk,j are
location shifted normal random variables with variance near
one for j ∈ sent ∩ Jk and are independent standard normal
random variables for j ∈ other ∩ Jk.

In Lemma 1 below we derive the distributional properties
of Z1. Lemma 2 characterizes the distribution of Zk for steps
k ≥ 2.

Before providing these lemmas we define a few quantities
which will be helpful in studying the location shifts of Zk,j
for j ∈ sent ∩ Jk. In particular, define the quantity

Cj,R = πj Lν/(2R),

where πj = Pj/P and ν=ν1 =P/(σ2+P ). Likewise define

Cj,R,B = (Cj,R) 2 logB,

which also has the representation

Cj,R,B = nπj ν.

The role of this quantity as developed below is via the location
shift

√
Cj,R,B seen to be near

√
Cj,R τ . One compares this

value to τ , that is, one compares Cj,R to 1 to see when there
is a reasonable probability of some correct detections starting
at step 1, and one arranges Cj,R to taper not too rapidly to
allow decodings to accumulate on successive steps.

We have two illustrative cases. For the constant power
allocation case, πj equals 1/L and Cj,R reduces to

Cj,R = R0/R,

where R0 = (1/2)P/(σ2 + P ). In this case Cj,R,B =
(R0/R) 2 logB are equal for all j. This Cj,R is at least 1
when the rate R is not more than R0.

For the case of power Pj proportional to e−2C`/L, we have
πj = e−2C(`−1)/L(1−e−2C/L)/(1−e−2C) for each j in section
`, for ` from 1 to L. Define

C̃ = (L/2)[1− e−2C/L],

which is essentially identical to C, for L large compared to C.
Then for j in section ` we have that

πj = (2C̃/Lν)e−2C(`−1)/L

and

Cj,R = (C̃/R) e−2C(`−1)/L.

For rates R not more than C, this Cj,R is at least 1 in some
sections, leading to likelihood of some initial successes, and
it tapers at the fastest rate at which we can still accumulate
decoding successes.
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A. Distributional analysis of the first step:

We now are in a position to give the lemma for the
distribution of Z1. Recall that J1 = J is the set of all N
indices.

Lemma 1: For each j ∈ J , the statistic Z1,j can be
represented as√

Cj,R,B [Xn/
√
n]1j sent + Z1,j ,

where Z1 = (Z1,j : j ∈ J1) is multivariate normal N(0,Σ1)
and X 2

n = ‖Y ‖2/σ2
Y is a Chi-square (n) random variable that

is independent of Z1. Here recall that σ2
Y = P + σ2 is the

variance of each coordinate of Y .
The covariance matrix Σ1 can be expressed as Σ1 = I −

b1b
T
1 , where b1 is the vector with entries b1,j = βj/σY for j

in J .

The subscript 1 on the matrix Σ1 and the vector b1 are to
distinguish these first step quantities from those that arise on
subsequent steps.

Proof of Lemma 1: Recall that the Xj for j in J are inde-
pendent N(0, I) random vectors and that Y =

∑
j βjXj + ε,

where the sum of squares of the βj is equal to P .
Consider the decomposition of each random vector Xj of

the dictionary into a vector in the direction of the received Y
and a vector Uj uncorrelated with Y . That is, one considers
the reverse regression

Xj = b1,j Y/σY + Uj ,

where the coefficient is b1,j = E[Xi,jYi]/σY = βj/σY , which
indeed makes each coordinate of Uj uncorrelated with each
coordinate of Y . These coefficients collect into a vector b1 =
β/σY in RN .

These vectors Uj = Xj−b1,jY/σY along with Y are linear
combinations of joint normal random variables and so are
also joint normal, with zero correlation implying that Y is
independent of the collection of Uj . The independence of Y
and Uj facilitates development of distributional properties of
the UTj Y . For these purposes we need the characteristics of
the joint distribution of the Uj across terms j (clearly there is
independence for distinct time indices i).

The coordinates of Uj and Uj′ have mean zero and expected
product 1{j=j′} − b1,jb1,j′ . These covariances (E[Ui,jUj,j′ ] :
j, j′∈J) organize into a matrix

Σ1 = Σ = I −∆ = I − bbT .

For any constant vector α 6= 0, consider UTj α/‖α‖. Its joint
normal distribution across terms j is the same for any such α.
Specifically, it is a normal N(0,Σ), with mean zero and the
indicated covariances.

Likewise define the random variables Zj = UTj Y/‖Y ‖, also
denoted Z1,j when making explicit that it is for the first step.
Jointly across j, these Zj have the normal N(0,Σ) distribu-
tion, independent of Y . Indeed, since the Uj are independent
of Y , when we condition on Y = α we get the same N(0,Σ)
distribution, and since this conditional distribution does not
depend on Y , it is the unconditional distribution as well.

Where this gets us is revealed via the representation of the
inner product XT

j Y as b1,j‖Y ‖2/σY + UTj Y , which can be
written as

XT
j Y = βj

‖Y ‖2

σ2
Y

+ ‖Y ‖Zj .

This identifies the distribution of the XT
j Y as that obtained as

a mixture of the normal Zj with scale and location shifts de-
termined by an independent random variable X 2

n = ‖Y ‖2/σ2
Y ,

distributed as Chi-square with n degrees of freedom.
Divide through by ‖Y ‖ to normalize these inner products

to a helpful scale and to simplify the distribution of the result
to be only that of a location mixture of normals. The resulting
random variables Z1,j = XT

j Y /‖Y ‖ take the form

Z1,j =
√
n b1,j |Y |/σY + Zj ,

where |Y |/σY = Xn/
√
n is near 1. Note that

√
nb1,j =√

nβj/σY which is √nπjν or
√
Cj,R,B . This completes the

proof of Lemma 1.
The above proof used the population reverse regression of

Xj onto Y , in which the coefficient b1,j arises as a ratio
of expected products. There is also a role for the empirical
projection decomposition, the first step of which is Xj =
Z1,jY/‖Y ‖+ V2,j , with G1 = Y . Its additional steps provide
the basis for additional distributional analysis.

B. Distributional analysis of steps k ≥ 2:

Let Vk,j be the part of Xj orthogonal to G1, G2, . . . , Gk−1,
from which Gk =

∑
j∈deck−1

√
Pj Vk,j . It yields the represen-

tation of the statistic Zk,j = XT
j Gk/‖Gk‖ as V Tk,jGk/‖Gk‖,

as we have said. Amongst other matters, the proof of the
following lemma determines, for j ∈ Jk, the ingredients of the
regression Vk,j = bk,jGk/σk + Uk,j in which Uk,j is found
to be a mean zero normal random vector independent of Gk,
conditioning on certain statistics from previous steps. Taking
the inner product with the unit vector Gk/‖Gk‖ yields a
representation of Zk,j as a mean zero normal random variable
Zk,j plus a location shift that is a multiple of ‖Gk‖ depending
on whether j is in sent or not. The definition of Zk,j is
UTk,jGk/‖Gk‖.

We maintain the pattern used in Lemma 1 and use the cali-
graphic font Zk,j to denote the test statistics that incorporate
the shift for j in sent and the standard font Zk,j to denote
their counterpart mean zero normal random variables before
the shift.

The lemma below characterizes the sequence of conditional
distributions of the Zk = (Zk,j : j ∈ Jk) and ‖Gk‖, given
Fk−1, for k = 1, 2, . . . n, where

Fk−1 = (‖Gk′‖, Zk′ : k′ = 1, . . . , k−1).

This determines also the distribution of Zk = (Zk,j : j ∈ Jk)
conditional on Fk−1. Initializing with the distribution of Z1

derived in Lemma 1, we provide the conditional distributions
for all 2 ≤ k ≤ n. The algorithm will be arranged to stop
long before n, so we will only need these up to some much
smaller final k = m. Note that Jk is never empty because
we decode at most L, so there must always be at least
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(B−1)L remaining. For an index set which may depend on
the conditioning variables, we let NJk

(0,Σ) denote a mean
zero multivariate normal distribution with index set Jk and
the indicated covariance matrix.

Lemma 2: For k ≥ 2, given Fk−1, the conditional distri-
bution PZk,Jk

|Fk−1 of Zk,Jk
= (Zk,j : j ∈ Jk) is normal

NJk
(0,Σk); the random variable X 2

dk
= ‖Gk‖2/σ2

k is a Chi-
square distributed, with dk = n−k+1 degrees of freedom,
conditionally independent of the Zk, where σ2

k depends on
Fk−1 and is strictly positive provided there was at least one
term above threshold on step k − 1; and, moreover, Zk,j has
the representation

−
√
ŵk Cj,R,B

[
Xdk

/
√
n
]
1j sent + Zk,j .

The shift factor ŵk is the increment ŵk = ŝk− ŝk−1, of the
series ŝk with

1 + ŵ2 + . . .+ ŵk = ŝk =
1

1− (q̂adj1 + . . .+ q̂adjk−1) ν

where q̂adjj = q̂j/(1 + f̂j/q̂j), determined from weighted
fractions of correct detections and false alarms on previous
steps. Here ŝ1 = ŵ1 = 1. The ŵk is strictly positive, that is,
ŝk is increasing, as long as q̂k−1 > 0, that is, as long as the
preceding step had at least one correct term above threshold.
The covariance Σk has the representation

Σk = I − δkδ
T
k = I − νk ββ

T /P

where νk = ŝk ν. (Σk)j,j′ = 1j=j′ − δk,jδk,j′ , for j, j′ in
Jk, where the vector δk is in the direction β, with δk,j =√
νkPj/P 1j sent for j in Jk. Finally,

σ2
k =

ŝk−1

ŝk
acceptk−1P

where acceptk =
∑
j∈deck

πj is the size of the decoded set
on step k.

The proof of this lemma follows the same pattern as the
proof of Lemma 1 with some additional ingredients. We put
it in Appendix I.

C. The nearby distribution:

Two joint probability measures Q and P are now specified
for all the Zk,j , j ∈ J and the ‖Gk‖ for k = 1, . . .m. For P,
it is to have the conditionals PZk,Jk

|Fk−1 specified above.
The Q is the approximating distribution. We choose Q

to make all the Zk,j , for j ∈ J , for k = 1, 2, . . . ,m, be
independent standard normal, and like P, we choose Q to make
the X 2

n−k+1 = ‖Gk‖2/σ2
k be independent Chi-square(n−k+1)

random variables.
Fill out of specification of the distribution assigned by P,

via a sequence of conditionals PZk,J |Ffull
k−1

for Zk,J = (Zk,j :
j ∈ J), which is for all j in J , not just for j in Jk. Here
Ffullk = (‖Gk′‖, Zk′,J : k′ = 1, 2, . . . , k). For the variables
Zk,Jk

that we actually use, the conditional distribution is that
of PZk,Jk

|Fk−1 as specified in the above Lemma. Whereas for
the Zk,j with j in the already decoded set J−Jk = dec1,k−1,
given Fk−1, we conveniently arrange them to have the same

independent standard normal as is used by Q. This completes
the definition of the Zk,j for all j, and with it one likewise
extends the definition of Zk,j as a function of Zk,j and ‖Gk‖
and completes the definition of the events Hk,j for all j, used
in our analysis.

This choice of independent standard normal for the distribu-
tion of Zk,j given Fk−1 for j in dec1,k−1, is contrary to what
would have arisen in the proof of 2 from the inner product of
Uk,j with Gk/‖Gk‖ if there one were to have looked there at
such j with 1Hk′,j = 1 for earlier k′ < k. Nevertheless, as
we have said, we have freedom of choice of the distribution
of these variables not used by the decoder. The present choice
is a simpler extension providing a conditional distribution of
(Zk,j : j ∈ J) that shares the same marginalization to the true
distribution of (Zk,j : j ∈ Jk) given Fk−1.

An event A is said to be determined by Fk if its indicator
is a function of Fk. As Fk = (Xn−k′+1, Zk′,Jk′ : k′ ≤ k),
with a random index set Jk given as a function of preceding
Fk−1, it might be regarded as a tricky matter. Alternatively
a random variable may be said to be determined by Fk if
it is measurable with respect to the collection of random
variables (‖Gk′‖ , Zk′,j1{j∈decc

1,k′−1
}, j ∈ J, 1≤ k′≤ k). The

multiplication by the indicator removes the effect on step k′

of any Zk′,j decoded on earlier steps, that is, any j outside
Jk′ . Operationally, no advanced measure-theoretic notions are
required, as we are working with sequences of conditional
densities of explicit Gaussian form.

In the following lemma we appeal to a sense of closeness of
the distribution P to Q, such that events exponentially unlikely
under Q remain exponentially unlikely under the governing
measure P.

Lemma 3: For any event A determined by Fk,

P[A] ≤ Q[A]ekc0 ,

where c0 = (1/2) log(1 + P/σ2). The analogous statement
holds more generally for the expectation of any non-negative
function of Fk.

See Appendix II for the proof. The fact that c0 matches the
capacity C might be interesting, but it is not consequential to
our argument. What matters for us is simply that if Q[A] is
exponentially small in L or n, then so is P[A].

D. Logic in bounding detections and false alarms:

Simple logic concerning unions plays an important sim-
plifying role in our analysis to lower bound detection rates
and to upper bound false alarms. The idea is to avoid the
distributional complication of sums restricted to terms not
previously above threshold.

Here assume that deck = threshk each step. Section VII-B
discusses an alternative approach where we take deck to be
a particular subset of threshk, to demonstrate slightly better
reliability bounds for given rates below capacity.

Recall that with q̂k =
∑
j sent∩Jk

πj1Hk,j
as the increment

of weighted fraction of correct detections, the total weighted
fraction of correct detections q̂totk = q̂1 + . . . + q̂k up to
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step k is the same as the the weighted fraction of the union∑
j sent πj1H1,j∪...∪Hk,j

. Accordingly, it has the lower bound

q̂totk ≥
∑
j sent

πj1Hk,j

based solely on the step k half-spaces, where the sum on the
right is over all j in sent, not just those in sent∩Jk. That this
simpler form will be an effective lower bound on q̂totk will arise
from the fact that the statistic tested in Hk,j is approximately
a normal with a larger mean at step k than at steps k′ < k,
producing for all j in sent greater likelihood of occurrence of
Hk,j than earlier Hk′,j .

Concerning this lower bound
∑
j sent πj1Hk,j

, in what fol-
lows we find it convenient to set q̂1,k to be the corresponding
sum

∑
j sent πj1Hk,j

using a simpler purified form Hk,j in
place of Hk,j . Outside of an exception event we study, this
Hk,j is a smaller set that Hk,j and so then q̂totk is at least q̂1,k.

Meanwhile, with f̂k =
∑
j∈other∩Jk

πj1Hk,j
as the incre-

ment of weighted count of false alarms, as we have seen, the
total weighted count of false alarms f̂ totk = f̂1 + . . . + f̂k is
the same as

∑
j other πj1H1,j∪...∪Hk,j

. It has the upper bound

f̂ totk ≤
∑
j other

πj1H1,j + . . .+
∑
j other

πj1Hk,j
.

We denote the right side of this bound f̂1,k.
These simple inequalities permit our aim to establish likely

levels of correct detections and false alarm bounds to be
accomplished by analyzing the simpler forms

∑
j sent πj1Hk,j

and
∑
j other πj1Hk,j

without the restriction to the random set
Jk, which would complicate the analysis.
Refinement using wedges: Rather than using the last half-
space Hk,j alone, one may obtain a lower bound on the
indicator of the union H1,j ∪ . . . ∪ Hk,j by noting that it
contains Hk−1,j ∪ Hk,j expressed as the disjoint union of
the events Hk,j and Hk−1,j ∩ Hk,j . The latter event may be
interpreted as a wedge (an intersection of two half-spaces)
in terms of the pair of random variables Zcombk−1,j and Zk,j .
Accordingly, there is the refined lower bound on q̂totk =∑
j sent πj1H1,j∪...∪Hk,j

, given by

q̂totk ≥
∑
j sent

πj1Hk,j
+
∑
j sent

πj1Hk−1,j∩Hc
k,j
.

With this refinement a slightly improved bound on the likely
fraction of correct detections can be computed from determi-
nation of lower bounds on the wedge probabilities. One could
introduce additional terms from intersection of three or more
half-spaces, but it is believed that these will have negligible
effect.

Likewise, for the false alarms, the union H1,j ∪ . . . ∪Hk,j

expressed as the disjoint union of Hk,j , Hk−1,j ∩ Hc
k,j , . . .,

H1,j ∩ Hc
2,j ∩ . . . ∩ Hc

k,j , has the improved upper-bound for
its indicator given by the sum

1Hk,j
+ 1Hk−1,j∩Hc

k,j
+ . . .+ 1H1,j∩Hc

2,j

given by just one half-space indicator and k − 1 wedge
indicators. Accordingly, the weighted total fraction of false
alarms f̂ totk is upper-bounded by the π weighted sum of these

indicators for j in other. This leads to improved bounds on
the likely fraction of false alarms from determination of upper
bounds on wedge probabilities.

Accounting with the optional analysis window: In the
optional restriction to terms in the set potk = potentialk
for each step, the q̂k take the same form but with Jk =
potk∩decc1,k−1 in place of Jk = J∩decc1,k−1. Accordingly the
total weighted count of correct detections q̂totk = q̂1 + . . .+ q̂k
takes the form

q̂totk =
∑
j sent

πj1{∪k′Hk′,j},

where the union for term j is taken for steps in the set
{k′ ≤ k : j ∈ potk′}. These unions are non-empty for the
terms j in pot1,k = pot1 ∪ . . . ∪ potk. For terms in sent
we will be arranging that for each j there is, as k′ increases,
an increasing probability (of purified approximations) of the
set Hk′,j . Accordingly, for a lower bound on the indicator of
the union using a single set we use 1Hmaxk,j ,j where maxk,j
is the largest of {k′ ≤ k : j ∈ potk′}. Thus in place of∑
j sent πj1Hk,j

, for the lower bound on the total weighted
fraction of correct detections this leads to

q̂totk ≥
∑

j∈sent∩pot1,k

πj1Hmaxk,j ,j .

Likewise an upper bound on the total weighted fraction of
false alarms is

f̂ totk ≤
∑

j∈other∩pot1

πj1H1,j
+ . . .+

∑
j∈other∩potk

πj1Hk,j
.

Again the idea is to have these simpler forms with single
half-space events, but now with each sum taken over a more
targeted deterministic set, permitting a smaller total false alarm
bound.

In most of the paper we hold off on demonstration of the
benefits of the wedges and of the narrowed analysis window
(or a combination of both). This is a matter of avoiding com-
plication. But we can revisit the matter to produce improved
quantification of mistake bounds.

E. Adjusted sums replace sums of adjustments:

The manner in which the quantities q̂1, . . . , q̂k and f̂1, . . . f̂k
arise in the distributional analysis of Lemma 2 is through the
sum

q̂adj,totk = q̂adj1 + . . .+ q̂adjk

of the adjusted values q̂adjk = q̂k/(1 + f̂k/q̂k). Conveniently,
by Lemma 4 below, q̂adj,totk ≥ q̂tot,adjk . That is, the total of
adjusted increments is at least the adjusted total given by

q̂tot,adjk =
q̂totk

1 + f̂ totk /q̂totk

which may also be written

q̂totk − f̂ totk +
(f̂ totk )2

q̂totk + f̂ totk

.
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In terms of the total weighted count of tests above threshold
accepttotk = q̂totk + f̂ totk it is

q̂tot,adjk = accepttotk − 2f̂ totk +
(f̂ totk )2

accepttotk
.

Lemma 4: Let f1, . . . , fk and g1, . . . , gk be non-negative
numbers. Then

g1
1 + f1/g1

+ . . .+
gk

1 + fk/gk

≥ g1 + . . .+ gk
1 + (f1 + . . .+ fk)/(g1 + . . .+ gk)

.

Moreover, both of these quantities exceed

(g1 + . . .+ gk) − (f1 + . . .+ fk).

Proof of Lemma 4: Form pk′ = fk′/[f1 + . . . + fk] and
interpret as probabilities for a random variable K taking
values k′ from 1 to k. Consider the convex function defined
by ψ(x) = x/(1+1/x). After accounting for the normal-
ization, the left side is E[ψ(gK/fK)] and the right side is
ψ[E(gK/fK)]. So the first claim holds by Jensen’s inequality.
The second claim is because g/(1+f/g) equals g−f/(1+f/g)
or equivalently g − f + f2/(g+f), which is at least g − f .
This completes the proof of Lemma 4.

This lemma is used to assert that ŝk = 1/(1− q̂adj,totk−1 ν) is
at least 1/(1− q̂tot,adjk−1 ν). For suitable weights of combination
this ŝk corresponds to a total shift factor, as developed in the
next section.

V. SEPARATION ANALYSIS

In this section we explore the extent of separation between
the distributions of the test statistics Zcombk,j for j sent versus
other j. In essence, for j sent, the distribution is a shifted
normal. We arrange for the assignment of the weights λ used
in the definition of Zcombk,j , so as to approximately maximize
this shift.

A. The shift of the combined statistic:

Concerning the weights λ1,k, λ2,k, . . . , λk,k, for notational
simplicity hide the dependence on k and denote them simply
by λ1, . . . , λk, as elements of a vector λ. This λ is to be a
member of the simplex Sk = {λ : λk′ ≥ 0,

∑k
k′=1 λk′ = 1}

in which the coordinates are non-negative and sum to 1.
With weight vector λ the combined test statistic Zcombλ,k,j takes

the form
shiftλ,k,j 1{j sent} + Zcombλ,k,j

where

Zcombλ,k,j =
√
λ1Z1,j −

√
λ2Z2,j − . . .−

√
λkZk,j .

For convenience of analysis, it is defined not just for j ∈ Jk,
but indeed for all j ∈ J , using the normal distribution for the
Zk′,j discussed above. Here

shiftλ,k,j = shiftλ,k
√
Cj,R,B

where shiftλ,k is√
λ1X 2

n/n+
√
λkŵ2X 2

n−1/n+ . . .+
√
λkŵkX 2

n−k+1/n,

where X 2
n−k+1 = ‖Gk‖2/σ2

k. This shiftλ,k would be largest
with λk′ proportional to ŵk′X 2

n−k′+1.
Outside of an exception set Ah developed further below,

these X 2
n−k′+1/n are at least 1−h, with small positive h.

Then shiftλ,k is at least
√

1−h times√
λ1ŵ1 +

√
λkŵ2 + . . .+

√
λkŵk.

Our test statistic Zcombk,j along with its constituent Zcombk,j

arises by plugging in particular choices of λ̂. Most choices
of these weights that arise in our development will depend
on the data and we lose exact normality of Zcombk,j . This
matter is addressed using tools of empirical processes, to show
uniformity of closeness of relative frequencies based on Zcombλ,k,j

to the expectations based on the normal distribution. This
uniformity can be exhibited over all λ in the simplex Sk. For
simplicity it is exhibited over a suitable subset of it.

B. Maximizing separation:

Setting λk′ equal to ŵk′/(1 + ŵ2 + . . .+ ŵk) for k′ ≤ k
would be ideal, as it would maximize the resulting shift factor√
λ1+

√
ŵ2

√
λ2+. . .+

√
ŵk
√
λk, for λ ∈ Sk, making it equal√

1+ŵ2+. . .+ŵk =
√
ŝk, where ŝk = 1/(1− qadj,totk ν) and

ŵk′ = ŝk′ − ŝk′−1.
Setting λk′ proportional to ŵk′ may be ideal, but it suffers

from the fact that without advance knowledge of sent and
other, the decoder does not have access to the separate values
of q̂k =

∑
j∈sent∩Jk

πj1Hk,j
and f̂k =

∑
j∈other∩Jk

πj1Hk,j

needed for precise evaluation of ŵk. We have devised a
couple of means to overcome this difficulty. The first is
to take advantage of the fact that the decoder does have
acceptk = q̂k + f̂k =

∑
j∈Jk

πj1Hk,j
, which is the weighted

count of terms above threshold on step k. The second is
to use computation of ‖Gk‖2/n which is σ2

k X 2
n−k+1/n as

an estimate of σ2
k with which we can unravel a reasonable

estimate of ŵk. A third method is to use residuals as discussed
in the appendix, though its analysis is more involved.

C. Setting weights λ̂ based on acceptk:

The first method uses acceptk′ in place of q̂adjk′ where it
arises in the definition of ŵk′ to produce a suitable choice
of λk′ . Abbreviate acceptk as acck, when needed to allow
certain expressions to be suitably displayed. This acceptk
upperbounds q̂k and is not much greater that q̂k when suitable
control of the false alarms is achieved.

Recall ŵk = ŝk − ŝk−1 for k > 1 so finding the common
denominator it takes the form

ŵk =
q̂adjk−1ν

(1− q̂adj,totk−1 ν)(1− q̂adj,totk−2 ν)
,

with the convention that q̂adj0 = 0. Let ŵacck be obtained by
replacing q̂adjk−1 with its upper bound of acck−1 = acceptk−1

and likewise replacing q̂adj,totk−2 and q̂adj,totk−1 with their upper



21

bounds acctotk−2 and acctotk−1, respectively, with acctot0 = 0.
Thus as an upper bound on ŵk set

ŵacck =
acck−1 ν

(1− acctotk−2 ν)(1− acctotk−1 ν)
,

where for k = 1 we set ŵacck = ŵk = 1. For k > 1 this ŵacck

is also
1

1− acctotk−1ν
− 1

1− acctotk−2ν
.

Now each acceptk′ exceeds q̂adjk′ and is less than q̂adjk′ + 2f̂k′ .
Then set λ̂k′ proportional to ŵacck . Thus

λ̂1 =
1

1+ŵacc2 +. . .+ŵacck

and for k′ from 2 to k we have

λ̂k′ =
ŵacck′

1+ŵacc2 +. . .+ŵacck

.

The shift factor√
λ̂1 +

√
λ̂2 ŵ2 + . . .+

√
λ̂k ŵk

is then equal to the ratio

1 +
√
ŵacc2 ŵ2 + . . .+

√
wacck ŵk√

1 + ŵacc2 + . . .+ ŵacck

.

From ŵacck′ ≥ ŵk′ the numerator is at least 1+ŵ2+. . .+ŵk = ŝk,
equalling 1/

(
1−(q̂adj1 +. . .+q̂adjk−1)ν

)
, which per Lemma 4 is at

least 1/(1− q̂tot,adjk−1 ν). As for the sum in the denominator, it
equals 1/(1− acctotk−1ν). Consequently, the above shift factor
using λ̂ is at least √

1− acctotk−1ν

1− q̂tot,adjk−1 ν
.

Recognizing that acctotk−1 and q̂totk−1 are similar when the false
alarm effects are small, it is desirable to express this shift
factor in the form √√√√ 1− ĥf,k−1

1− q̂tot,adjk−1 ν
,

where ĥf,k for each k is a small term depending on false
alarms.

Some algebra confirms this is so with

ĥf,k = f̂ totk

(2− f̂ totk /acctotk )ν

1− q̂tot,adjk ν

which is less than the value 2f̂ totk ν/(1−ν) equal to 2f̂ totk snr.
Except in cases of large snr we find this approach to be quite
suitable.

To facilitate a simple empirical process argument, replace
each acck by its value dacckL̃e/L̃ rounded up to a rational
of denominator L̃ for some integer L̃ large compared to k.
This restricts the acck to a set of values of cardinality L̃
and correspondingly the set of values of acc1, . . . , acck−1

determining ŵacc2 , . . . , ŵacck and hence λ̂1, . . . , λ̂k is restricted
to a set of cardinality (L̃)k−1. The resulting acctotk is then

increased by at most k/L̃ compared to the original value. With
this rounding, one can deduce that

ĥf,k ≤ 2f̂ totk snr + k/L̃.

Next we can proceed with defining natural exception sets
outside of which q̂totk′ is at least a deterministic value q1,k′ and
f̂ totk′ is not more than a deterministic value f1,k′ for each k′

from 1 to k. This leads to q̂tot,adjk being at least qadj1,k , where

qadj1,k = q1,k/(1 + f1,k/q1,k)

and ĥf,k is at most hf,k = 2f1,k snr, and likewise for each
k′ ≤ k. This qadj1,k is regarded as an adjustment to q1,k due to
false alarms.

When rounding the acck to be rational of denominator L̃,
it is accounted for by setting

hf,k = 2f1,k snr + k/L̃.

The result is that the shift factor given above is at least
the deterministic value

√
1− hf,k−1/

√
1− qadj1,k−1 ν near

1/
√

1− qadj1,k−1 ν. Accordingly shiftλ̂,k,j exceeds the purified
value √

1− h′

1− qadj1,k−1 ν

√
Cj,R,B ,

where 1−h′ = (1 − hf )(1 − h), with h′ = h + hf − hhf ,
where hf = hf,m−1 serves as an upper bound to the hf,k−1

for all steps k ≤ m.

D. Setting weights λ̂ based on estimation of σ2
k:

The second method entails estimation of ŵk using an
estimate of σ2

k. To develop it we make use of the multiplicative
relationship from Lemma 2,

ŝk = ŝk−1
ACCk−1

σ2
k

,

where ACCk−1 = acck−1P =
∑
j∈deck−1

Pj is the un-
normalized weight of terms above threshold on step k − 1.
Accordingly, from ŵk = ŝk − ŝk−1 it follows that

ŵk = ŝk−1

(
ACCk−1

σ2
k

− 1
)
,

where the positivity of ŵk corresponds to ACCk−1 ≥ σ2
k.

Also

ŝk =
k−1∏
k′=1

ACCk′−1

σ2
k′

.

Recognize that each 1/σ2
k′ = X 2

n−k′+1/‖Gk′‖2. Again, out-
side an exception set, we may replace each X 2

n−k′+1 by its
lower bound n(1−h), obtaining the lower bounding estimates

ŵlowk = ŝlowk−1

(
ACCk−1

σ̂2
k

− 1
)
,

where

ŝlowk =
k−1∏
k′=1

ACCk′−1

σ̂2
k′
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with

σ̂2
k = max

{
‖Gk‖2

n(1−h)
, ACCk−1

}
.

Initializing with ŝlow1 = ŵlow1 = 1 we again have ŵlowk =
ŝlowk − ŝlowk−1 and hence

slowk = 1 + ŵlow2 + . . .+ ŵlowk .

Set the weights of combination to be λ̂k′ = ŵlowk′ /ŝ
low
k with

which the shift factor is

1 +
√
ŵlow2 ŵ2 + . . .+

√
ŵlowk ŵk√

ŝlowk

.

Using ŵk′ ≥ ŵlowk′ this is at least

1 + ŵlow2 + . . .+ ŵlowk√
ŝlowk

=
√
ŝlowk ,

which is
√
ŝk times the square root of

k−1∏
k′=1

(
(1− h)n
X 2
n−k′+1

)
.

When using this method of estimating ŵk augment the excep-
tion set so that outside it one has X 2

n−k′+1/n ≤ (1+h). Then
the above product is at least [(1−h)/(1+h)]k−1 and the shift
factor shiftλ̂,k is at least

√
ŝk (1−h′) ≥

√
1−h′

1− qadj1,k−1ν
,

where now 1− h′ = (1−h)k/(1+h)k−1. Here the additional
(1−h) factor, as before, is to account in the definition of
shiftλ̂,k for lower bounding the X 2

n−k′+1/n by (1−h).
Whether now the [(1−h)/(1+h)]k−1 is less of a drop than

the (1 − hf ) = (1 − 2fk−1snr) from before depends on the
choice of h, the bound on the false alarms, the number of
steps k and the signal to noise ratio snr.

Additional motivation for this choice of λ̂k comes from
consideration of the tests statistics Zresk,j = XT

j resk/‖resk‖
formed by taking the inner products of Xj with the stan-
dardized residuals, where resk denotes the difference between
Y and its projection onto the span of F1, F2, . . . , Fk−1. It
is shown in the appendix that these statistics have the same
representation but with λk′ = wk′/sk, for k′ ≤ k, where
sk = ‖Y ‖2/‖resk‖2 and wk = sk − sk−1, again initialized
with s1 = w1 = 1. In place of the iterative rule developed
above

ŝk = ŝk−1
ACCk−1

σ2
k

= ŝk−1

ACCk−1X 2
n−k+1

‖Gk‖2
,

these residual-based sk are shown there to satisfy

sk = sk−1
‖F̃k−1‖2

‖Gk‖2

where F̃k−1 is the part of Fk−1 orthogonal to the previous
Fk′ for k′ = 1, . . . , k − 2.

Intuitively, given that the coordinates of Xj are i.i.d. with
mean 0 and variance 1, this ‖F̃k−1‖2 should not be too
different from ‖Fk−1‖2 which should not be too different from
nACCk−1. So these properties give additional motivation for
our choice. It is also tempting to try to see whether this λ based
on the residuals could be amenable to our method of analysis.
It would seem that one would need additional properties of
the design matrix X , such as uniform isometry properties
of subsets of certain sizes. However, it is presently unclear
whether such properties could be assured without harming the
freedom to have rate up to capacity. For now we stick to the
simpler analysis based on the estimates here of the ŵk that
maximizes separation.

E. Exception events and purified statistics:

Consider more explicitly the exception events

Aq = ∪k−1
k′=1{q̂

tot
k′ < q1,k′}

and
Af = ∪k−1

k′=1{f̂
tot
k′ > f1,k′}.

As we said, we also work with the related events
∪k−1
k′=1{q̂1,k′ < q1,k′} and ∪k−1

k′=1{f̂1,k′ > f1,k′}.
Define the Chi-square exception event Ah to include

∪kk′=1{X 2
n−k′+1/n ≤ 1−h}

or equivalently ∪kk′=1{X 2
n−k′+1/(n−k′+1) ≤ (1−hk′)} where

hk′ is related to h by (n−k′+1)(1−hk′) = n(1−h). For the
second method it is augmented by including also

∪kk′=1{X 2
n−k′+1/n ≥ 1+h}.

The overall exception event is A = Aq ∪ Af ∪ Ah. When
outside this exception set, the shiftλ̂,k,j exceeds the purified
value given by

shiftk,j =

√
1− h′

1− qadj1,k−1 ν

√
Cj,R,B .

Recalling that Cj,R,B = πjνL(logB)/R the factor 1−h′ may
be absorbed into the expression by letting

Cj,R,B,h = Cj,R,B(1−h′).

Then the above lower bound on the shift may be expressed as√
Cj,R,B,h
1− xν

evaluated at x = qadj1,k−1.
For λ in Sk, set Hλ,k,j to be the purified event that the

approximate combined statistic shiftk,j 1j sent + Zcombλ,k,j is at
least the threshold τ . That is,

Hλ,k,j = {shiftk,j1j sent + Zcombλ,k,j ≥ τ},

where in contrast to Hk,j = {Zcombk,j ≥ τ} we use a standard
rather than a calligraphic font for this event Hλ,k,j based on
the normal Zcombλ,k,j with the purified shift.

Recall that the coordinates of our λ, denoted λk′,k for k′ =
1, 2, . . . k, have dependence on k. For each k, the λk′,k can be
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determined from normalization of segments of the first k in
sequences w1, w2, . . . , wm of positive values. With an abuse
of notation, we also denote the sequence for k = 1, 2, . . . ,m
of such standardized combinations Zcombλ,k,j as

Zcombw,k,j =
√
w1Z1,j −

√
w2Z2,j − . . .−√

wkZk,j√
w1 + w2 + . . .+ wk

.

In this case the corresponding event Hλ,k,j is also denoted
Hw,k,j .

Except in Aq ∪ Af ∪ Ah, the event Hk,j contains Hλ̂,k,j
also denote as Hŵacc,k,j or Hŵlow,k,j , respectively, for the two
methods of estimating ŵ.

Also, as for the actual test statistics, the purified forms
satisfy the updates

Zcombλ,k,j =
√

1− λkZ
comb
λ,k−1,j −

√
λkZk,j

where λk = λk,k.

F. Definition of the update function:

Via Cj,R,B the expression for the shift is decreasing in
R. Smaller R produce a bigger shift and greater statistical
distinguishability between the terms sent and those not sent.
This is a property commensurate with the communication
interest in the largest R for which after a suitable number
of steps one can reliable distinguish most of the terms.

Take note for j sent that shiftk,j is equal to

µj(x) =

√
Cj,R,B,h
1− xν

evaluated at x = qadj1,k−1. To bound the probability with which
a term sent is successfully detected by step k, we are motivated
to examine the behavior of

Φ(µj(x)− τ)

which, at that x, is the Q probability of the purified event
Hλ,k,j for j in sent, based on the standard normal cumulative
distribution of Zcombλ,k,j . This Φ(µj(x)− τ) is increasing in x.

For constant power allocation the contributions Φ(µj(x)−τ)
are the same for all j in sent, whereas, for decreasing power
assignments, one has a variable detection probability. Note that
it is greater than 1/2 for those j for which µj(x) exceeds τ . As
x increases, there is a growing set of sections for which µj(x)
sufficiently exceeds τ , such that these sections have high Q
probability of detection.

The update function gL(x) is defined as the π weighted
average of these Φ(µj(x)− τ) for j in sent, namely,

gL(x) =
∑
j sent

πjΦ(µj(x)− τ),

an L term sum. That is, it is the Q expectation of the weighted
fraction

∑
j sent πj1Hλ,k,j

for any λ in Sk. The idea is that for
any given x this weighted fraction will be near gL(x), except
in an event of exponentially small probability.

This update function gL on [0, 1] indeed depends on the
power allocation π as well as the design parameters L, B,
R, and the value a determining τ =

√
2 logB + a. Plus it

depends on the signal to noise ratio via ν = snr/(1 + snr).

The explicit use of the subscript L is to distinguish the sum
gL(x) from an integral approximation to it denoted g that will
arise later below.

VI. DETECTION BUILD-UP WITH FALSE ALARM CONTROL

In this section, target false alarm rates are set and a
framework is provided for the demonstration of accumulation
of correct detections in a moderate number of steps.

A. Target false alarm rates:

A target weighted false alarm rate for step k arises as a
bound f∗ on the expected value of

∑
j other πj1Hw,j,k

. This
expected value is (B − 1)Φ̄(τ), where Φ̄(τ) is the upper
tail probability with which a standard normal exceeds the
threshold τ =

√
2 logB + a. A tight bound is

1
(
√

2 logB + a)
√

2π
exp

{
− a
√

2 logB − (1/2)a2
}
.

We have occasion to make use of the similar choice of f∗

equal to

1
(
√

2 logB)
√

2π
exp

{
− a
√

2 logB
}
.

The fact that these indeed upper bound BΦ̄(τ) follows from
Φ̄(x) ≤ φ(x)/x for positive x, with φ being the standard
normal density. Likewise set f > f∗. We express f = ρf∗

with ρ > 1.
Across the steps k, our choice of constant ak = a produces

constant f∗k = f∗ with sum f∗1,k equal to kf∗. Furthermore,
set f1,k > f∗1,k, which arises in upper bounding the total false
alarm rate. In particular, we may arrange for the ratio f1,k/f∗1,k
to be at least as large as a fixed ρ > 1.

At the final step m, we let

f̄∗ = f∗1,m = mf∗

be the baseline total false alarm rate, and use f̄ = f1,m,
typically equal to ρf̄∗, to be a value which will be shown
to likely upper bound

∑
j other πj1∪m

k=1Hw,j,k
.

As will be explored soon, we will need f1,k to stay less
than a target increase in the correct detection rate each step. As
this increase will be a constant times 1/ logB, for certain rates
close to capacity, this will then mean that we need f̄ and hence
f̄∗ to be bounded by a multiple of 1/ logB. Moreover, the
number of steps m will be of order logB. So with f̄∗ = mf∗

this means f∗ is to be of order 1/(logB)2. From the above
expression for f∗, this will entail choosing a value of a near

(3/2)(log logB)/
√

2 logB.

B. Target total detection rate:

A target total detection rate q∗1,k and the associated values
q1,k and qadj1,k are recursively defined using the function gL(x).

In particular, per the preceding section, let

q∗1,k =
∑
j sent

πjΦ(shiftk,j − τ)
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which is seen to be

q∗1,k = gL(x)

evaluated at x = qadj1,k−1. The convention is adopted at k = 1
that the previous qk−1 and x = qadj1,k−1 are initialized at 0. To
complete the specification, a sequence of small positive ηk are
chosen with which we set

q1,k = q∗1,k − ηk.

For instance we may set ηk = η. The idea is that these ηk will
control the exponents of tail probabilities of the exception set
outside of which q̂totk exceeds q1,k. With this choice of q1,k
and f1,k we have also

qadj1,k = q1,k/(1 + f1,k/q1,k).

Positivity of the gap gL(x)− x provides that q∗1,k is larger
than qadj1,k−1. As developed in the next subsection, the contri-
butions from ηk and f1,k are arranged to be sufficiently small
that qadj1,k and q1,k are increasing with each such step. In this
way the analysis will quantify as x increases, the increasing
proportion that are likely to be above threshold.

C. Building up the total detection rate:

Let’s give the framework here for how the likely total correct
detection rate q1,k builds up to a value near 1, followed by
the corresponding conclusion of reliability of our adaptive
successive decoder. Here we define the notion of correct
detection being accumulative. This notion holds for the power
allocations we study.

Recall that with the function gL(x) defined above, for each
step, one updates the new q1,k by choosing it to be slightly less
than q∗1,k = gL(qadj1,k−1). The choice of q1,k is accomplished
by setting a small positive ηk for which q1,k = q∗1,k − ηk.
These may be constant, that is ηk = η, across the steps k =
1, 2, . . . ,m.

There are slightly better alternative choices for the ηk
motivated by the reliability bounds. One is to arrange for
D(q1,k‖q∗1,k) to be constant where D is the relative entropy
between Bernoulli random variables of the indicated success
probabilities. Another is to arrange ηk such that ηk/

√
Vk is

constant, where Vk = V (x) evaluated at x = qadj1,k−1, where

V (x)/L =
∑
j sent

πjΦ(µj(x))Φ̄(µj(x)).

This Vk/L may be interpreted as a variance of q̂1,k as devel-
oped below. The associated standard deviation factor

√
V (x)

is shown in the appendix to be proportional to (1−xν). With
evaluation at x = qadj1,k−1, this gives rise to ηk = η(x) equal
to (1− xν) times a small constant.

How large we can pick ηk will be dictated by the size of
the gap gL(x)− x at x = qadj1,k−1.

Let x∗ be any given value between 0 and 1, preferably not
far from 1.

Definition: A positive increasing function g(x) bounded by
1 is said to be accumulative for 0 ≤ x ≤ x∗ if there is a
function gap(x) > 0, with

g(x)− x ≥ gap(x)

for all 0 ≤ x ≤ x∗. An adaptive successive decoder with rate
and power allocation chosen so that the update function gL(x)
satisfies this property is likewise said to be accumulative. The
shortfall is defined by δ∗ = 1− gL(x∗).

If the update function is accumulative and has a small
shortfall, we demonstrate, for a range of choices of ηk > 0 and
f1,k > f∗1,k, that the target total detection rate q1,k increases
to a value near 1 and that the weighted fraction mistakes is
with high probability less than δk = (1 − q1,k) + f1,k. This
mistake rate δk is less than 1−x∗ after a number of steps, and
then with one more step it is further reduced to a value not
much more than δ∗ = 1 − gL(x∗), to take advantage of the
amount by which gL(x∗) exceeds x∗.

The tactic in providing good probability exponents will be
to demonstrate, for the sparse superposition code, that there is
an appropriate size gap. It will be quantified via bounds on the
minimum of the gap or the minimum of the standardized gap,
gap(x)/(1−xν), where the minimum is taken for 0≤x≤x∗.

The following lemmas relate the sizes of η and f̄ and the
number of steps m to the size of the gap.

Lemma 5: Suppose the update function gL(x) is accumu-
lative on [0, x∗] with gL(x)− x ≥ gap for a positive constant
gap > 0. Arrange positive constants η and f̄ and m∗ ≥ 2,
such that

η + f̄ + 1/(m∗−1) = gap.

Suppose f1,k ≤ f̄ as arises from f1,k = f̄ or from f1,k = kf
for each k ≤ m∗ with f = f̄/m∗. Set q1,k = q∗1,k − η. Then
q1,k is increasing on each step for which q1,k−1 − f1,k−1 ≤
x∗, and, for such k, the increment q1,k − q1,k−1 is at least
1/(m∗−1). The number of steps k = m−1 required such
that q1,k − f1,k first exceeds x∗, is bounded by m∗−1. At the
final step m ≤ m∗, the weighted fraction of mistakes target
δm = (1−q1,m) + f1,m satisfies

δm ≤ δ∗ + η + f̄ .

The value δm = (1−q1,m) + f1,m is used in controlling
the sum of weighted fractions of failed detections and of false
alarms.

In the decomposition of the gap, think of η and f̄ as
providing portions of the gap which contribute to the proba-
bility exponent and false alarm rate, respectively, whereas the
remaining portion controls the number of steps.

The following is an analogous conclusion for the case of
a variable size gap bound. It allows for somewhat greater
freedom in the choices of the parameters, with ηk and f1,k
determined by functions η(x) and f(x), respectively, evaluated
at x = qadj1,k−1.

Lemma 6: Suppose the update function is accumulative on
[0, x∗]. Choose positive functions η(x) and f̄(x) on [0, x∗]
with gap(x) − η(x) − f̄(x) not less than a positive value
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denoted gap′. Suppose q1,k = q∗1,k−ηk where ηk ≤ η(qadj1,k−1)
and f1,k ≤ f̄(qadj1,k−1). Then q1,k−q1,k−1 > gap′ on each step
for which qadj1,k−1 ≤ x∗ and the number of steps k such that the
qadj1,k first exceeds x∗ is bounded by 1/gap′. With a number of
steps m ≤ 1 + 1/gap′, the δm = (1− q1,m) + f1,m satisfies

δm ≤ δ∗ + ηm + f1,m.

The proofs for Lemmas 5 and 6 are given in Appendix III.
One has the choice whether to be bounding the number of
steps such that qadj1,k first exceeds x∗ or such that the slightly
smaller value q1,k − f1,k first exceeds x∗. The latter provides
the slightly stronger conclusion that δk ≤ 1−x∗. Either way,
at the penultimate step qadj1,k is at least x∗, which is sufficient
for the next step m = k + 1 to take us to a larger value of
q∗1,m at least gL(x∗). So either formulation yields the stated
conclusion.

Associated with the use of the factor (1− xν) we have the
following improved conclusion, noting that GAP is necessar-
ily larger than the minimum of gap(x).

Lemma 7: Suppose that gL(x) − x is at least gap(x) =
(1 − xν)GAP for 0 ≤ x ≤ x∗ with a positive GAP . Again
there is convergence of g1,k to values at least x∗. Arrange
positive ηstd and m∗ with

GAP = ηstd +
log 1/(1−x∗)
m∗ − 1

.

Set η(x) = (1−xν)ηstd and f̄ ≤ (1−ν)GAP ′ with GAP ′ =
[log 1/(1−x∗)]/(m∗ − 1) and set ηk = η(x) at x = qadj1,k−1

and f1,k ≤ f̄ . Then the number of steps k = m− 1 until xk
first exceeds x∗ is not more than m∗−1. Again at step m the
δm = (1− q1,m) + f1,m satisfies δm ≤ δ∗ + ηm + f̄ .

Proof of Lemma 7: We have

q1,k = gL(qadj1,k−1)− η(qadj1,k−1)

at least

qadj1,k−1 + (1− qadj1,k−1ν)(GAP − ηstd).

Subtracting f̄ as a bound on f1,k, it yields

qadj1,k ≥ qadj1,k−1 + (1− qadj1,k−1)ν GAP
′.

This implies, with xk = gadj1,k and ε = ν GAP ′, that

xk ≥ (1−ε)xk−1 + ε

or equivalently,

(1− xk) ≤ (1−ε)(1− xk−1),

as long as xk−1 ≤ x∗. Accordingly for such k, we have the
exponential bound

(1− xk) ≤ (1−ε)k ≤ e−εk = e−ν GAP
′ k

and the number of steps k = m− 1 until xk first exceeds x∗

satisfies

m− 1 ≤ log 1/(1−x∗)
log 1/(1−ε)

≤ log 1/(1−x∗)
ν GAP ′

.

This bound is m∗ − 1. The final step takes q∗1,m to a value
at least gL(x∗) so δm ≤ δ∗ + ηm + f1,m. This completes the
proof of Lemma 7.

The idea here is that by extracting the factor (1−xν), which
is small if x and ν are near 1, it follows that a value GAP
with larger constituents ηstd and GAP ′ can be extracted than
the previous constant gap, though to do so one pays the price
of the log 1/(1−x∗) factor.

Concerning the choice of f1,k, consider setting f1,k = f̄
for all k from 1 to m. This constant f1,k = f̄ remains bigger
than f∗1,k = kf∗ with minimum ratio f̄/f̄∗ at least ρ > 1.
To give a reason for choosing a constant false alarm bound,
note that with f1,k equal to f1,m = f̄ , it is greater than
f∗1,m = f̄∗, which exceeds f∗1,k for k < m. Accordingly, the
relative entropy exponent (B−1)D(p1,k‖p∗1,k) that arises in
the probability bound in the next section is smallest at k = m,
where it is at least f̄ D(ρ)/ρ, where D(ρ) is the positive value
ρ log ρ− (ρ− 1).

In contrast, one has the seemingly natural choice f1,k = kf
of linear growth in the false alarm bound, with f = f∗ρ. It
is also upper bounded by f̄ for k ≤ m and has constant ratio
f1,k/f

∗
1,k equal to ρ. It yields a corresponding exponent of

kf D(ρ)/ρ for k = 1 to m. However, this exponent has a
value at k = 1 that can be seen to be smaller by a factor
of order 1/m. For the same final false alarm control, it is
preferable to arrange the larger order exponent, by keeping
D(p1,k‖p∗1,k) at least its value at k = m.

VII. RELIABILITY OF ADAPTIVE SUCCESSIVE DECODING

Here we establish, for any power allocation and rate for
which the decoder is accumulative, the reliability with which
the weighted fractions of mistakes are governed by the studied
quantities 1− q1,m plus f1,m. The bounds on the probabilities
with which the fractions of mistakes are worse than such tar-
gets are exponentially small in L. The implication is that if the
power assignment and the communication rate are such that
the function gL is accumulative on [0, x∗], then for a suitable
number of steps, the tail probability for weighted fraction of
mistakes more than δ∗ = 1−gL(x∗) is exponentially small in
L.

A. Reliability using the data-driven weights:

In this subsection we demonstrate reliability using the data-
driven weights λ̂ in forming the statistic Zcombk,j . Subsection
VII-B discusses a slightly different approach which uses deter-
ministic weights and provides slightly smaller error probability
bounds.

Theorem 8: Reliable communication by sparse superposi-
tion codes with adaptive successive decoding. With total false
alarm rate targets f1,k > f∗1,k and update function gL, set
recursively the detection rate targets q1,k = gL(qadj1,k−1) − ηk,
with ηk = q∗1,k − q1,k > 0 set such that it yields an increasing
sequence q1,k for steps 1 ≤ k ≤ m. Consider δ̂m, the
weighted failed detection rate plus false alarm rate. Then
the m step adaptive successive decoder incurs δ̂m less than
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δm = (1−q1,m)+f1,m, except in an event of probability with
upper bound as follows:

I)
m∑
k=1

[
e−LπD(q1,k‖q∗1,k)+(k−1) log L̃)+c0k

]

+
m∑
k=1

[
e−Lπ(B−1)D(p1,k‖p∗1,k)+(k−1) log L̃

]

+
m∑
k=1

e−(n−k+1)Dhk ,

where the terms correspond to tail probabilities concern-
ing, respectively, the fractions of correct detections, the
fractions of false alarms, and the tail probabilities for
the events {‖G‖2

k/σ
2
k ≤n(1−h)}, on steps 1 to m. Here

Lπ = 1/maxj πj . The p1,k, p
∗
1,k equal the corresponding

f1,k, f
∗
1,k divided by B−1. Also Dh = − log(1−h)−h

is at least h2/2. Here hk = (nh−k+1)/(n−k+1), so
the exponent (n−k+1)Dhk

is near nDh, as long as k/n
is small compared to h.

II) A refined probability bound holds as in I above but with
exponent

L
η2
k

Vk + (1/3)ηk(L/Lπ)

in place of LπD(q1,k‖q∗1,k) for each k = 1, 2, . . . ,m.

Corollary 9: Suppose the rate and power assignments of
the adaptive successive code are such that gL is accumulative
on [0, x∗] with a positive constant gap and a small shortfall
δ∗ = 1 − gL(x∗). Assign positive ηk = η and f1,k = f̄ and
m ≥ 2 with 1− q1,m ≤ δ∗ + η. Let D(ρ) = ρ log ρ− (ρ−1).
Then there is a simplified probability bound. With a number
of steps m, the weighted failed detection rate plus false alarm
rate is less than δ∗ + η + f̄ , except in an event of probability
not more than,

me−2Lπη
2+m[c0+log L̃] +me−Lπ f̄D(ρ)/ρ+m log L̃

+me−(n−m+1)h2
m/2.

The bound in the corollary is exponentially small in 2Lπη2

if h is chosen such that (n−m+1)h2
m/2 is at least 2Lπη2 and

ρ > 1 and f̄ are chosen such that f̄ [log ρ− 1+1/ρ] matches
2η2.

Improvement is possible using II when we find that Vk
is of order 1/

√
logB. This produces a probability bound

exponentially small in Lη2(logB)1/2 for small η.

Proof of Theorem 8 and its Corollary: False alarms occur
on step k, when there are terms j in other ∩ Jk for which
there is occurrence of the event Hk,j , which is the same
for such j in other as the event Hŵacc,k,j , as there is no
shift of the statistics for j in other. The weighted fraction of
false alarms up to step k is f̂1 + . . . + f̂k with increments
f̂k =

∑
j∈other∩Jk

πj1Hk′,j . This increment excludes the
terms in dec1,k−1 which are previously decoded. Nevertheless,
introducing associated random variables for these excluded
events (with the distribution discussed in the proof of Lemmas

1 and 2), we may regard the sum as the weighted fraction of
the union

∑
j∈other πj1∪k

k′=1
Hk′,j

.
Recall, as previously discussed, for all such j in other, the

event Hw,k′,j is the event that Zcombw,k′,j exceeds τ , where for
each w = (1, w2, w3, . . . , wk), the Zcombw,k′,j are standard normal
random variables, independent across j in other. So the events
∪kk′=1Hw,k′,j are independent and equiprobable across such j.
Let p∗1,k be their probability or an upper bound on it, and let
p1,k > p∗1,k. Then Af,k = {f̂ totk ≥ f1,k} is contained in the
union over all possible w of the events {p̂w,1,k≥p1,k} where

p̂w,1,k =
1

B−1

∑
j∈other

πj 1∪k
k′=1

Hw,k′,j
.

With the rounding of the acck to rationals of denominator
L̃, the cardinality of the set of possible w is at most L̃k−1.
Moreover, by Lemma 47 in the appendix, the probability of
the events {p̂w,1,k ≥ p1,k} is less than e−Lπ(B−1)D(p1,k‖p∗1,k).
So by the union bound the probability of {f̂ totk ≥ f1,k} is less
than

(L̃)k−1e−Lπ(B−1)D(p1,k‖p∗1,k).

Likewise, investigate the weighted proportion of cor-
rect decodings q̂totm and the associated values q̂1,k =∑
j sent πj1Hλ̂,k,j

which are compared to the target values q1,k
at steps k = 1 to m. The event {q̂1,k < q1,k} is contained in
Fk so when bounding its P probability, incurring a cost of a
factor of ekc0 , we may switch to the simpler measure Q.

Consider the event A = ∪mk=1Ak, where Ak is the union of
the events {q̂1,k≤q1,k}, {f̂ totk ≥f1,k} and{X 2

n−k+1/n<1−h}.
This event A may be decomposed as the union for k from 1 to
m of the disjoint events Ak ∩k−1

k′=1 A
c
k′ . The Chi-square event

may be expressed as Ah,k = {X 2
n−k+1/(n−k+1) < 1− hk}

which has the probability bound

e−(n−k+1)Dhk .

So to bound the probability of A, it remains to bound for k
from 1 to m, the probability of the event

Aq,k = {q̂1,k < q1,k} ∩Ach,k ∩k−1
k′=1 A

c
k′ .

In this event, with the intersection of Ack′ for all k′ < k and
the intersection with the Chi-square event Ach,k, the statistic
Zcombk,j exceeds the corresponding approximation

√
sk
√
Cj,R,B,h 1j sent + Zcombŵacc,k,j ,

where sk = 1/[1 − qadj1,k−1ν]. There is a finite set of possible
ŵacc associated with the grid of values of acc1, . . . , acck−1

rounded to rationals of denominator L̃. Now Aq,k is contained
in the union across possible w of the events

{q̂w,1,k < q1,k}

where
q̂w,1,k =

∑
j sent

πj1{Zcomb
w,k,j≥ak,j}.

Here ak,j = τ − √
sk
√
Cj,R,B,h. With respect to Q, these

Zcombw,k,j are standard normal, independent across j, so the
Bernoulli random variables 1{Zcomb

w,k,j≥ak,j} have success prob-
ability Φ̄(ak,j) and accordingly, with respect to Q, the q̂w,1,k
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has expectation q∗1,k =
∑
j sent πjΦ̄(ak,j). Thus, again by

Lemma 47 in the appendix the probability of

Q
{
q̂w,1,k<q1,k

}
is not more than

e−LπD(q1,k‖q∗1,k).

By the union bound we multiply this by (L̃)k−1 to bound
Q(Aq,k). One may sum it across k to bound the probability
of the union.

The Chi-square random variables and the normal statistics
for j in other have the same distribution with respect to P
and Q so there is no need to multiply by the ec0k factor for
the Ah and Af contributions.

The event of interest

Aqtot
m

= {q̂totm ≤ q1,m}

is contained in the union of the event Aqtot
m
∩Acq,m−1∩Acf∩Ach

with the events Aq,m−1, Ah and Af , where Ah = ∪mk=1Ah,k
and Af = ∪mk=1Af,k. The three events Aq,m−1, Ah and Af
are clearly part of the event A which has been shown to have
the indicated exponential bound on its probability. This leaves
us with the event

Aqtot
m
∩Acq,m−1 ∩Acf ∩Ach

Now, as we have seen, q̂totm may be regarded as the weighted
proportion of of occurrence the union ∪mk=1Hk,j which is at
least

∑
j sent πj1Hm,j

. Outside the exception sets Ah, Af and
Aq,m−1, it is at least q̂1,m =

∑
j sent πj1Hŵacc,m,j

. With the
indicated intersections, the above event is contained in Aq,m =
{q̂1,m ≤ q1,m}, which is also part of the event A. So by
containment in a union of events for which we have bounded
the probabilities, we have the indicated bound.

As a consequence of the above conclusion, outside the event
A, at step k = m, we have q̂totm > q1,m. Thus outside A
the weighted fraction of failed detections, which is not more
than 1− q̂1,m, is less than 1−q1,m. Also outside A, we have
that the weighted fraction of false alarms is less than f1,m.
So the total weighted fraction of mistakes δ̂m is less than
δm = (1−q1,m) + f1,m.

In these probability bounds the role in the exponent of
D(q‖q∗) for numbers q and q∗ in [0, 1], is played the rel-
ative entropy between the Bernoulli(q) and the Bernoulli q∗

distributions, even though these q and q∗ arise as expectations
of weighted sums of many independent Bernoulli random
variables.

Concerning the simplified bounds in the corollary, by
the Pinsker-Csiszar-Kulback-Kemperman inequality, special-
ized to Bernoulli distributions, the expressions of the form
D(q‖q∗) in the above, exceed 2(q − q∗)2. This specialization
gives rise to the e−2Lπη

2
bound when the q1,k and q̃1,k differ

from q∗1,k by the amount η.
The e−2Lπη

2
bound arises alternatively by applying Ho-

effding’s inequality for sums of bounded independent random
variables to the weighted combinations of Bernoulli random
variables that arise with respect to the distribution Q. As an
aside, we remark that order η2 is the proper characterization
of D(q‖q∗) only for the middle region of steps when q∗1,k

is neither near 0 nor near 1. There are larger exponents
toward the ends of the interval (0, 1) because Bernoulli random
variables have less variability there.

To handle the exponents (B−1)D(p‖p∗) at the small values
p = p1,k = f1,k/(B−1) and p∗ = p∗1,k = f∗1,k/(B−1), we use
the Poisson lower bound on the Bernoulli relative entropy,
as shown in the appendix. This produces the lower bound
(B−1)[p1,k log p1,k/p

∗
1,k + p∗1,k − p1,k] which is equal to

f1,k log f1,k/f∗1,k + f∗1,k − f1,k.

We may write this as f∗1,kD(ρk) or equivalently f1,kD(ρk)/ρk
where the functions D(ρ) and D(ρ)/ρ = log ρ+ 1− 1/ρ are
increasing in ρ ≥ 1.

If we used f1,k = kf and f∗1,k = kf∗ in fixed ratio ρ =
f/f∗, this lower bound on the exponent would be kf D(ρ)/ρ
as small as f D(ρ)/ρ. Instead, keeping f1,k locked at f̄ , which
is at least f̄∗ρ, and keeping f∗1,k = kf∗ less than or equal to
mf∗ = f̄∗, the ratio ρk will be at least ρ and the exponents
will be at least as large as f̄ D(ρ)/ρ.

Finally, there is the matter of the refined exponent in II.
As above proof the heart of the matter is the consideration of
the probability Q

{
q̂w,1,k < q1,k

}
. Fix a value of k between

1 and m. Recall that q̂w,1,k =
∑
j sent πj1Hw,k,j

. So we
wish to bound the probability of the event that the sum of
the independent random variables ξj = −πj (1Hw,k,j

− Φ̄j)
exceeds η, where Φ̄j = Φ̄(shiftk,j − τ) = Q(Hw,k,j) provides
the centering so that the ξj have mean 0. We recognize that
Φ̄j is Φ̄(µj(x)) = 1−Φ(µj(x)), evaluated at x = qadj1,k , and it
is the same as used in the evaluation of the q∗1,k, the expected
value of q̂w,1,k, which is gL(x). The random variables ξj
have magnitude bounded by maxj πj = 1/Lπ and variance
vj = π2

j Φj(1 − Φj). Thus we bound Q
{
q̂w,1,k < q1,k

}
by

Bernstein’s inequality, where the sums are understood to be
for j in sent,

Q
{ ∑

j

ξj ≥ η
}
≤ exp

{
− η2

2[V/L+ η/(3Lπ)]

}
,

where here η = ηk is the difference between the mean q∗1,k
and q1,k and V/L =

∑
j vj =

∑
j π

2
j Φj(1 − Φj) is the total

variance. It is Vk/L given by

V (x)/L =
∑
j

π2
jΦ(µj(x))(1− Φ(µj(x))

evaluated at qadj1,k−1. This completes the proof of Theorem 8.
If we were to use the obvious, but crude, bound on the total

variance of (maxj πj)
∑
j πj1/4 = 1/(4Lπ) the result in II

would be no better than the exp{−2Lπη2} bound that arises
from the Hoeffding bound.

The variable power assignment we shall study arranges
Φj(1−Φj) to be small for most j in sent. Indeed, a comparison
of the sum V (x)/L to an integral, in a manner similar to the
analysis of gL(x) in an upcoming section, shows that V (x)
is not more than a constant times 1/τ , which is of order
1/
√

logB, by the calculation in Appendix IX. This produces,
with a positive constant const, a bound of the form

exp
{
−const Lmin

{
η, η2

√
logB

}}
.
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Equivalently, in terms of n = (L logB)/R the exponent is a
constant times nmin{η2/

√
logB, η/ logB}. This exponential

bound is an improvement on the other bounds in the Theorem
8, by a factor of

√
logB in the exponent for a range of values

of η up to 1/
√

logB, provided of course that we arrange η <
gap to permit the required increase in q1,k. For our best rates,
we will need η to be of order 1/ logB, to within a loglog
factor, matching the order of C−R. So this improvement brings
the exponent to within a

√
logB factor of best possible.

Other bounds on the total variance are evident. For instance,
noting that

∑
j πjΦj(1−Φj) is less than both

∑
j πjΦj and∑

j πj(1− Φj)}, it follows that

V (x)/L ≤ (1/Lπ) min{gL(x), 1− gL(x)}.

This reveals that there is considerable improvement in the
exponents provided by the Bernstein bound for the early and
later steps where gL(x) is near 0 or 1, even improving the
order of the bounds there. This does not alter the fact that we
must experience the effect of the exponents for steps with
x near the middle of the interval from 0 to 1, where the
previously mentioned bound on V (x) produces an exponent
of order Lη2

√
logB.

For the above, we used data-driven weights λ, with which
the error probability in a union bound had to be multiplied by
a factor of L̃k−1, for each step k, to account for the size of
the set of possible weight vectors.

Below we describe a slight modification to the above pro-
cedure using deterministic λ that does away with this factor,
thus demonstrating increased reliability for given rates below
capacity. The procedure involves choosing each deck to be a
subset of the terms above threshold, with the π weighted size
of this set very near a pre-specified value pacek.

B. An alternative approach:

As mentioned earlier, instead of making deck, the set of
decoded terms for step k, to be equal to threshk, we take
deck for each step to be a subset of threshk so that its size
acceptk is near a deterministic quantity which we call pacek.
This will yield a sum accepttotk near

∑k
k′=1 pacek′ which we

arrange to match q1,k. Again we abbreviate accepttotk as acctotk
and acceptk as acck.

In particular, setting pacek = qadj1,k − q
adj
1,k−1, the set deck is

chosen by selecting terms in Jk that are above threshold, in
decreasing order of their Zcombk,j values, until for each k the
accumulated amount nearly equals q1,k. In particular given
acctotk−1, one continues to add terms to acck, if possible, until
their sum satisfies the following requirement,

qadj1,k − 1/Lπ < acctotk ≤ qadj1,k ,

where recall that 1/Lπ is the minimum weight among all j in
J . It is a small term of order 1/L.

Of course the set of terms threshk might not be large
enough to arrange for acceptk satisfying the above require-
ment. Nevertheless, it is satisfied, provided

acctotk−1 +
∑

j∈threshk

πj ≥ qadj1,k

or equivalently,∑
j∈dec1,k−1

πj +
∑

j∈J−dec1,k−1

πj1Hk,j
≥ qadj1,k .

Here for convenience we take dec0 = dec1,0 as the empty set.
To demonstrate satisfaction of this condition note that the

left side is at least the value one has if the indicator 1Hk,j

is imposed for each j and if the one restricts to j in sent,
which is the value q̂above1,k =

∑
j∈sent 1Hk,j

. Our analysis
demonstrates, for each k, that the inequality

q̂above1,k > q1,k

holds with high probability, which in turn exceeds qadj1,k . So
then the above requirement is satisfied for each step, with high
probability, and thence acck matches pacek to within 1/Lπ .

This q̂above1,k corresponds to the quantity studied in the
previous section, giving the weighted total of terms in sent
for which the combined statistic is above threshold, and it
remains likely that it exceeds the purified statistic q̂1,k. What
is different is the control on the size of the previously decoded
sets allows for constant weights of combination.

In the previous procedure we employed random weights
ŵacck in the assignment of the λ1,k, λ2,k, . . . , λk,k used in the
definition of Zcombk,j and Zcombk,j , where we recall that ŵacck =
1/(1− acctotk−1ν)− 1/(1− acctotk−2ν). Here, since each acctotk
is near a deterministic quantity, namely qadj1,k , we replace ŵacck

by a deterministic quantity w∗k given by,

w∗k =
1

(1− qadj1,k−1ν)
− 1

(1− qadj1,k−2ν)
,

and use the corresponding vector λ∗ with coordinates λ∗k′,k =
w∗k′/[1 + w∗2 + . . .+ w∗k] for k′ = 1 to k.

Earlier we demonstrated that ŵk ≤ ŵacck , which allowed
us to quantify the shift factor in each step. Analogously,
we have the following result for our current procedure using
deterministic weights.

Lemma 10: For k′ < k, assume that we have arranged
decoding sets dec1,k′ so that the corresponding acctotk′ takes
value in the interval

(
qadj1,k′ − 1/Lπ , q

adj
1,k′

]
. Then

ŵk ≤ w∗k + ε1,

where ε1 = ν/(Lπ(1−ν)2) = snr(1+snr)/Lπ is a small term
of order 1/L. Likewise, ŵk′ ≤ w∗k′ + ε1 holds for k′ < k as
well.

Proof of Lemma 10: The q̂k′ and f̂k′ are the weighted sizes of
the sets of true terms and false alarms, respectively, retaining
that which is actually decoded on step k′, not merely above
threshold. These have sum q̂k′ + f̂k′ = acck′ , nearly equal to
pacek′ , taken here to be qadj1,k′ − qadj1,k′−1. Let’s establish the
inequalities

q̂adj1 + . . .+ q̂adjk−1 ≤ qadj1,k−1

and
q̂adjk−1 ≤ qadj1,k−1 − qadj1,k−2 + 1/Lπ.

The first inequality uses that each q̂adjk′ is not more than q̂k′

which is not more than q̂k′ + f̂k′ , equal to acck′ which sums
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to acctotk−1 not more than qadj1,k−1. The second inequality is
a consequence of the fact that q̂adjk−1 ≤ acctotk−1 − acctotk−2.
Using the bounds on acctotk−1 and acctotk−2 gives that claimed
inequality.

These two inequalities yield

ŵk ≤
(qadj1,k−1 − qadj1,k−2 + 1/Lπ)ν

(1− qadj1,k−1ν)(1− qadj1,k−2ν)
.

The right side can be written as,

1

1− qadj1,k−1ν
− 1

1− qadj1,k−2ν
+

1/Lπν

(1− qadj1,k−1ν)(1− qadj1,k−2ν)
.

Now bound the last term using qadj1,k−1 and qadj1,k−2 less than 1
to complete the proof of Lemma 10.

Define the exception set Aq,above = ∪k−1
k′=1{q̂above1,k′ < q1,k′}.

In some expressions we will abbreviate above as abv. Also
recall the set Af = ∪k−1

k′=1{f̂ totk′ > f1,k′}. For convenience we
we suppress the dependence on k in these sets.

Outside of Aq,abv , we have q̂abv1,k′ at least q1,k′ and hence at
least qadj1,k′ for each 1 ≤ k′ < k, ensuring that for each such k′

one can get decoding sets deck′ such that the corresponding
acctotk′ is at most 1/Lπ below qadj1,k′ . Thus the requirements of
Lemma 10 are satisfied outside this set.

We now proceed to lower bound the shift factor for step k
outside of Aq,abv ∪Af .

For the above choice of λ = λ∗ the shift factor is equal to
the ratio

1 +
√
ŵ2w∗2 + . . .+

√
ŵkw∗k√

1 + w∗2 + . . .+ w∗k
.

Using the above lemma and the fact that
√
a− b ≥

√
a−

√
b,

we get that the above is greater than or equal to

1 + ŵ2 + . . .+ ŵk√
1 + w∗2 + . . .+ w∗k

−
√
ε1

√
ŵ2 + . . .+

√
ŵk√

1 + w∗2 + . . .+ w∗k
.

Now use the fact that√
ŵ2 + . . .+

√
ŵk ≤

√
k
√
ŵ2 + . . .+ ŵk

to bound the second term by ε2 =
√
ε1
√
k
√
ν/(1−ν) which

is snr
√

(1+snr)k/Lπ , a term of order near 1/
√
L. Hence

the shift factor is at least,

1 + ŵ2 + . . .+ ŵk√
1 + w2 + . . .+ wk

− ε2.

Consequently, it is at least√
1− qadj1,k−1ν

1− q̂tot,adjk−1 ν
− ε2.

where recall that q̂tot,adjk−1 = q̂totk−1/(1 + f̂ totk−1/q̂
tot
k−1). Here we

have used that 1+ŵ2 + . . . + ŵk, which is 1/(1− q̂adj,totk−1 ν),
can be bounded from below by 1/(1−q̂tot,adjk−1 ν) using Lemma
4.

Similar to before, we note that qadj1,k−1 and q̂tot,adjk−1 are close
to each other when the false alarm effects are small. Hence
we write this shift factor in the form√√√√ 1− ĥf,k−1

1− q̂tot,adjk−1 ν

as before. Again we find that

ĥf,k−1 ≤ 2̂f totk−1 snr + ε3

outside of the exception set Aq,abv . Here

ε3 =
snr

Lπ
+ 2ε2,

is a term of order 1/
√
L.

To confirm the above use the inequality
√

1− a −
√
b ≥√

1− c, where c = a + 2
√
b. Here our a = (q1,k−1 −

q̂tot,adjk−1 )ν/(1 − q̂tot,adjk−1 ν) and b = ε22(1 − qtot,adjk−1 ν). Noting
that the numerator in a is at most (1/Lπ+2f̂ totk−1− (f̂ totk−1)

2)ν
outside of Aq,abv and that 0 ≤ qtot,adjk−1 ≤ 1, one obtains the
bound for ĥf,k−1.

Next, recall that outside of the exception set Af ∪ Aq,abv
we have that q̂totk−1 ≥ q1,k−1 and f̂ totk−1 ≤ f1,k−1. This leads to
the shift factor being at least√

1− hf,k−1

1− qadj1,k−1 ν
,

where
hf,k = 2f1,k snr + ε3.

As before, we assume a bound f1,k ≤ f̄ , so that hf,k is not
more than hf = 2f̄ snr + ε3, independent of k.

As done previously, we create the combined statistics
Zcombk,j , now using our deterministic λ∗. For j in other this
Zcombk,j equals Zcombk,j and for j in sent, when outside the
exception set Aabv = Aq,abv ∪ Af ∪ Ah, this combination
exceeds √

1− h′

1− qadj1,k−1 ν

√
Cj,R,B 1j sent + Zcombk,j ,

where (1 − h′) = (1 − h)(1 − hf ) as before, though with
hf larger by the small amount ε3. Again we have shiftk,j =√
Cj,R,B,h/(1− x ν) evaluated at x = qadj1,k−1, with Cj,R,B,h

as before.
Analogous to Theorem 8, reliability after m steps of our

algorithm is demonstrated by bound the probability of the
exception set A = ∪mk=1Ak, where Ak is the union of the
events {q̂abv1,k ≤ q1,k}, {f̂ totk ≥f1,k} and {X 2

n−k+1/n < 1−h}.
Thus the proof of Theorem 8 carries over, only now we do not
require the union over the grid of values of the weights. We
now state the analogous theorem with the resulting improved
bounds.

Theorem 11: Under the same assumptions as in Theorem
8, our m step adaptive successive decoder, using deterministic
pacing with pacek = q1,k− q1,k−1, incurs a weighted fraction
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of errors δ̂m less than δm = f1,m + (1 − q1,m), except in an
event of probability not more than

m∑
k=1

[
e−LπD(q1,k‖q∗1,k))+c0k

]

+
m∑
k=1

[
e−Lπ(B−1)D(p1,k‖p∗1,k)

]

+
m∑
k=1

e−(n−k+1)Dhk ,

where the bound also holds if the exponent LπD(q1,k‖q∗1,k)
is replaced by

L
η2
k

Vk + (1/3)ηk(L/Lπ)
.

In the constant gap bound case, with positive η and f̄ and
m ≥ 2, satisfying the same hypotheses as in the previous
corollary, the probability of δ̂m greater than δ∗ + η+ f̄ is not
more than

me−2Lπη
2 +mc0 + me−Lπ f̄D(ρ)/ρ + me−(n−m+1)h2

m/2.

Furthermore, using the variance Vk and allowing a variable
gap bound gapk ≤ gL(xk) − xk and 0 < f1,k + ηk < gapk,
with difference gap′ = gapk − f1,k + ηk and number of steps
m ≤ 1+1/gap′, and with ρk = f1,k/f

∗
1,k > 1, this probability

bound also holds with the exponent

L min
k
η2
k/
[
Vk + (1/3)ηk(L/Lπ)

]
in place of 2Lπη2 and with minkf1,kD(ρk)/ρk in place of
f̄D(ρ)/ρ, where the minima are taken over k from 1 to m.

The bounds are the same as in Theorem 9 and its corollary,
except for improvement due to the absence of the factors L̃k−1.
In the same manner as discussed there, there are choices of f̄ ,
ρ and h, such that the exponents for the false alarms and the
chi-square contributions are at least as good as for the q1,k,
so that the bound becomes

3me−2Lπη
2 +mc0 .

We remark that that for the particular variable power alloca-
tion rule we study in the upcoming sections, as we have said,
the update function gL(x) will seen to be ultimately insensitive
to L, with gL(x)−x rapidly approaching a function g(x)−x
at rate 1/L uniformly in x. Indeed, a gap bound for gL will be
seen to take a form gapL = gap∗ − θ/Lπ for some constant
θ, so that it approaches the value of the gap determined by
g, denoted gap∗, where we note that L and Lπ agree to
within a constant factor. Accordingly, using gap∗ − θ/Lπ in
apportioning the values of η, f̄ , and 1/(m− 1), these values
are likewise ultimately insensitive to L. Indeed, we shall see
that slight adjustment to the rate allows arrangement of a gap
independent of L.

Nevertheless, to see if there be any effect on the exponent,
suppose for a specified η∗ that η = η∗ − θ/Lπ represents
a corresponding reduction in η due to finite L. Consider the
exponential bound

e−2Lπη
2
.

Expanding the square it is seen that the exponent Lπη2, which
is Lπ(η∗−θ/Lπ)2, is at least Lπ(η∗)2 minus a term 2θη∗ that
is negligible in comparison. Thus the approach of η to η∗ is
sufficiently rapid that the probability bound remains close to
what it would be,

e−2Lπ(η∗)2 ,

if we were to ignore the effect of the θ/Lπ , where we are
using that Lπ(η∗)2 is large, and that η∗ is small, e.g., of the
order of 1/ logB.

VIII. COMPUTATIONAL ILLUSTRATIONS

We illustrate in two ways the performance of our algorithm.
First, for fixed values of L, B, snr and rates below capacity
we evaluate the detection rate as well as the probability
of the exception set PE using the theoretical bounds given
in Theorem 11. Plots demonstrating the progression of our
algorithm are also shown. These highlight the crucial role of
the function gL in achieving high reliability.

Figures 1 and 2 presents the results of computation using
the reliability bounds of Theorem 11 for fixed L and B and
various choices of snr and rates below capacity. The dots
in these figures denotes qadj1,k for each k and the step function
joining these dots highlight how qadj1,k is computed from qadj1,k−1.
For large L these qadj1,k ’s would be near q1,k, our lower bound
on the proportion of sections decoded after k passes. In this
extreme case q1,k would match gL(q1,k−1), so that the dots
would lie on the function.

For illustrative purposes we take B = 216, L = B and
snr values of 1, 7 and 15. For each snr value the maximum
rate, over a grid of values, is determined, for which there is a
particular control on the error probability. With snr = 1 (Fig
2), this rate R is 0.3 bits which is 59% of capacity. When snr
is 7 and 15 (Fig 1 and 2) , these rates correspond to 49.5%
and 43.5% of their corresponding capacities.

The error probability is controlled as follows. We arrange
each of the 3m terms in the probability bound to take the same
value, set in these examples to be ε = 10−5. In particular, we
compute in succession appropriate values of q∗1,k and f∗1,k =
kf∗, using an evaluation of the function gL(x), an L term
sum, evaluated at a point determined from the previous step,
and from these we determine q1,k and f1,k.

This means solving for q1,k less than q∗1,k such that
e−LπD(q1,k‖q∗1,k)+c0k equals ε, and with p∗1,k = f∗1,k/(B−1),
solving for the p1,k greater than p∗1,k such that the correspond-
ing term e−Lπ(B−1)D(p1,k‖p∗1,k) also equals ε. In this way, we
are using the largest q1,k less than q∗1,k, that is, the smallest
ηk, and the smallest false alarm bound f1,k, for which the
respective contributions to the error probability bound is not
worse then the prescribed value.

These are numerically simple to solve because D(q‖q∗) is
convex and monotone in q < q∗, and likewise for D(p‖p∗)
for p > p∗. Likewise we arrange hk so that e−(n−k+1)Dhk

matches ε.
Taking advantage of the Bernstein bound sometimes yields

a smaller ηk by solving for the choice satisfying the quadratic
equation Lη2

k/[Vk+(1/3)ηkL/Lπ] = log 1/ε+c0k, where Vk
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Fig. 2. Plots demonstrating progression of our algorithm. (Plot on left) snr = 15. The weighted (unweighted) detection rate is 0.995 (0.983) for a failed
detection rate of 0.017 and the false alarm rate is 0.006. The probability of mistakes larger than these targets is bounded by 5.4 × 10−4. (Plot on right)
snr = 1. The detection rate (both weighted and un-weighted) is 0.944 and the false alarm and failed detection rates are 0.016 and 0.056 respectively, with
the corresponding error probability bounded by 2.1× 10−4.

is computed by an evaluation of V (x), which like qL(x) is a
L term sum, both of which are evaluated at x = qadj1,k−1.

These computation steps continue as long as (1−q1,k)+f1,k
decreases, thus yielding the choice of the number of steps m.

For these computations we choose power allocations propor-
tional to max{e−2γ(`−1)/L, e−2γ(1 + δc)}, with 0 ≤ γ ≤ C.
Here the choices of a, c and γ are made, by computational
search, to minimize the resulting sum of false alarms and failed
detections, as per our bounds. In the snr = 1 case the optimum
γ is 0, so we have constant power allocation in this case. In
the other two cases, there is variable power across most of the
sections. The role of a positive c being to increase the relative
power allocation for sections with low weights. Note, in our
analytical results for maximum achievable rates as a function
of B, as given in the upcoming sections, γ is constrained to
be equal to C.

Figure 3 gives plots of achievable rates as a function of B.
For each B, the points on the detailed envelope correspond
to the numerically evaluated maximum inner code rate for
which the section mistake rate is between 9 and 10%. Here we
assume L to be large, so that the q1,k’s and fk’s are replaced
by the expected values q∗1,k and f∗k , respectively. We also take
h = 0. This gives an idea about the best possible rates for a
given snr and section mistake rate.

For the simulation curve, L was fixed at 100 and for
given snr, B and rate values 104 runs of our algorithm
were performed. The maximum rate over the grid of values
satisfying section error rate of less than 10% except in 10
replicates, (corresponding to an estimated PE of 10−3) are
shown in the plots. Interestingly, even for such small values
of L the curve is quite close to the detailed envelope curve,
showing that our theoretical bounds are quite conservative.

IX. ACCUMULATIVE g FOR FINITE LENGTH CODES

The purpose of this section is to show that power allocations
proportional to e−2C`/L and slight modifications of it provide

update functions gL(x) that are indeed accumulative for rates
moderately close to capacity and to quantify how the gap and
shortfall δ = 1 − gL(x∗) depend on the rate and the section
size B. Motivation for these power allocations come in part
from the analysis in the appendix in which it is shown that in
the saturated detection probability case arising in the limit of
large τ , it is necessary for the power allocations to be near this
exponential form for an iterative decoder to have accumulative
update for rates up to capacity. Here our focus is quantifying
the gap and shortfall in the finite L and B case.

In particular, specifics of normalized power allocation
weights π(`) are developed in subsection A, including slight
modifications to the exponential form. An integral approxi-
mation g(x) to the sum gL(x) is provided in subsection B.
Subsection C examines the behavior of gL(x) for x near 1,
including introduction of x∗ via a parameter r1 related to an
amount of permitted rate drop and a parameter ζ related to
the amount of shift at x∗. For cases with monotone decreasing
g(x) − x, as in the unmodified weight case, the behavior for
x near 1 suffices to demonstrate that gL(x) is accumulative.
Improved closeness of the rate to capacity is shown in the
finite codelength case by allowance of the modifications to
the weight via the parameter δc. But with this modifications
monotonicity is lost. In Subsection D, a bound on the number
of oscillations of g(x) − x is established in that is used in
showing that gL(x) is accumulative. The location of x∗ and
the value of δc both impact the mistake rate δmis and the
amount of rate drop required for gL(x) to be accumulative,
expressed through a quantity introduced there denoted rcrit.
Subsection E provides optimization of δc. Helpful inequalities
in controlling the rate drop are in subsection F. Subsection G
provides optimization of the contribution to the total rate drop
of the choice of location of x∗, via optimization of ζ.
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Fig. 3. Plots of achievable rates as a function of B for snr values of 15, 7 and 1. Section error rate is controlled to be between 9 and 10%. For the curve
using simulation runs the rates are exhibited for which the empirical probability of making more than 10% section mistakes is near 10−3.

Recall that gL(x) for 0 ≤ x ≤ 1 is the function given by

gL(x) =
∑
j sent

πj Φ(µj(x)− τ),

where µj(x) =
√
Cj,R,B,h/(1− x ν). Recursively, q1,k is

obtained from q∗1,k = gL(x) evaluated at x = qadj1,k−1, in
succession for k from 1 to m.

For a partitioned code, these sums for j in sent are the
same as the sum over j` for sections ` from 1 to L, with one
from each section. The value of πj is taken to be the same
for terms within a section, and to vary across the sections. We
denote the value for section ` as π(`). At slight risk of abuse of
notation, it is also convenient to denote C`,R = π(`) Lν/(2R)
and C`,R,B,h = C`,R(1−h′)(2 logB) and likewise µ`(x) =√
C`,R,B,h/(1− x ν). In this setting, the function gL(x) is

invariant to the choice of sent and is expressed as

gL(x) =
L∑
`=1

π(`) Φ(µ`(x)− τ).

The values of Φ(µ`(x) − τ), as a function of ` from 1 to L,
provide what is interpreted as the probability with which the
term sent from section ` have approximate test statistic value
that is above threshold, when the previous step successfully
had an adjusted weighted fraction above threshold equal to x.
The Φ(µ`(x)− τ) is increasing in x regardless of the choice
of π`, though how high is reached depends on the choice of
this power allocation.

A. Variable power allocations:

We consider two closely related schemes for allocating
the power. First suppose P(`) is proportional to e−2C`/L as
motivated in the introduction. Then the weight for section
` is π(`) given by P(`)/P . In this case recall that C`,R =
π(`) Lν/(2R) simplifies to u` times the constant C̃/R where

u` = e−2C(`−1)/L,

for sections ` from 1 to L. The presence of the factor C̃/R if
at least 1, increases the value of gL(x) above what it would

be if that factor were not there and helps in establishing that
it is accumulative.

As ` varies from 1 to L the u` ranges from 1 down to the
value e−2C = 1−ν.

To roughly explain the behavior, as we shall see, this choice
of power allocation produces values of Φ(µ`(x)− τ) that are
near 1 for ` with u` enough less than 1− x ν and near 0 for
values of u` enough greater than 1 − x ν, with a region of `
in between, in which there will be a scatter of sections with
statistics above threshold. Though it is roughly successful in
reaching an x near 1, the fraction of detections is limited, if
R is too close to C̃, by the fact that µ`(x) is not large for a
portion of ` near the right end, of the order 1/

√
2 logB.

Therefore, we modify the power allocation, taking π(`)

to be proportional to an expression that is equal to u` =
exp{−2C `−1

L } except for large `/L where it is leveled to be
not less than a value ucut = e−2C(1 + δc) which exceeds
(1− ν) = e−2C = 1/(1+ snr) using a small positive δc. This
δc is constrained to be between 0 and snr so that ucut is not
more than 1. Thus let π(`) be proportional to ũ` given by

max{u`, ucut}.

The idea is that by leveling the height to a slightly larger value
for `/L near 1, we arrange nearly all sections to have ũ` above
(1 − xν) when x is near 1. This will allow us to reach our
objective with an R closer to C. We pay a price in the required
normalization, but it will be seen to be of a smaller order of
1/(2 logB).

To produce the normalized π(`) = max{u`, ucut}/(Lsum),
compute

sum =
L∑
`=1

max{u`, ucut}(1/L).

If c = 0 this sum equals ν/(2C̃) as previously seen. If
c > 0 and ucut < 1, it is the sum of two parts, depending
on whether e−2C(`−1)/L is greater than or not greater than
ucut. This sum can be computed exactly, but to produce a
simplified expression let’s note that replacing the sum by the
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corresponding integral

integ =
∫ 1

0

max{e−2Ct, ucut}dt

an error of at most 1/L is incurred. For each L there is a θ
with 0≤θ≤1 such that

sum = integ + θ/L.

In the integral, comparing e−2Ct to ucut corresponds to
comparing t to tcut equal to [1/(2C)] log 1/ucut. Splitting the
integral accordingly, it is seen to equal [1/(2C)](1−ucut) plus
ucut(1−tcut), which may be expressed as

integ =
ν

2C
[1 + D(δc)/snr] ,

where D(δ) = (1+δ) log(1+δ) − δ. For δ ≥ 0, the function
D(δ) is not more than δ2/2, which is a tight bound for
small δ. This [1 + D(δc)/snr] factor in the normalization,
represents a cost to us of introduction of the otherwise helpful
δc. Nevertheless, this remainder D(δc)/snr is small compared
to δc, when δc is small compared to the snr. It might appear
that D(δc)/snr could get large if snr were small, but, in fact,
since δc ≤ snr the D(δc)/snr remains less than snr/2.

Accordingly, from the above relationship to the integral, the
sum may be expressed as

sum =
ν

2C
[
1 + δ2sum

]
,

where δ2sum is equal to D(δc)/snr+ 2θC/(Lν), which is not
more than δ2c/(2snr) + 2C/(Lν). Thus

π(`) =
max{u`, ucut}

Lsum
=

2C
Lν

max{u`, ucut}
1 + δ2sum

.

In this case C`,R,B,h = (π`Lν/(2R))(1−h′)(2 logB) may be
written

C`,R,B,h = max{u`, ucut}
C(1−h′)

R(1 + δ2sum)
(2 logB),

or equivalently, using τ =
√

2 logB (1 + δa), this is

max{u`, ucut} (C′/R)τ2,

where
C′ =

C (1−h′)
(1+δ2sum)(1+δa)2

.

For small δc, δa, and h′ this is a value near the capacity C. As
we will see later, our best choices of these parameters make
it less than capacity by an amount of order log logB/ logB.
When δc = 0 the C/(1+δ2sum) is what we have called C̃ and
its closeness to capacity is controlled by δ2sum ≤ 2C/(ν L).

In contrast, if δc were taken to be the maximum permitted,
which is δc = snr, then the power allocation would revert
to the constant allocation rule, with an exact match of the
integral and the sum, so that 1+ δ2sum = 1 + D(snr)/snr
and the C/(1+δ2sum) simplifies to R0 = (1/2)snr/(1 + snr),
which, as we have said, is a rate target substantially inferior
to C, unless the snr is small.

Now µ`(x)− τ which is
√
C`,R,B,h/(1− x ν)− τ may be

written as the function

µ(x, u) =
(√

u/(1−x ν)− 1
)
τ

evaluated at u = max{u`, ucut} (C′/R). For later reference
note that the µ`(x) here and hence gL(x) both depend on x
and the rate R only through the quantity (1− x ν)R/C′.

Note also that µ(x, u) is of order τ and whether it is positive
or negative depends on whether or not u exceeds 1 − x ν in
accordance with the discussion above.

B. Formulation and evaluation of the integral g(x):
The function that updates the target fraction of correct

decodings is

gL(x) =
L∑
`=1

π(`) Φ(µ`(x)− τ)

which, for our variable power allocation with allowance for
leveling, takes the form

L∑
`=1

π(`) Φ
(
µ(x,max{u`, ucut}C′/R)

)
,

with u` = e−2C `−1
L . From the above expression for π(`), this

gL(x) is equal to

2C
νL

L∑
`=1

max{u`, ucut}
1+δ2sum

Φ
(
µ(x,max{u`, ucut}C′/R)

)
.

Recognize that this sum corresponds closely to an integral.
In each interval `−1

L ≤ t < `
L for ` from 1 to L, we

have e−2C `−1
L at least e−2Ct. Consequently, gL(x) is greater

than gnum(x)/(1+δ2sum) where the numerator gnum(x) is the
integral

2C
ν

∫ 1

0

max{e−2Ct, ucut}Φ
(
µ(x,max{e−2Ct, ucut}C′/R)

)
dt.

Accordingly, the quantity of interest gL(x) has value at least
(integ/sum)g(x) where

g(x) =
gnum(x)

1+D(δc)/snr
.

Using
integ

sum
= 1 − 2θC

Lη

1
1+δ2sum

and using that gL(x) ≤ 1 and hence gnum(x)/(1+δ2sum) ≤ 1
it follows that

gL(x) ≥ g(x)− 2C/(Lν).

The gL(x) and g(x) are increasing functions of x on [0, 1].
Let’s provide further characterization and evaluation of the

integral gnum(x) for our variable power allocation. Let zlowx =
µ(x, ucut C′/R) and zmaxx = µ(x, C′/R). These have zlowx ≤
zmaxx , with equality only in the constant power case (where
ucut = 1). For emphasis we write out that zx = zlowx takes
the form

zx =

[√
ucutC′/R√
1 − xν

− 1

]
τ.

Set ux = 1− xν.
Lemma 12: Integral evaluation. The gnum(x) for has a

representation as the integral with respect to the standard
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normal density φ(z) of the function that takes the value
1+D(δc)/snr for z less than zlowx , takes the value

x +
ux
ν

(
1− R

C′
(
1 + z/τ

)2)
for z between zlowx and zmaxx , and takes the value 0 for z
greater than zmaxx . This yields gnum(x) is equal to[

1 +D(δc)/snr
]
Φ(zlowx )

+
[
x + δR

ux
ν

] [
Φ(zmaxx )− Φ(zlowx )

]
+

2R
C′

ux
ν

[φ(zmaxx )− φ(zlowx )]
τ

+
R

C′
ux
ν

[zmaxx φ(zmaxx )− zlowx φ(zlowx )]
τ2

,

where
δR = 1− R

C′
[
1 + 1/τ2

]
.

This δR is non-negative if R ≤ C′/(1 + 1/τ2).
In the constant power case, corresponding to ucut = 1, the

conclusion is consistent with the simpler g(x) = Φ(zx).
The integrand above has value near x+

(
1−R/C′

)
ux/ν, if z

is not too far from 0. The heart of the matter for our analysis
in this section is that this value is at least x for rates R ≤ C′.

Proof of Lemma 12: By definition, the function gnum(x) is

2C
ν

∫ 1

0

max{e−2Ct, ucut}Φ
(
µ(x,max{e−2Ct, ucut}C′/R)

)
dt,

which is equal to the integral

2C
ν

∫ tcut

0

e−2Ct Φ
(
µ(x, e−2CtC′/R)

)
dt

plus the expression

2C
ν

(1−tcut)ucutΦ(zlowx ),

which can also be written as [δc +D(δc)]Φ(zlowx )/snr.
Change the variable of integration from t to u = e−2Ct, to

produce the simplified expression for the integral

1
ν

∫ 1

ucut

Φ
(
µ(x, uC′/R)

)
du.

Add and subtract the value Φ(zlowx ) in the integral to write it
as [(1−ucut)/ν]Φ(zlowx ), which is [1−δc/snr]Φ(zlowx ), plus
the integral

1
ν

∫ 1

ucut

[
Φ
(
µ(x, uC′/R)

)
− Φ

(
µ(x, ucutC′/R)

)]
du.

Now since

Φ(b)− Φ(a) =
∫

1{a<z<b} φ(z) dz,

it follows that this integral equals∫ ∫
1{

ucut≤u≤1
}1{

zlow
x ≤z≤µ(x,u C′/R)

} φ(z) dz du/ν.

We switch the order of integration. In the integral, the
inequality z ≤ µ(x, u C′/R) is the same as

u ≥ uxR/C′
(
1 + z/τ

)2
,

which exceeds ucut for z greater than zlowx . Here ux = 1−xν.
This determines an interval of values of u. For z between zlowx
and zmaxx the length of this interval of values of u is equal to

1 − (R/C′)ux
(
1 + z/τ

)2
.

Using ux = 1 − xν one sees that this interval length, when
divided by ν, may be written as

x +
ux
ν

(
1− R

C′
(
1 + z/τ

)2)
,

a quadratic function of z.
Integrate with respect to φ(z). The resulting value of

gnum(x) may be expressed as

[1 +D(δc)/snr] Φ(zlowx ) +

1
ν

∫ zmax
x

zlow
x

[
1− (R/C′)ux

(
1 + z/τ

)2]
φ(z)dz,

To evaluate, expand the square
(
1 + z/τ

)2
in the integrand

as 1 + 2 z/τ + z2/τ2. Multiply by φ(z) and integrate. For
the term linear in z, use zφ(z) = −φ′(z) for which its
integral is a difference in values of φ(z) at the two end
points. Likewise, for the term involving z2 = 1 + (z2−1),
use (z2− 1) = −(zφ(z))′ which integrates to a difference
in values of zφ(z). Of course the constant multiples of φ(z)
integrate to a difference in values of Φ(z). The result for the
integral matches what is stated in the Lemma. This completes
the proof of Lemma 12.

One sees that the integral gnum(x) may also be expressed
as

1
snr

[δc +D(δc)]Φ(zx) +

1
ν

∫ [
1−max

{
ux
R

C′
(
1 + z/τ

) 2

+
, ucut

}]
+

φ(z)dz.

To reconcile this form with the integral given in the Lemma
one notes that the integrand here for z below zx takes the
form of a particular constant value times φ(z) which, when
integrated, provides a contribution that adds to the term
involving Φ(zx).

Corollary 13: Derivative evaluation. The derivative
g′num(x) is equal to

τ

2

(
1+

zx
τ

)3

φ(zx)
R

C′
log(1+δc) +

∫ zmax
x

zx

R

C′
(
1+z/τ

)2
φ(z)dz.

In particular if δc = 0 the derivative g′(x) is

R

C′

∫ zmax
x

zlow
x

(
1 + z/τ

)2
φ(z)dz,

and then, if also R = C′/(1+r/τ2) with r ≥ 1, that is, if
R ≤ C′/(1 + 1/τ2), the difference g(x) − x is a decreasing
function of x.
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Proof: Consider the last expression given for gnum(x). The
part [δc +D(δc)]Φ(zx)/snr has derivative

z′x[δc +D(δc)]φ(zx)/snr.

Use (1+zx/τ) =
√
ucut(C ′/R)/(1−xν) to evaluate z′x as

z′x =
ν

2
1

(1−xν)3/2
√
ucutC′/R τ

and obtain that it is (ν/2)(1+zx/τ)3τ/
(
ucut C′/R

)
. So using

ucut = (1−ν)(1+δc) the z′x is equal to

snr

2
(1+zx/τ)3

τ

(1+δc)
R

C′
.

Thus using the form of D(δc) and simplifying, the derivative
of this part of gnum is the first part of the expression stated
in the Lemma.

As for the integral in the expression for gnum, its integrand
is continuous and piecewise differentiable in x, and the integral
of its derivative is the second part of the expression in the
Lemma. Direct evaluation confirms that it is the derivative of
the integral.

In the δc = 0 case, this derivative specializes to the indicated
expression which is less than

R

C′

∫ ∞

−∞

(
1 + z/τ

)2
φ(z)dz =

R

C′
[
1 + 1/τ2

]
,

which by the choice of R is less than 1. Then g(x) − x is
decreasing as it has a negative derivative. This completes the
proof of Corollary 13.

Corollary 14: A lower bound. The gnum(x) is at least
glow(x) given by[

1 +D(δc)/snr
]
Φ(zx) +

1
ν

∫ ∞

zlow
x

[
1− (R/C′)ux

(
1 + z/τ

)2]
φ(z)dz.

It has the analogous integral characterization as given imme-
diately preceding Corollary 13, but with removal of the outer
positive part restriction. Moreover, the function glow(x) − x
may be expressed as

glow(x)− x = (1− xν)
R

ν C′
A(zx)
τ2

where
A(z)
τ2

=
C′

R
−
(
1 + 1/τ2

)
− 2τφ(z) + zφ(z)

τ2

+
[
1 + 1/τ2 − (1−∆c)(1+z/τ)2

]
Φ(z).

with ∆c = log(1 + δc).
Optionally, the expression for glow(x) − x may be written

entirely in terms of z = zx by noting that

(1− xν)
R

ν C′
=

(1+δc)
snr(1+z/τ)2

.

Proof: The integral expressions for glow(x) are the same as
for gnum(x) except that the upper end point of the integration
extends beyond zmaxx , where the integrand is negative, i.e.,

the outer restriction to the positive part is removed. The lower
bound conclusion follows from this negativity of the integrand
above zmaxx . Evaluate glow(x) as in the proof of Lemma 12,
using for the upper end that Φ(z) tends to 1, while φ(z) and
zφ(z) tend to 0 as z →∞, to obtain that glow(x) is equal to[

1 +D(δc)/snr
]
Φ(zx) +

[
x+ δR

ux
ν

] [
1− Φ(zx)

]
− 2

R

C′
ux
ν

φ(zx)
τ

− R

C′
ux
ν

zxφ(zx)
τ2

.

Replace the x + δRux/ν with the equivalent expression
(1/ν)

[
1−ux(R/C′)(1+1/τ2)

]
. Group together the terms that

are multiplied by ux(R/C′)/ν to be part of A/τ2. Among
what is left is 1/ν. Adding and subtracting x, this 1/ν is
x+ux/ν which is x+[(ux/ν)R/C′][C′/R]. This provides the
x term and contributes the C′/R term to A/τ2.

It then remains to handle [1+D(δc)/snr]Φ(zx)−(1/ν)Φ(zx)
which is −(1/snr)[1−D(δc)]Φ(zx). Multiplying and dividing
it by

ν C′

uxR
=

snr(1 + z/τ)2

1 + δc

and then noting that (1−D(δc))/(1+ δc) equals 1−∆c, it
provides the associated term of A/τ2. This completes the
proof of Corollary 14.

What we gain with this lower bound is simplification
because the result depends only on zx = zlowx and not also on
zmaxx .

C. Values of g(x) near 1:

From the expression for x in terms of z, we remark that
when R is near C′, the point z = 0 corresponds to a value
of x near 1 − δc/snr. We use this relationship to establish
reference values of x∗ and z∗ and to bound how close g(x∗)
is to 1.

A convenient choice of x∗ satisfies (1−x∗ν)R = (1−ν)C′.
More flexible is to allow other values of x∗ by choosing it
along with a value r1 to satisfy the condition

(1− x∗ ν)R = (1−ν)C′/(1 + r1/τ
2).

We also call the solution x∗ = xup. When r1 is positive the
x∗ is increased. Negative r1 is allowed as long as r1 > −τ2,
but we keep r1 small compared to τ so that x∗ remains near
1.

With the rate R taken to be not more than C′, we write it
as

R =
C′

(1+r/τ2)
.

Lemma 15: A value of x∗ near 1. Let R′ = C′/(1+r1/τ2).
For any rate R between R′/(1+snr) and R′, the x∗ as defined
above is between 0 and 1 and satisfies

1−x∗ =
R′ −R

Rsnr
=

r − r1
snr (τ2 + r1)

= (1−x∗ν) r − r1
ν (τ2 + r)

.

It is near 1 if R is near R′. The value of zx at x∗, denoted
z∗ = ζ satisfies

(1 + ζ/τ)2 = (1 + δc)(1 + r1/τ
2).
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This relationship has δc near 2ζ/τ , when ζ and r1 are small
in comparison to τ . The δcτ and r1 are arranged, usually both
positive, and of the order of a power of a logarithm of τ , just
large enough that Φ̄(ζ) = 1 − Φ(ζ) contributes to a small
shortfall, yet not so large that it overly impacts the rate.

Proof of Lemma 15: The expression 1 − x ν may also be
written (1−ν)+(1−x)ν. So the above condition may be written
1+(1−x∗)snr = R′/R which yields the first two equalities. It
also may be written (1−x∗ν) = (1−ν)(1+r/τ2)/(1+r1/τ

2)
which yields the third equality in that same line.

Next recall that zx = µ(x, ucutC′/R) which is(√
ucutC′/(R(1− xν))− 1

)
τ.

Recalling that ucut = (1−ν)(1 + δc), at x∗ it is z∗ = ζ given
by

ζ =
(√

(1+δc)(1 + r1/τ2)− 1
)
τ,

or, rearranging, we may express δc in terms of z∗ = ζ and r1
via

1+δc = (1+ζ/τ)2/(1+r1/τ2),

which is the last claim. This completes the proof of Lemma
15.

Because of this relationship one may just as well arrange
ucut in the first place via ζ as

ucut = (1−ν)(1 + ζ/τ)2/(1+r1/τ2)

where suitable choices for ζ and r1 will be found in an
upcoming section. We keep also the δc formulation as it is
handy in expressing the affect on normalization via D(δc).

We come now to the evaluation of gL(x∗) and its lower
bound via glow(x∗). Since gL(x) depends on x and R only
via the expression (1 − xν)R/C′, the choice of x∗ such that
this expression is fixed at (1−ν) implies that the value gL(x∗)
is invariant to R, depending only on the remaining parameters
snr, δc, r1, τ and L. Naturally then, the same is true of our
lower bound via glow(x∗) which depends only on snr, δc, r1
and τ .

Lemma 16: The value g(x∗) is near 1. For the variable
power case with 0 ≤ δc < snr, the shortfall expressed by
1−g(x∗) is less than

δ∗ =
2τφ(ζ) + ζφ(ζ) + rem

snr (τ2 + r1) [1 +D(δc)/snr]
,

independent of the rate R ≤ R′, where the remainder is given
by

rem =
[
(τ2 + r1)D(δc)− (r1 − 1)

]
Φ̄(ζ).

Moreover, gL(x∗) has shortfall δ∗L = 1 − gL(x∗) not more
than δ∗+2C/(Lν). In the constant power case, corresponding
to δc = snr, the shortfall is

δ∗ = 1− Φ(ζ) = Φ̄(ζ).

Setting

ζ =
√

2 log
τ

d
√

2π

with a constant d and τ > d
√

2π, with δc small, this δ∗ is near
2d/(snr τ2), whereas, with δc = snr, using Φ̄(ζ) ≤ φ(ζ)/ζ,
it is not more than d/(ζτ).

Proof of Lemma 16: Using the lower bound on g(x∗), the
shortfall has the lower bound

δ∗ = 1− glow(x∗)
1+D(δc)/snr

which equals

1− glow(x∗) +D(δc)/snr
1 +D(δc)/snr

.

Use the formula for glow(x∗) in the proof of Lemma 14. For
this evaluation note that at x = x∗ the expression uxR/(νC′)
simplifies to 1/[snr(1+r1/τ2)] and the expression x+δRux/ν
becomes

1 +
r1 − 1

snr(τ2 + r1)
.

Consequently, glow(x∗) equals

1 +
D(δc)
snr

Φ(ζ) − 2τφ(ζ) + ζφ(ζ)− (r1−1)Φ̄(ζ)
snr(τ2 + r1)

.

This yields an expression for 1−glow(x∗)+D(δc)/snr equal
to

−D(δc)
snr

Φ̄(ζ) +
(2τ+ζ)φ(ζ)− (r1−1)Φ̄(ζ)

snr(τ2+r1)
.

Group the terms involving Φ̄(ζ) to recognize that this equals
[(2τ + ζ)φ(ζ) + rem]/[snr(τ2 + r1)]. Then dividing by the
expression 1 +D(δc)/snr produces the claimed bound.

As for evaluation at the choice ζ =
√

2 log τ/d
√

2π, this is
the positive value for which φ(ζ) = d/τ , when τ ≥ d

√
2π. It

provides the main contribution with 2τφ(ζ) = 2d. The ζφ(ζ)
is then ζd/τ which is of order

√
log τ/τ , small compared to

the main contribution 2d.
For the remainder rem, using Φ̄(ζ) ≤ φ(ζ)/ζ and D(δc) ≤

(δc)2/2 near 2ζ2/τ2, the τ2D(δc)Φ̄(ζ) is near 2ζφ(ζ) =
2ζb0/τ , again of order

√
log τ/τ .

For δ∗L = 1−gL(x∗), using gL(x) ≥ g(x)+2C/(Lν) yields
δ∗L ≤ δ∗ + 2C/(Lν).

For the constant power case we use gL(x∗) = g(x∗) = Φ(ζ)
directly, rather than glow(x∗). It has δ∗ = Φ̄(ζ), which is not
more than φ(ζ)/ζ. This completes the proof of Lemma 16.

Corollary 17: Mistake bound. The likely bound on the
weighted fraction of failed detections and false alarms δ∗L+η+f̄ ,
corresponds to an unweighted fraction of not more than

δmis = fac (δ∗L+η+f̄)

where the factor

fac = snr (1+δ2sum)/[2C(1+δc)].

In the variable power case the contribution δ∗mis,L = fac δ∗L is
not more than δ∗mis + (1/L)(1+snr)/(1+δc) with

δ∗mis =
(2τ+ζ)φ(ζ) + rem

2C (τ+ζ)2
,



37

while, in the constant power case δc = snr, the fac = 1 and
δ∗mis,L equals

δ∗mis = Φ̄(ζ).

Closely related to δ∗mis in the variable power case is the
simplified form

δ∗mis,simp = [(2τ+ζ)φ(ζ) + rem]/2C τ2,

for which δ∗mis = δ∗mis,simp/(1 + ζ/τ)2.

Proof of Corollary 17: Multiplying the weighted fraction by
the factor 1/[Lmin` π(`)], which equals the given fac, provides
the upper bound on the (unweighted) fraction of mistakes
δmis = fac (δ∗L + η + f̄). Now δ∗L = 1− gL(x) has the upper
bound

1− glow(x∗) + δ2sum
1 + δ2sum

.

Multiplying by fac yields δ∗mis,L = fac δ∗L not more than

1− glow(x∗) + δ2sum
(2C/snr)(1+δc)

.

Recall that δ2sum exceeds D(δc)/snr by not more than
2C/(Lν) and that 1 − glow(x∗) + D(δc)/snr is less than
[(2τ+ζ)φ(ζ) + rem]/[snr(τ2+r1)]. So this yields the δ∗mis,L
bound

(2τ+ζ)φ(ζ) + rem

2C(τ2+r1)(1+δc)
+

(1+snr)
(1+δc)

1
L
.

Recognizing that the denominator product (τ2 + r1)(1+ δc)
simplifies to (τ + ζ)2 establishes the claimed form of δ∗mis.

For the constant power case note that fac = 1 so that
δ∗mis,L = δ∗mis is then unchanged from δ∗ = Φ̄(ζ). This
completes the proof of Corollary 17.

D. Showing g(x) is greater than x:

This section shows that gL(x) is accumulative, that is, it is
at least x for the interval from 0 to x∗, under certain conditions
on r.

We start by noting the size of the gap at x = x∗.

Lemma 18: The gap at x∗. With rate R = C′/(1 + r/τ2),
the difference g(x∗)− x∗ is at least

r − rup
snr(τ2 + r1)

= (1− x∗ν)
r − rup
ν(τ2 + r)

.

Here, for 0 ≤ δc < snr, with rem as given in Lemma 16,

rup = r1 +
(2τ + ζ)φ(ζ) + rem

1 +D(δc)/snr

while, for δc = snr,

rup = r1 + snr(τ2 + r1)Φ̄(ζ),

which satisfies

rup
τ2

=
(1 + snr Φ̄(ζ))(1+ζ/τ)2

1 + snr
− 1.

Keep in mind that the rate target C′ depends on δc. For
small δc it is near the capacity C, whereas for δc = snr it is
near R0 > 0.

If the upcoming gap properties permit, it is desirable to
set r near rup. Then the factor in the denominator of the
rate becomes near 1+rup/τ2. In some cases rup is negative,
permitting 1+r/τ2 not more than 1.

We remind that r1, ζ, and δc are related by

1+r1/τ2 =
(1+ζ/τ)2

1+δc
.

Proof of Lemma 18: The gap at x∗ equals g(x∗)−x∗. This
value is the difference of 1−x∗ and δ∗ = 1−g(x∗), for which
we have the bounds of the previous two lemmas. Recalling that
1−x∗ equals (r−r1)/[snr (τ2+r1)], adjust the subtraction of
r1 to include in rup what is needed to account for δ∗ to obtain
the indicated expressions for g(x∗)− x∗ and rup. Alternative
expressions arise by using the relationship that r1 has to the
other parameters. This complete the proof of Lemma 18.

Positivity of this gap at x∗ entails r > rup, and positivity
of x∗ requires snr(τ2 + r1) + r1 ≥ r. There is an interval of
such r provided snr (τ2+r1) > rup − r1.

For this next two corollaries, we take the case that either
δc = snr or δc = 0, that is, either the power allocation is
constant (completely level), or the power P(`) is proportional
to u` = exp{−2C −̀1

L }, unmodified (no leveling). The idea in
both cases is to look for whether the minimum of the gap
occurs at x∗ under stated conditions.

Corollary 19: Positivity of g(x) − x with constant power.
Suppose R = C′/(1+r/τ2) where, with constant power, the C′
equals R0(1−h′)/(1+δa)2, and suppose ν τ ≥ 2(1+r/τ2)

√
2π.

Suppose r − rup is positive with rup as given in Lemma 18,
specific to this δc = snr case. If r ≥ 0 and if r − rup is
less than ν(τ + ζ)2/2, then, for 0 ≤ x ≤ x∗, the difference
g(x)− x is at least

gap =
r − rup

snr(τ2+r1)
=

r − rup
ν(τ + ζ)2

,

Whereas if rup < r ≤ 0 and if also

r/τ ≥ −
√

2 log
(
ντ(1+r/τ2)/2

√
2π
)
,

then the gap g(x)− x on [0, x∗] is at least

min
{

1/2 + r/(τ
√

2π ) ,
r − rup
ν(τ+ζ)2

}
.

In the latter case the minimum occurs at the second expression
when

r < rup + ν(τ+ζ)2
[
1/2 + r/τ

√
2π
]
.

This corollary is proven in the appendix, where, under the
stated conditions, it is shown that g(x)−x is unimodal for
x≥0, so the value is smallest at x=0 or x=x∗.

From the formula for rup in this constant power case, it
is negative, near −ν τ2, when snr Φ̄(ζ) and ζ/τ are small.
It is tempting to try to set r close to rup, similarly negative.
As discussed in the appendix, the conditions prevent pushing r
too negative and compromise choices are available. With ντ at
least a little more than the constant 2

√
2πeπ/4, we allow r with

which the 1 + r/τ2 factor becomes at best near 1−
√

2π/2τ ,
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indeed nice that it is not more than 1, though not as ambitious
as the unobtainable 1 + rup/τ

2 near 1− ν.

Corollary 20: Positivity of g(x)− x with no leveling. Sup-
pose R = C′/(1+r/τ2)], where, with δc = 0, the C′ equals
C(1h′)/(1+2C/ν L)(1+δa)2 near capacity. Set r1 = 0 and
ζ = 0 for which 1−x∗ = r/(snr τ2) and rup = 2τ/

√
2π+1/2

and suppose in this case that r > rup. Then, for 0 ≤ x ≤ x∗,
the difference g(x)− x is greater than or equal to

gap =
r − rup

snr (τ2 + r1)
.

Moreover, g(x)− x is at least (1− xν)GAP where

GAP =
r − rup
ν(τ2 + r)

.

Proof of Corollary 20: With δc = 0 the choice ζ = 0
corresponds to r1 = 0. At this ζ, the main part of rup equals
2τ/

√
2π since φ(0) = 1/

√
2π and the remainder rem equals

1/2 since Φ(0) = 1/2. This produces the indicated value of
rup. The monotonicity of g(x)− x in the δc = 0 case yields,
for x ≤ x∗, a value at least as large as at x∗ where it is
bounded by Lemma 18. This yields the first claim.

Next use the representation of g(x) − x as (1 −
xν)A(zx)/[ν(τ2 + r)], where with δc = 0 the A(z) is

A(z) = r−1−2τφ(z)−zφ(z) +
[
τ2 + 1− (τ+z)2

]
Φ(z).

It has derivative which simplifies to

A′(z) = −2(τ+z)Φ(z),

which is negative for z > −τ which includes the interval
[z0, z1]. Accordingly A(zx) is decreasing and its minimum for
x in [0, x∗] occurs at x∗. Appealing to Lemma 18 completes
the proof of Lemma 20.

The above result provides a practical rate C′/
(
1+r/τ2) with

r/τ2 at least rup/τ2 nearly equal to a constant times 1/τ ,
which is near 1/

√
π logB. Nevertheless, it would be better

to have a bound with rup of smaller order so that for large
B the rate is closer to capacity. For that reason we next take
advantage of the modification to the power allocation in which
it is slightly leveled using a small positive δc.

Monotonicity or unimodality of g(x)−x or of glow(x)−x
is used in the above proofs for the δc = 0 and δc = snr
cases. It what follows we develop analogous shape properties
that include the intermediate case.

We use g(x) ≥ glow(x)/(1 +D(δc)/snr) so that

g(x)− x ≥ glow(x)− x− xD(δc)/snr
1 +D(δc)/snr

.

This gap lower bound is expressible in terms of z = zx
using the results of Lemma 14 and the expression for x given
immediately thereafter. We have

glow(x)− x =
uxR

ν C′
A(zx)
τ2

where for R = C′/(1 + r/τ2) the function A(z) simplifies to

r − 1− 2τφ(z)− zφ(z) +
[
τ2+1− (1−∆c)(τ+z)2

]
Φ(z),

where ∆c = log(1+ δc). The multiplier uxR/(νC′) is also
(1+δc)/

(
snr(1+z/τ)2

)
. From the expression for x in terms

of z we may write

x = 1− δc
snr

+
(1+δc)

snr(1+z/τ)2
(
(1 + z/τ)2 − 1− r/τ2

)
.

Accordingly, we may write

glow(x)− x− xD(δc)/snr = G(zx)

where G(z) is the function

G(z) =
1+δc

(τ+z)2
Ã(z)
snr

− D(δc)
snr

(1− δc/snr)

with

Ã(z) = A(z) +
τ2D(δc)
snr

(
1− (1 + z/τ)2 + r/τ2

)
.

In this way the gap lower bound is expressed through the
function G(z) evaluated at z = zx. Regions for x in [0, 1]
where glow(x)−x−xD(δc)/snr is decreasing or increasing,
have corresponding regions of decrease or increase of G(z) in
[z0, z1]. The following lemma characterizes the shape of the
lower bound on the gap.

Definition: A continuous function G(z) is said to be uni-
modal in an interval if there is a value zmax such that G(z)
is increasing for any values to the left of zmax and decreasing
for any values to the right of zmax. This includes the case
of decreasing or increasing functions with zmax at the left or
right end point of the interval, respectively.

Likewise, with domain starting at z0, a continuous function
G(z) is said to have at most one oscillation if there is a value
zG ≥ z0 such that G(z) is decreasing for any values of z
between z0 and zG, and unimodal to the right of zG. We call
the point zG the critical value of G.

Functions with at most one oscillation in an interval [z0, z∗]
have the useful conclusion that the minimum over the interval
is determined by the minimum of the values at zG and z∗.

Lemma 21: Shape properties of the gap. Suppose the rate
satisfies R ≤ C ′(1+D(δc)/snr)/(1+1/τ2). The function
glow(x)−x−xD(δc)/snr has at most one oscillation in [0, 1].
Likewise, the functions A(z) and G(z) have at most one
oscillation for z ≥ −τ and we denote their critical values
zA and zG. For all ∆c ≥ 0, these satisfy zA ≤ zG and
zA≤−τ/2+1, which is less than or equal to 0 if τ ≥ 2.

Moreover, if either ∆c ≤ 2/3 or ∆c ≥ 2
√

2π half/τ , then
zG is also less than or equal to 0. Here half is an expression
not much more than 1/2 as given in the proof.

The proof of Lemma 21 is in the appendix.
Note that τ ≥ 3

√
2π half is sufficient to ensure that one or

the other of the two conditions on ∆c must hold. That would
entail a value of B more than e2.25π > 1174. Such size of B
is reasonable, though not essential as we may choose directly
to have a small value of ∆c not more than 2/3.

One can pin down down the location of zG further, under
additional conditions on ∆c. However, precise knowledge of
the value of zG is not essential because the shape properties
allow us to take advantage of tight lower bounds on A(z) for
negative z as discussed in the next lemma.
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We have that zA ≤ −τ/2 + 1 and under conditions on ∆c

that zA ≤ −τ/2. For −τ/2 + 1 to be negative, it is assumed
that τ ≥ 2, as is the case when B ≥ e2. Preferably B is much
larger.

Lemma 22: Lower bounding A(z) for negative z: In an
initial interval [−τ, t], with t = −τ/2 or t = −τ/2 + 1, the
function A(z) is lower bounded by

A(z) ≥ r − 1− ε,

where ε is (2τ + t)/t2)φ(t). In particular for t = −τ/2 it is
(6/τ)φ(τ/2), not more than (3/

√
π logB)(1/B)0.5, polyno-

mially small in 1/B. Likewise, if t = −τ/2+1, the ε remains
polynomially small.

If ∆cτ ≥ 4/
√

2π−1/τ , then the above inequality holds for
all negative z,

min
−τ≤z≤0

A(z) ≥ r − 1− ε

with ε = (6/τ)φ(τ/2).
Finally if also ∆c ≥ 8/τ2, then for z between −τ/2 and

0, we have
A(z) > r − 1

strictly greater than r − 1 with no need for ε.

Proof of Lemma 22: First, examine A(z) for z in an initial
interval of the form [−τ, t]. For such negative z one has that
A(z) is at least r−1−2τφ(z) which is at least r−1−2τφ(t).
This is seen by observing that in the expression for A(z), the
−zφ(z) term and the term involving Φ(z) are positive for
z ≤ 0. So for ε we could use 2τφ(t).

Further analysis of A(z) permits the improved value of ε
as stated in the lemma. Indeed, A(z) may be expressed as

A0(z) = r − 1− (2τ+z)φ(z)− (2τ+z)zΦ(z) + Φ(z)

plus an additional amount [∆c(τ+z)2]Φ(z) which is positive.
It’s derivative simplifies as in the analysis in the previous
lemma and it is less than or equal to 0 for −τ ≤ z ≤ 0,
so A0(z) is a decreasing function of z, so its minimum in
[−τ, t] occurs at z = t.

Recall that along with the upper bound |z|Φ(z) ≤ φ(z),
there is the lower bound of Feller, |z|Φ(z) ≥ [1−1/z2]φ(z),
or the improvement in the appendix which yields |z|Φ(z) ≥
[1 − 1/(z2+1)]φ(z), which is Φ(z) ≥ (|z|/(z2+1)φ(z), for
negative z. Accordingly obtain

A0(z) ≥ r − 1− [(2τ+z)/(z2+1)]φ(z).

At z = t = −τ/2 the amount by which it is less than r− 1 is
[(3/2)τ/(τ2/4+1)]φ(τ/2) not more than (6/τ)φ(τ/2), which
is not more than (6/

√
2π2 logB)(1/B)1/2. An analogous

bound holds at t = −τ/2 + 1.
Next consider the value of A(z) at z = 0. Recall that A(z)

equals

r − 1− (2τ+z)φ(z) +
[
τ2+1− (1−∆c)(τ+z)2

]
Φ(z).

At z = 0 it is

r − 1− 2τ/
√

2π + [1 + ∆cτ
2]/2

which is at least r − 1 if ∆cτ
2 ≥ 4τ/

√
2π − 1, that is, if

∆c ≥ 4/(τ
√

2π)−1/τ2. This is seen to be greater than ∆∗∗
c =

2/(τ2/4 + 2), having assumed that τ at least 2. So by the
previous lemma A(z) is unimodal to the right of t = −τ/2,
and it follows that the bound r−1−ε holds for all z in [−τ, 0].

Finally, for A(z) in the form

r− 1− (2τ+z)φ(z)− (2τ+z)zΦ(z) + [1 + ∆c(τ+z)2]Φ(z),

replace −zΦ(z), which is |z|Φ(z) with its lower bound φ(z)−
(1/|z|)Φ(z) for negative z from the same inequality in the
appendix. Then the terms involving φ(z) cancel and we are
left with the lower bound on A(z) of

r − 1 +
[
1 + ∆c(τ+z)2 − (2τ+z)/|z|

]
Φ(z)

which is

r − 1 +
[
∆c(τ+z)2 + 2(τ+z)/z]Φ(z).

In particular at z = −τ/2 it is r−1 +
[
∆cτ

2/4− 2]Φ(−τ/2)
which exceeds r−1 by a positive amount due to the stated
conditions on ∆c. To determine the region in which the
expression in brackets is positive more precisely, proceed as
follows. Factoring out τ+z the expression remaining in the
brackets is

∆c(τ+z) + 2/z.

It starts out negative just to the right of −τ and it hits 0 for
z solving the quadratic ∆c(τ +z)z + 2 = 0, for which the
left and right roots are z = [−τ ±

√
τ2 − 8/∆c]/2, again

centered at −τ/2. The left root is near −τ
[
1− 2/(∆cτ)

]
. So

at least between these roots, and in particular between the left
root and the point −τ/2, the A(z) ≥ r−1. The existence of
these roots is implied by ∆c ≥ 8/τ2 which in turn is greater
than ∆∗∗

c = 8/(τ2 +8). So by the analysis of the previous
Lemma, A′(z) is positive at −τ/2 and A(z) is unimodal to
the right of −τ/2. Consequently A(z) remains at least r−1
for all z between the left root and 0. This completes the proof
of Lemma 22.

Exact evaluation of G(zcrit) is problematic, so instead take
advantage for negative z of the tight lower bounds on G(z)
that follow immediately from the above lower bounds on A(z).
With no conditions on ∆c we use A(z) ≥ r−1−ε for z ≤
−τ/2+1 and unimodality of A(z) to the right of there, to
allow us to combine this with the bounds at z∗. This use of
unimodality of A(z) has the slight disadvantage of needing to
replace ux = 1−xν with the lower bound 1−x∗ν, and needing
to replace −xD(δc)/snr with −x∗D(δc)/snr, to obtain the
combined lower bound on G(z) via A(z). In contrast, with
conditions on ∆c, we use directly that the minimum of G(z)
occurs at the minimum of the values at a negative zG and at
z∗, allowing slight improvement on the gap.

Lemma 23: Lower bounding G(z) for negative z: If ∆cτ ≥
4/
√

2π−1/2τ , then for −τ < z ≤ 0, setting z′ = z(1+z/2τ),
the function G(z) is at least

(1+δc)
r−1−ε−

(
2z′τ−r

)
D(δc)/snr

(τ+z)2 snr
− D(δc)

snr

(
1− δc

snr

)
,
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which for r ≥ (1+ε)/(1+D(δc)/snr), yields G(z) at least

r−1−ε+ rD(δc)/snr
τ2 snr

− D(δc)
snr

(
1− δc

snr

)
.

Consequently, the gap g(x)− x for zx ≤ 0 is at least
r − rdown

snr τ2/(1+δc)

with

rdown =
1+ε+ τ2D(δc)(1− δc/snr)/(1+δc)

1 +D(δc)/snr
,

less than 1+ε+ τ2D(δc). If also ∆c ≥ 8/τ2, then the above
inequalities hold for −τ/2 ≤ z ≤ 0 without the ε.

Proof of Lemma 23: Using the relationship between G(z)
and A(z) given prior to Lemma 21, these conclusions follow
immediately from plugging in the bounds on A(z) from
Lemma 22.

Next we combine the gap bounds for negative z with the
gap bound for z∗. This allows us to show that g(x) − x has
a positive gap as long as the rate drop from capacity is such
that r > rcrit for a value of rcrit we identify. This holds for
a range of choices of r1 including 0.

Lemma 24: The minimum value of the gap. For 0≤x≤x∗,
if r > rcrit, then the g(x)− x is at least

r − rcrit
snr (τ2+r1)

.

This holds for an rcrit not more than r∗crit given by

max
{

(τ2+r1)D(δc) + 1 + ε , r1 + (2τ+ζ)φ(ζ) + rem
}
,

where, as before, rem =
[
(τ2+r1)D(δc) + 1−r1

]
Φ̄(ζ) and ε

is as given in Lemma 22 with t = −τ/2+1. Then gL(x)−x
on [0, x∗] has gap at least

gap =
r − rcrit

snr (τ2+r1)
− 2C
νL

.

Consequently, any specified positive value of gap is achieved
by setting

r = rcrit + snr (τ2 + r1) [gap+ 2C/(Lν)].

The contribution to the denominator of the rate expression
(1+D(δc)/snr)(1+rcrit/τ2) at rcrit has the representation
in terms of r∗crit as

1 + (1+r1/τ2)D(δc)/snr + r∗crit/τ
2.

If ∆c ≥ 4/(τ
√

2π) − 1/τ2 and either ∆c ≤ 2/3 or ∆c ≥
2
√

2π half/τ , then in the above characterization of r∗crit the
D(δc) in the first expression of the max may be reduced to
D(δc)(1− δc/snr).

Moreover, we have the refinement that g(x)− x is at least

1
snr

min
{ r − rdown
τ2/(1+δc)

,
r − rup
τ2 + r1

}
,

where rdown and rup are as given in Lemmas 23 and
18, respectively. If also δc is such that the zG of order
−
√

2 log(τ/δc) is between −τ/2 and 0, then the ε above may
be omitted.

For given ζ > 0 we adjust r1 to optimize the value of r∗crit in
the next subsection.

The proof of the lemma will improve on the statement of
the lemma by exhibiting an improved value of rcrit that makes
use of r∗crit.

Proof of Lemma 24: Replacing g(x) by its lower bound
glow(x)/[1+D(δc)/snr], the g(x)− x is at least

gaplow(x) =
glow(x)− x[1+D(δc)/snr]

1 +D(δc)/snr

which is

(ux/ν)(R/C′)A(zx)/τ2 − xD(δc)/snr
1 +D(δc)/snr

.

For 0≤x≤x∗ the uxR/(νC′) is at least its value at x∗ which
is 1/[snr(1 + r1/τ

2)], so gaplow(x) is at least

A(zx)/[snr(τ2+r1)]− x∗D(δc)/snr
1 +D(δc)/snr

,

which may also be written

A(zx)− (τ2+r1)x∗D(δc)
snr(τ2+r1)[1+D(δc)/snr]

,

which by Lemma 18 coincides with (r−rup)/[snr(τ2+r1)]
at x = x∗.

Now recall from Lemma 21 that A(z) is unimodal for z ≥ t,
where t is −τ/2 or −τ/2 + 1, depending on the value of
∆c. As we have seen, when ∆c is small the A(z) is in fact
decreasing and then we may use rcrit = rup from the gap at
x∗. For other ∆c, the unimodality of A(z) for z ≥ t implies
that the minimum of A(z) over [−τ, z∗] is equal to that of
over [−τ, t] ∪ {z∗}. As we saw in Lemma 22, the minimum
of A(z) in [−τ, t] is given by Alow = r−1−ε. Consequently,
the g(x)− x on 0 ≤ x ≤ x∗ is at least

min
{
r − 1− ε− (τ2 + r1)x∗D(δc)
snr(τ2 + r1)(1 +D(δc)/snr)

,
r − rup

snr(τ2 + r1)

}
.

Now x∗ = 1 − (r − r1)/[snr (τ2 + r1)]. So (τ2 + r1)x∗ is
equal to (τ2 + r1)− (r− r1)/snr. Then, gathering the terms
involving r, note that a factor of 1 + D(δc)/snr arises that
cancels the corresponding factor from the denominator for the
part involving r. Extract the value r shared by the two terms
in the minimum to obtain that the above expression is at least

r − rcrit
snr (τ2 + r1)

where here rcrit is given by

max
{ (τ2+r1)D(δc) + 1 + ε+ r1D(δc)/snr

1 +D(δc)/snr
, rup

}
.

Arrange 1+D(δc)/snr as a common denominator. From the
definition of rup its numerator becomes r1[1 +D(δc)/snr] +
(2τ + ζ)φ(z) + rem. It follows that in the numerator the
two expressions in the max share the term r1D(δc)/snr.
Accordingly, with α = [D(δc)/snr]/[1 + D(δc)/snr] and
1− α = 1/[1 +D(δc)/snr], we have

rcrit = α r1 + (1− α)r∗crit,
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with r∗crit given by

max
{

(τ2+r1)D(δc) + 1 + ε , r1 + (2τ+ζ)φ(ζ) + rem
}
.

This r∗crit exceeds r1, because the amount added to r1 in the
second expression in the max is the same as the numerator of
the shortfall δ∗ which is positive. Hence αr1+(1−α)r∗crit is
less than r∗crit. So the rcrit here improves somewhat on the
choice in the statement of the Lemma.

Moreover, from

rcrit =
r∗crit + r1D(δc)/snr

1 +D(δc)/snr

it follows that (1+D(δc)/snr)(1+rcrit/τ2) is equal to

1 +
(1+r1/τ2)D(δc)

snr
+
r∗crit
τ2

,

as claimed.
Finally, for the last conclusion of the Lemma, it follows

from the fact that

min
−τ<z≤z∗

G(z) = min{G(zG), G(z∗)},

invoking zG ≤ 0 and combining the bounds form Lemmas 23
and 18. This completes the proof of Lemma 24.

Note from the form of rem and using 1 − Φ̄(ζ) = Φ(ζ)
that r∗crit − 1 may be written

max
{

(τ2+r1)D(δc) + ε ,

(r1−1)Φ(ζ)+ (2τ+ζ)φ(z)+ (τ2+r1)D(δc)Φ̄(ζ)
}
.

Thus [(τ2+r1)D(δc) + 1] appears both in the first expression
and as a multiplier of Φ̄(ζ) in the remainder of the second
expression in the max.

To clean the upcoming expressions, note that if we replace
the second expression in this max with the bound in which
we add the polynomially small ε to it, then r∗crit − 1 − ε
becomes independent of ε. Accordingly we henceforth make
that redefinition of r∗crit. Denoting r̃∗crit = r∗crit − 1 − ε it
becomes

max
{

(τ2+r1)D(δc) ,

(r1−1)Φ(ζ)+ (2τ+ζ)φ(z)+ (τ2+r1)D(δc)Φ̄(ζ)
}
.

Evaluation of the best r∗crit arises in the next subsection
from determination of the r1 that minimizes it.

E. Determination of δc:

Here we determine suitable choices of the leveling param-
eter δc. As we know, δc = 0 corresponds to no-leveling and
δc = snr corresponds to the constant power allocation, and
both will have their role for very large and very small snr,
respectively. Values in between are helpful in conjunction with
controlling the rate drop parameter rcrit.

Recall the relationship 1 + δc = (1 + ζ/τ)2/(1 + r1/τ
2),

used in analysis of the gap based on glow(x), where ζ is the
value of zx at the upper end point x∗ of the interval in which

the gap property is invoked. In this subsection we hold ζ fixed
and ask for the determination of a suitable choice of δc.

In view of the indicated relationship this is equivalent to the
determination a choice of r1. There are choices that arise in
obtaining manageable bounds on the rate drop. One is to set
r1 = 0 at which δc is near 2ζ/τ , proceeding with a case
analysis depending on which of the two terms of r∗crit is
largest. In the end this choice permits roughly the right form
of bounds, but noticeable improvements in the constants arise
with suitable non-zero r1 in certain regimes.

Secondly, as determined in this section, we can find the r1
or equivalently δc = δmatch at which the two expressions in
the definition of r∗crit match. In some cases this provides the
minimum value of r∗crit. Thirdly, keep in mind that we want a
small mistake rate δ∗mis as well as a small drop from capacity
of the inner code. The use of the overall rate of the composite
code provides means to express a combination of δ∗mis, r

∗
crit

and D(δc)/snr to optimize.
In this subsection we address the optimization of δc for

each ζ and then in the next subsection the choice of nearly
best values of ζ. In particular, this analysis provides means to
determine regimes for which it is best overall to use δmatch
or for which it is best to use instead δc = 0 or δc = snr.

For ζ > −τ , define ζ ′ by

ζ ′ = ζ (1+ζ/2τ)

for which (1+ζ/τ)2 = 1 + 2ζ ′/τ and define ψ = ψ(ζ) by

ψ = (2τ + ζ)φ(ζ)/Φ(ζ)

and γ = γ(ζ) by the small value

γ = 2ζ ′/τ + (ψ−1)/τ2.

Lemma 25: Match making. Given ζ, the choice of δc =
δmatch that makes the two expressions in the definition of
r∗crit be equal is given by

1+δc = eγ/(1+ζ/τ)
2
,

at which

1+r1/τ2 = (1+ζ/τ)2e−γ/(1+ζ/τ)
2
.

This δc is non-negative for ζ such that γ ≥ 0. At this δc =
δmatch the value of r̃∗crit = r∗crit − 1− ε is equal to

τ2(1+r1/τ2)D(δc) = r1 + ψ − 1,

which yields r̃∗crit/τ
2 equal to

(1+ζ/τ)2
[
e−γ/(1+ζ/τ)

2
− 1
]
+ γ,

which is less than γ2/[2(1+ζ/τ)2] for γ > 0. Moreover, the
contribution δ∗mis to the mistake rate as in Lemma 17, at this
choice of δc and corresponding r1, is equal to

δ∗mis =
ψ

2(τ+ζ)2 C
.

Remark: Note from the definition of ψ and ζ ′ that

γ =
(2 + ζ/τ)

(
ζ + φ(ζ)/Φ(ζ)

)
− 1/τ

τ
.
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Thus γ is near 2
(
ζ + φ(ζ)/Φ(ζ)

)
/τ .

Using the tail properties of the normal given in the appendix,
the expression ζ + φ(ζ)/Φ(ζ) is seen to be non-negative
and increasing in ζ for all ζ on the line, near to 1/|ζ| for
sufficiently negative ζ, and at least ζ for all positive ζ, In
particular, γ is found to be non-negative for ζ at least slightly
to the right of −τ .

Meanwhile, by such tail properties, φ(ζ)/Φ(ζ) is near |ζ|
for sufficiently negative ζ, so to keep δ∗mis small we will want
to avoid such ζ unless the capacity C is very large. At ζ=0
the ψ equals 4τ/

√
2π so the δ∗mis there is of order 1/τ . When

C is not large we will prefer somewhat positive ζ to produce a
small δ∗mis in balance with the rate drop contribution r∗crit/τ

2.
The ζ=0 case is illustrative for the behavior of γ and related

quantities. There γ is (ψ−1)/τ2 equal to 4/τ
√

2π−1/τ2, with
which δc = eγ − 1. Also r1/τ

2 = e−γ − 1. The r̃∗crit/τ
2 =

r1/τ
2+(ψ−1)/τ2 is then equal to e−γ−1+γ near to and upper

bounded by γ2/2 = (1/2)(ψ−1)2/τ4 less than 4/τ2π. In this
ζ = 0 case, the slightly positive δc, with associated negative
r1, is sufficient to cancel the (ψ−1)/τ2 part of r̃∗crit/τ

2, leaving
just the small amount bounded by (1/2)(ψ− 1)2/τ4. With
(ψ−1)/τ2 less than 2, that is a strictly superior value for
r̃∗crit/τ

2 than obtained with δc = 0 and ζ = 0 for which
r̃∗crit/τ

2 is (ψ−1)/τ2.

Proof of Lemma 25: The r∗crit − ε is the maximum of the
two expressions

(τ2+r1)D(δc) + 1

and

r1Φ(ζ) + (2τ+ζ)φ(z) + [(τ2+r1)D(δc) + 1]Φ̄(ζ).

Equating these, grouping like terms together using 1−Φ̄(ζ) =
Φ(ζ), and then dividing through by Φ(ζ) yields

(τ2+r1)D(δc)− r1 = ψ − 1.

Using τ2+r1 equal to (τ+ζ)2/(1+δc) and [D(δc)−1]/(1+δc)
equal to log(1+δc)− 1 the above equation may be written

(τ+ζ)2[log(1+δc)− 1] + τ2 = ψ − 1.

Rearranging, it is

log(1+δc) = 1 +
τ2 + (ψ−1)

(τ+ζ)2
,

where the right side may also be written γ/(1+ζ/τ)2. Expo-
nentiating establishes the solution for 1+δc, with corresponding
r1 as indicated. Let’s call the value that produces this equality
δc = δmatch. At this solution the value of r̃∗crit = r∗crit−1− ε
satisfies

(τ2+r1)D(δc) = r1 + ψ − 1.

Likewise, from the identity (τ2 +r1)D(δc) − (r1−1) = ψ,
multiplying by Φ̄(ζ) this establishes that the remainder used
in Lemma 16 is in the present case equal to rem = ψ Φ̄(ζ),
while the main part (2τ+ζ)φ(ζ) is equal to ψΦ(ζ). Adding
them using Φ(ζ)+Φ̄(ζ) = 1 shows that (2τ+ζ)φ(ζ)+rem is
equal to ψ. This is the numerator in the mistake rate expression
δ∗mis.

Using the form of r1 the above expression for r̃∗crit/τ
2 may

also be written

(1+ζ/τ)2
[
e−γ/(1+ζ/τ)

2
− 1
]
+ γ.

With y = γ/(1+ζ/τ)2 positive, the expression in the brackets
is e−y−1 which is less than y+y2/2. Plugging that in, the part
linear in y cancels, leaving the claimed bound γ2/[2(1+ζ/τ)2].
This completes the proof of Lemma 25.

Lemma 26: The optimum δc quartet. For each ζ, consider
the following minimizations. First, consider the minimization
of r∗crit for δc in the interval [0, snr]. Its minimum occurs
at the positive δc which is the minimum of the three values
δthresh0 , δmatch, and snr, where δthresh0 = Φ(ζ)/Φ̄(ζ).

Second, consider the minimization of

(1+D(δc)/snr)(1+rcrit/τ2)

as arises in the denominator of our rate expression. Its min-
imum for δc in [0, snr) occurs at the positive δc which is
the minimum of the two values δthresh1 and δmatch, where
δthresh1 is Φ(ζ)/[Φ̄(ζ) + 1/snr].

Third, consider the minimization of the following combi-
nation of contributions to the inner code rate drop and the
simplified mistake rate,

δ∗mis,simp + (1+D(δc)/snr)(1+rcrit/τ2)− 1,

for δc in [0, snr). For Φ(ζ) ≤ 1/(1+2C) its minimum occurs
at δc = 0, otherwise it occurs at the positive δc which is the
minimum of the two values δthresh and δmatch where

δthresh =
Φ(ζ)− Φ̄(ζ)/2C

1/snr + Φ̄(ζ)(1+1/2C)
.

The same conclusion holds using δ∗mis = δ∗mis,simp/(1+ζ/τ)
2,

replacing the occurrences of 2C in the previous sentence with
2C(1+ζ/τ)2. Finally, set

∆ζ,δc
= δ∗mis + (1+D(δc)/snr)(1+rcrit/τ2)− 1

and extend the minimization to [0, snr] using the previously
given specialized values in the δc = snr case. Then for each ζ
the minimum ∆ζ,δc

for δc in [0, snr] is equal to the minimum
over the four values 0, δthresh, δmatch and snr.

Remark: The ∆ζ,δc , when optimized also over ζ, will provide
the ∆shape summarized in the introduction. As shown in the
next section, motivation for it arises from the total drop rate
from capacity of the composition of the sparse superposition
code with the outer Reed-Solomon code. For now just think
of it as desirable to choose parameters that achieve a good
combination of low rate drop and low fraction of section
mistakes. As the proof here shows, the proposed combination
is convenient for the calculus of this optimization.

Recall for 0≤ δc<snr that (1+D(δc)/snr)(1+rcrit/τ2)
equals (1+r1/τ2)D(δc)/snr + 1+r∗crit/τ

2. In contrast, for
δc = snr, we set δ∗mis = Φ̄(ζ) and rcrit = max{rup, 0},
using the form of rup previously given for this case. These
different forms arise because the glow(x) bounds are used for
0 ≤ δc < snr, whereas g(x) is used directly for δc = snr.
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Proof of Lemma 26: To determine the δc minimizing r∗crit,
in the definition of r∗crit − 1 − ε write the first expression
(τ2+r1)D(δc) in terms of δc as

(τ+ζ)2
D(δc)
(1+δc)

.

Take its derivative with respect to δc. The ratio D(δc)/(1+δc)
has derivative that is equal to [D′(δc)(1+δc)−D(δc)] divided
by (1+δc)2. Now from the form of D(δc), its derivative D′(δc)
is log(1+δc), so the expression in brackets simplifies to δc,
which is non-negative, and multiplying by the positive factor
(τ +ζ)2/(1+δc)2 provides the desired derivative. Thus this
first expression is increasing in δc, strictly so for δc > 0. As
for the second expression in the maximum, it is equal to the
first expression times Φ̄(ζ) plus r1 + ψ−1 times Φ(ζ). So
from the relationship of r1 and δc, its derivative is equal to
[δcΦ̄(ζ) − Φ(ζ)] times the same (τ + ζ)2/(1+ δc)2. So the
value of the derivative of the first expression is larger than
that of the second expression, and accordingly the maximum
of the two expressions equals the first expression for δc ≥
δmatch and equals the second expression for δc < δmatch.
The derivative of the second expression, being the multiple of
[δcΦ̄(ζ)− Φ(ζ)] is initially negative so that the expression is
initialling decreasing, up to the point δthresh0 = Φ(ζ)/Φ̄(ζ)
at which the derivative of this second expression is 0, so the
optimizer of r∗crit occurs at the smallest of the three values
δmatch, δthresh, and the right end point snr of the interval of
consideration.

To minimize (1+D(δc)/snr)(1+rcrit/τ2)− 1, multiplying
through by τ2, recall that it equals (τ2+r1)D(δc)/snr+ r∗crit
for 0 ≤ δc < snr. Add to the previous derivative values
the amount δc/snr, which is again multiplied by the same
factor (τ+ζ)2/(1+δc)2. The first expression is still increasing.
The second expression, after accounting for that factor, has
derivative

δc/snr + δcΦ̄(ζ)− Φ(ζ).

It is still initially negative and hits 0 at δthresh1 =
Φ(ζ)/[Φ̄(ζ) + 1/snr], which is again the minimizer if it
occurs before δmatch. Otherwise, if δmatch is smaller than
δthresh1 then, since to the right of δmatch the maximum equals
the increasing first expression, it follows that δmatch is the
minimizer.

Next determine the minimizer of the criterion that combines
the rate drop contribution with the simplified section mistake
contribution δ∗mis,simp. Multiplying through by τ2, we have
added the quantity (τ2 + r1)D(δc) − r1 +1 times Φ̄(ζ)/2C
plus the amount (2τ + ζ)φ(ζ)/2C not depending on δc. So its
derivative adds the expression (δc+1)Φ̄(ζ)/2C times the same
the factor (τ+ζ)2/(1+δc)2. Thus, when the first part of the
max is active, the derivative, after accounting for that factor,
is

δc + δc/snr + (1+δc)Φ̄(ζ)/2C,

whereas, when the second part of the max is active it is

δc Φ̄(ζ) − Φ(ζ) + δc snr + (1+δc)Φ̄(ζ)/2C.

Again the first of these is positive and greater than the second.
Where the value δc is relative to δmatch determines which part

of the max is active. For δc < δmatch it is the second. Initially,
at δc = 0, it is

−Φ(ζ) + Φ̄(ζ)/2C,

which is (1/2C)[1 − Φ(ζ)(1+2C)]. If ζ is small enough that
Φ(ζ) ≤ 1/(1 + 2C), this is at least 0. Then the criterion
is increasing to the right of δc = 0, whence δc = 0 is
the minimizer. Else if Φ(ζ) > 1/(1+2C) then initially, the
derivative is negative and the criterion is initially decreasing.
Then as before the minimum value is either at δthresh or
at δmatch whichever is smallest. Here δthresh is the point
where the function based on the second expression in the
maximum has 0 derivative. The same conclusions hold with
δ∗mis = δ∗mis,simp/(1+ζ/τ

2) in place of δmis,simp except that
the denominator 2C is replaced with 2C(1+ζ/τ2).

Examining δthresh1 and δthresh, it is seen that these are
less than snr. Nevertheless, when minimizing over [0, snr],
the minimum can arise at snr because of the different form
assigned to the expressions in that case. Accordingly the
minimum of ∆ζ,δc

for δc in [0, snr] is equal to the minimum
over the four values 0, δthresh, δmatch and snr, referred to as
the optimum δc quartet. This completes the proof of Lemma
26.

Remark: To be explicit as to the form of ∆ζ,δc
with δc = snr,

recall that in this case 1+rup/τ2 is

(1−snr Φ̄(ζ))(1+ζ/τ)2/(1+snr).

Consequently ∆ζ,δc
= δ∗mis+(1+D(δc)/snr)(1+rcrit/τ2)−1,

in this δc = snr case, becomes

Φ̄(ζ) +
(1+D(snr)/snr)

(1 + snr)
(1 + snr Φ̄(ζ))(1+ζ/τ)2 − 1,

when rup ≥ 0. For rup < 0 as is true for sufficiently small
contributions from snrΦ̄(ζ) and ζ/τ , we simply set rcrit = 0
to avoid complications from the conditions of Corollary 19.
Then ∆ζ,δc becomes

Φ̄(ζ) +D(snr)/snr.

F. Inequalities for ψ, γ, and r̃∗crit:

At δc = δmatch we examine r̃∗crit further. Previously, in
Lemma 25 the expression r̃∗crit/τ

2 is shown to be less than
γ2/[2(1+ζ/τ)2]. Now this bound is refined in the cases of
negative and positive ζ. For negative ζ it is shown that γ ≤
2/τ |ζ| and for positive |ζ| it is shown that r̃∗crit is not more
than max{2(ζ ′)2, ψ − 1}. For sufficiently positive ζ it is not
more than 2ζ2.

Recall that γ is less than

(2+ζ/τ)
(
ζ + φ(ζ)/Φ(ζ)

)
τ

and that ψ = (2τ + ζ)φ(ζ)/Φ(ζ).

Lemma 27: Inequalities for negative ζ. For −τ <
ζ ≤ 0, the γ is an increasing function less than
min{2/|ζ|, 4/

√
2π}/τ . Likewise the function ψ is less than

2(|ζ|+ 1/|ζ|)τ .

Proof of Lemma 27: For ζ ≤ 0, the increasing factor 2+ζ/τ
is less than 2 and the factor ζ + φ(ζ)/Φ(ζ) is non-negative,
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increasing, and less than 1/|ζ| by the normal tail inequalities
in the appendix. At ζ = 0 this factor is 2/

√
2π. As for ψ the

factor φ(ζ)/Φ(ζ) is at least |ζ| and not more than |ζ|+1/|ζ| for
negative ζ again by the normal tail inequalities in the appendix
(where improvements are given, especially for 0 ≤ |ζ| ≤ 1).
This completes the proof of Lemma 27.

Now we turn attention to non-negative ζ. Three bounds on
r̃∗crit are given. The first based on γ2/2 and the other two
more exacting to determine the relative effects of 2(ζ ′)2 and
ψ − 1.

Corollary 28: For ζ ≥ 0 we have r̃∗crit/τ
2 ≤ γ2/2 and

r̃∗crit ≤ 2
(
ζ + φ(ζ)/Φ(ζ)

)2
.

Proof of Corollary 28: By Lemma 25, the r̃∗crit/τ
2 is not

more than γ2/[2(1+ζ/τ)2]. Now γ is not more than

2(1+ζ/2τ)
(
ζ + φ(ζ)/Φ(ζ)

)
τ

Consequently, r̃∗crit is not more than

2(1+ζ/2τ)2
(
ζ + φ(ζ)/Φ(ζ)

)2
(1+ζ/τ)2

.

Using 1+ζ/2τ not more than 1+ζ/τ , completes the proof of
Lemma 28.

Lemma 29: Direct r∗crit bounds. Let r̃∗crit = r∗crit − 1 −
ε evaluated at δmatch. Bounds are provided depending on
whether D(2ζ ′/τ) or (ψ − 1)/τ2 is larger. In the case
D(2ζ ′/τ) ≥ (ψ − 1)/τ2 the r̃∗crit satisfies

r̃∗crit/τ
2 ≤ D(2ζ ′/τ).

In any case, the value of r̃∗crit/τ
2 may be represented as an

average of D(2ζ ′/τ) and (ψ−1)/τ2, plus a small excess, where
the weight assigned to (ψ−1)/τ2 is proportional to the small
2ζ ′/τ . Indeed r̃∗crit/τ

2 equals

D(2ζ ′/τ) + (ψ−1)
τ2 2ζ ′/τ

1 + 2ζ ′/τ
+ excess

where excess is e−v − (1− v) evaluated at

v =
ψ−1
τ2 −D(2ζ ′/τ)

1 + 2ζ ′/τ
.

In the case (ψ−1)/τ2 > D(2ζ ′/τ) it satisfies

excess ≤
[
ψ−1
τ2 −D(2ζ ′/τ)

]2
2(1 + ζ/τ)4

.

Proof of Lemma 29: With the relationship between r1 and δc,
recall (τ2+r1)D(δc) is increasing in δc and hence decreasing
in r1. The r1 that provides the match makes (τ2+r1)D(δc)
equal r1+ψ−1. At r1 = 0, the first is τ2D(2ζ ′/τ), so if that be
larger than ψ−1 then a positive r1 is needed to bring it down
to the matching value. Then r̃∗crit is less than τ2D(2ζ ′/τ).
Whereas if τ2D(2ζ ′/τ) is less than ψ−1 then r̃∗crit is greater
than D(2ζ ′/τ), but not by much as we shall see. In any case,
write r̃∗crit/τ

2 as
r1
τ2

+
ψ − 1
τ2

which by Lemma 25 is
ψ − 1
τ2

+ (1+ζ/τ)2e−γ/(1+ζ/τ)
2
− 1.

Use γ = 2ζ ′/τ + (ψ−1)/τ2 and for this proof abbreviate
a = (ψ−1)/τ2 and b = 2ζ ′/τ . The exponent γ/(1+ζ/τ)2 is
then (a+b)/(1+b) and the expression for r̃∗crit/τ

2 becomes

a+ (1+b)e−(a+b)/(1+b) − 1.

Add and subtract D(b) in the numerator to write (a+b)/(1+b)
as (a−D(b))/(1+b) plus (b+D(b))(1+b), where by the definition
of D(b) the latter term is simply log(1+b) which leads to a
cancelation of the 1+b outside the exponent. So the above
expression becomes

a+ e−(a−D(b))/(1+b) − 1,

which is a + e−v − 1 = a − v + excess, where excess =
e−v − (1−v) and v = (a−D(b))/(1+b). For a ≥ D(b), that
is, v ≥ 0, the excess is less than v2/2, by the second order
expansion of e−v , since the second derivative is bounded by
1, which provides the claimed control of the remainder. The
a−v may be written as [D(b)+ba]/(1+b) the average of D(b)
and a with weights 1/(1+b) and b/(1+b), or equivalently as
D(b) + b(a−D(b))/(1+b). Plugging in the choices of a and
b completes the proof of Lemma 29.

An implication when ζ and ψ − 1 are positive, is that
r̃∗crit/τ

2 is not more than

D(2ζ ′/τ) +
2ζ ′(ψ − 1)

τ3
+

(ψ − 1)2

τ4
.

This bound, and its sharper form in the above lemma, shows
that r̃∗crit/τ

2 is not much more than D(2ζ ′/τ), which in turn
is less than 2(ζ ′)2/τ2, near 2ζ2/τ2.

Another means by which to show that r̃∗crit is not much
more than 2ζ2 uses the upper bound formed by equating the
two expressions in r∗crit, with D(δc) replaced by its upper
bound δ2c/2, where with δc expressed as a function of r1, it
leads to a quadratic equation for the solution r1. It is useful
in refining the above, especially in demonstrating that r̃∗crit is
less than 2ζ2 for a range of values of sufficiently positive ζ.

Corollary 30: r∗crit bounds based on a quadratic equation.
In the definition of r∗crit consider the value of r1 that matches
upper bounds on the two expressions that arise with D(δc)
replaced by δ2c/2. Then for every ζ ≥ 0, the r̃∗crit is not more
than

1
1+γ

2(ζ ′)2 +
γ

1+γ
(ψ − 1).

It is less than the value 2(ζ ′)2 when ψ−1 is less than that value,
and, otherwise, the above expression controls the small amount
by which it exceeds 2(ζ ′)2. The r1 is given as a solution
to a quadratic equation. The sign of r1 equals the sign of
2(ζ ′)2 +1−ψ. This r1 satisfies r1 ≤ [2(ζ ′)2 +1−ψ]/[1+γ] and
when r1 is negative it satisfies r1 ≥ [2(ζ ′)2+1−ψ]/[1+2ζ ′/τ ].
If ζ is such that ψ ≥ 1, the δc is positive. Then r1 ≤ 2τζ ′

and 1+r1/τ2 ≤ 1+2ζ ′/τ . For every ζ ≥ 0, the above bound
on r∗crit − ε may be written

2(ζ ′)2 + 1 + (2ζ ′/τ)ψ + ψ(ψ−1)/τ2

1 + γ
.
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With ψ ≥ 1 it is further tightly upper bounded by replacing
the γ in the denominator with 2ζ ′/τ , such that 1+γ is at least
(1+ζ/τ)2. Furthermore, if ζ2 is at least ψ−1 and ζ ≥ 1/(4τ),
then

r̃∗crit<2ζ2.

The proof of this Corollary 30 is in the appendix.

We remark that later we will choose ζ2 = 2 log τ/(d
√

2π)
with a value for d ≥ 1/2, depending on the snr. This arranges
τφ(ζ) = d with which ψ is at least 2d, so it will be at least 1.
Also with d constant, the case that ζ2 exceeds ψ−1 is regarded
as somewhat typical. Before proceeding further, let’s compare
the 2ζ2 bound achieved when r1 is sufficiently positive with
the form 2(ζ ′)2 that holds when r1≥0. The expression 2(ζ ′)2

equal to 2ζ2
(
1+ζ/(2τ)

)2
, exceeds 2ζ2 by an amount near

2ζ3/τ , which is of order (log τ)1.5/τ . The point of the last
claim of the corollary is that this excess amount from ζ ′ in
place of ζ is avoided.

We also take note of the following monotonicity property
of the function ψ(ζ) for ζ ≥ 0. It uses the fact that τ ≥ 1.
Indeed, τ ≥

√
2 logB is at least

√
2 log 2 = 1.18.

Lemma 31: Monotonicity of ψ: With τ ≥ 1.0, the positive
function ψ(z) = (2τ+z)φ(z)/Φ(z) is strictly decreasing for
z ≥ 0. Its maximum value is ψ(0) = 4τ/

√
2π ≤ 1.6 τ .

Moreover γ = 2ζ ′/τ + (ψ − 1)/τ2 is positive.

Proof of Lemma 31: The function ψ(z) is clearly strictly
positive for z ≥ 0. Its derivative is seen to be

ψ′(z) = −[ψ(z) + z(2τ + z)− 1]φ(z)/Φ(z).

Note that the function τ2γ(z) matches the expression in
brackets, this derivative equals

−τ2γ(z)φ(z)/Φ(z).

The τ2γ(z) is at least ψ(z) + 2τz − 1, and it remains to
show that it is positive for all z ≥ 0. It is clearly positive for
z ≥ 1/2τ . For 0≤z≤1/2τ , lower bound it by lower bounding
ψ(z) − 1 by 2τφ(1/2τ)/Φ(1/2τ) − 1, which is positive
provided 1/2τ is less that the unique point z = zroot > 0
where φ(z) = zΦ(z). Direct evaluation shows that this z is
between 0.5 and 0.6. So τ ≥ 1.0 suffices for the positivity of
γ(z) and equivalently the negativity of ψ′(z) for all z ≥ 0.
This completes the proof of Lemma 31.

The monotonicity of ψ(ζ) is associated with decreasing
shortfall δ∗ as we increase ζ, though with the cost of increasing
r∗crit. Evaluating r∗crit as a function of ζ enables us to control
the tradeoff.

Remark 1: For most ζ we use Φ(ζ) is not far from 1. Using
Φ̄(ζ)≤φ(ζ)/ζ, the expression for ψ = (2τ+ζ)φ(ζ)/Φ(ζ) is
not more than what one would have with 1−φ(ζ)/ζ replacing
the Φ(ζ) in the denominator. Accordingly for the condition
ψ ≤ ζ2 + 1, rearranging that bound, it is seen to be sufficient
that

(2τ + 2ζ + 1/ζ)φ(ζ) ≤ ζ2 + 1.

Now with ζ =
√

2 log τ/(d
√

2π), the right side is of order
log τ , while the left side is near 2d. So the condition can be
comfortably satisfied.

Remark 2: With (ψ−1)/τ small compared to ζ, the above
proof shows that r∗crit − 2ζ2 − 1 is bounded by an expression
near

−[2ζ/τ ]
[
ζ2 + 1− ψ] + ε.

So with ζ2 + 1 − ψ positive and of the order log τ , the first
part is sufficiently negative that it remains so when we add the
polynomially small ε. Then we have the even simpler bound,
without need for the ε,

r∗crit ≤ 2ζ2 − 1.

Remark 3: The rate R = C′/(1+r/τ2) has been parameterized
by r. As stated in Lemma 24, the relationship between the gap
and r, expressed as gap = (r−rcrit)/[snr(τ2+r1)], may also
be written r = rcrit + snr(τ2+r1)gap. Recall also that we
may set gap = η + f̄ + 1/(m−1), with f̄ = mf∗ρ. In this
way, the rate parameter r is determined from the choices of ζ
that appear in rcrit as well as from the parameters m, f̄ and
η that control, respectively, the number of steps, the fractions
of false alarms, and the exponent of the error probability.

The importance of ζ in this section is that provides for the
evaluation of rcrit and through r1 it controls the location of
the upper end of the region in which g(x) − x is shown to
exceed a target gap. For any ζ, the above remark conveys the
smallest size rate drop parameter r for which that gap is shown
to be achieved.

In the rate representation R, draw attention to the product of
two of the denominator factors (1+D(δc)/snr)(1+r/τ2). We
represent these factors in a way that exhibits the dependence
on r∗crit and the gap.

Using r equal to rcrit + snr gap τ2 (1+r1/τ
2) write the

factor 1+r/τ2 as (1+rcrit/τ
2)(1 + ξ snr gap) where ξ is

the ratio (1+r1/τ2)/(1+rcrit/τ2), a value between 0 and 1,
typically near 1. Thus the product (1+D(δc)/snr)(1+r/τ2)
takes the form(

1+D(δc)/snr
)(

1+rcrit/τ2
)(

1 + ξ snr gap
)
.

Recall that (1+D(δc)/snr)(1+rcrit/τ2) is equal to

1 +
(1+r1/τ2)D(δc)

snr
+
r∗crit
τ2

which, at r1 = r1,match, is equal to

1 +
r̃∗crit
snr τ2

+
r̃∗crit + 1 + ε

τ2
.

So in this way these denominator factors are expressed in
terms of the gap and r̃∗crit, where r̃∗crit is near 2ζ2 by the
previous corollary.

We complete this subsection by inquiring whether rcrit is
positive for relevant ζ. By the definition of rcrit, its positivity
is equivalent to the positivity of r∗crit + r1D(δc)/snr which
is not less than 1 + ε+ (τ2 + r1)D(δc) + r1D(δc)/snr. The
multiplier of D(δc) is (τ2 + r1)(1 + 1/snr) which is positive
for r1 ≥ −τ2 snr/(1+snr). So we ask whether that be a
suitable lower bound on r1. Recall the relationship between
x∗ and r1,

1− x∗ =
r − r1

snr(τ2+r1)
= gap+

rcrit − r1
snr(τ2+r1)

.
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Recognizing that rcrit − r1 equals r∗crit − r1 divided by
1 +D(δc)/snr, expressing D(δc) in terms of r∗crit and r1 as
above, one can rearrange this relationship to reveal the value
of r1 as a function of x∗ + gap and r∗crit. Using r∗crit > 0
one finds that the minimal r1 to achieve positive x∗ + gap is
indeed greater than −τ2 snr/(1+snr).

G. Determination of ζ:

In this subsection we solve, where possible, for the optimal
choice of ζ in the expression ∆ζ,δc

which balances contribu-
tions to the rate drop with the quantity δ∗mis related to the
mistake rate. As above it is

∆ζ,δc
= δ∗mis +

(
1+D(δc)/snr)

(
1+rcrit/τ2

)
− 1.

We also work with the simplified form ∆ζ,δc,simp in which
δ∗mis,simp is used in place of δ∗mis. For 0 ≤ δc < snr, this
∆ζ,δc

coincides, as we saw, with

(2τ+ζ)φ(ζ) + rem

2C τ2(1+ζ/τ)2
+

(1+r1/τ2)D(δc)
snr

+
r∗crit
τ2

,

where rem =
[
(τ2+r1)D(δc)−(r1−1)

]
Φ̄(ζ). Define ∆ζ,δc,simp

to be the same but without the (1+ζ/τ)2 in the denominator
of the first part.

Seek to optimize ∆ζ,δc or ∆ζ,δc,simp over choices of ζ for
each of the quartet of choices of δc given by 0, δthresh, δmatch
and snr. The minimum of ∆ζ,δc

provides what we denote as
∆shape as summarized in the introduction.

Optimum or near optimum choices for ζ are provided for
the cases of δc equal to 0, δmatch, and snr, respectively. These
provide distinct ranges of the signal to noise ratio for which
these cases provide the smallest ∆ζ,δc . At present we have
not been able to determine whether the minimum ∆ζ,δthresh

has a range of signal to noise ratios at which its minimum is
superior to what is obtained with the best of the other cases.
What we can confirm regarding δthresh is that for small snr
the minζ ∆ζ,δthresh

requires δthresh near snr, and that for snr
above a particular constant, the minimum ∆ζ,δthresh

matches
minζ ∆ζ,0 with δthresh = 0 at the minimizing ζ.

Optimal choices for ζ for the cases of δc equal to 0, δmatch,
and snr, respectively, provide three disjoint intervals R1, R2,
R3 of signal to noise ratio. The case of δc = 0 provides the
optimum for the high end of snr in R3; the case of δc =
δmatch provides our best bounds for the intermediate range
R2; and the case of δc = snr provides the optimum for the
low snr range R1.

Our tactic is consider these choices of δc separately, either
optimizing over ζ to the extent possible or providing reason-
ably tight upper bounds on minζ ∆ζ,δc , and then inspect the
results to see the ranges of snr for which each is best.

Note directly that ∆ζ,δc
is a decreasing function of snr for

the δc = 0 and δc = δmatch cases, so minζ ∆ζ,δc
will also be

decreasing in snr. Likewise for ∆ζ,δc,simp.
Remember that we are using log base e, so the capacity is

measured in nats.

Lemma 32: Optimization of ∆ζ,δc,simp with δc = 0. At
δc = 0, the ∆ζ,0,simp is optimized at the 1/(2C+1) quantile

of the standard normal distribution

ζ = ζC = Φ−1(1/(2C+1)).

If C ≥ 1/2 this ζC is less than or equal to 0 and minζ ∆ζ,0,simp

is not more than
(2C+1)φ(ζC)

C τ
+

1
τ2
.

Dividing the first term by (1+ζC/τ)2 gives an upper bound
on minζ ∆ζ,0 valid for ζC > −τ . The bound is decreasing in
C when ζC > −τ + 1. Let C, exponentially large in τ2/2, be
such that ζClarge

= −τ+1. For C ≥ Clarge, use ζ = −τ+1 in
place of ζC , then the first term of this bound is exponentially
small in τ2/2 and hence polynomially small in 1/B.

Thus the ζ = ζ∗C advocated for δc = 0 is

ζ∗C = max{ζC ,−τ + 1}.

Examination of the bound shows an implication of this
Lemma. When C/

√
log C is large compared to τ the ∆shape

is near 1/τ2. This is clarified in the following corollary which
provides slightly more explicit bounds.

Corollary 33: Bounding min∆ζ,0 with δc = 0. To present
upper bounds on minζ ∆ζ,0,simp, the choice ζ = 0 provides

(2C+1)
C

(
1

τ
√

2π
+

1
4τ2

)
,

which also bounds minζ ∆ζ,0. Moreover, when C ≥ 1/2, the
optimum ζC satisfies |ζC | ≤

√
2 log(C+1/2) and provides the

following bound, which improves on the ζ = 0 choice when
C ≥ 2.2,

ξ(|ζC |)
C τ

+
1
τ2
,

not more than

ξ
(√

2 log(C+1/2)
)

C τ
+

1
τ2
,

where ξ(z) equals z+1/z for z ≥ 1 and equals 2 for 0<ζ<1.
Dividing the first term by (1+ζC/τ)2, gives an upper bound
on minζ ∆ζ,0 of

ξ(|ζC |)
C τ(1+ζC/τ)2

+
1
τ2
.

When B ≥ 1+snr, this bound on minζ ∆ζ,0 improves on the
bound with ζ = 0, for C ≥ 5.5. As before, when C ≥ Clarge
for which ζClarge

= −τ + 1, we use the bound with Clarge in
place of C.

The minζ ∆ζ,0,simp bound above is smaller than given
below for minζ ∆ζ,δmatch,simp, when the snr is large enough
that an expression of order C/(log C)3/2 exceeds τ .

There is a role in what follows for the quantity d = dsnr =
2C/ν = (1+1/snr) log(1+snr). It is an increasing function
of snr, with value always at least 1.

For 2C/ν ≥ τ/
√

2π we use non-positive ζ, whereas for
2C/ν < τ/

√
2π we use positive ζ. Thus the discriminant of

whether we use positive ζ is the ratio ω = d/τ and whether
it is smaller than 1/

√
2π. This ratio ω is

ω =
d

τ
=

2C
ν τ

.
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In the next two lemma we use δc = δmatch. Using the results
of Lemma 25 and 1 + 1/snr = 1/ν, the form of ∆ζ,δmatch

simplifies to

ψ

2C τ2(1+ζ/τ)2
+

1
ν

r̃∗crit
τ2

+
1 + ε

τ2
.

Recall for negative ζ we have that ψ is near 2τ |ζ| and r̃∗crit
through γ2/2 is near 2/|ζ|2, with associated bounds given in
Lemma 27. So it is natural to set a negative ζ that minimizes
−τζ/C + 2/(ν ζ2 τ2) for which the solution is

ζ = −(4C/ντ)1/3 = −(2ω)1/3,

which we denote as ζ1/3.

Lemma 34: Optimization of ∆ζ,δc
at δc = δmatch: Bounds

from non-positive ζ. The choice of ζ = 0 yields the upper
bound on minζ ∆ζ,δmatch

of

2
C τ

√
2π

+
4

ν τ2π
+

1 + ε

τ2
.

As for negative ζ, the choice ζ = ζ1/3 = −(4C/ντ)1/3 yields
the upper bound on minζ ∆ζ,δmatch

of

1
(1 + ζ1/3/τ)2

(
2.4

ν1/3C2/3τ4/3
+

2
|ζ1/3|C τ

)
+

1+ε
τ2

.

Amongst the bounds so far with ζ ≤ 0, the first term
controlling δ∗mis is smallest at ζ = 0 where it is 2/[C τ

√
2π].

The advantage of going negative is that then the 4/[ν τ2π]
term is replaced by terms that are smaller for large C.
Comparison: The two bounds in Lemma 34 may be written
as

4
ν τ2

[
1√
2πω

+
1
π

]
+

1 + ε

τ2

and
4
ν τ2

[
1.5

(2ω)2/3
+

2
(2ω)4/3

]
+

1 + ε

τ2
,

respectively, neglecting the (1 + ζ1/3/τ) factor. Numerical
comparison of the expressions in the brackets reveals that the
former, from ζ = 0, is better for ω < 5.37, while the later from
ζ = ζ1/3 is better for ω ≥ 5.37, which is for |ζ1/3| ≥ 2.2.

Next compare the leading term of the bound ζ1/3 and δc =
δmatch to the corresponding part of the bound using ζC and
δc = 0. These are, respectively,

2.4
ν1/3C2/3τ4/3

and
ξ(|ζC |)
C τ

.

From this comparison the δc = 0 solution is seen to be better
when

4.5C
ν (ξ(|ζC |))3

> τ.

Modified to take into account the factors 1+ζ1/3/τ and 1+ζ∗C/τ ,
this condition defines the region R3 of very large snr for
which δc = 0 is best. To summarize it corresponds to snr large
enough that an expression near 4.5C/(log C)3/2 exceeds τ , or,
equivalently, that C is at least a value of order τ(log τ)3/2,
near to (τ/4.5)(log(τ/4.5))1.5, for sufficient size τ .

Next consider the case of ω = d/τ less than 1/
√

2π for
which we use positive ζ. The function φ(ζ)/Φ(ζ) is strictly
decreasing. From its inverse, let ζω be the unique value at
which φ(ζ)/Φ(ζ) = 2ω. We use it to provide a tight bound
on the optimal ∆ζ,δmatch

.

Lemma 35: Optimization of ∆ζ,δc
at δc = δmatch: Bounds

from positive ζ. Consider the case that τ/
√

2π ≥ 2C/ν. Let
ω = 2C/ν τ . The choice of ζ = ζω yields ∆ζ,δmatch

not more
than

2
ν τ2

[
2 +

(
ζω + 2ω

)2]+
1 + ε

τ2
.

This ζω is not more than ζ∗ω =
√

2 log
(
1/2 + 1/2ω

√
2π
)

which is √
2 log

(
1
2

+
τ ν

4C
√

2π

)
,

at which ∆ζ,δmatch
is not more than

2
ν τ2

2 +

(√
2 log

(
1
2

+
τ ν

4C
√

2π

)
+

4C
τ ν

)2
+

1+ε
τ2

.

For small d/τ the 2ω = 4C/ν τ = 2d/τ term inside the
square is negligible compared to the log term. Then the bound
is near

4
ν τ2

[
1 + log

(
1
2

+
τ

2d
√

2π

)]
+

1
τ2
.

In particular if snr is small the d = 2C/ν is near 1 and the
bound is near

4
ν τ2

[
1 + log

(
1
2

+
τ

2
√

2π

)]
+

1
τ2
.

Finally, consider the case δc = snr. The following lemma
uses the form of ∆ζ,snr given in the remark following Lemma
26.

Lemma 36: Optimization of ∆ζ,δc at δc = snr. The ∆ζ,snr

is the maximum of the expressions

Φ̄(ζ) +
(1+D(snr)/snr)

(1 + snr)
(1 + snr Φ̄(ζ))(1+ζ/τ)2 − 1

and
Φ̄(ζ) +D(snr)/snr.

The first expression in this max is approximately of the form
b Φ̄(ζ) + 2ζ/τ + c, optimized at

ζ =
√

2 log(τ(1+2C)/2
√

2π),

where b = 1 + 2C and c is equal to the negative value
(1/snr) log(1+snr) − 1, at which Φ̄(ζ) ≤ φ(ζ) = 2/(τb).
This yields a bound for that expression near

2
τ

+
2
√

2 log(τ(1+2C)/2
√

2π)

τ
+ c,

with which we take the maximum of it and
2

τ(1+2C)
+
D(snr)
snr

.
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Recall that D(snr)/snr ≤ snr/2. Because of the
D(snr)/snr term the ∆ζ,snr is small only when snr is small.
In particular ∆ζ,snr is less than a constant time

√
log τ/τ

when snr is less than such.
In view of the ν = snr/(1+snr) factor in the denominator

of ∆ζ,δmatch
, we see that minζ ∆ζ,snr provides a better bound

than ∆ζ,δmatch
for snr less than a constant times

√
log τ/τ .

Proof of Lemma 32 and its corollary: This Lemma concerns
the optimization of ζ in the case δc = 0. In this case 1+
r1/τ

2 = (1+ζ/τ)2, the role of r∗crit is played by rup and the
value of ∆ζ,0,simp is

1
2C

(2τ+ζ)φ(ζ) + rem

τ2
+
r1 + (2τ+ζ)φ(ζ) + rem

τ2
.

Here rem = −(r1− 1)Φ̄(ζ), with r1 = 2ζτ + ζ2. Direct
evaluation at ζ = 0 gives a bound, at which r1 = 0 and
rem = 1/2.

Let’s optimize ∆ζ,0,simp for the choice of ζ. The derivative
of (2τ+ζ)φ(ζ)+ rem with respect to ζ is seen to simplify to
−2(τ+ζ)Φ̄(ζ). Accordingly, ∆ζ,0,simp has derivative

2(τ+ζ)
(

1−
( 1
2C

+ 1
)
Φ̄(ζ)

)
,

which is 0 at ζ solving Φ̄(ζ) = 2C/(2C+1), equivalently,
Φ(ζ) = 1/(2C+1). At this ζ, the quantities multiplying r1
including the parts from the two occurrences of the remainder
remainder are seen to cancel, such that the resulting value of
∆ζ,0,simp is

(1+1/2C)(2τ+ζC)φ(ζC) + 1
τ2

.

With 2C > 1, this ζ = ζC is negative, so ∆ζ,0,simp is not more
than

(2C + 1)φ(ζC)
C τ

+
1
τ2
.

Per the inequality in the appendix for negative ζ, the φ(ζC)
is not more than ξ(|ζC |)Φ(ζC) = ξ(|ζC |)/(2C+1), with ξ(|ζ|)
the nondecreasing function equal to 2 for |ζ| ≤ 1 and equal to
|ζ|+ 1/|ζ| for |ζ| greater than 1. So at ζ = ζC , the ∆ζ,0,simp

is not more than
ξ(|ζC |)
C τ

+
1
τ2
,

where from 1/(2C+1) = Φ(ζC) ≤ (1/2)e−ζ
2
C/2 we have |ζC | ≤√

2 log(2C+1)/2).
The coefficient ξ(

√
2 log(2C+1)/2) improves on the (2C+

1)/
√

2π from the ζ = 0 case when (2C + 1)/2 is less
than the value val for which ξ(

√
2 log val) = (2/

√
2π)val.

Evaluations show val to be between 2.64 and 2.65. So it is
an improvement when 2C ≥ 2val − 1 = 4.3, and C ≥ 2.2
suffices. The improvement is substantial for large C.

Dividing the first term by (1+ζC/τ)2 produces an upper
bound on ∆ζ,0 when ζC > −τ . Exact minimization of ∆ζ,0

is possible, though it does not provide an explicit solution.
Accordingly we instead use the ζC that optimizes the simpler
form and explore the implications of the division by (1 +
ζC/τ)2.

Consider determination of conditions on the size C such that
the bound on minζ ∆zeta,0 is an improvement over the ζ = 0

choice. One can arrange the |ζC |/τ to be small enough that
the factor (1+ζC/τ)2 in the denominator remains sufficiently
positive. At ζ = ζC , the bound on |ζC | of

√
2 log(2C+1)/2)

is kept less than τ =
√

2 logB(1+δa) when B is greater than
C, and |ζC |/τ is kept small if B is sufficiently large compared
to C.

In particular, suppose B ≥ 1 + snr, then τ2/4 is at
least C = (1/2) log(1 + snr), that is, τ ≥

√
4C, and

(1+ζ/τ) is greater than 1 −
√

(1/2C) log(2C+1)/2), which
is positive for all C ≥ 1/2. Then for our non-zero ζC
bound on ∆ζ,0 to provide improvement over the ζ = 0
bound it is sufficient that C be at least the value C0 at
which (2C+1)/

√
2π equals ξ(

√
2 log(2C+1)/2) divided by[

1 − 2
√

(1/2C) log((2C+1)/2)
]2

. Numerical evaluation re-
veals that C0 is between 5.4 and 5.45.

Next, consider what to do for very large C for which τ +
ζC is either negative or not sufficiently positive to give an
effective bound. This could occur if snr is large compared
to B. To overcome this problem, let Clarge be the value with
ζCapacitylarge

= −τ + 1. For C ≥ Clarge, use this ζ = ζClarge

in place of ζC so that τ+ζ = 1 stays away from 0. Then upper
bound ∆ζ,0 by replacing the appearance of C with Clarge. This
Clarge has

√
2 log((2Clarge + 1)/2) ≥ |ζ| = τ − 1 so that

2Clarge + 1 ≥ 2e(τ−1)2/2.

More stringently,
1

2Clarge + 1
= Φ(ζ) = Φ(τ − 1) ≤ 1

τ − 1
φ(τ − 1),

from which 2Clarge+1 is at least (τ −1)
√

2πe(τ−1)2/2. Then
for C ≥ Clarge, at ζ = ζClarge

the term

τξ(|ζ|)
C (τ + ζ)2

is less than
2τ2

(τ − 1)
√

2πe(τ−1)2/2 − 1

which is exponentially small in τ2/2 and hence of order 1/B
to within a log factor. Consequently, for such very large C,
this term is negligible compared to the 1/τ2.

Finally, consider the matter of the range of C for which the
expression in the first term (2C + 1)φ(ζC)/[C τ(1+ζC/τ)2] is
decreasing in C even with the presence of the division by (1+
ζC/τ)2. Taking the derivative of this expression with respect to
C, one finds that there is a Ccrit, with value of ζCcrit

not much
greater than −τ , such that the expression is decreasing for C
up to Ccrit, after which, for larger C, it becomes preferable to
use ζ = ζCcrit

in place of ζC , though the determination of Ccrit
is not explicit. Nevertheless, one finds that at C = Clarge where
ζC = −τ +1, the derivative of the indicated expression is still
negative and hence Clarge ≤ Ccrit. Thus the obtained bound
is monotonically decreasing for C up to Clarge, and thereafter
the bound for the first term is negligible. This completes the
proof of Lemma 32 and its corollary.

Proof of Lemma 34: Recall for negative ζ we have that ψ is
bounded by 2τ [|ζ|+ 1/|ζ|]. Likewise r̃∗crit/τ

2 is bounded by
γ2/[2(1+ζ/τ)2]. Using γ ≤ 2/|ζ|τ this yields r̃∗crit/τ

2 less
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than 2/[ζ2(τ+ζ)2]. Plugging in the chosen ζ = ζ1/3 produces
the claimed bound for that case. Likewise directly plugging in
ζ = 0 into the terms of ∆ζ,δmatch

provides a bound for that
case. This completes the proof of Lemma 34.

Proof of Lemma 35: As previously developed, at δc =
δmatch, the form of ∆ζ,δmatch

simplifies to

ψ

2C τ2(1+ζ/τ)2
+

1
ν

r̃∗crit
τ2

+
1 + ε

τ2
.

Now by Corollary 28, with ζ ≥ 0,

r̃∗crit ≤ 2
(
ζ + φ(ζ)/Φ(ζ)

)2
.

Also ψ(ζ) = 2τ(1 + ζ/2τ)φ(ζ)/Φ(ζ) and the (1 + ζ/2τ)
factor is canceled by the larger (1+ζ/τ)2 in the denominator.
Accordingly, ∆ζ,δmatch

has the upper bound

φ(ζ)
C τΦ(ζ)

+
2
ν τ2

(
ζ +

φ(ζ)
Φ(ζ)

)2

+
1+ε
τ2

.

Plugging in ζ = ζω for which φ(ζ)/Φ(ζ) = 2ω produces the
claimed bound.

2ω
C τ

+
2
ν τ2

(ζω + 2ω)2 +
1+ε
τ2

.

To produce an explicit upper bound on ∆ζ,δmatch
replace the

Φ(ζ) in the denominator with its lower bound 1−
√

2πφ(ζ)/2,
for ζ ≥ 0. This lower bound agrees with Φ(ζ) at ζ = 0 and in
the limit of large ζ. The resulting upper bound on ∆ζ,δmatch

is

φ(ζ)
C τ
(
1−

√
2πφ(ζ)/2

) +
2
ν τ2

(
ζ +

φ(ζ)(
1−

√
2πφ(ζ)/2

))2

plus (1+ε)/τ2.
The bound on φ(ζ)/Φ(ζ) of φ(ζ)/

(
1−
√

2πφ(ζ)/2
)

is found
to equal 2ω when

√
2πφ(ζ) equals 2/[1+1/ω

√
2π], at which

ζ = ζ∗ is

ζ∗ =

√
2 log

(
1
2

+
1

2ω
√

2π

)
.

Accordingly, this ζ∗ upper bounds ζω and the resulting bound
on ∆ζ∗,δmatch

is

2ω
C τ

+
2
ν τ2

(ζ∗ + 2ω)2 +
1+ε
τ2

.

Using 2ω = 4C/ντ it is

2
ν τ2

[
2 + (ζ + 2ω)2

]
+

1 + ε

τ2
.

This completes the proof of Lemma 35.
To provide further motivation for the choice ζω, the deriva-

tive with respect to ζ of the above expression bounding
∆ζ,δmatch

for ζ ≥ 0 is seen, after factoring out (4/ν)(ζ+φ/Φ),
to equal

1− 1
2ω

φ

Φ
−
(
ζ +

φ

Φ
) φ
Φ
,

where the last term is negligible if ζ is not small. The first
two yield 0 at ζ = ζω. Some improvement arises by exact
minimization. Set the derivative to 0 including the last term,
noting that it takes the form of a quadratic in φ/Φ. Then at

the minimizer, φ/Φ equals [
√

(ζ+1/2ω)2 + 4−(ζ+1/2ω)]/2
which is less than 1/(ζ+1/2ω) ≤ 2ω.

For further understanding of the choice of ζ, note that for ζ
not small, Φ(ζ) is near 1 and the expression to bound is near
φ(ζ)/(C τ) + 2ζ2/ντ2, which by analysis of its derivative is
seen to be minimized at the positive ζ for which φ(ζ) equals

4C/ντ = 2ω. It is ζ1 =
√

2 log 1/(2ω
√

2π). One sees that
ζ∗ is similar to ζ1, but has the addition of 1/2 inside the
logarithm, which is advantageous in allowing ω up to 1/

√
2π.

The difference between the use of ζ∗ and ζ1 is negligible when
they are large (i.e. when ω is small), nevertheless, numerical
evaluation of the resulting bound shows ζ∗ to be superior to
ζ1 for all ω ≤ 1/

√
2π.

In the next section the rate expression is used to solve for
the optimal choices of the remaining parameters.

X. OPTIMIZING PARAMETERS FOR RATE AND EXPONENT

In this section we determine the parameters that maximize
the communication rate for a given error exponent. Moreover,
in the small exponent (large L) case, the rate and its closeness
to capacity are determined as a function of the section size B
and the signal to noise ratio snr.

Recall that the rate of our sparse superposition inner code
is

R =
(1−h′)C

(1+δa)2(1+δ2sum)(1+r/τ2)
,

with (1−h′) = (1−h)(1−hf ). The inner code makes a weighted
fraction of section mistakes bounded by δm = δ∗ + η + f̄
with high probability, as we have shown previously. If we
multiply the weighted fraction by the factor 1/[Lmin` π(`)]
which equals fac = snr (1+δ2sum)/[2C(1+δc)], then it provides
an upper bound on the (unweighted) fraction of mistakes
δmis = fac δm equal to

δmis = fac (δ∗ + η + f̄).

So with the Reed-Solomon outer code of rate 1− δmis, which
corrects the remaining fraction of mistakes, the total rate of
our code is

Rtot =
(1− δmis)(1−h′) C

(1+δ2sum)(1+δa)2(1 + r/τ2)
.

This multiplicative representation is appropriate considering
the manner in which the contributions arise. Nevertheless,
in choosing the parameters in combination, it is helpful to
consider convenient and tight lower bounds on this rate, via
an additive expression of rate drop from capacity.

Lemma 37: Additive representation of rate drop: With a
non-negative value for r, represented as in Remark 3 above,
the rate Rtot is at least (1−∆)C with ∆ given by

∆ =
snr δ∗

(1+δc)2C
+
r∗crit
τ2

+
(1+r1/τ2)D(δc)

snr

+
snr

2C
(η+f̄) + snr gap+ hf + h+ 2δa +

2C
Lν

.

These are called, respectively, the first and second lines
of the expression for ∆. The first line of ∆ is what we
have also denoted in the introduction as ∆shape or in the
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previous section as ∆ζ to emphasize its dependence on ζ
which determines the values of r1, δc, and δ∗. In contrast
the second line of ∆, which we denote ∆second, depends on
η, f̄ , and a. It has the ingredients of ∆alarm and the quantities
which determine the error exponent.

Proof of Lemma 37: Consider first the ratio
1− δmis(

1+δ2sum
)(

1 + r/τ2
) .

Splitting according to the two terms of the numerator and using
the non-negativity of r it is at least

1(
1+δ2sum

)(
1 + r/τ2

) − δmis
1+δ2sum

.

From the form of fac, the ratio δmis/(1+δ2sum) subtracted here
is equal to

snr

2C
(δ∗+η+f̄)
(1 + δc)

,

where in bounding it further we drop the (1 + δc) from the
terms involving η + f̄ , but find it useful to retain the term
involving δ∗.

Concerning the factors of the first part of the above differ-
ence, use δ2sum ≤ D(δc)/snr + 2C/L ν to bound the factor
(1+δ2sum) by (

1+D(δc)/snr
)(

1+2C/L ν
)
.

and use the representation of
(
1 +D(δc)/snr

)(
1 + r/τ2

)
developed at the end of the previous section,(

1 +
(1+r1/τ2)D(δc)

snr
+
r∗crit
τ2

)(
1+ξ snr gap

)
to obtain that the first part of the above difference is at least

1 −
[
r∗crit
τ2

+
(1 + r1/τ

2)D(δc)
snr

+ snr gap+
2C
Lν

]
.

Proceed in this way, including also the factors (1−h′) and
1/(1+δa) to produce the indicated bound on the rate drop from
capacity. This bound is tight when the individual terms are
small, because then the products are negligible in comparison.
Here we have used 1/(1+δi) ≥ 1−δi and (1−δ1)(1−δ2)
exceeds 1−δ1−δ2, for non-negative reals δi, where the amount
by which it exceeds is the product δ1δ2. Likewise inductively
products

∏
i(1−δi) exceed 1−

∑
i δi. This completes the proof

of Lemma 37.

This additive form of ∆ provides some separation of effects
that facilitates joint optimization of the parameters as in the
next Lemma. Nevertheless, once the parameters are chosen, it
is preferable to reexpress the rate in the original product form
because of the slightly larger value it provides.

Let’s recall parameters that arise in this rate and how they
are interrelated. For the incremental false alarm target use

f∗ =
1√

2π
√

2 logB
e−a

√
2 logB ,

such that

δa =
log 1/[f∗

√
2π
√

2 logB]
2 logB

.

With a number of steps m at least 2 and with ρ at least 1,
the total false alarms are controlled by f̄ = mf∗ρ and the
exponent associated with failed detections is determined by a
positive η. Set hf equal to 2 snrf̄ plus the negligible ε3 =
2snr

√
(1+snr)k/Lπ + snr/Lπ , arising in the determination

of the the weights of combination of the test statistic. To
control the growth of correct detections set

gap = η + f̄ + 1/(m−1).

The r1, r∗crit, δ
∗ and δc are determined as in the preceding

section as functions of the positive parameter ζ.
The exponent of the error probability e−LπE is E = Eη

either given by
Eη = 2η2

or, if we use the Bernstein bound, by

1
2
L

Lπ

η2

V + (1/3)ηL/Lπ

where V is the minimum value of the variance function
discussed previously. For our power allocation the Lπ =
1/max` π(`) has L/Lπ equal to (2C/ν)(1 + δ2sum), which
may be replaced by its lower bound (2C/ν) yielding

Eη =
η2

V ν/C + (2/3)η
.

In both cases the relationship between E and η is strictly
increasing on η > 0 and invertible, such that for each E ≥ 0
there is a unique corresponding η(E) ≥ 0.

Set the Chi-square concentration parameter h so that the
exponent (n−m+1)h2

m/2 matches Lπ Eη, where hm equals
(nh−m+1)/(n−m+1). Thus hm =

√
2 Eη Lπ/(n−m+1)

which means

h = (m−1)/n+
√

2 Eη Lπ(n−m+1)/n.

With Lπ ≤ (ν/2C)L not more than (ν/2)n/ logB, it yields
h not more than (m−1)/n+ h∗ where

h∗ =
√
νEη/ logB.

The part (m−1)/n which is (m−1)C/L logB is lumped with
the above-mentioned remainders 2C/Lν and ε3, as negligible
for large L.

Finally, ρ > 1 is chosen such that the false alarm exponent
f̄ D(ρ)/ρ matches Eη. The function D(ρ)/ρ = log ρ−1+1/ρ
is 0 at ρ = 1 and is an increasing function of ρ ≥ 1 with
unbounded positive range, so it has an inverse function ρ(E)
at which we set ρ = ρ(Eη/f̄).

It behooves us to pin down as many of these values as we
can by exploring the best relationship between rate and error
probability achieved by the analysis of our decoder.

We take advantage of the decomposition of Lemma 37.

Lemma 38: Optimization of the second line of ∆. For
any given positive η providing the exponent Eη of the error
probability, the values of the parameters m, f̄ , and ρ, are
specified to optimize their effect on the communication rate.
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The second line ∆second of the total rate drop (C−R)/C bound
∆ is the sum of three terms

∆m + ∆f̄ + ∆η,

plus the negligible ∆L = 2C/(Lν)+(m−1)C/(L logB)+ ε3.
Here

∆m =
snr

m− 1
+

logm
logB

is optimized at a number of steps m equal to an integer part
of 2 + snr logB at which ∆m is not more than

1
logB

+
log(2+snr logB)

logB
.

Likewise ∆f̄ is given by

snr(3 + 1/2C)f̄ −
log
(
f̄
√

2π
√

2 logB
)

logB
,

optimized at the false alarm level f̄ = 1/
[
snr(3+1/2C) logB]

at which

∆f̄ =
1

logB
+

log
(
snr(3 + 1/2C)

√
logB/

√
4π
)

logB
.

The ∆η is given by

∆η = η snr(1+1/2C) +
log ρ
logB

+ h∗

evaluated at the optimal ρ = ρ(Eη/f̄). It yields ∆η not more
than

η snr(1+1/2C) + Eη snr(3+1/2C) + 1/ logB + h∗.

Together the optimized ∆m + ∆f form what is called
∆alarm in the introduction. In the next lemma we use the
∆η expression, or its inverse, to relate the error exponent to
the rate drop.

Proof of Lemma 43: Recall that

2δa =
log
[
ρm/(f̄

√
2π
√

2 logB)
]

logB
.

The log of the product is the sum of the logs. Associate the
term logm/ logB with ∆m and the term log ρ/ logB with ∆η

and leave the rest of 2δa as part of ∆f̄ . The rest of the terms
of ∆ associate in the obvious way. Decomposed in this way,
the stated optimizations of ∆m and ∆f are straightforward.

For ∆m = snr/(m− 1) + (logm)/(logB) consider it
first as a function of real values m ≥ 2. Its derivative is
−snr/(m − 1)2 + 1/(m logB), which is negative at m1 =
1 + snr logB, positive at m2 = 2 + snr logB, and equal
to 0 at a point m∗

2 = [m2 +
√
m2

2 − 4]/2 in between m1

and m2. Moreover, the value of ∆m2 is seen to be smaller
than the value of m1. Accordingly, for m in the interval
m1 < m ≤ m2, which includes an integer value, the ∆m

remains below what is attained for m ≤ m1. Therefore,
the minimum among integers occurs at either at the floor
b2 + snr logBc or at the ceiling d2 + snr logBe of m2,
whichever produces the smaller ∆m. [Numerical evaluation
confirms that the optimizer tends to coincide with the rounding
of m∗

2 to the nearest integer, coinciding with a near quadratic

shape of ∆m around m∗
2, by Taylor expansion for m not far

from m∗
2.]

When the optimal integer m is less than or equal to
m2 = 2 + snr logB, use that it exceeds m1 to conclude that
∆m ≤ 1/ logB + (logm2)/(logB). When the optimal m is
a rounding up of m2, use snr/(m−1) ≤ snr/(1+snr logB).
Also logm exceeds logm2 by the amount log(m/m2) ≤
log(1+1/m2) less than 1/(1+snr logB), to obtain that at
the optimal integer, ∆m remains less than

1
logB

+
logm2

logB
.

For ∆f̄ and ∆η there are two ways to proceed. One is to use
the above expression for δa, and set ∆f̄ as indicated, which
is easily optimized by setting f̄ at the value specified.

For ∆η note that the log ρ/ logB has numerator log ρ equal
to 1− 1/ρ+Eη/f̄ at the optimized ρ, and accordingly we get
the claimed upper bound by dropping the subtraction of 1/ρ.
This completes the proof of Lemma 43.

It is noted that in accordance with the inverse function
ρ(Eη/f̄) there is an indirect dependence of the rate drop on
f̄ when Eη > 0. One can jointly optimize ∆f̄ + ∆η for f̄ for
given η, though there is not explicit formula for that solution.
The optimization we have claimed is for ∆f̄ , which produces
a clean expression suitable for use with small positive η.

A closely related presentation is to write

2δa =
log
[
m/(f̄∗

√
2π
√

2 logB)
]

logB

and in other terms involving f̄ , write it as ρf̄∗. Optimization
of

snr(3 + 1/2C)ρf̄∗ −
log
(
f̄∗
√

2π
√

2 logB
)

logB
,

occurs at a baseline false alarm level f̄∗ that is equal to
1/
[
ρ snr(3+1/2C) logB]. These approaches have the baseline

level of false alarms (as well as the final value of δa) depending
on the subsequent choice of ρ.

One has a somewhat cleaner separation in the story, as
in the introduction, if f̄∗ is set independent of ρ. This is
accomplished by a different way of spitting the terms of
∆second. One writes f̄ = ρf̄∗ as f̄∗ + (ρ−1)f̄∗, the baseline
value plus the additional amount required for reliability. Then
set ∆f̄∗ to equal

snr(3 + 1/2C)f̄∗ −
log
(
f̄∗
√

2π
√

2 logB
)

logB
,

optimized at f̄∗ = 1/
[
snr(3+1/2C) logB], which determines

a value of δa for the rate drop envelope independent of η. In
that approach one replaces ∆η with

η snr(1+1/2C) + (ρ−1)snr(3+1/2C) + h∗,

with ρ defined to solve f̄∗D(ρ) = Eη. There is not an explicit
solution to the inverse of D(ρ) at Eη/f̄∗. Nevertheless, a
satisfactory bound for small η is obtained by replacing D(ρ) by
its lower bound 2(

√
ρ− 1)2, which can be explicitly inverted.

Perhaps a downside is that from the form of the f̄∗ which
minimizes ∆f̄∗ one ends up, multiplying by ρ, with a final f̄
larger than before.
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With 2(
√
ρ − 1)2 replacing D(ρ), it is matched to 2η2/f̄∗

by setting
√
ρ − 1 = η/

√
f̄∗ and solving for ρ by adding 1

and squaring. The resulting expression used in place of ∆η

is then a quadratic equation in η, for which its root provides
means by which to express the relationship between rate drop
and error exponent. Then ρf̄∗ is

(√
f̄∗ + η

)2
.

A twist here, is that in solving for the best f̄∗, rather than
starting from η = 0, one may incorporate positive η in the
optimization of

snr(3 + 1/2C)
(√

f̄∗ + η
)2 −

log
(
f̄∗
√

2π
√

2 logB
)

logB
,

for which, taking the derivative with respect to
√
f̄∗ and

setting it to 0, a solution for this optimization is obtained as the
root of a quadratic equation in

√
f̄∗. Upon adding to that the

other relevant terms of ∆second, namely η snr(1+1/2C) + h∗,
one would have an explicit, albeit complicated, expression
remaining in η.

Set ∆B = ∆(snr,B) equal to ∆shape + ∆m + ∆f at the
above values of ζ, m, f̄ (or should we use f̄∗?). This ∆B

provides the rate drop envelope as a function only of snr and
B. It corresponding to the large L regime in which one may
take η to be small. Accordingly, ∆B provides the boundary
of the behavior by evaluating ∆ with η = 0.

The given values of m and f̄ optimize ∆B , and the given
ζ provides a tight bound, approximately optimizing the rate
drop envelope ∆B . The associated total rate Rtot evaluated at
these choices of parameters with η = 0, denoted CB , is at least
C(1−∆B). The associated bound on the fraction of mistakes
of the inner code is δ∗mis = (snr/2C)(δ∗ + f̄).

Express the ∆η bound as a strictly increasing function of
the error exponent E

η(E) snr(1+1/2C)+E(3+1/2C)+
1− 1/ρ(E/f̄)

logB
+
√
νE/ logB

and let E(∆) denote its inverse for ∆ ≥ 0, [recognizing also
per the statement of the Lemma above the cleaner upper bound
dropping the 1/ρ(E/f̄)/ logB term]. The part η(E) snr/2C
within the first term is from the contribution to 2δmis in the
outer code rate. From the rate drop of the superposition inner
code, the rest of ∆η written as a function of E is denoted
∆η,super and we let Esuper(∆) denote its inverse function.

For a given total rate Rtot < CB , an associated error
exponent E is

E
(
(CB−Rtot)/C

)
,

which is the evaluation of that inverse at (CB −Rtot)/C.
Alternatively, in place of CB we may use its lower bound
C(1−∆B) and take the error exponent to be E

(
1−Rtot/C−∆B

)
.

We show either choice provides an error exponent of a code
of that specified total rate.

To arrange the constituents of this code, use the inner code
mistake rate bound δmis = fac (δ∗+f̄+η(E)), and set the inner
code rate target R = Rtot/(1−δmis). Accordingly, for any
number of sections L, set the codelength n, to be L logB/R
rounded to an integer, so that the inner code rate L logB/n
agrees with the target rate to within a factor of 1± 1/n, and

the total code rate (1−δmis)R agrees with Rtot to within the
same precision.

Theorem 39: Rate and Reliability of the composite code:
As a function of the section size B, let CB and its lower bound
C(1 − ∆B) be the rate envelopes given above, both near the
capacity C for B large. Let a positive Rtot < CB be given. If
Rtot ≤ C(1−∆B), set the error exponent E by

E
(
1−∆B−Rtot/C

)
.

Alternatively, to arrange the somewhat larger exponent, with
η such that ∆η = (CB−Rtot)/C, suppose that ∆η ≥ δmis;
then set E = Eη, that is, E = E

(
(CB−Rtot)/C

)
. To allow

any Rtot < CB without further condition, there is a unique
η > 0 such that ∆η,super C = CB/(1−δ∗mis)−Rtot/(1−δmis),
at which we may set E = Eη. In any of these three cases,
for any number of sections L, the code consisting of a sparse
superposition code and an outer Reed-Solomon code, having
composite rate equal to Rtot, to within the indicated precision,
has probability of error not more than

κe−LπE ,

which is exponentially small in Lπ , near Lν/(2C), where
κ = m(1 + snr)1/2Bc + 2m is a polynomial in B with
c = snr C, with number of steps m equal to the integer part
of 1 + snr logB.

Proof of Theorem 39 for rate assumption Rtot < C(1−
∆B): Set η > 0 such that ∆η = 1−∆B −Rtot/C. Then
the rate Rtot is expressed in the form C(1−∆B−∆η). In
view of Lemma ?? and the development preceding it, this rate
C(1−∆) = C(1−∆B−∆η) is a lower bound on a rate of the
established form (1−δmis)C′/(1+r/τ2), with parameter values
that permit the decoder to be accumulative up to a point x∗

with shortfall δ∗, providing a fraction of section mistakes not
more than δmis = fac (δ∗+η+f̄), except in an event of the
indicated probability with exponent Eh = E(∆η). This fraction
of mistakes is corrected by the outer code. The probability of
error bound from our earlier theorem is

me−LπE+mC + 2me−LπE .

With m ≤ 1+snr logB it is not more than the given κe−LπE .
The other part of the Theorem asserts a similar conclusion but
with an improved exponent associated with arranging ∆η =
(CB − Rtot)/C, that is, Rtot = CB(1−∆η). We return to
demonstrate that conclusion as a corollary of the next result.

One has the option to state our results in terms of properties
of the inner code. At any section size B, recognize that ∆B

above, at the η = 0 limit, splits into a contribution from
δ∗mis = (snr/2C)(f̄ + δ∗/(1+δc)) and the rest which is a
bound on the rate drop of the inner superposition code, which
we denote ∆∗

super, in this small η limit. The rate envelope for
such superposition codes is

C∗super =
(1−2snr f̄)C

(1+D(δc)/snr)[(1+δa)2+r/(2 logB)]
,

evaluated at f̄ , δa, δc, r and ζ as specified above, with η = 0,
h = 0 and ρ = 1, again with a number of steps m equal to
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the integer part of 1 + snr logB. It has

C∗super ≥ C (1−∆∗
super).

Likewise recall that ∆η splits into the part η(E) snr/2C
associated with δmis and the rest ∆η,super expressed as a
function of E , for which Esuper(∆) is its inverse.

Theorem 40: Rate and Reliability of the Sparse Superpo-
sition Code: For any rate R < C∗super, let E equal

Esuper(C∗super−R)/C).

Then for any number of sections L, the rate R sparse superpo-
sition code with adaptive successive decoder, makes a fraction
of section mistakes less than δ∗mis+η(E) snr/2C except in an
event of probability less than κ e−LπE .

This conclusion about the sparse superposition code would
also hold for values of the parameters other than those spec-
ified above, producing related tradeoffs between rate and the
reliable fraction of section mistakes. Our particular choices of
these parameters is specific to the tradeoff that produces the
best total rate of the composite code.

Proof of Theorem 40. In view of the preceding analysis,
what remains to establish is that the rate

C∗super(1−∆η,super)

is not more than our rate expression

C(1− hf )(1− h∗)
(1+D(δc)/snr)(1+δa,ρ)2(1+rη/τ2)

where ∆η,super which is

η snr(1+r1/2 logB)+Eη(3+1/C)(1+1/ logB)+
√
νE/ logB

is at least

η snr(1+r1/τ2) + (log ρ)/ logB + h∗.

with ρ and h∗ satisfying the conditions of the Lemma, so that
(once we account for the negligible remainder in 1/L), the
indicated reliability holds with this rate. Here we are writing
δa,ρ = δa+(log ρ)/2 logB to distinguish the value that occurs
with ρ > 1 with the value at ρ = 0 used in the definition
of C∗super. Likewise we are writing rη/τ

2 for the expression
r/τ2 + η snr(1+r1/τ2) to distinguish the value that occurs
with η > 0 with the value of r/τ2 at η = 0 used in the
definition of C∗super. Factoring out terms in common, what is
to be verified is that

1−∆η,super

(1+δa)2(1+r/τ2)

is not more than
(1− h∗)

(1+δa,ρ)2)(1+rη/τ2]
.

This is seen to be true by cross multiplying, rearranging,
expanding the square in (1+δa + log ρ/2 logB)2, using the
lower bound on ∆η,super, and comparing term by term for the
parts involving h∗, log ρ and η. This completes the proof of
Theorem 40.

Next we prove the rest of Theorem 39, in view of what has
been established. For the general rate condition Rtot < CB ,
for η ≥ 0 the expression

∆η,super C +
Rtot

1−δ∗mis − snr η/2C

is a strictly increasing function of η in the interval
[0, (2C/snr)(1− δ∗mis)), where the second term in this ex-
pression may be interpreted as the rate R of an inner code,
with total rate Rtot. This function starts at η = 0 at the value
Rtot/(1− δ∗mis) which is less than CB/(1− δ∗mis) which is
C∗super. So there is an η in this interval at which this function
hits C∗super. That is ∆η,superC +R = C∗super, or equivalently,
∆η,super = (C∗super −R)/C. So Theorem 40 applies with
exponent Esuper((C∗super −R)/C)).

Finally, to obtain the exponent E((CB−Rtot)/C)), let ∆η =
CB −Rtot/C. Examine the rate

CB(1−∆η)

which is

(1− δ∗mis)C∗super(1−∆η,super − ηsnr/2C)

and determine whether it is not more than the following
composite rate (obtained using the established inner code rate),

(1− δ∗mis − ηsnr/2C)C∗super(1−∆η,super).

These match to first order. Factoring out C∗super and canceling
terms shared in common, the question reduces to whether
−(1−δ∗mis) is not more than −(1−∆η,super), that is, whether
δ∗mis is not more than ∆η,super, or equivalently, whether δmis
is not more than ∆η, which is the condition assumed in the
Theorem for this case. This completes the proof of Theorem
39.

XI. LOWER BOUNDS ON ERROR EXPONENT:

The second line of the rate drop can be decomposed as

∆m + ∆f̄∗ + ∆η,ρ,

where

∆m =
snr

m− 1
+

logm
logB

optimized at a number of steps m equal to to an integer part
of 2 + snr logB. Further,

∆f̄∗ = ϑf̄∗ −
log
(
f̄∗
√

2π
√

2 logB
)

logB

where ϑ = snr(3+1/2C). The the optimum value of f̄∗ equal
to 1/[ϑ logB] and

∆η,ρ = ηϑ1 + (ρ− 1)/ logB + h.

Here ϑ1 = snr(1 + 1/2C).
We have ∆η,ρ is a strictly increasing function of the error

exponent E , where

∆η,ρ = ϑ1η(E) + (ρ− 1)/ logB + h.
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Let Rtot ≤ CB be given. We need to find the error exponent
E∗ = E ((CB −Rtot)/C), where E solves the above equation
with ∆η,ρ = (CB −Rtot)/C. That is,

∆η,ρ = ϑ1η(E) + (ρ− 1)/ logB + h,

where ρ = ρ(E/f̄∗).
Now ρ − 1 = (

√
ρ − 1)(

√
ρ + 1), which is (

√
ρ − 1)2 +

2(
√
ρ−1). Correspondingly, using E ≥ 2f̄∗(

√
ρ−1)2, we get

that E/2f̄∗+
√

2E/f̄∗ ≥ ρ−1. Further, using η (E) =
√
E/2

and h∗ =
√
νE/ logB, one gets that

∆η,ρ ≤ c1E + c2
√
E ,

where
c1 = ϑ/2

and
c2 =

[
ϑ1√

2
+
√

2ϑ/ logB +
√

ν

logB

]
.

Solving the above quadratic in
√
E given above, one gets

that

E ≥ Esol =

[
−c2 +

√
c22 + 4∆η,ρc1
2c1

]2

.

Let us see what Esol looks like for ∆η,ρ near 0. Noticing that
Esol has the shape ∆2

η,ρ for ∆η,ρ near 0, we want to find the
limit of Esol/∆2

η,ρ as ∆η,ρ goes to zero. Using L’ Hospital’s
rule one get that this limiting value is 1/c22. Correspondingly,
using Lπ is near Lν/2C, one gets that the error exponent is
near

exp
{
−L∆2

η,ρ/ξ0
}
,

for ∆η,ρ near 0, where ξ0 = (2C/ν)c22. This quantity behaves
like snr2C for large snr and has the limiting value of (1 +
4/
√

logB)2/2 for snr tending to 0.
We now give a simplified expression for Esol. To simplify

this, lower bound the function −a +
√
a2 + x, with x ≥ 0

with a function of the form min {α
√
x, βx}. It is seen that

−a+
√
a2 + x ≥ α

√
x for x ≥ 4α2a2

(1− α2)2

and

−a+
√
a2 + x ≥ βx for x ≤ 1− 2βa

β2
.

Clearly, for the above to have any meaning one requires 0 <
α < 1 and 0 < β < 1/2a. Further, it is seen that

min
{
α
√
x, βx

}
= α

√
x for x ≥ (α/β)2

= βx for x ≤ (α/β)2.

Correspondingly, equating (α/β)2 with 4α2a2/(1 − α2)2, or
equivalently equating (α/β)2 with (1− 2βa)/β2, we get that
1− α2 = 2aβ.

We now return to the problem of lower bounding Esol. We
take a = c2 and x = 4∆η,ρc1. We also take particular choices
of β and α to simplify the analysis. We take β = 1/4a, for
which α = 1/

√
2. Then the above gives that

Esol ≥
(
min

{
α
√

4∆η,ρc1, β4∆η,ρc1
})2

4c21

which simplifies to

Esol ≥ min
{
∆η,ρ/2c1, ∆2

η,ρ/4c
2
2

}
.

From Theorem 39, one get that the error probability is
bounded by

κe−LπEsol ,

which from the above, can also be bounded by the more
simplified expression

κ exp
{
−Lπ min

{
∆η,ρ/2c1, ∆2

η,ρ/4c
2
2

}}
.

We want to express this bound in the form,

κ exp
{
−Lmin

{
∆η,ρ/ξ1,∆2

η,ρ/ξ2
}}

for some ξ1, ξ2. Using the fact that Lπ is near Lν/2C, one
gets that ξ1 is (2C/ν)(2c1), which gives

ξ1 = (1 + snr)(6C + 1).

We see that ξ1 goes to 1 as snr tends to zero. Further ξ2 =
(2C/ν)4c22. which behaves like 4C snr2 for large snr. It has
the limiting value of 2(1 + 4/

√
logB)2 as snr tends to zero.

Improvement for Rates near Capacity using Bernstein
bounds: The improved error bound associated with correct
detection is given by

exp
{
− η2

2(Vtot + η/(3Lπ))

}
,

where Vtot = V/L, with V ≤ c̃v , where c̃v = (4 C/ν2)(a1 +
a2/τ

2)/τ . For small η, that is for rates near the rate envelope,
the bound behaves like,

exp
{
−L η

2

2V

}
.

Consequently, for such η the exponent is,

E =
1
d1

η2

2c̃v
.

Here d1 = Lπ/L. This corresponds to η =
√
d2

√
E , where

d2 = 2d1c̃v . Here c̃v = (4C/ν2)(a1/τ) and that d1 = ν/2C
and τ ≥

√
2 logB, one gets that d2 ≤ 1.62/ν

√
logB.

Substituting this upper bound for η in the expression for ∆η,ρ,
we get that

∆η,ρ ≤ c̃1E + c̃2
√
E ,

with c̃1 = ϑ/2 and

c̃2 =
[√

d2ϑ1 +
√

2ϑ/ logB +
√

ν

logB

]
.

Consequently using the same reasoning as above one gets
that using the Bernstein bound, for rates close to capacity, the
error exponent is like

exp
{
−L∆2

η,ρ/ξ̃0

}
,

for ∆η,ρ near 0, where ξ̃0 = (2C/ν)c̃22. This quantity behaves
like 2d2snr

2C for large snr. Further, 2d2 is near 3.24/
√

logB
for such snr. Notice now the error exponent is proportional
to L

√
logB∆2

η,ρ, instead of the L∆2
η,ρ we had before. We see

that for B > 36300, the quantity 3.24/
√

logB is less than one
producing a better exponent that before for rates near capacity
and for large snr than before.
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XII. OPTIMIZING PARAMETERS FOR RATE AND
EXPONENT FOR NO LEVELING USING THE 1− xν FACTOR:

From Corollary 20 one gets that

GAP =
r − rup
ν(τ2 + r)

.

Simplifying one gets

1 + r/τ2 = (1 + rup/τ
2)/(1− νGAP ).

Recall that the rate of our sparse superposition inner code
is

R =
(1−h′)C

(1+δa)2(1+δ2sum)(1+r/τ2)
.

Here we use the terms involved in the leveling case, even
though we are considering the no leveling case here. This will
be useful later on when we are generalizing to the case with
the leveling. Further, with the Reed-Solomon outer code of rate
1 − δmis, which corrects the remaining fraction of mistakes,
the total rate of our code is

Rtot =
(1− δmis)(1−h′) C

(1+δ2sum)(1+δa)2(1 + r/τ2)
.

which using the above is equal to

Rtot =
(1− δmis)(1−h′)(1− νGAP ) C
(1+δ2sum)(1+δa)2(1 + rup/τ2)

.

Lemma 41: Additive representation of rate drop: With a
non-negative value for GAP less than 1/ν the rate Rtot is at
least (1−∆)C with ∆ given by

∆ =
snr δ∗

(1+δc)2C
+
rup
τ2

+
D(δc)
snr

+
snr

2C
(η+f̄) + ν GAP + h′ + 2δa +

2C
Lν

.

Proof of Lemma 41: Notice that
(1− δmis)(1−h′)(1− νGAP )
(1+δ2sum)(1+δa)2(1 + rup/τ2)

is at least
(1−h′)(1− νGAP )

(1+δ2sum)(1+δa)2(1 + rup/τ2)

minus δmis/(1 + δ2sum). As before, the ratio δmis/(1+δ2sum)
subtracted here is equal to

snr

2C
(δ∗+η+f̄)
(1 + δc)

.

Further the first part of the difference is at least

1− h′ − νGAP − δ2sum − 2δa − rup/τ
2.

Further using δ2sum ≤ D(δc)/snr+2C/Lν one gets the result.
This completes the proof of Lemma 41.

The second line of the rate drop is given by,

snr

2C
(η(x∗)+f̄) + ν GAP + h′ + 2δa +

2C
Lν

.

where
η(x∗) = (1− x∗v)ηstd

and
GAP = ηstd + log 1/(1− x∗)/(m− 1).

Thus νGAP is equal to

νηstd + ν c(x∗)/(m− 1),

where
c(x∗) = log[1/(1− x∗)].

Case 1: h′ = h + hf : We now optimize the second line
of the rate drop when h′ = h + hf . We have the following
lemma.

Lemma 42: Optimization of the second line of ∆. For
any given positive η providing the exponent Eη of the error
probability, the values of the parameters m, f̄∗ are specified to
optimize their effect on the communication rate. The second
line ∆second of the total rate drop (C−R)/C bound ∆ is the
sum of three terms

∆m + ∆f̄∗ + ∆η(x∗),

plus the negligible ∆L = 2C/(Lν)+(m−1)C/(L logB)+ ε3.
Here

∆m = ν
c(x∗)
m− 1

+
logm
logB

is optimized at a number of steps m equal to an integer part
of 2 + ν c(x∗) logB at which ∆m is not more than

1
logB

+
log(2 + ν c(x∗) logB)

logB

Likewise ∆f̄∗ is given by

ϑf̄∗ −
log
(
f̄∗
√

2π
√

2 logB
)

logB
,

where ϑ = snr(2 +1/2C). The above is optimized at the false
alarm level f̄∗ = 1/

[
ϑ logB] at which

∆f̄∗ =
1

logB
+

log
(
ϑ
√

logB/
√

4π
)

logB
.

The ∆η(x∗) is given by

∆η(x∗) = ηstd [ν+(1− x∗ν)snr/2C] + (ρ− 1)/ logB + h

which is bounded by,

ηstd ϑ1 + (ρ− 1)/ logB + h

where ϑ1 = ν+snr/2C.
Remark : Since 1− x∗ = r/(snr τ2) and that r > rup, one
has that 1 − x∗ ≥ rup/snrτ

2. Correspondingly, c(x∗) is at
most log(snr) + log(τ2/rup). The optimum number of steps
can be bounded accordingly.

Proof: Club all terms involving the number of steps m to
get the expression for ∆m. It is then seen that optimization of
∆m give the expression as in the proof statement.

Next, write

2δa =
log
[
m/(f̄∗

√
2π
√

2 logB)
]

logB
.

Further write f̄ as (ρ − 1)f̄∗ + f̄∗ in terms involving f̄ . For
example hf = 2snrf̄ is written as the sum of 2snr(ρ− 1)f̄∗
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plus 2snrf̄∗. Now club all terms involving only f̄∗ (that is
not (ρ− 1)f̄∗) into ∆f̄∗ . We get ∆f̄∗ to equal

ϑf̄∗ −
log
(
f̄∗
√

2π
√

2 logB
)

logB
,

optimized at f̄∗ = 1/
[
ϑ logB], which determines a value of

δa for the rate drop envelope independent of η.
The remaining terms are absorbed to give the expression

for ∆η. Thus we get ∆η is equal to

ηstd[ν+(1− x∗ν)snr/2C] + (ρ−1)/ logB + h∗.

The bound on ∆η(x∗) follows from using 1− x∗ν ≤ 1.
Error exponent: We prefer to use Bernstein bounds for the

error bounds associated with correct detection. Recall that that
for rates near the rate envelope, that for η(x∗) close to 0, the
exponent is near

E =
1
d1

(ηstd)2

2c̃v
.

As before, this corresponds to ηstd =
√
d2

√
E , where d2 =

2d1c̃v . Substituting this upper bound for ηstd in the expression
for ∆η(x∗), we get that

∆η,ρ ≤ c̃1E + c̃2
√
E ,

with c̃1 = ϑ/2 and

c̃2 =
[√

d2ϑ1 +
√

2ϑ/ logB +
√

ν

logB

]
.

Consequently using the same reasoning as above one gets
that using the Bernstein bound, for rates close to capacity, the
error exponent is like

exp
{
−L∆2

η,ρ/ξ̃0

}
,

for ∆η,ρ near 0, where ξ̃0 = (2C/ν)c̃22. For small snr, this
quantity is near (

√
d2 +

√
2/ logB)2. This quantity behaves

like d2snr
2/2C for large snr. For large snr this is the same

as what we got in the previous section.

Case 2 : 1 − h′ = (1 − h)m−1/(1 + h)m−1. It is easy to
that this implies that h′ ≤ 2mh. We give the corresponding
Lemma for optimization of rate drop for such h′.

Lemma 43: Optimization of the second line of ∆. For
any given positive η providing the exponent Eη of the error
probability, the values of the parameters m, f̄∗ are specified to
optimize their effect on the communication rate. The second
line ∆second of the total rate drop (C−R)/C bound ∆ is the
sum of three terms

∆m + ∆f̄∗ + ∆η(x∗),

plus the negligible ∆L = 2C/(Lν)+(m−1)C/(L logB)+ ε3.
Here

∆m = ν
c(x∗)
m− 1

+
logm
logB

is optimized at a number of steps m∗ equal to an integer part
of 2 + ν c(x∗) logB at which ∆m is not more than

1
logB

+
log(2 + ν c(x∗) logB)

logB

Likewise ∆f̄∗ is given by

ϑf̄∗ −
log
(
f̄∗
√

2π
√

2 logB
)

logB
,

where ϑ = snr/2C. The above is optimized at the false alarm
level f̄∗ = 1/

[
ϑ logB] at which

∆f̄∗ =
1

logB
+

log
(
ϑ
√

logB/
√

4π
)

logB
.

The ∆η(x∗) is given by

∆η(x∗) = ηstd [ν+(1−x∗ν)snr/2C] + (ρ−1)/ logB+2m∗h

which is bounded by,

ηstd ϑ1 + (ρ− 1)/ logB + 2m∗h

where ϑ1 = ν+snr/2C.
Error exponent: Exactly similar to before, we use Bern-

stein bounds for the correct detection error probabilities to get
that,

∆η,ρ ≤ c̃1E + c̃2
√
E ,

with c̃1 = ϑ/2 and

c̃2 =
[√

d2ϑ1 +
√

2ϑ/ logB + 2m∗
√

ν

logB

]
.

Notice that since m∗ = 2 + νc(x∗) logB, one has that

c̃2 =

[√
d2ϑ1 +

√
2ϑ

logB
+ 4
√

ν

logB
+ 2c(x∗)ν3/2

√
logB

]
.

As before the error exponent is like

exp
{
−L∆2

η,ρ/ξ̃0

}
,

for ∆η,ρ near 0, where ξ̃0 = (2C/ν)c̃22.

Comparison of envelope and exponent for the two
methods with and without factoring 1 − xν term : We
first concentrate on the envelope, which is given by

1
logB

+
m∗

logB
+

1
logB

+
log
(
ϑ
√

logB/
√

4π
)

logB
.

For the first method, without factoring out the 1 − xν term,
ϑ = snr(3+1/2C) whereas for the second method (Case 2) it
is snr/2C. The optimum number of steps m∗ is 2+snr logB
for the first method and is 2 + νc(x∗) logB. Here c(x∗) is
log(snr) plus a term of order log logB. Correspondingly, the
envelope is smaller for the second method.

Next we see that the quantity c2 is determines the error
exponent. The smaller the c2, the better the exponent. For the
first method it is[

ϑ1√
2

+
√

2ϑ/ logB +
√

ν

logB

]
.

where ϑ1 = snr(1 + 1/2C). Further ϑ is as given in the
previous paragraph. For the second method it is given by[

ϑ1√
2

+
√

2ϑ/ logB + 2m∗
√

ν

logB

]
,
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where ϑ1 = ν+snr/2C. It is seen that for larger snr the latter
is less producing a better exponent. To see this, notice that as
a function of snr, the first term in c2, i.e. ϑ1/

√
2, behaves

like snr for the first case (without factorization of 1 − xν)
and is like snr/2C for the second case. The second term in
c2 is like

√
snr for the first case and like

√
snr/2C for the

second. The third is near
√

1/ logB for the former case and
behaves like log(snr) in the latter case. Consequently, it is the
first term in c2 which determines it behavior for larger snr for
both cases. Since ϑ1 is smaller in the second case, we infer
that the second method is better for larger snr.

XIII. COMPOSITION WITH AN OUTER CODE

We use Reed-Solomon (RS) codes ([59], [50]) to correct
any remaining mistakes from our adaptive successive decoder.
The symbols for the RS code can be associated with that
of a Galois field, say consisting of q elements and denoted
by GF (q). Here q is typically taken to be of the form of
a power of two, say 2m. Let Kout, nout be the message and
blocklength respectively for the RS code. Further, if dRS be the
minimum distance between the codewords, then an RS code
with symbols in GF (2m) can have the following parameters:

nout = 2m

nout −Kout = dRS − 1

Here nout −Kout gives the number of parity check symbols
added to the message to form the codeword. In what follows
we find it convenient to take B to be equal to 2m so that one
can view each symbol in GF (2m) as giving a number between
1 and B.

We now demonstrate how the RS code can be used as an
outer code in conjunction with our inner superposition code,
to achieve low block error probability. For simplicity assume
that B is a power of 2. First consider the case when L equals
B. Taking m = log2B, we have that since L is equal to
B, the RS codelength becomes L. Thus, one can view each
symbol as representing an index specifying the selected term
in each of the L sections. The number of input symbols is then
Kout = L−dRS +1, so setting δ = dRS/L, one sees that the
outer rate Rout = Kout/nout, equals 1− δ+ 1/L which is at
least 1− δ.

For code composition Kout log2B message bits become the
Kout input symbols to the outer code. The symbols of the outer
codeword, having length L, gives the labels of terms sent from
each section using our inner superposition with codelength
n = L log2B/Rinner. From the received Y the estimated
labels ĵi, ĵ2, . . . ĵL using our adaptive successive decoder can
be again thought of as output symbols for our RS codes. If δ̂e
denotes the section mistake rate, it follows from the distance
property of the outer code that if 2δ̂e ≤ δ then these errors can
be corrected. The overall rate Rcomp is seen to be equal to the
product of rates RoutRinner which is at least (1− δ)Rinner.
Since we arrange for δ̂e to be smaller than some δmis with
exponentially small probability, it follows from the above that
composition with an outer code allows us to communicate with
the same reliability, albeit with a slightly smaller rate given
by (1− 2δmis)Rinner.

The case when L < B can be dealt with by observing
([50], Page 240) that an (nout,Kout) RS code as above, can
be shortened by length w, where 0 ≤ w < Kout, to form an
(nout − w,Kout − w) code with the same minimum distance
dRS as before. This is seen by viewing each codeword as
being created by appending nout−Kout parity check symbols
to the end of the corresponding message string. Then the code
formed by considering the set of codewords with the w leading
symbols identical to zero has precisely the properties stated
above.

With B equal to 2m as before, we have nout equals B
so taking w to be B − L we get an (n′out,K

′
out) code, with

n′out = L, K ′
out = L− dRS + 1 and minimum distance dRS .

Now since the codelength is L and the symbols of this code
are in GF (B) the code composition can be carried out as
before.

APPENDIX I
DISTRIBUTION OF Zk,j

Consider the general k ≥ 2 case. Focus on the sequence of
coefficients

Z1,j ,Z2,j , . . . ,Zk−1,j , Vk,k,j , Vk+1,k,j , . . . , Vn,k,j

used to represent Xj for j in Jk−1 in the basis

G1

‖G1‖
,

G2

‖G2‖
, . . . ,

Gk−1

‖Gk−1‖
, ξk,k, ξk+1,k, . . . ξn,k,

where the ξi,k for i from k to n are orthonormal vectors
in Rn, orthogonal to the G1, G2, . . . , Gk−1. These are as-
sociated with the previously described representation Xj =∑k−1
k′=1Zk′,j Gk′/‖Gk′‖ + Vk,j , except that here Vk,j is rep-

resented as
∑n
i=k Vi,k,j ξi,k.

Let’s prove that conditional on Fk−1, the distribution of
the Vi,k,j is independent across i from k to n, and for each
such i the joint distribution of (Vi,k,j : j ∈ Jk−1) is Normal
NJk−1(0,Σk−1). The proof is by induction in k. Along the
way the conditional distribution properties of Gk, Zk,j , and
Zk,j are obtained as consequences. As for ŵk and δk the
induction steps provide recursions which permit verification
of the stated forms.

The Vi,1,j = Xi,j are independent standard normals.
To analyze the k= 2 case, use the vectors U1,j = Uj that

arise in the first step properties in the proof of Lemma 1. There
we saw for unit vectors α, that the UTj α for j ∈ J1 have a joint
NJ1(0,Σ1) distribution, independent of Y . When represented
using the orthonormal basis Y/‖Y ‖, ξ2,2, . . . , ξn,2, the vector
Uj has coefficients Zj = UTj Y/‖Y ‖, and UTj ξ2,2 through
UTj ξn,2. Accordingly Xj = b1,jY/σ + Uj has representation
in this basis with the same coefficients, except in the direction
Y/‖Y ‖ where Zj is replaced by Zj = b1,j‖Y ‖/σ + Zj . The
joint distribution of (Vi,2,j = UTj ξi,2 : j ∈ J1) is Normal
NJ1(0,Σ1), independently for i = 2 to n, and independent of
‖Y ‖ and (Zj : j ∈ J1).

Proceed inductively for k ≥ 2, presuming the stated condi-
tional distribution property of the Vi,k,j to be true at k, conduct
analysis to demonstrate its validity at k+1.

From the representation of Vk,j in the basis given above,
the Gk has representation in the same basis as Gi,k =
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∑
j∈deck−1

√
Pj Vi,k,j for i from k to n. The coordinates

less than k are 0, since the Vk,j and Gk are orthogonal to
G1, . . . , Gk−1. The value of Zk,j is V Tk,jGk /‖Gk‖ where the
inner product (and norm) may be computed in the above basis
from sums of products of coefficients for i from k to n.

For the conditional distribution of Gi,k given Fk−1, inde-
pendence across i, conditional normality and conditional mean
0 are properties inherited from the corresponding properties
of the Vi,k,j . To obtain the conditional variance of Gi,k =∑
j∈deck−1

√
Pj Vi,k,j , use the conditional covariance Σk−1 =

I−δk−1δ
T
k−1 of Vi,k,j for j in Jk−1. The identity part con-

tributes
∑
j∈deck−1

Pj which is (q̂k−1 + f̂k−1)P ; whereas, the
δk−1δ

T
k−1 part, using the presumed form of δk−1, contributes

an amount seen to equal νk−1[
∑
j∈sent∩deck−1

Pj/P ]2 P
which is νk−1q̂

2
k−1P . It follows that the conditional expected

square for the coefficients of Gk is

σ2
k =

[
q̂k−1 + f̂k−1 − q̂2k−1 νk−1 ]P.

Moreover, conditional on Fk−1, the distribution of ‖Gk‖2 =∑n
i=kG

2
i,k is that of σ2

k X 2
n−k+1, a multiple of a Chi-square

with n−k + 1 degrees of freedom.
Next represent Vk,j = bk,j Gk/σk + Uk,j using a value of

bk,j that follows an update rule that we specify (depending on
Fk−1). It is represented using Vi,k,j = bk,j Gi,k/σk + Ui,k,j
for i from k to n, using the basis built from the ξi,k.

The coefficient bk,j is the value E[Vi,k,jGi,k|Fk−1]/σk.
Consider the product Vi,k,j Gi,k in the numerator. Use
the representation of Gi,k as a sum of the

√
Pj′ Vi,k,j′

for j′ ∈ deck−1. Accordingly, the numerator is∑
j′∈deck−1

√
Pj′
[
1j′=j − δk−1,jδk−1,j′

]
, which simplifies

to
√
Pj
[
1j∈deck−1 − νk−1q̂k−11j sent

]
. So for j in

Jk = Jk−1 − deck−1, we have the simplification

bk,j = − q̂k−1 νk−1βj
σk

,

for which the product for j, j′ in Jk takes the form

bk,jbk,j′ = δk−1,jδk−1,j′
q̂k−1νk−1

1 + f̂k−1/q̂k−1 − q̂k−1νk−1

.

Here the ratio simplifies to q̂adjk−1νk−1/(1− q̂adjk−1νk−1).
Now determine the features of the joint normal distribution

of the Ui,k,j = Vi,k,j − bk,j Gi,k/σk for j ∈ Jk, given Fk−1.
These random variables are conditionally uncorrelated and
hence conditionally independent given Fk−1 across choices
of i, but there is covariance across choices of j for fixed
i. This conditional covariance E[Ui,k,jUi,k,j′ |Fk−1] by the
choice of bk,j reduces to E[Vi,k,jVi,k,j′ |Z]− bk,jbk,j′ which,
for j ∈ Jk, is 1j=j′ − δk−1,jδk−1,j′ − bk,jbk,j′ . That is,
for each i, the (Ui,k,j : j ∈ Jk) have the joint NJk

(0,Σk)
distribution, conditional on Fk−1, where Σk again takes the
form 1j,j′ − δk,jδk,j′ where

δk,jδk,j′ = δk−1,jδk−1,j′

{
1 +

q̂adjk−1 νk−1

1− q̂adjk−1νk−1

}
,

for j, j′ now restricted to Jk. The quantity in braces simplifies
to 1/(1 − q̂adjk−1νk−1). Correspondingly, the recursive update

rule for νk is
νk =

νk−1

1 − q̂adjk−1 νk−1

.

Consequently, the joint distribution for (Zk,j : j ∈ Jk)
is determined, conditional on Fk−1. It is also the normal
N(0,Σk) distribution and (Zk,j : j ∈ Jk) is conditionally
independent of the coefficients of Gk, given Fk−1. After all,
the Zk,j = UTk,jGk /‖Gk‖ have this NJk

(0,Σk) distribution,
conditional on Gk and Fk−1, but since this distribution does
not depend on Gk we have the stated conditional indepen-
dence.

Now Zk,j = XT
j Gk /‖Gk‖ reduces to V Tk,jGk /‖Gk‖ by

the orthogonality of the G1 through Gk−1 components of Xj

with Gk. So using the representation Vk,j = bk,j Gk/σk+Uk,j
one obtains

Zk,j = bk,j ‖Gk‖/σk + Zk,j .

This makes the conditional distribution of the Zk,j , given
Fk−1, close to but not exactly normally distributed, rather
it is a location mixture of normals with distribution of the
shift of location determined by the Chi-square distribution of
X 2
n−k+1 = ‖Gk‖2/σ2

k. Using the form of bk,j , for j in Jk, the
location shift bk,j Xn−k+1 may be written

−
√
ŵk Cj,R,B

[
Xn−k+1/

√
n
]
1j sent,

where ŵk equals n b2k,j/Cj,R,B . The numerator and denomina-
tor has dependence on j through Pj , so canceling the Pj pro-
duces a value for ŵk. Indeed, Cj,R,B = (Pj/P )ν(L/R) logB
equals n(Pj/P )ν and b2k,j = Pj q̂

adj
k−1 ν

2
k−1/[1− q̂

adj
k−1νk−1]. So

this ŵk may be expressed as

ŵk =
νk−1

ν

q̂adjk−1 νk−1

1− q̂adjk−1νk−1

,

which, using the update rule for νk−1, is seen to equal

ŵk =
νk−1 − νk

ν
.

Armed with Gk, update the orthonormal basis of Rn
used to represent Xj , Vk,j and Uk,j . From the previous
step this basis was G1/‖G1‖, . . . , Gk−1/‖Gk−1‖ along with
ξk,k, ξk+1,k, . . . , ξn,k, where only the later are needed for
the Vk,j and Uk,j as their coefficients in the directions
G1, . . . Gk−1 are 0.

Now Gram-Schmidt makes an updated orthonormal basis of
Rn, retaining the G1/‖G1‖, . . . , Gk−1/‖Gk−1‖, but replacing
ξk,k, ξk+1,k, . . . , ξn,k with Gk/‖Gk‖, ξk+1,k+1, . . . , ξn,k+1.
By the Gram-Schmidt construction process, these vectors
ξi,k+1 for i from k+1 to n are determined from the original
basis vectors (columns of the identity) along with the com-
puted random vectors G1, . . . , Gk and do not depend on any
other random variables in this development.

The coefficients of Uk,j in this updated basis are
UTk,jGk/‖Gk‖, UTk,jξk+1,k+1, . . . , U

T
k,jξn,k+1, which are de-

noted Uk,k+1,j = Zk,j and Uk+1,k+1,j , . . . , Uk+1,n,j , respec-
tively. Recalling the normal conditional distribution of the
Uk,j , these coefficients (Ui,k+1,j : k ≤ i ≤ n, j ∈ Jk)
are also normally distributed, conditional on Fk−1 and Gk,
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independent across i from k to n (this independence being a
consequence of their uncorrelatedness, due to the orthogonality
of the ξi,k+1 and the independence of the coefficients Ui,k,j
across i in the original basis); moreover, as we have seen
already for i = k, for each i from k to n, the (Ui,k+1,j : j ∈
Jk) inherit a joint normal N(0,Σk) conditional distribution
from the conditional distribution that the (Ui,k,j : j ∈ Jk)
have. After all, these coefficients have this conditional dis-
tribution, conditioning on the basis vectors and Fk−1, and
this conditional distribution is the same for all such basis
vectors. So, in fact, these (Ui,k+1,j : k ≤ i ≤ n, j ∈ Jk)
are conditionally independent of the Gk given Fk−1.

Specializing the conditional distribution conclusion, by sep-
arating off the i = k case where the coefficients are Zk,j ,
one has that the (Ui,k+1,j : k + 1 ≤ i ≤ n, j ∈ Jk) have
the specified conditional distribution and are conditionally
independent of Gk and (Zk,j : j ∈ Jk) given Fk−1. It follows
that the conditional distribution of (Ui,k+1,j : k+1 ≤ i ≤
n, j ∈ Jk) given Fk = (Fk−1, ‖Gk‖, Zk) is identified. It is
normal N(0,Σk) for each i, independently across i from k+1
to n, conditionally given Fk.

Likewise, the vector Vk,j = bk,j Gk/σk + Uk,j has repre-
sentation in this updated basis with coefficient Zk,j in place
of Zk,j and with Vi,k+1,j = Ui,k+1,j for i from k+1 to n. So
these coefficients (Vi,k+1,j : k+1 ≤ i ≤ n, j ∈ Jk) have the
normal N(0,Σk) distribution for each i, independently across
i from k+1 to n, conditionally given Fk.

Thus the induction is established, verifying this conditional
distribution property holds for all k = 1, 2, . . . , n. Con-
sequently, the Zk and ‖Gk‖ have the claimed conditional
distributions.

Finally, repeatedly apply νk′/νk′−1 =1/(1−q̂adjk′−1 νk′−1), for
k′ from k to 2, each time substituting the required expression
on the right and simplifying to obtain

νk
νk−1

=
1 − (q̂adj1 + . . .+ q̂adjk−2) ν

1− (q̂adj1 + . . .+ q̂adjk−2 + q̂adjk−1) ν
.

This yields νk = νŝk, which, when plugged into the expres-
sions for ŵk, establishes the claims. The proof of Lemma 2
is complete.

APPENDIX II
THE METHOD OF NEARBY MEASURES

Recall that the Rènyi relative entropy of order α> 1 (also
known as the α divergence) of two probability measures P and
Q with density functions p(Z) and q(Z) for a random vector
Z is given by

Dα(P‖Q) =
1

α−1
log EQ[(p(Z)/q(Z))α].

Its limit for large α is D∞(P‖Q) = log ‖p/q‖∞.

Lemma 44: Let P and Q be a pair of probability measures
with finite Dα(P‖Q). For any event A, and α > 1,

P[A] ≤
[
Q[A]eDα(P‖Q)

](α−1)/α
.

If Dα(P‖Q) ≤ c0 for all α, then the following bound holds,
taking the limit of large α,

P[A] ≤ Q[A]ec0 .

In this case the density ratio p(Z)/q(Z) is uniformly bounded
by ec0 .

Proof of Lemma 44: For convex f , as in Csiszar’s f -
divergence inequality, from Jensen’s inequality applied to the
decomposition of EQ[f(p(Z)/q(Z))] using the distributions
conditional on A and its complement,

QAf(PA/QA) + QAc f(PAc/QAc) ≤ EQf(p(Z)/q(Z)).

Using in particular f(r) = rα and throwing out the non-
negative Ac part, yields

(PA)α ≤ (QA)α−1EQ[(p(Z)/q(Z))α].

It is also seen as Holder’s inequality applied to
∫
q(p/q)1A.

Taking the α root produces the stated inequality.

Lemma 45: Let PZ be the joint normal N(0,Σ) distribu-
tion, with Σ = I − bbT where ‖b‖2 = ν < 1. Likewise, let
QZ be the distribution that makes the Zj independent standard
normal. Then the Rènyi divergence is bounded. Indeed, for all
1 ≤ α ≤ ∞,

Dα(PZ‖QZ) ≤ c0.

where c0 = −(1/2) log[1 − ν]. With ν = P/(σ2 + P ), this
constant is c0 =(1/2) log[1+P/σ2].

Proof of Lemma 45: Direct evaluation of the α divergence
between N(0,Σ) and N(0, I) reveals the value

Dα = −1
2

log |Σ| − 1
2(α−1)

log |αI − (α−1)Σ|

Expressing Σ = I −∆, it simplifies to

−1
2

log |I −∆| − 1
2(α−1)

log |I + (α−1)∆|

The matrix ∆ is equal to bbT , with b as previously specified
with ‖b‖2 = ν. The two matrices I − ∆ and I + (α−1)∆
each take the form I + γbbT , with γ equal to −1 and (α−1)
respectively.

The form I + γbbT is readily seen to have one eigenvalue
of 1 + γν corresponding to an eigenvector b/‖b‖ and L−1
eigenvalues equal to 1 corresponding to eigenvectors orthog-
onal to the vector b. The log determinant is the sum of the
logs of the eigenvalues, and so, in the present context, the log
determinants arise exclusively from the one eigenvalue not
equal to 1. This provides evaluation of Dα to be

− 1
2

log[1− ν] − 1
2(α−1)

log[1 + (α−1)ν],

where an upper bound is obtained by tossing the second term
which is negative.

We see that maxZ p(Z)/q(Z) is finite and equals [1/(1 −
ν)]1/2. Indeed, from the densities N(0, I−bbT ) and N(0, I)
this claim can be established, noting after orthogonal transfor-
mation that these measures are only different in one variable,
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which is either N(0, 1−ν) or N(0, 1), for which the maximum
ratio of the densities occurs at the origin and is simply the
ratio of the normalizing constants. This completes the proof
of Lemma 45.

With ν=P/(σ2+P ) this limit −(1/2) log[1−ν] which we
have denoted as c0 is the same as (1/2) log[1 + P/σ2]. That
it is the same as the capacity C appears to be coincidental, as
we do not have any direct communication rate interpretation
of the operation of taking the log of the L∞ norm of the ratio
of the densities that arise here.

Proof of Lemma 3: We are to show that for events A
determined by Fk the probability P[A] is not more than
Q[A]ekc0 . Write the probability as an iterated expectation
conditioning on Fk−1. That is, P[A] = E [P[A|Fk−1]]. To
determine membership in A, conditional on Fk−1, we only
need Zk,Jk

= (Zk,j : j ∈ Jk) where Jk is determined by
Fk−1. Thus

P[A] = EP

[
PX 2

n−k+1,Zk,Jk
|Fk−1

[
A]
]
,

where we use the subscript on the outer expectation to
denote that it is with respect to P and the subscripts on
the inner conditional probability to indicate the relevant vari-
ables. For this inner probability switch to the nearby measure
QXn−k+1,Zk,Jk

|Fk−1 . These conditional measures agree con-
cerning the distribution of the independent X 2

n−k+1, so the
α relative entropy between them arises only from the normal
distributions of the Zk,Jk

given Fk−1. This α relative entropy
is bounded by c0.

To see this, recall that from Lemma 2 that PZk,Jk
|Fk−1 is

NJk
(0,Σk) with Σk = I − δkδ

T
k . Now

||δk||2 = νk
∑

j∈sent∩Jk

Pj/P

which is (1 − (q̂1 + . . . + q̂k−1))νk. Noting that νk = ŝkν
and ŝk(1 − (q̂1 + . . . + q̂k−1)) is at most 1, we get that
||δk||2 ≤ ν. Thus from Lemma 45, for all α ≥ 1, the α
relative entropy between PZk,Jk

|Fk−1 and the corresponding
Q conditional distribution is at most c0.

So with the switch of conditional distribution we obtain a
bound with a multiplicative factor of ec0 . The bound on the
inner expectation is then a function of Fk−1, so the conclusion
follows by induction. This completes the proof of Lemma 3.

APPENDIX III
PROOF OF LEMMAS ON THE PROGRESS OF q1,k

Proof of Lemma 6: Consider any step k with q1,k−1 −
f1,k−1 ≤ x∗. We have that x = qadj1,k−1 is at least x̃ =
q1,k−1 − f1,k−1, where these are initialized to be 0 when
k = 1. Consider q1,k = gL(x) − ηk which is at least
gL(x̃) − ηk, since the function gL is increasing. By the gap
property, it is at least x̃+gap(x̃)−ηk, which in turn is at least
q1,k−1− f̄(x)+gap(x)−η(x), which is at least q1,k−1 +gap′.

The increase q1,k−q1,k−1 is at least gap′ each such step, so
the number of of such steps m−1 is not more than 1/gap′. At
the final step m, the x̃ = q1,m−1−f1,m−1 exceeds x∗ so q1,m

is at least gL(x∗)− ηm which is 1− δ∗− ηm. This completes
the proof of Lemma 6.
Proof of Lemma 5: With a constant gap bound, the claim
when f1,k ≤ f̄ follows from the above, specializing f̄ and η
to be constant. As for the claim when f1,k = kf , it is actually
covered by the case that f1,k ≤ f̄ , in view of the choice that
f ≤ f̄/m∗. This completes the proof of Lemma 5.

APPENDIX IV
ACCUMULATIVE g IN THE LARGE CODE LIMIT

Our primary work concerns finite L and B regimes. Never-
theless, in providing intuition concerning the power allocation
and the behavior of the update function, it is sensible to briefly
discuss the matter via a limiting arguments for large B. The
power allocation should be proportional to e−2C`/L for the
limit of the update function to be accumulative at rates up to
capacity.

The fixed L and large B extreme: One justification of such
power allocation aries from the setting in which the decoding
can be done successively without any adaptation. This comes
from consideration of fixed L and exponentially large B =
2nR/L. With nR/L very large, practicality would be lost, but
in theory it would permit reliable decoding one section at a
time, by what is called rate-splitting and successive-decoding,
as previously cited. With total sum rate R arranged to be
near the capacity C = (1/2) log(1 + P/σ2), the choice of
the power allocations proportional to e−2`C/L simply arise as
the choice that makes the incremental decoding capacities be
C/L, commensurate with the choice of sections of equal size
near 2nC/L.

To express what is meant by an incremental decoding
capacity C` for the decoding of section `, for any power allo-
cation, the power of the as yet undecoded sections P`+1,L =
P(`+1) + . . . + P(L) adds to the noise variance, to express
C` = (1/2) log(1 + P(`)/(σ2 + P`+1,L)). These incremental
capacities sum to the total capacity (1/2) log(1+P/σ2), after-
all, the incremental capacities are seen to be the difference of
the values of (1/2) log(σ2 +P`,L) at ` and `+1, so they sum
to the difference of (1/2) log(σ2 + P ) and (1/2) log(σ2).

The power allocation proportional to the mild exponential
decay, e−2`C/L, is indeed the unique choice that makes these
incremental capacities be equal across the sections.

Now since
∑
` C` = C for any power allocation with

the specified total power, it follows that min` C` ≤ C/L,
with strict inequality if the power allocation differs from the
specified choice. Using the constant rate split R/L, reliability
of successive decoding of the sections would require it to be
not more than the minimum of the C`. So with successive
decoding and a constant rate split, to permit R up to C requires
that the power allocation be as specified.

It is instructive to deduce the update function for this
case. In this extreme, the number of steps would be L
and there would be a linear increase of 1/L in the (un-
weighted) fraction decoded each step. As for the weighted
fraction, with π(`) = e−2C(`−1)/L(1 − e−2C/L)/(1 − e−2C),
the π size of the previously decoded set {1, 2, . . . , ` − 1}
is x = (1 − e−2C(`−1)/L)/(1 − e−2C) which is increased to
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gL(x) = x + π(`). The expression for x may be reexpressed
as 1/ν − π(`)/(1− e−2C/L), so this π(`) may be expressed as
(1/ν−x)(1− e−2C/L). Consequently, in this extreme case of
exponentially large B one has

gL(x) = x+ (1− xν)(1− e−2C/L)/ν.

It has positive gap gL(x) − x near (1 − xν)2C/(νL). This
expression shows how close the update function gL(x) is to
x for the capacity achieving update function in the large B
limit, and the power allocation that achieves it is identified.

In contrast to this fixed L, exponentially large B setting,
with one section decoded each step, the adaptive decoder is
built for large L, arranged to be within a log-factor of n,
allowing more moderate section sizes B, to achieve a feasible
size dictionary. Doing so entails less separation between the
distribution of statistics for term selection, necessitating the
adaptive selection, while retaining exponentially small error
probability (now in L rather than in n). With the number of
steps m of order logB which remains much smaller than L,
the update function gL(x) is seen to take a similar form, but
with a gap of order 1/m rather than 1/L.

Integral characterization: As we have seen for specific
power allocations, an integral approximation to gL(x) may
be used. This may be used for a calculus examination of
conditions for accumulation in the large code limit. Consider
power allocations sorted to be decreasing in `/L. In particular,
suppose the power allocation weights π(`) = P(`)/P are ex-
pressible as proportional to a decreasing differentiable function
u(t) for t in [0, 1], evaluated at t = `/L. That is

π(`) = (1/L)u(t)/UL

where the normalization constant UL = (1/L)
∑L
`=1 u(`/L)

is approximated by the integral U(1) =
∫ 1

0
u(t)dt.

Ignoring the effects of the small a and small h, the gL(x)
becomes ∑

`

π` Φ

((√Lπ`ν/2R
1− xν

− 1
)
τ

)
where, with t = `/L, the normal probabilities in this sum
become

Φ

((√u(t)ν/[2RU(1)]
1− xν

− 1
)
τ

)
.

The sum is approximated by the corresponding integral of
these with respect to the density u(t)/U(1) on [0, 1] of
the power allocation measure π with cumulative distribution
U(t)/U(1) where U(t) =

∫ t
0
u(t̃)dt̃.

Some analysis for large τ proceeds as follows. These
probabilities at t approaches 1 or 0, respectively, according to
whether u(t)ν/[2RU(1)] is greater than or less than 1 − xν,
which means that it is 1 for t less than a value tx at which

u(tx)ν/[2RU(1)] = 1− xν.

This large τ limit is thus called the saturated case, in which
the detection probabilities are 1 or 0, with the cut-off between
1 and 0 occurring at the point tx.

This tx is increasing in x in an interval [0, x1] contained in
[0, 1], where x1 is the point where tx = 1. To get started with

t0 non-negative, it is required that u(0)ν/[2U(1)] be at least
R. To end with the value tx = 1 at x1 ≤ 1, it is required that
u(1)ν/[(1−ν)2U(1)] be at least R.

In accordance with this 1 and 0 characterization of the
probabilities in the large τ and L limit, the gL(x) approaches
the π measure of the interval up to tx, that is, the update
function becomes

g(x) = U(tx)/U(1)

on [0, x1].
It is only in this section of the appendix that we use g(x) to

denote this large τ and large L limit. In the rest of the paper
g(x) denotes the integral approximation in which explicit
dependence on τ is retained.

From the equations characterizing tx and g(x) here, their
derivatives with respect to x satisfy t′xu

′(tx) = −2RU(1) and
g′(x) = t′xu(tx)/U(1), so that u′(tx)/u(tx) = −2R/g′(x)
where t′x = dtx/dx.

In particular, for the asymptotic update function g(x) to
track x requires that g′(x) = 1 and consequently u′(t)/u(t) =
−2R, which means that u(t) is proportional to e−2Rt. With
R approaching C this gives additional motivation for the
choice of variable power assignment with u(t) = e−2Ct. It
has U(1) = (1 − e−2C)/(2C) equal to ν/(2C), with which
u(0)ν/[2U(1)] = C is indeed at least R.

An interesting aspect of this saturated setting is a rejuve-
nation property analogous to that already seen in the above
discussion in the finite L case. Namely, for any 0<a<1, once
the π measure of the set decoded hits x = a corresponding to
a portion decoded of ta, what remains is an analogous problem
decoding a portion 1 − ta with the remaining portion of the
power (1−a)P .

To attempt to make g(x) track a higher trajectory equal
to (R/γ)x for an initial interval of values of x, for some
positive γ < R, we could set u′(t)/u(t) = −2γ as satisfied
by the power assignment with u(t) proportional to e−2γt.
Denote Cγ = γ(1−e−2C)/(1−e−2γ) which is the value of
u(0)ν/[2U(1)] in this setting. It is between γ and C. The
initialization requirement that u(0)ν/[2U(1)] be at least R
becomes the limitation R ≤ Cγ . So such γ < C keeps the
rate less than capacity.

It is noted if γ is near C reasonable rates can be achieved
by straddling R between γ and Cγ .

Presumably, as holds true in the finite L setting, in this
limiting L setting, u(t) proportional to e−2Ct is the unique
choice of power allocation density for which the g(x) is
accumulative for rates up to C. We shall not demonstrate
that here, but do take note that if the differentiable function
g(x) ≥ x does not match x throughout [0, 1], then there is
a first x0 ≥ 0 at which g′(x0) > 1, from which there is a
small interval of values of x starting at x0 and corresponding
small interval of values of t within which by Taylor expansion
u(t) is near u(tx0)e

−2γt with a γ < C and g(x) is strictly
greater than x. Using the rejuvenation property it should then
be possible to split the analysis into intervals in which the use
of such power allocation restricts the achievable rate to less
than capacity.



62

For our finite L and B demonstration of the accumulative
property of the proposed power allocations, the analysis is sim-
ilar. However, instead of a sharp transition from 1 to 0 for the
detection probabilities, there is quantified by Φ(µj(x)− τ) a
more gradual transition extending over a significant portion of
the sections. This gradual detection quantification provids the
overlap associated with building up the decoding adaptively.

APPENDIX V
THE GAP HAS NOT MORE THAN ONE OSCILLATION

Proof of Lemma 21: In the same manner as the derivative
result for gnum(x), the glow(x) has derivative with respect to
x given by the following function, evaluated at z = zx,{

τ∆c

2

(
1+

z

τ

)3

φ(z) +
∫ ∞

z

(
1 + t/τ

)2
φ(t)dt

}
R

C′
.

Subtracting 1+D(δc)/snr from it gives the function der(z),
which at z = zx is the derivative with respect to x of G(zx) =
glow(x) − x − xD(δc)/snr. The mapping from x to zx is
strictly increasing, so the sign of der(z) provides the direction
of movement of either G(z) or of G(zx).

Consider the behavior of der(z) for z ≥ −τ which includes
[z0, z1]. At z = −τ the first term vanishes and the integral is
not more than 1 + 1/τ2, so under the stated condition on R,
the der(z) starts out negative at z = −τ . Likewise note that
der(z) is ultimately negative for large z since it approaches
−(1+D(δc)/snr). Let’s see whether der(z) goes up anywhere
to the right of −τ . Taking its derivative with respect to z, we
obtain

der′(z) =
{
− τ∆c

2
(
1+z/τ

)3
zφ(z) +

3∆c

2
(
1+z/τ

)2
φ(z)

−
(
1+z/τ

)2
φ(z)

} R
C′
.

The interpretation of der′(z) is that since der(zx) is the first
derivative of G(zx), it follows that z′x der

′(zx) is the second
derivative, where z′x as determined in the proof of Corollary
13 is strictly positive for z > −τ . Thus the sign of the second
derivative of the lower bound on the gap is determined by the
sign of der′(z).

Factoring out the positive (1+z/τ)2φ(z)R/C′ for z > −τ ,
the sign of der′(z) is determined by the quadratic expression

−(τ∆c/2)
(
1+z/τ

)
z + 3∆c/2 − 1,

which has value 3∆c/2 − 1 at z = −τ and at z = 0. The
discriminant of whether there are any roots to this quadratic
yielding der′(z) = 0 is given by (τ∆c)2/4−2∆c(1−3∆c/2).
Its positivity is determined by whether τ2∆c/4 > 2 − 3∆c,
that is, whether ∆c > 2/(τ2/4 + 3). If ∆c ≤ 2/(τ2/4 + 3)
which is less than 2/3, then der′(z), which in that case starts
out negative at z = −τ , never hits 0, so it stays negative for
z ≥ −τ , so der(z) never goes up to the right of −τ and G(z)
remains a decreasing function. In that decreasing case we may
take zG = zmax = −τ .

If ∆c > 2/(τ2/4 + 3), then by the quadratic formula
there is an interval of values of z between the pair of points
−τ/2 ±

√
τ2/4− (2/∆c)(1− 3∆/2) within which der′(z)

is positive, and within the associated interval of values of x
the G(zx) is convex in x. Outside of that interval we have
concavity of G(zx). So then either der(z) remains negative,
so that G(z) is decreasing for z ≥ −τ , or there is a root
zcrit > −τ where der(z) first hits 0 and der′(z) > 0, i.e.
that root, if there is one, is in this interval. Suppose there is
such a root. Then from the behavior of der′(z) as a positive
multiple of a quadratic with two zero crossings, the function
G(z) experiences an oscillation.

Indeed, until that point zcrit, the der(z) is negative so G(z)
is decreasing. After that root, the der(z) is increasing between
zcrit and zright, the right end of the above interval, so der(z)
is positive and G(z) is increasing between those points as well.
Now consider z ≥ zright, where der′(z) ≤ 0, strictly so for
z > zright. At zright the der(z) is strictly positive (in fact
maximal) and ultimately for large z the der(z) is negative, so
for z > zright the G(z) rises further until a point z = zmax
where der(z) = 0. To the right of that point since der′(z) < 0,
the der(z) stays negative and G(z) is decreasing. Thus der(z)
is identified as having two roots zcrit and zmax, and G(z) is
unimodal to the right of zcrit.

To determine the value of der(z) at z = 0, evaluate the
integral

∫∞
z

(1+ t/ν)2π(t)dt. In the same manner as in the
preceding subsection, it is (1+1/τ2)Φ̄(z) + (2τ+z)φ(z)/τ2.
Thus der(z) is

R

C′

{
τ∆c

2

(
1+

z

τ

)3

φ(z) +
2τ+z
τ2

φ(z) +
(
1 +

1
τ2

)
Φ̄(z)

}

−
(

1 +
D(δc)
snr

)
.

At z = 0 it is

R

C′

{(
τ∆c

2
+

2
τ

)
1√
2π

+
(

1 +
1
τ2

)
/2
}
−
[
1+D(δc)/snr

]
.

It is non-negative if τ∆c/(2
√

2π ) exceeds[
1 +D(δc)/snr] C′/R − (1+1/τ2)/2 − 2/(τ

√
2π )

which using C′/R = 1+r/τ2 is

1/2 +
(r−1/2)

τ2
+
D(δc)
snr

(1+r/τ2)− 2/(τ
√

2π ).

It is this expression which we call half for it tends to be not
much more than 1/2. For instance, if D(δc)/snr ≤ 1/2 and
(3/2)r ≤ (2/

√
2π)τ , then this expression is not more than

1− 1/(2τ2) which is less than 1.
So then der(z) is non-negative at z = 0 if

∆c ≥
2
√

2π half
τ

.

Non-negativity of der(0) implies that the critical value of the
function G satisfies zG ≤ 0.

Suppose on the other hand that der(0) < 0. Then ∆c <
2
√

2π half/τ , which is less than 2/3 when τ is at least
3
√

2π half . Using the condition ∆c ≤ 2/3, the der′(z) < 0
for z > 0. It follows that G(z) is decreasing for z > 0, and
both zG and zmax are non-positive.
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Next consider the behavior of the function A(z), for which
we show that it too has at most one oscillation. Differentiating
and collecting terms obtain that A′(z) is

A′(z) = −2(1−∆c)(z+τ)Φ(z) + ∆c(z+τ)2φ(z).

Consider values of z in Iτ = (−τ,∞) to the right of −τ .
Factoring out 2(z+τ), the sign behavior of A′(z) is determined
by the function

M(z) = − (1−∆c) Φ(z) + (∆c/2) (z+τ)φ(z) .

This function M(z) is negative for large z as it converges to
−2(1−∆c). Thus A(z) is decreasing for large z. At z = −τ
the sign of M(z) is determined by whether ∆c<1, if so then
M(z) starts out negative, so then A(z) is initially decreasing,
whereas in the unusual case of ∆c ≥ 1, the A(z) is initially
increasing and we set zA = −τ . Consider the derivative of
M(z) given by

M ′(z) = −
[
1−3∆c/2 + (∆c/2) z(z+τ)

]
φ(z).

The expression in brackets is the same quadratic function of
z considered above. It is centered and extremal at zcent =
−τ/2. This quadratic attains the value 0 only if ∆c is at least
∆∗
c = 2/(τ2/4 + 3).
For ∆c<∆∗

c , which is less than 1, the M ′(z) stays negative
and consequently M(z) is decreasing, so M(z) and A′(z)
remains negative for z > −τ . Then A(z) is decreasing in Iτ
(which actually implies the monotonicity of G(z) under the
same condition on ∆c).

For ∆c≥∆∗
c , for which the function M ′(z) does cross 0,

this M ′(z) is positive in the interval of values of z centered at
zcent = −τ/2 and heading up to the point zright previously
discussed. In this interval including [−τ/2, zright] the function
M(z) is increasing.

Let’s see whether M(z) is positive, at or to the left of zcent.
For ∆c > 1 that positivity already occurred at and just to the
right of −τ . For ∆c ≤ 1, use the inequality Φ(z) ≤ φ(z)/(−z)
for z < 0. This lower bound is sufficient to demonstrate
positivity in an interval of values of z centered at the same
point zcent = −τ/2, provided ∆cτ

2/4 is at least 2(1−∆c),
that is, ∆c at least ∆∗∗

c = 2/(τ2/4+2). Then zA is not more
than the left end of this interval, which is less than −τ/2. For
∆c ≥ ∆∗∗

c , this interval is where the same quadratic z(z+τ) is
less than −2(1−∆c)/∆c. Then the M(z) is positive at −τ/2
and furthermore increasing from there up to zright, while,
further to the right it is decreasing and ultimately negative. It
follows that such M(z) has only one root to the right of −τ/2.
The A′(z) inherits the same sign and root characteristics as
M(z), so A(z) is unimodal to the right of −τ/2.

If ∆c is between ∆∗
c and ∆∗∗

c , the lower bound we have
invoked is insufficient to determine the precise conditions of
positivity of M(z) at zcent, so we resort in this case to the
milder conclusion, from the negativity of M ′(z) to the right of
zright, that M(z) is decreasing there and hence it and A′(z)
has at most one root to the right of that point, so A(z) is
unimodal there. Being less than ∆∗∗

c , the value of ∆c is small
enough that 2/∆c > τ2/4 + 2, and hence zright is not more
than [−τ +

√
4]/2 which is −τ/2 + 1.

This completes the proof of Lemma 21.
We remark concerning G(z) that one can pin down down

the location of zG further. Under conditions on ∆c, it is near
to and not more that a value near

−

√
2 log

(
1
2π

τ∆c/2
D(δc)/snr+(r−1)/τ2

)
,

provided the argument of the logarithm is of a sufficient size.
As we have said, precise knowledge of the value of zG is
not essential because the shape properties allow us to take
advantage of the tight lower bounds on A(z) for negative z.

APPENDIX VI
THE GAP IN THE CONSTANT POWER CASE

Proof of Corollary 19. We are to show under the stated
conditions that g(x) − x is smallest in [0, x∗] at x = x∗,
when the power allocation is constant. For x in [0, 1] the
function zx is one to one. In this ucut = 1 case, it is equal to
zx = [

√
(1+r/τ2)/(1− xν)− 1]τ . It starts at x = 0 with z0

and at x = x∗ it is ζ. Note that (1+z0/τ)2 = 1+r/τ2. If r ≥ 0
the z0 ≥ 0, while, in any case, for r > −τ2 the z0 at least
exceeds −τ . Invert the formula for z = zx to express x in
terms of z. Using g(x) = Φ(z) and subtracting the expression
for x, we want the minimum of the function

G(z) = Φ(z)− 1
ν

(
1− (1+r/τ2)

(1+z/τ)2

)
.

Its value at z0 is G(z0) = Φ(z0). Consider the minimization
of G(z) for z0 ≤ z ≤ ζ, but take advantage, when it is helpful,
of properties for all z > −τ . The first derivative is

φ(z)− 2
ν τ

(1+r/τ2)
(1+z/τ)3

,

ultimately negative for very large z. This function has 0, 1, or
2 roots to the right of −τ . Indeed, to be zero it means that z
solves

z2 − 6 log(1+z/τ) = 2 log(ντ/c)

where c = 2(1+ r/τ2)
√

2π. The function on the left side
v(z) = z2 − 6 log(1+z/τ) is convex, with a value of 0 and a
negative slope at z = 0 and it grows without bound for large z.
This function reaches its minimum value (lets call it val < 0)
at a point z = zcrit > 0, which solves 2z − 6/(τ+z) = 0,
given by zcrit = (τ/2)

[√
1+12/τ2 − 1

]
not more than 3/τ .

When val > 2 log(ν τ/c) there are no roots, so G(z) is
decreasing for z > −τ and has its minimum on [0, ζ] at z = ζ.

When 2 log(ντ/c) is positive (that is, when ντ > c, which
is the condition stated in the corollary), it exceeds the value
of the expression on the left at z = 0, and G is increasing
there. So from the indicated shape of the function v(z), there
is one root to the right of 0, which must be a maximizer of
G(z), since G(z) is eventually decreasing. So then G(z) is
unimodal for positive z and so if z0 ≥ 0 its minimum in
[z0, ζ] is at either z = z0 or z = ζ and this minimum is at
least min{G(0), G(ζ)}. The value at z = 0 is G(0) = 1/2. So,
with (r− rup)/[snr(τ2+r1)] less than 1/2, the minimum for
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z ≥ 0 occurs at z = ζ, which demonstrates the first conclusion
of Corollary 19.

If r is negative then z0 < 0, and we consider the shape
of G(z) for negative z. Again with the assumption that
2 log(ντ/c) is positive, the function G(z) for z ≥ −τ is
seen to have a minimizer at a negative z = zmin solving
z2 = 2 log(ντ/c)−6 log(1+z/τ), where G′(z) = 0, and G(z)
is increasing between zmin and 0. We inquire as to whether
G(z) is increasing at z0. If it is, then z0 ≥ zmin and G(z) is
unimodal to the right of z0. The value of the derivative there
is φ(z0)− 2

ν (τ+z0)
, which is positive if

|z0| ≤
√

2 log
(
ν(τ+z0)/2

√
2π
)
.

As we shall see momentarily, z0 is between r/τ and r/2τ , so
this positive derivative condition is implied by

r/τ ≥ −
√

2 log
(
ν(τ+r/τ)/2

√
2π
)
.

Then G(z) is unimodal to the right of z0 and has minimum
equal to min{G(z0), G(ζ)}.

From the relationship (1+z0/τ)2 = 1+r/τ2, with −τ <
z0 ≤ 0, one finds that r = z0(2τ + z0), so it follows that
z0 = r/(2τ + z0) is between r/τ and r/2τ .

Lower bound G(z0) = Φ(z0) for z0 ≤ 0 by the tangent line
(1/2)+z0φ(0), which is at least (1/2)+r/(τ

√
2π). Thus when

r is such that the positive derivative condition holds, we have
the gap lower bound allowing rup < r ≤ 0 which is

min
{

1/2 + r/(τ
√

2π) , (r − rup)/[snr (τ2+r1)]
}
.

This completes the proof of Corollary 19.

Next we ask whether a useful bound might be available if
G(z) is not increasing at this z0 ≤ 0. Then z0 ≤ zmin, and
the minimum of G(z) in [z0, ζ] is either at zmin or at ζ. The
G(z) is

Φ(z) +
(1+z0/τ)2 − (1+z/τ)2

(1+z/τ)2
.

Now since zmin is the negative solution to z2 =
2 log(ντ/c)−6 log(1+z/τ), it follows that there zmin is near
−
√

2 log(ντ/c). From the difference of squares, the second
part of G(zmin) is near 2(z0 − zmin)/τ which is negative.
So for G(zmin) to be positive the Φ(zmin) would need to
overcome that term. Now Φ(zmin) is near φ(zmin)/|zmin|,
and G′(z) = 0 at zmin means that φ(zmin) equals the value
(2/ν τ)(1+ z0/τ)2/(1+ zmin/τ)3. Accordingly, G(zmin) is
near

2(1+z0/τ)2

ν τ
√

2 log(ν τ/c)
+

2(z0 +
√

2 log(ντ/c))
τ

.

The implication is that by choice of r one can not push z0
much to the left of −

√
2 log(ντ/c) without losing positivity

of G(z).

Next we examine when rup is negative, whether r arbitrarily
close to rup can satisfy the conditions. That would require the
rup/τ to be greater than −

√
2π/2 and greater than

−
√

2 log
(
ντ(1 + rup/τ2)/2

√
2π
)
.

However, in view of the formula for rup, it is near [1/(1+
snr) − 1]τ2 = −ντ2 when snr Φ̄(ζ) and ζ/τ are small.
Consequently, rup/τ is near −ντ . So if ντ is greater than
a constant near

√
2π/2 then the first of these conditions on

rup/τ is not satisfied. Also with this rup/τ near −ντ the
argument of the logarithm becomes ν(1−ν)τ/2

√
2π, needed

to be greater than 1. So if ντ is less than a constant near√
2π/2 then this argument of the logarithm is strictly less

than 1. Thus the conditions for allowance of such negative r
so close to rup are vacuous. It is not possible to use an r so
close to rup when it is negative.

If when rup/τ is negative, near −ντ , we try instead to have
r/τ = −α

√
2π/2 with 0 ≤ α < 1, then the first expression

in the minimum becomes (1 − α)/2, the second expression
becomes r − rup/[ν(τ+ζ)2] near 1 + r/[ν τ2] equal to 1 −
α
√

2π/(2ντ), and the additional condition becomes

α
√

2π/2 ≤
√

2 log
(
ν
( τ

2
√

2π
− α/4

))
.

Which is acceptable with ντ at least a little more than
2
√

2πeπ/4. So in this way the 1+r/τ2 factor becomes at best
near 1

√
2π/2τ . That is indeed a nice improvement factor in

the rate, though not as ambitious as the unobtainable 1+rup/τ2

near 1− ν.
A particular negative r of interest would be one that makes

(1+D(snr)/snr)(1+r/τ2) = 1, for then even with constant
power it would provide no rate drop from capacity. With this
choice 1+r/τ2 = 1/(1+D(snr)/snr), the

r/τ =
−τD(snr)/snr
1 +D(snr)/snr

.

That a multiple of −τ , where the multiple is near snr/2 when
snr is small. For G(z) to be increasing at the corresponding
z0, we would want the magnitude −r/τ to be less than√

2 log
(
ν, τ(1+r/τ2)/2

√
2π
)
, where the ν(1 + r/tau2)/2

may be expressed as a function of snr, and is also near snr/2
when snr is small. But that would mean that b = τsnr/2 is a
value where b2 ≤ 2 log(b/

√
2π, which a little calculus shows

is not possible. Likewise, the above development of the case
that z0 is to the left of zmin, shows that we can not allow
−r/τ to be much greater than the same value.

Omit these next three paragraphs which say more about the
positive r case. To drop the stated requirement on 2 log(τ/c)
consider the remaining (perhaps unusual) case that 0 >
2 log(τ/c) > val. Then there are two positive roots, one to
the left of zcrit and one to the right of zcrit. The root to the
left of zcrit provides a candidate minimizer of G(z), while to
the right of that point the function is unimodal. So if z0 is at
least zcrit, for which it would be sufficient that r be at least 6,
then the unimodality in [z0, ζ] remains, with the gap minimum
at z = ζ, if also r is not more than rup + snr(τ2 + r1)/2 as
assumed.

In this case that 0 > 2 log(τ/c) > val, if z0 < zcrit, the
minimum G(z) in [z0, ζ] occurs at either z = zcrit or at z = ζ.
Then for the gap we have min{G(zcrit), G(ζ)} at least

min
{

Φ(zcrit) +
1
ν

[
(1 + r/τ2)

(1 + zcrit/τ)2
− 1
]
,

r − rup
snr(τ2 + r1)

}
,
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from which, recognizing that both expressions are linear in r,
one can solve a linear equation for the maximum r−rup for
which the expression on the right is the minimizer. Alterna-
tively, for a simpler expression of a sufficient condition, note
that the 1+r/τ2 may be written (1+z0/τ)2. The quantity in
brackets is negative for 0 ≤ z0 < zcrit, but at least −2zcrit/τ .
So using zcrit ≤ 3/τ , the gap in this case is at least

min
{

Φ(3/τ)− 6
ν τ2

,
r − rup

snr(τ2 + r1)

}
.

The lower bound on G(zcrit) in this case is near Φ(0) = 1/2
for large τ2 and it is positive when ν τ2 > 12. So then the
gap is at least (r− rup)/[snr(τ2 + r1)] for r− rup not more
than snr(τ2 + r1)

[
1/2− 6/(ν τ2)

]
.

Comparing the conditions τ > c = 2(1+r/τ2)
√

2π/ν and
ν τ2 > 12, using ν = snr/(1+snr), one sees that the former
requires snr to exceed an expression of order 1/τ whereas the
latter allows snr of order 1/τ2. Moreover, the latter condition
is less restrictive when τ > 6/

√
2π. Also, if r ≥ 6 then neither

of those conditions are required and snr may be arbitrarily
small.

APPENDIX VII
THE r∗crit BOUND BASED ON A QUADRATIC EQUATION FOR

r1

Proof of Corollary 30: Recall that D(δc) ≤ δ2c/2 and 1+δc =
(1+ ζ/τ)2/(1+ r1/τ

2), so with ζ ′ = ζ(1+ ζ/(2τ)), we have

δc =
2
(
ζ ′ − r1/(2τ)

)
τ(1 + r1/τ2)

,

so that (τ2 + r1)D(δc) is not more than

2
(
ζ ′ − r1/2τ

)2
1 + r1/τ2

.

Thus for r∗crit−ε we investigate the optimization of the bound

max
{2
(
ζ ′ − r1/2τ

)2
1 + r1/τ2

+ 1 ,

r1Φ(ζ) + (2τ+ζ)φ(ζ) +
[2(ζ ′ − r1/2τ

)2
1 + r1/τ2

+ 1
]
Φ̄(ζ)

}
.

Plugging in r1 = 0 produces a bound for that case. To improve
it we allow non-zero r1. First let’s analyze the requirement
for its optimization. Observe that 2

(
ζ ′−r1/2τ

)2
/(1+r1/τ2)

is decreasing as a function of r1 between −τ2 and 2τζ ′.
Its derivative with respect to r1 is equal to −(2/τ)

(
ζ ′ −

r1/2τ
)
/(1+r1/τ2) plus −(1/τ2)2

(
ζ ′−r1/2τ

)2
/(1+r1/τ2)2,

which is indeed negative, together equal to −δc[1 + 1/(τ(1+
r1/τ

2)2)]. Also, the second expression in the maximum is the
increasing function r1Φ(ζ)+ (2τ + ζ)φ(ζ) plus the additional
amount less than the first expression in the max by the factor
Φ̄(ζ) < 1. Its derivative is Φ(ζ) plus Φ̄(ζ) times the derivative
of the first expression. Accordingly, in the same manner as the
proof of the previous lemma, the minimum of the r∗crit bound
is either at the r1 providing a match or at the point at which
the derivative of the second expression is 0. Here we analyze

the bound obtained by choosing the value of r1 which make
the two expressions equal. These derivative properties reveal
there will be at most one root between −τ2 and 2τζ ′.

Equating the two expressions, grouping together like terms
using Φ̄(ζ) = 1 − Φ(ζ), and then dividing through by Φ(ζ),
the equation may be simplified to

2(ζ ′ − r1/2τ)2

1 + r1/τ2
= r1 − 1 + (2τ+ζ)φ(ζ)/Φ(ζ).

Evaluating either side of this equation at the solution r1
produces our r∗crit − 1−ε bound. The symbol ψ is used to
abbreviate the expression (2τ+ζ)φ(ζ)/Φ(ζ). Positivity of the
expression on the right requires r1 ≥ −(ψ−1). As for positivity
of the expression on the left, the denominator 1+r1/τ2 will
then be at least 1−(ψ−1)/τ2 which is at least 1+1/τ2−1.6/τ ,
near 1 for reasonable size τ . In any case, this lower bound is
τ + 1/τ − 1.6 dividing by τ , which is positive since τ + 1/τ
stays at least 2.

Multiply through by 1 + r1/τ
2, expand the square, and

simplify. This resulting equation is seen to be quadratic in
r1 and may be written[

1+γ
]
r1 =

[
2(ζ ′)2+1−ψ

]
− r21/(2τ

2),

where γ = 2ζ ′/τ + (ψ−1)/τ2. One may use the quadratic
formula to provide the solution

r1 = τ2
[√

(1+γ)2 + (2/τ2)diff − (1+γ)
]
.

where
diff = 2(ζ ′)2−(ψ−1).

The expression in the square root may be regrouped to show
that it equals (1+2ζ ′/τ)2 + γ2, exceeding (1+ζ ′/τ)2. This
shows that r1 exceeds τ2

[
(1+2ζ ′/τ)− (1+γ)] which equals

−(ψ−1), in accordance with the requirement of positivity of
r1 +ψ− 1, and thence of 1+ r1/τ

2, thereby verifying that
among the two roots to the quadratic we have identified the
appropriate one. At this optimal r1 the minimized r∗crit is

r∗crit = r1 + ψ + ε.

Write the solution for r1 as

r1 = τ2(1+γ)
[√

1 + (2/τ2)diff/(1+γ)2 − 1
]
.

Which shows that r1 has sign matching the sign of diff . Using√
1+2d ≤ 1+d the formula yields the upper bound

r1 ≤ r∗1 = diff/(1+γ).

This bound also arises from the quadratic equation preceeding
the formula, since dividing it by [1+γ] yields r1 equal to an
expression that provides the same upper bound by dropping
the r21/τ

2 term. Likewise
√

1+2d ≥ 1+d/(d+1), valid for
d ≥ −1/2, yields r1 ≥ diff/[1+γ+diff/(τ2(1+γ))], where
for diff < 0 the denominator is at least (1+ζ/τ)2.

Using r1 ≤ r∗1 , the r∗crit− 1− ε bound, equal to r1 +ψ−1,
is not more than r∗1 + ψ−1, which may be written as

1
1+γ

[
2(ζ ′)2

]
+

γ

1+γ
[
ψ−1

]
,
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an average of 2(ζ ′)2 and ψ−1. Equivalently, it may be written

2(ζ ′)2 − γ

1+γ
[
2(ζ ′)2 + 1−ψ

]
,

which is 2(ζ ′)2 − γr∗1 . Furthermore, since (τ2+r1)D(δc) has
the bound made to match r1 + ψ−1, it is bounded by these
same expressions.

Likewise, from the identity

2(ζ ′−r1/2τ)2

1+r1/τ2
− (r1 − 1) = ψ,

multiplying by Φ̄(ζ) this bounds the remainder used in Lemma
16 by rem ≤ ψ Φ̄(ζ). Accordingly, concerning the expression
(2τ+ζ)φ(ζ)+rem equal to ψΦ(ζ)+rem which arises as the
numerator in the shortfall bound δ∗, using Φ(ζ) + Φ̄(ζ) = 1,
it is seen to be not more than ψ.

Next we check that δc is positive. From the above expression
for δc that is equivalent to the positivity of ζ ′−r1/(2τ), which
is at least ζ ′ − r∗1/(2τ), which, using the form of r∗1 and
regrouping, is seen to equal

ζ ′

1+γ
+

(ψ − 1)(1+2ζ ′/τ)
2τ(1+γ)

which is positive when ζ is such that ψ ≥ 1.
This positivity of δc corresponds to r1/τ < 2ζ ′ and 1+r1/τ2

less than 1+2ζ ′/τ . For a lower bound on 1+r1/τ2 we may
use 1− (ψ−1)/τ2 as previously discussed.

As for an upper bound on δc, of course δc ≤ 2ζ ′/τ when
r1 ≥ 0. Otherwise, from r1 ≥ −(ψ−1) we have

δc =
2ζ ′−r1/τ
τ (1+r1/τ2)

≤ 2ζ ′/τ + (ψ−1)/τ2

1− (ψ−1)/τ2
,

where the numerator of the right side matches γ. Using the
upper bound on ψ it gives

δc ≤
2ζ ′ + 1.6

τ + 1/τ − 1.6
.

To show a little more, it is not necessary to constrain ψ ≥ 1
for the positivity of δc. Having τ ≥ 1.4 as true with B > 2 is
sufficient for this positivity. Indeed factoring out 1/(1+γ), the
above expression is at least ζ ′(1−1/τ2) − 1/(2τ)+ψ/(2τ).
Using ψ ≥ 4τφ(ζ), it is at least ζ(1−1/τ2)− 1/(2τ)+2φ(ζ).
At ζ = 0 it is 2/

√
2π − 1/(2τ) which is positive. Moreover,

it goes up from there, since its derivative 1−1/τ2− 2ζφ(ζ) is
at its minimum at ζ = 1, where it equals 1−1/τ2−2/

√
2πe,

positive for τ2 at least 1/[1−2/
√

2πe], which is not more
than 1.94. So τ ≥ 1.40 ≥

√
1.94 is sufficient for the δc to be

positive.
The remainder of this proof is to established the simplified

bound when ζ2 exceeds ψ − 1. Use ζ ′ = ζ(1 + ζ/2τ).
Subtracting 2ζ2 from our bound, what remains is

2ζ2
[(

1 + ζ/2τ
)2 − 1

]
− γ

1 + γ

[
2(ζ ′)2 + 1−ψ

]
.

We want this to be negative, so that r∗crit − 1− ε− 2ζ2 ≤ 0.
Multiplying through by 1 + γ, the expression desired to be
negative becomes

(1 + γ)2ζ2
[(

1 + ζ/2τ
)2 − 1

]
− γ
[
2(ζ ′)2 + 1−ψ

]
.

Using γ = 2ζ ′/τ + (ψ−1)/τ2, this is a quadratic in ψ so
it is possible to specify by quadratic formula the condition
for negativity. To give a simplified sufficient condition, split
the bound according to the two parts of γ, as a sum of the
following two expressions. The main part is

(A) = (1+2ζ ′/τ)2ζ2
[(

1+ζ/2τ
)2−1

]
−(2ζ ′/τ)

[
2(ζ ′)2+1−ψ

]
and the other is (ψ − 1)/τ2 times the expression

(B) = 2ζ2
[(

1 + ζ/2τ)2 − 1]−
[
2(ζ ′)2 + 1−ψ

]
.

We show that both (A) and (B) are negative when ζ2 + 1
exceeds ψ. First concerning (A), expanding (1+ ζ/2τ)2 − 1,
rearranging, and simplifying, yields

(A) = −(2ζ/τ)(1 + ζ/2τ)
[
ζ2 + 1−ψ

]
− ζ4/2τ2

Likewise for the expression (B) it simplifies to

(B) = −
[
ζ2 + 1−ψ

]
− ζ2.

Both of these are negative when ζ2+1 exceeds ψ. That suffices
for (A) + (B)(ψ − 1)/τ2 negative, assuming also ψ−1 ≥ 0.
Accordingly r∗crit − 2ζ2 − 1 − ε is negative. This completes
the proof of Corollary 30.

From this development, when ζ2 exceeds ψ − 1, not only
is r∗crit < 2ζ2 + 1 + ε, but also, the value of

2(ζ ′ − r1/2τ)2

1 + r1/2τ2
= r1 − 1 + ψ

is also less than 2ζ2. Consequently, we have the additional
controls that

r1 < 2ζ2 + 1−ψ

and that
(τ2 + r1)D(δc) < 2ζ2.

APPENDIX VIII
THE VARIANCE OF

∑
j sent πj1Hλ,k,j

The variance of this weighted sum of Bernoulli that we wish
to control is V/L =

∑
j sent π

2
jΦ(µk,j)Φ̄(µk,j) with µk,j =

shiftk,j − τ . The shiftk,j may be written as √ckπjτ , where
ck = νL(1−h′)/(2R(1−xν)(1+δa)2) evaluated at x = qadj1,k−1.
Thus

V/L =
∑
ell

π2
(`)ΦΦ̄((√ckπ(`) − 1)τ)

where ΦΦ̄(z) is the function formed by the product Φ(z)Φ̄(z).
In the no-leveling (c=0) case π(`) = e−2C(`−1)/L2C̃/(νL)

and ckπ(`) = u`R
′/(R(1−xν)) with R′ = C̃(1−h′)/(1+δa)2,

where u` = e−2C(`−1)/L.
With a quantifiably small error as before we may replace

the sum over the grid of values of t = `/L in [0, 1] with the
integral over this interval, yielding the value

V = (2C̃/ν)2
∫ 1

0

e−4CtΦΦ̄

√e−2CtC′/R
1− xν

− 1

 τ

 dt.

If we change variables to ũ = e−Ct it is expressed as

V =
(2C̃/ν)2

C

∫ 1

e−C
ũ3ΦΦ̄

((
ũ

√
R′/R

1− xν
− 1

)
τ

)
dũ.
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To upper bound it we replace the ũ3 factor with 1 and change
variables further to

z =

(
ũ

√
R′/R

1− xν
− 1

)
τ.

Thereby we obtain an upper bound and V of
√

1− xν

τ
√
R′/R

(2C̃/ν)2

C

∫
ΦΦ̄(z)dz.

Now ΦΦ̄(z) has the upper bound (1/4)e−z
2/2, which is√

2πφ(z)/4, which when integrated on the line yields

V ≤
√

1− xν

τ
√
C′/R

(C̃/ν)2

C
√

2π.

When R ≤ R′, then using C̃ ≤ C and x ≤ 1, it yields

V ≤
√

2πC
ν2τ

.

This provides the desired upper bound on the variance.

APPENDIX IX
SLIGHT IMPROVEMENT TO THE VARIANCE OF∑

j sent πj1Hλ,k,j

The variance of this weighted sum of Bernoulli that we wish
to control is V/L =

∑
j sent π

2
jΦ(µk,j)Φ̄(µk,j) with µk,j =

shiftk,j − τ . The shiftk,j may be written as √ckπjτ , where
ck = νL(1−h′)/(2R(1−xν)(1+δa)2) evaluated at x = qadj1,k−1.
Thus

V/L =
∑
ell

π2
(`)ΦΦ̄((√ckπ(`) − 1)τ)

where ΦΦ̄(z) is the function formed by the product Φ(z)Φ̄(z).
In the no-leveling (c=0) case π(`) = e−2C(`−1)/L2C̃/(νL)

and ckπ(`) = u`R
′/(R(1−xν)) with R′ = C̃(1−h′)/(1+δa)2,

where u` = e−2C(`−1)/L.
With a quantifiable small error as before we may replace

the sum over the grid of values of t = `/L in [0, 1] with the
integral over this interval, yielding the value

V = (2C̃/ν)2
∫ 1

0

e−4CtΦΦ̄

√e−2CtC′/R
1− xν

− 1

 τ

 dt.

If we change variables to ũ = e−Ct it is expressed as

V =
(2C̃/ν)2

C

∫ 1

e−C
ũ3ΦΦ̄

((
ũ

√
R′/R

1− xν
− 1

)
τ

)
dũ.

To upper bound the above we change variables further to

z =

(
ũ

√
R′/R

1− xν
− 1

)
τ.

Thereby we obtain an upper bound and V of

(1− xν)2

τ(R′/R)2
(2C̃/ν)2

C

∫ (c0−1)τ

(e−Cc0−1)τ

(1 + z/τ)3 ΦΦ̄(z)dz,

where c0 =
√
R′/R(1− xν). Now notice that (e−Cc0−1)τ is

at least −τ , making 1+z/τ ≥ 0 on the interval of integration.

Accordingly, the above integral is can be bounded from above
by, ∫

z≥−τ
(1 + z/τ)3 ΦΦ̄(z)dz.

Further, the integral of (1 + z/τ)3 ΦΦ̄(z) for z ≤ −τ is a
negligible term that is polynomially small in 1/B. We ignore
that term in the rest of the analysis. Correspondingly we need
to bound the integral,

(1− xν)2

τ(R′/R)2
(2C̃/ν)2

C

∫
(1 + z/τ)3 ΦΦ̄(z)dz.

Noticing that ΦΦ̄(z) is a symmetric function, the terms that
are involve z and z3 after the expansion of (1 + z/τ)3 above
vanish upon integrating. Consequently, we only need to bound
the integral of ΦΦ̄(z) and z2ΦΦ̄(z). Doing this numerically
we see that the integral of the former is bounded by a1 = 0.57
and that of the latter is bounded by a2 = 0.48.

So ignoring the polynomially small term, the variance can
be bounded by

V ≤ (1− xν)2

(R′/R)2
(2C̃/ν)2

Cτ
(a1 + a2/τ

2).

which is less than,

(1− xν)2
(4C/ν2)

τ
(a1 + a2/τ

2).

We bound the above quantity by (4C/ν2)(a1+a2/τ
2)/τ . Let’s

ignore the a2/τ
2 term since this of smaller order. Then the

variance can be bounded by 1.62/
√

logB, where we use that
τ ≥

√
2 logB and that 4a1/

√
2 is less than 1.62.

APPENDIX X
NORMAL TAILS

Let Z be a standard normal random variable and let φ(z)
be its probability density function, Φ(z) be its cumulative
distribution and Φ̄(z) = 1−Φ(z) be its upper tail probability
for z > 0. Here we collect some properties of this probability,
beginning with a conclusion from Feller. Most familiar is his
bound Φ̄(z) ≤ (1/z)φ(z) which may be stated as φ(z)/Φ̄(z)
being at least z. His lower bound Φ̄(z) ≥ (1/z − 1/z3)φ(z)
has certain natural improvements, which we express through
upper bounds on φ(z)/Φ̄(z) showing how close it is to z.

Lemma 46: For positive z the upper tail probability P{Z >
z} = Φ̄(z) satisfies Φ̄(z) ≤ (

√
2π/2)φ(z) and satisfies the

Feller expansion

Φ̄(z) ∼ φ(z)
(

1
z
− 1
z3

+
3
z5

− 3 · 5
z7

+ . . .

)
,

with terms of alternating sign, where terminating with any
term of positive sign produces an upper bound and terminating
with any term of negative sign produces a lower bound.
Furthermore, for z > 0 the ratio φ(z)/Φ̄(z) is increasing
and is less than z + 1/z. Further improved bounds are that
it is less than ξ(z) equal to 2 for 0 ≤ z ≤ 1 and equal to
z+1/z for z ≥ 1, and, slightly better, φ(z)/Φ̄(z) is less than
[z +

√
z2 + 4]/2. Moreover, the positive φ(z)/Φ̄(z) − z is a

decreasing function of z.
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Proof of Lemma 46: The expansion is from Feller [32],
Chapter VII, where we note in particular that the first order
upper bound Φ̄(z) < (1/z)φ(z) is obtained from φ′(t) =
−tφ(t) by noting that zΦ̄(z) = z

∫∞
z
φ(t)dt is less than∫∞

z
tφ(t)dt = φ(z). Thus the ratio φ(z)/Φ(z) exceeds z.

It follows that the derivative of the ratio φ(z)/Φ̄(z) which
is [φ(z)/Φ̄(z) − z]φ(z)/Φ̄(z) is positive, so this ratio is
increasing and at least its value at z = 0, which is 2/

√
2π.

Now for any positive c consider the positive integral∫∞
z

(t/c− 1)2φ(t)dt. By expanding the square and using that
(t2−1)φ(t) is the derivative of −tφ(t) on sees that this integral
is (1 + 1/c2)Φ̄(z) − (2/c − z/c2)φ(z). Multiplying through
by c2, and assuming 2c > z, its positivity gives the family of
bounds

φ(z)/Φ̄(z) ≤ c2 + 1
2c− z

.

Evaluating it at c = z gives the upper bound on the ratio
of (z2 + 1)/z = z + 1/z. Note that since z/(z2 + 1) equals
1/z − 1/[z(z2 + 1)] it improves on 1/z − 1/z3 for all z ≥
0. Since φ(z)/Φ̄(z) is increasing we can replace the upper
bound z + 1/z with its lower increasing envelope, which is
the claimed bound ξ(z), noting that z+1/z takes its minimum
value of 2 at z = 1 and is increasing thereafter. For further
improvement note that φ(z)/Φ̄(z) equals a value not more
than 1.53 at z = 1, so the bound 2 for 0 ≤ z ≤ 1 may be
replaced by 1.53.

Next let’s determine the best bound of the above form by
optimizing the choice of c. The derivative of the bound is the
ratio of 2c(2c−z)− 2(c2+1) and (2c−z)2 and the c that sets
it to 0 solves c2− zc− 1 = 0 for which c = [z+

√
z2 + 4]/2,

and the above bound is then equal to this c.
As for the monotonicity of φ(z)/Φ̄(z) − z, its derivative

is (φ/Φ̄)2 − z(φ/Φ̄) − 1 which is a quadratic in the positive
quantity φ/Φ̄, abbreviating φ(z)/Φ(z). Hence by inspecting
the quadratic formula, this derivative is negative if φ/Φ̄ is
less than or equal to [z+

√
z2 + 4]/2, which it is by the above

bound. This completes the proof of Lemma 46.

We remark that log φ(z)/Φ̄(z) has first derivative
φ(z)/Φ̄(z) − z equal to the quantity studied in this lemma
and second derivative found above to be negative. So the fact
that φ(z)/Φ̄(z) − z is decreasing is equivalent to the normal
hazard function φ(z)/Φ̄(z) being log-concave.

APPENDIX XI
TAILS FOR WEIGHTED BERNOULLI SUMS

Lemma 47: Let Wj , 1 ≤ j ≤ N be N independent
Bernoulli(rj) random variables. Furthermore, let αj , 1 ≤ j ≤
K be non-negative weights that sum to 1 and let Nα =
1/maxj αj . Then the weighted sum r̂ =

∑
j αjWj which

has mean given by r∗ =
∑
j αjrj , satisfies the following large

deviation inequalities. For any r with 0 < r < r∗,

P (r̂ < r) ≤ exp {−NαD(r‖r∗)}

and for any r̃ with r∗ < r̃ < 1,

P (r̂ > r̃) ≤ exp {−NαD(r̃‖r∗)}

where D(r‖r∗) denotes the relative entropy between Bernoulli
random variables of success parameters r and r∗.

Proof of Lemma 47: Let’s prove the first part. The proof of
the second part is similar.

Denote the event

A = {W :
∑
j

αjWj ≤ r}

with W denoting the N -vector of Wj’s. Proceeding as in
Csiszar [24] we have that

P (A) = exp{−D
(
PW |A‖PW

)
}

≤ exp
{
−
∑
j

D
(
PWj |A||PWj

)}
Here PW |A denotes the conditional distribution of the vector
W conditional on the event A and PWj |A denotes the associ-
ated marginal distribution of Wj conditioned on A. Now∑

j

D
(
PWj |A‖PWj

)
≥ Nα

∑
j

αjD
(
PWj |A‖PWj

)
.

Furthermore, the convexity of the relative entropy implies that∑
j

αjD(PWj |A ‖ PWj
) ≥ D

(∑
j

αjPWj |A ‖
∑
j

αjPWj

)
.

The sums on the right denote α mixtures of distributions
PWj |A and PWj

, respectively, which are distributions on
{0, 1}, and hence these mixtures are also distributions on
{0, 1}. In particular,

∑
j αjPWj is the Bernoulli(r∗) distribu-

tion and
∑
j αjPWj |A is the Bernoulli(re) distribution where

re = E
[ ∑

j

αjWj

∣∣A ] = E
[
r̂
∣∣A ].

But in the event A we have r̂ ≤ r so it follows that re ≤ r. As
r < r∗ this yields D(re ‖ r∗) ≥ D(r ‖ r∗). This completes
the proof of Lemma 47.

APPENDIX XII
LOWER BOUNDS ON D

Lemma 48: For p ≥ p∗, the relative entropy between
Bernoulli(p) and Bernoulli(p∗) distributions has the succes-
sion of lower bounds

DBer(p‖p∗) ≥ DPoi(p‖p∗) ≥ 2
(√
p−

√
p∗
)2 ≥ (p− p∗)2

2p

where DPoi(p‖p∗) = p log p/p∗ + p∗− p is also recognizable
as the relative entropy between Poisson distributions of mean
p and p∗ respectively.

Remark a: There are analogous statements for pairs of
probability distributions P and P ∗ on a measurable space
X with densities p(x) and p∗(x) with respect to a domi-
nating measure µ. The relative entropy D(P‖P ∗) which is∫
p(x) log p(x)/p∗(x)µ(dx) may be written as the integral of

the non-negative integrand p(x) log p(x)/p∗(x)+p∗(x)−p(x),
which exceeds (1/2)

(
p(x)−p∗(x))2/max{p(x), p∗(x)}. It is

familiar that D(P‖P ∗) exceeds the squared Hellinger distance
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H2(P, P ∗) =
∫ (√

p(x) −
√
p∗(x)

)2
µ(dx). That fact arises

for instance via Jensen’s inequality, from which D exceeds
2 log 1/(1− (1/2)H2) which in turn is at least H2. However,
we have not been able to get D ≥ 2H2 in general. The above
lemma with the factor of 2 is for p > p∗, not for general
integrands.
Remark b: When p̂ is the relative frequency of occurrence in
N independent Bernoulli trials it has the bound P{p̂ > p} ≤
e−NDBer(p‖p∗) on the upper tail of the Binomial distribution of
Np̂ for p > p∗. In accordance with the Poisson interpretation
of the lower bound on the exponent, one sees that this upper
tail of the Binomial is in turn bounded by the corresponding
large deviation expression that would hold if the random
variables were Poisson.

Proof of Lemma 48: The Bernoulli relative entropy may be
expressed as the sum of two positive terms, one of which is
p log p/p∗+p∗−p, and the other is the corresponding term with
1−p and 1−p∗ in place of p and p∗, so this demonstrates the
first inequality. Now suppose p > p∗. Write p log p/p∗+p∗−p
as p∗F (s) where F (s) = 2s2 log s + 1 − s2 with s2 = p/p∗

which is at least 1. This function F and its first derivative
F ′(s) = 4s log s have value equal to 0 at s = 1, and its second
derivative F ′′(s) = 4 + 4 log s is at least 4 for s ≥ 1. So by
second order Taylor expansion F (s) ≥ 2(s − 1)2 for s ≥ 1.
Thus p log p/p∗+p∗−p is at least 2

(√
p−

√
p∗
)2

. Furthermore
2(s−1)2 ≥ (s2−1)2/(2s2) as, taking the square root of both
sides, it is seen to be equivalent to 2(s− 1) ≥ s2 − 1, which,
factoring out s− 1 from both sides, is seen to hold for s ≥ 1.
From this we have the final lower bound (p− p∗)2/(2p).
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Sergio Verdú, Cong Huang, Xi Luo, Edmund Yeh, John Har-
tigan, Mokshay Madiman, Harrison Zhou and Joseph Chang
for helpful conversations. We especially thank David Smalling
who completed a number of simulations of earlier incarnations
of the decoding algorithm for his Yale applied math senior
project in spring term of 2009 and Yale statistics masters
student Creighton Hauikulani who took the simulations further
in 2009 and 2010. Their work was instrumental to us in
recognizing that without modification, direct convex projection
methods have a rate threshold substantially below capacity
when the signal-to-noise ratio is high.

We especially thank anonymous reviewers of the companion
paper [10] who generously provided helpful review of aspects
of the sparse signal recovery literature, much of which we
have incorporated here.

REFERENCES

[1] A. Abbe and A.R. Barron, “Polar codes for the AWGN,” Proc. IEEE
Intern. Symp. Inform. Theory, St. Petersburg, Russia, August 2011.

[2] E. Abbe and E. Telatar, Polar codes for the m-user MAC, in Proc.
2010 International Zurich Seminar on Communications, Zurich, 2010.
Available at arXiv:1002.0777v2.
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