
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 2, FEBRUARY 2014 919

Fast Sparse Superposition Codes Have Near
Exponential Error Probability for R < C

Antony Joseph, Student Member, IEEE, and Andrew R. Barron, Fellow, IEEE

Abstract— For the additive white Gaussian noise channel with
average codeword power constraint, sparse superposition codes
are developed. These codes are based on the statistical high-
dimensional regression framework. In a previous paper, we
investigated decoding using the optimal maximum-likelihood
decoding scheme. Here, a fast decoding algorithm, called the
adaptive successive decoder, is developed. For any rate � less
than the capacity C, communication is shown to be reliable
with nearly exponentially small error probability. Specifically,
for blocklength n, it is shown that the error probability is
exponentially small in n/ log n.

Index Terms— Gaussian channel, subset selection, compressed
sensing, multiuser detection, orthogonal matching pursuit, greedy
algorithms, successive cancelation decoding, error exponents,
achieving channel capacity.

I. INTRODUCTION

THE ADDITIVE white Gaussian noise channel is basic to
Shannon theory and underlies practical communication

models. Sparse superposition codes for this channel were
developed in [27], where reliability bounds for the optimal
maximum-likelihood decoding were given. The present work
provides a scheme, based on an adaptive decoder, with perfor-
mance bounds that are comparable to the maximum-likelihood
decoder.

In the familiar communication setup, an encoder maps
length K input bit strings u = (u1, u2, . . . , uK) into
codewords, which are length n strings of real numbers
c1, c2, . . . , cn , with power (1/n)

∑n
i=1 c2

i . After transmis-
sion through the Gaussian channel, the received string
Y = (Y1, Y2, . . . , Yn) is modeled by,

Yi = ci + εi for i = 1, . . . , n,

where the εi are i.i.d. Normal(0, σ 2). The decoder produces
an estimates û of the input string u, using knowledge of the
received string Y and the codebook. The decoder makes a
block error if û �= u. The reliability requirement is that, with
sufficiently large n, the block error probability is small, when
averaged over input strings u as well as the distribution of Y .

Manuscript received July 7, 2012; revised June 24, 2013; accepted
August 29, 2013. Date of publication November 7, 2013; date of current
version January 15, 2014.

A. Joseph is with the Department of Statistics, University of California,
Berkeley, CA 94709 USA (e-mail: antonyjoseph@lbl.gov).

A. R. Barron is with the Department of Statistics, Yale University, New
Haven, CT 06520 USA (e-mail: andrew.barron@yale.edu).

Communicated by E. Arıkan, Associate Editor for Coding Theory.
Color versions of one or more of the figures in this paper are available

online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIT.2013.2289865

The communication rate R = K/n is the ratio of the number
of message bits to the number of uses of the channel required
to communicate them.

The supremum of reliable rates of communication is the
channel capacity C = (1/2) log2(1 + P/σ 2), by traditional
information theory [17], [36]. Here P expresses a control on
the codeword power.

For practical coding the challenge is to achieve arbitrary
rates below the capacity, while guaranteeing reliable decoding
in manageable computation time.

The Gaussian channel coding problem is regarded as rele-
vant to myriad settings involving transmission over wires or
cables for internet, television, or telephone communications or
in wireless radio, TV, phone, satellite or other space commu-
nications. In the next subsection we describe the framework
of our codes.

A. Sparse Superposition Codes

The framework here is as introduced in [27], but for clarity
we describe it again in brief. The story begins with a list
X1, X2, . . . , X N of vectors, each with n coordinates, which
can be thought of as organized into a design, or dictionary,
matrix X , where,

Xn×N = [X1 : X2 : . . . : X N].
The entries of X are drawn i.i.d. Normal(0, 1). The codeword
vectors take the form of particular linear combinations of
columns of the design matrix.

More specifically, we assume N = L M , with L and
M positive integers, and the design matrix X is split into
L sections, each of size M . The codewords are of the form
Xβ, where each β ∈ R

N belongs to the set

B = {β : β has exactly one non-zero in each section,

with value in section � equal to
√

P(�)}.
This is depicted in figure 1. The values P(�), for � = 1, . . . , L,
chosen beforehand, are positive and satisfy

L∑

�

P(�) = P, (1)

where P is the target power for our code.
The received vector is in accordance with the statistical

linear model Y = Xβ + ε, where ε is the noise vector
distributed N(0, σ 2 I).

Accordingly, with the P(�) chosen to satisfy (1), we have
‖β‖2 = P and hence, E‖Xβ‖2/n = P , for each β in B.

0018-9448 © 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

920 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 2, FEBRUARY 2014

Fig. 1. Schematic rendering of the dictionary matrix X and coefficient
vector β. Each vertical bar in the X matrix indicates a selected column from
a section.

Here ‖.‖ denotes the usual Euclidian norm. Thus the expected
codeword power is controlled to be equal to P . Moreover,
most of the codewords have power near P and the average
power across the M L codewords, given by,

1

M L

∑

β∈B
‖Xβ‖2/n

is concentrated at P .
Here, we consider the case of constant power allocation,

where each P(�) is equal to P/L, and a variable power
allocation

P(�) ∝ e−2C�/L, (2)

for sections � from 1 to L. These variable power allocations
facilitate our adaptive successive decoder in getting the rate
up to capacity. This is a slight difference from the setup in
[27], where the constant power allocation was sufficient.

To explain the variable power allocation, take note of the
familiar fact from multi-user Gaussian channels that the capac-
ity of the channel C = (1/2) log(1+ P/σ 2) may be written as
the sum across the sections of (1/2) log(1 + SN I R�), where

SN I R� = P�/(σ
2 + P�+1 + · · · + PL)

is the ‘signal-to-(noise + interference)’ level for section �,
if the sections were precisely decoded successively by suc-
cessive interference cancellation. The exponentially decay-
ing power allocation is the one that equalizes these section
capacities to be the same, that is, equal to C/L. As we
shall see, when the parameters L and M are adjusted to
have a moderate size dictionary, reliable traditional succes-
sive decoding is problematic. Consequently, we formulate
an adaptive successive decoder, which may also be called
an adaptive successive interference cancellation decoder, with
desirable properties.

For ease in encoding, it is most convenient that the section
size M is a power of two. Then an input bit string u of length
K = L log2 M splits into L substrings of size log2 M and
the encoder becomes trivial. Each substring of u gives the
index (or memory address) of the term to be sent from the
corresponding section.

As we have said, the rate of the code is R = K/n input bits
per channel uses and we arrange for arbitrary R less than C.
For the partitioned superposition code this rate is

R = L log M

n
.

For specified L, M and R, the codelength n = (L/R) log M .

Control of the dictionary size is critical to computationally
advantageous coding and decoding. At one extreme, L is a
constant, and section size M =2nR/L . However, its size, which
is exponential in n, is impractically large. At the other extreme
L = nR and M = 2. However, in this case the number of
non-zeroes of β proves to be too dense to permit reliable
recovery at rates all the way up to capacity. This can be
inferred from recent converse results on information-theoretic
limits of subset recovery in regression (see for [2], [43]).

Our codes lie in between these extremes. We allow L to
agree with the blocklength n to within a log factor, with M
arranged to be polynomial in n or L. For example, we may let
M = n, in which case L = nR/ log n, or we may set M = L,
making n = (L log L)/R. For the decoder we develop here,
at rates below capacity, the error probability is also shown to
be exponentially small in L.

Our theory for the feasible decoder demonstrates that the
decoder is able to correctly identify the terms selected for most
of the sections with high probability. An outer Reed-Solomon
code, operating at rate Router near 1, completes the task of
correcting the small amount of mistakes made (see Subsection
I-B for details). The total rate, that is, after composition with
the outer code, is denoted by Rtot = RouterR.

Our main result can be summarized in the following propo-
sition. In the proposition below, we assume that the power
allocation is given by (2). We denote the rate drop as,

� = C − Rtot

C ,

where Rtot is the total rate.
In the proposition below, and the rest of this paper, we use

the following notation: For quantities a, b depending on L, M
or n, we denote a = O(b), if a ≤ const b, where const is a
positive quantity that only depends on the signal-to-noise ratio
for large n (or L or M). Similarly, a = �(b), if a ≥ const b.

Proposition 1: Let � > 0 be fixed. Further, choose section
size M > M0, where M0 = econst1/�2

. Here M can
potentially depend on n. Then the adaptive successive decoder,
after composition with outer Reed-Solomon code, has block
error probability that is upper bounded by

exp
{
−const2(n/ log M)�2

}
,

with overall decoding complexity that is O(n2 M). Here
const1, const2 are positive constants that can be determined
from the more general Theorem 2 in Subsection I-D.

Notice that from the above proposition, one sees that one
can attain nearly exponentially small error probability in n,
with decoding complexity that is polynomial in n. One of
the drawbacks is that the section size has an exponential
dependence on 1/�2. (In [8] and [25] it is shown that this
exponential dependence can be improved to 1/� using the
modified power allocation (5).) Hence the code is fast for any
fixed rate drop � from capacity. However, for a sequence of
rates approaching capacity, the corresponding requisite sizes
for M makes the decoder impractical.

We also remark that this dependence is not intrinsic to
the method of code construction as seen in the analysis of
the optimal decoder [27] (see subsection I-E). Here optimal

JOSEPH AND BARRON: FAST SPARSE SUPERPOSITION CODES 921

decoding for minimal average probability of error consists of
finding the codeword Xβ, with coefficient vector β ∈ B, that
maximizes the posterior probability, conditioned on X and Y .
This coincides, in the case of equal prior probabilities, with
the maximum likelihood rule of seeking

arg min
β∈B

‖Y − Xβ‖.
Performance bounds for such optimal, though computation-
ally infeasible, decoding are developed in the companion
paper [27]. Since no dependence between M and � is required
there, it is an open question whether such a result can be also
obtained using a feasible scheme.

B. Intuition Behind the Algorithm

The algorithm we analyze is similar in spirit to itera-
tive algorithms like the relaxed greedy algorithm [24], for-
ward stepwise regression [30], and Orthogonal Matching
Pursuit [31]. Below, we provide a high-level description of
the algorithm. Section II details the modifications we make to
this algorithm so as to facilitate analysis.

Denoting as J = {1, 2, . . . , N} the set of terms required to
be decoded. For step k = 1, do the following

• For j ∈ J , compute the normalized inner product of X j

with the received string Y , given by,

Z1, j = X T
j Y

‖Y‖ ,

• Update dec1, the set of terms detected in the first
step, as

dec1 = { j ∈ J : Z1, j ≥ τ }.
Here τ is a positive threshold value.

This completes the first step of the algorithm.
Denote Pj = P(�) if j is in section �. Also denote the set

of terms decoded till the k-th step as

Deck = dec1 ∪ dec2 . . . ∪ deck .

Next, perform the following for steps k ≥ 2, and k at most a
predefined number m.

• Compute the fit vector for the k − 1-th step given by,

Fk−1 =
∑

j∈Deck−1

√
Pj X j ,

along with the associated residual vector,

Rk = Y − Fk−1.

• Denoting

Jk = J − Deck−1,

that is terms not decoded previously, calculate

Zres
k, j = X T

j Rk

‖Rk‖ , for each j ∈ Jk .

• Update

deck = { j ∈ Jk : Zres
k, j ≥ τ }.

• This completes the k-th step. Stop if either L terms have
been decoded, or if deck is empty, or if k = m. Otherwise
increase k by 1 and repeat the above steps.

Ideally, the decoder selects one term from each section,
producing an output which is the index of the selected term.
For a particular section, there are three possible ways a mistake
could occur when the algorithm is completed. The first is an
error, in which the algorithm selects exactly one wrong term
in that section. The second case is when two or more terms are
selected, and the third is when no term is selected. We call the
second and third cases erasures since we know for sure that in
these cases an error has occurred. Let δ̂mis,error , δ̂mis,erasure

denote the fraction of sections with error, erasures respectively.
Denote the section mistake rate,

δ̂mis = 2 δ̂mis,error + δ̂mis,erase, (3)

where the subscript mis stands for mistakes. Our analysis
provides a good bound, denoted by δmis , on δ̂mis that is
satisfied with high probability.

The outer Reed-Solomon codes completes the task of iden-
tifying the fraction of sections that have errors or erasures (see
section VI of Joseph and Barron [27] for details) so that we
end up with a small block error probability. If Router = 1 − δ
is the rate of an RS code, with 0 < δ < 1, then a section
mistake rate δ̂mis less than δmis can be corrected, provided
δmis < δ. Further, if R is the rate associated with our inner
(superposition) code, then the total rate after correcting for
the remaining mistakes is given by Rtot = RouterR. The end
result, using our theory for the distribution of the fraction
of mistakes of the superposition code, is that the block error
probability is exponentially small in n/ log M . One may regard
the composite code as a superposition code in which the
subsets are forced to maintain at least a certain minimal
separation, so that decoding to within a certain distance from
the true subset implies exact decoding.

C. Analysis

The algorithm we analyze, although very similar in spirit,
is a modification of the above algorithm. These modifications
are mainly in the definition of Zres

k, j , for k ≥ 2. The modified
version of Zres

k, j is called Zcomb
k, j , where the superscript comb

stands for ‘combined’ since this statistic is a linear combina-
tion of other statistics. Section II describes these modifications
in detail.

Denote as

sent = { j : β j �= 0} and other = { j : β j = 0}.
The set sent consists of one term from each section, and
denotes the set of correct terms, while other denotes the set
of wrong terms. Our analysis demonstrates that Zcomb

k, j is
approximately a shifted normal, that is

Zcomb
k, j ≈ shiftk, j 1{ j∈sent} + Nk, j .

Here 1{ j∈sent} is the indicator of the set { j ∈ sent}. Further,
Nk, j is a normal random variable with mean zero and variance

922 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 2, FEBRUARY 2014

Fig. 2. Plot of the update function gL (x). The dots measure the proportion
of sections correctly detected after a particular number of steps. Here
M = 216, snr = 7, R = 0.74 and L taken to be equal to M. The height
reached by the gL (x) curve at the final step corresponds to a 0.986 proportion
of section correctly detected, and a failed detection rate target of 0.013. The
accumulated false alarm rate bound is 0.008. The probability of mistake rates
larger than these targets is bounded by 1.5 × 10−3.

near one, and shiftk, j is a positive quantity that takes the form,

shiftk, j =
√

C j,R,h

1 − xk−1ν
.

Here C j,R,h , to be defined later on, is a positive quantity that
depends on the power allocation Pj , noise variance σ 2, and
blocklength n. Further ν = P/(P + σ 2). The quantity xk−1
is closely linked to the fraction of correct detections and false
alarms among terms detected till step k − 1. The quantity
shiftk,J is the square root of a signal-to-(noise + interference)
ratio

n P�/[σ 2 + P(1 − xk−1)],
where the interference of the adaptive successive decoder
is P(1 − xk−1), which comes from a sum of interference
contributions across the sections.

Notice that the mean shift in the distribution of Zcomb
k, j is

non-zero only for j ∈ sent. The greater this mean shift, the
better is the chance of detecting the terms in sent from those
in other. In particular, denoting

μ j (x) =
√

C j,R,h

1 − xν
− τ,

the analysis leads us to the function gL : [0, 1] → [0, 1],
called the success rate update function, given by

gL(x) =
∑

j sent

π j ̄(−μ j (x)), (4)

where ̄ = 1 − , with being the normal cumulative
distribution function. Also, π j = Pj /P . If x is the previous
success rate, then gL(x) quantifies the expected success rate
after the next step. An example of the role of gL is shown in
figure 2.

Our iterative distributional analysis has parallels with recent
work on approximate message passing algorithms for com-
pressed sensing problems [11], [12]. Indeed, our iterative
characterization using the function gL can be thought as
the equivalent of the state evolution iterations discussed in
these works. A distinction though is that our distributional
characterizations are non-asymptotic in nature.

D. Performance of the Algorithm

Here we describe the effect of various power allocations.
Further, we also provide in Theorem 2 a description of the
rates achieved, along with the associated error probabilities.
We also discuss the decoding complexity.

With constant power allocation, that is with P(�) = P/L for
each �, the decoder is shown to reliably achieve rates up to
a threshold rate R0 = (1/2)P/(P +σ 2), which is less than
capacity. This rate R0 is seen to be close to the capacity
when the signal-to-noise ratio snr is low. However, since it
is bounded by 1/2, it is substantially less than the capacity
for larger snr. To bring the rate higher, up to capacity, we use
variable power allocation with power given by (2).

As we have suggested, the variable power allocation (2)
would arise if one were attempting to successively decode
one section at a time, with the signal contributions of as yet
un-decoded sections treated as noise, in a way that splits the
rate C into L pieces each of size C/L; however, such decoding
would require the section sizes to be exponentially large to
achieve desired reliability. In contrast, in our adaptive scheme,
many of the sections are considered each step.

For rate near capacity, it helpful to use a modified power
allocation, where

P(�) ∝ max{e−2C �−1
L , cut}, (5)

with a non-negative value of cut. However, since its analysis
is more involved we do not pursue this here. Interested readers
may refer to documents [8], [25] for a more thorough analysis
including this power allocation.

Proposition 1 follows from the following more general
theorem. Once again, we assume that the power allocation is
given by (2). Our choice for the value of the threshold τ , and
the maximum number of steps m, will be specified later on.

We allow rate R up to C∗, where C∗ can be written as

C∗ = C
1 + drop∗ .

Here drop∗ is a positive quantity given explicitly later in this
paper. It is near

δM = 1√
π log M

, (6)

ignoring terms of smaller order.
Thus C∗ is within order 1/

√
log M of capacity and tends

to C for large M . With the modified power allocation (5), it
is shown in [8] and [25] that one can make C∗ within order
1/ log M of capacity.

Theorem 2: For any inner code rate R < C∗, express it in
the form

R = C∗

1 + κ/ log M
, (7)

JOSEPH AND BARRON: FAST SPARSE SUPERPOSITION CODES 923

with κ ≥ 0. Then, for the partitioned superposition code,
I) The adaptive successive decoder admits fraction of

section mistakes less than

δmis = 3κ + 5

8C log M
+ δM

2C (8)

except in a set of probability not more than

pe = κ1,M e−κ2 L min
{
κ3(�

∗)2 , κ4(�
∗)
}

,

where

�∗ = (C∗ − R)/C∗.

Here κ1,M is a constant to be specified later that is only
polynomial in M . Also, κ2, κ3 and κ4 are constants that
depend on the snr. See subsection VII-E for details.

II) After composition with an outer Reed Solomon code the
decoder admits block error probability less than pe, with
the composite rate being Rtot = (1 − δmis) R.

The proof of the above theorem is given in
subsection VII-E.

Proposition 1 follows from Theorem 2 since if κ is of
order

√
log M , then �∗ is of order 1/

√
log M . Further, as

C∗ is of order 1/
√

log M below the capacity C, we also get
that �inner = (C − R)/C is also 1/

√
log M below capacity.

From the expression for δmis in (8), one sees that the same
holds for the total rate drop, that is � = (C − Rtot)/C.
Correspondingly, M , or equivalently n, needs to be e�(1/�2).
A more rigorous proof is given in subsection VII-E.

Concerning the decoding complexity, as discussed in
section III, an important feature of the adaptive successive
decoder is that it can be arranged that the order n2 M refers
to the total work space of the decoder and not the decoding
time. The inner product steps can be pipelined and parallelized
so that the inner code decoding time is O(1) per received
symbol, and it reliably incurs at most a small fraction of
mistakes. Decoding time of O(1) per received symbol is
necessary for practical positive rate communication. It allows
an achieved positive rate defined here as a ratio of number
of information bits to the number of symbols received to
appropriately correspond to a non-vanishing rate defined for
practical purposes as the number of information bits decoded
per second. The decoding complexity of the outer code is of
similar order (not more than n2 M), though it is unknown to us
whether one can similarly trade off space and time complexity
with Reed Solomon decoders to make the composite decoder
time O(1) per received symbol.

E. Comparison With Least Squares Estimator

Here we compare the rate achieved here by our practical
decoder with what is achieved with the theoretically optimal,
but possibly impractical, least squares decoding of these sparse
superposition codes shown in the companion paper [27].

With power allocated equally across sections, that is with
P(�) = P/L, it was shown in [27] that for any δmis ∈ [0, 1),
the probability of more than a fraction δmis of mistakes, with
least squares decoding, is less than

exp{−nc1 min{�2, δmis }},

for any positive rate drop � and any size n. Here c1 is a
positive constant that depends only on the signal-to-noise ratio.
The dependence on blocklength and rate drop in the above
error exponent is similar to that of the theoretically best pos-
sible error exponent for any decoding scheme, as established
by Shannon and Gallager, and reviewed for instance in [32].

The bound obtained for the least squares decoder is better
than that obtained for our practical decoder in its freedom
of any choice of mistake fraction, rate drop and size of the
dictionary matrix X . Here, we allow for rate drop � to be
of order 1/

√
log M . Further, from the expression (8), we

have δmis is of order 1/
√

log M , when κ is taken to be of
O(

√
log M). Consequently, we compare the error exponents

obtained here with that of the least squares estimator of [27],
when both � and δmis are of order 1/

√
log M .

Using the expression given above for the least squares
decoder one sees that the exponent is of order n/(log M),
or equivalently L, using n = (L log M)/R. For our decoder,
the error probability bound is seen to be exponentially small
in L/(log M) using the expression given in Theorem 2. This
bound is within a (log M) factor of what we obtained for
the optimal least squares decoding of sparse superposition
codes.

F. Related Work in Coding

We point out several directions of past work that connect
to what is developed here. The analysis of concatenated codes
Forney [21] is an important forerunner to the development of
code composition we give here. For the theory, he paired an
outer Reed-Solomon code with concatenation of optimal inner
codes of Shannon-Gallager type, while, for practice, he paired
such an outer Reed-Solomon code with binary inner codes
based on linear combinations of orthogonal terms (for target
rates less than 1 such a basis is available), in which all binary
coefficient sequences are possible codewords.

Modern day communication schemes, for example LDPC
[22] and Turbo Codes [13], have been demonstrated to have
empirically good performance. Both LDPC and our codes take
advantage of sparsity. The former uses a sparse parity check
matrix and a full set of coefficient vectors, whereas we use a
full design matrix and a sparse set of coefficient vectors.

These LDPC and Turbo codes use message passing
algorithms for their decoding. Interestingly, there has been
recent work by Bayati and Montanari [12] that has extended
the use of these algorithms for estimation in the general
high-dimensional regression setup with Gaussian X matrices.
Unlike our adaptive successive decoder, where we decide
whether or not to select a particular term in a step, these
iterative algorithms make soft decisions in each step. How-
ever, analysis addressing rates of communication have not
been given in these works. Subsequent to the present work,
an alternative algorithm with soft-decision decoding for our
partitioned superposition codes is proposed and analyzed by
Barron and Cho [6].

A different approach to reliable and computationally-
feasible decoding is in the work on channel polarization of
[3], [4]. These polar codes have been adapted to the Gaussian

924 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 2, FEBRUARY 2014

case as in [1], however, the error probability is exponentially
small in

√
n, rather than n.

The ideas of superposition codes, rate splitting, and
successive decoding for Gaussian noise channels began with
Cover [16] in the context of multiple-user channels. There,
each section corresponds to the codebook for a particular user,
and what is sent is a sum of codewords, one from each user.
Here we are putting that idea to use for the original Shannon
single-user problem, with the difference that we allow the
number of sections to grow with blocklength n, allowing for
manageable dictionaries. Parallel to ours, similar techniques
have been used in the analysis on on-off random access
channels in [20].

Other developments on broadcast channels by Cover [16],
that we use, is that for such Gaussian channels, the power
allocation can be arranged as in (2) such that messages can be
peeled off one at a time by successive decoding. However, such
successive decoding applied to our setting would not result
in the exponentially small error probability that we seek for
manageable dictionaries. It is for this reason that instead of
selecting the terms one at a time, we select multiple terms in
a step adaptively, depending upon whether their correlation is
high or not.

A variant of our regression setup was proposed by Tropp
[39] for communication in the single user setup. However, his
approach does not lead to communication at positive rates, as
discussed in the next subsection.

There have been recent works that have used our par-
titioned coding setup for providing a practical solution to
the Gaussian source coding problem, as in Kontoyiannis
et al. [28] and Venkataramanan et al. [42]. A successive
decoding algorithm for this problem is being analyzed by
Venkataramanan et al. [41]. An intriguing aspect of the analy-
sis in [42] is that the source coding proceeds successively,
without the need for adaptation across multiple sections as
needed here.

G. Relationships to Sparse Signal Recovery

Here we comment on the relationships to high-dimensional
regression. A very common assumption is that the coefficient
vector is sparse, meaning that it has only a few, in our
case L, non-zeroes, with L typically much smaller than the
dimension N . Note, unlike our communication setting, it is not
assumed that the magnitude of the non-zeroes be known. Most
relevant to our setting are works on support recovery, or the
recovery of the non-zeroes of β, when β is typically allowed
to belong to a set with L non-zeroes, with the magnitude of
the non-zeroes being at least a certain positive value.

Popular techniques for such problems involve relaxation
with an �1-penalty on the coefficient vector, for example in the
basis pursuit [15] and Lasso [37] algorithms. An alternative is
to perform a smaller number of iterations, such as we do here,
aimed at determining the target subset. Such works on sparse
approximation and term selection concerns a class of iterative
procedures which may be called relaxed greedy algorithms
(including orthogonal matching pursuit or OMP) as studied in
[5], [10], [23], [24], [26], [29], [31], [40], and [46]. In essence,

each step of these algorithms finds, for a given set of vectors,
the one which maximizes the inner product with the residuals
from the previous iteration and then uses it to update the linear
combination. Our adaptive successive decoder is similar in
spirit to these algorithms.

Results on support recovery can broadly be divided into
two categories. The first involves determining, for a given
X matrix, uniform guarantees for support recovery. In other
words, it guarantees, for any β in the allowed set of coefficient
vectors, that the probability of recovery is high. The second
category of research involves results where the probability
of recovery is obtained after certain averaging, where the
averaging is over a distribution of the X matrix.

For the first approach, a common condition on the X matrix
is the mutual incoherence condition, which assumes that the
correlation between any two distinct columns be small. In
particular, assuming that ‖X j‖2 = n, for each j = 1, . . . , N ,
it is assumed that,

1

n
max
j �= j ′

∣
∣
∣XT

j X j ′
∣
∣
∣ is O(1/L). (9)

Another related criterion is the irrepresentable criterion
[38], [47]. However, the above conditions are too stringent for
our purpose of communicating at rates up to capacity. Indeed,
for i.i.d Normal(0, 1) designs, n needs to be �(L2 log M)
for these conditions to be satisfied. Here n = �(L2 log M)
denotes that n ≥ const L2 log M , for a positive const not
depending upon L or M . In other words, the rate R is of
order 1/L, which goes to 0 for large L. Correspondingly,
results from these works cannot be directly applied to our
communication problem.

As mentioned earlier, the idea of adapting techniques in
compressed sensing to solve the communication problem
began with Tropp [39]. However, since he used a condition
similar to the irrepresentable condition discussed above, his
results do not demonstrate communication at positive rates.

We also remark that conditions such as (9) are required
by algorithms such as Lasso and OMP for providing uniform
guarantees on support recovery. However, there are algo-
rithms which provided guarantees with much weaker condi-
tions on X . Examples include the iterative forward-backward
algorithm [46] and least squares minimization using concave
penalties [45]. Even though these results, when translated
to our setting, do imply communication at positive rates is
possible, a demonstration that rates up to capacity can be
achieved has been lacking.

The second approach, as discussed above, is to assign a
distribution for the X matrix and analyze performance after
averaging over this distribution. Wainwright [44] considers
X matrices with rows i.i.d. Normal(0,�), where � satisfies
certain conditions, and shows that recovery is possible with
the Lasso with n that is �(L log M). In particular his results
hold for the i.i.d. Gaussian ensembles that we consider here.
Analogous results for the OMP was shown by [19], [26].
Another result in the same spirit of average case analysis is
done by Candès and Plan [14] for the Lasso, where the authors
assign a prior distribution to β and study the performance after
averaging over this distribution. The X matrix is assumed to

JOSEPH AND BARRON: FAST SPARSE SUPERPOSITION CODES 925

satisfy a weaker form of the incoherence condition that holds
with high-probability for i.i.d Gaussian designs, with n again
of the right order.

A caveat in these discussions is that the aim of much
(though not all) of the work on sparse signal recovery,
compressed sensing, and term selection in linear statistical
models is distinct from the purpose of communication alone.
In particular rather than the non-zero coefficients being fixed
according to a particular power allocation, the aim is to allow a
class of coefficients vectors, such as that described above, and
still recover their support and estimate the coefficient values.
The main distinction from us being that our coefficient vectors
belong to a finite set, of M L elements, whereas in the above
literature the class of coefficients vectors is almost always
infinite. This additional flexibility is one of the reasons why
an exact characterization of achieved rate has not been done
in these works.

Another point of distinction is that majority of these works
focus on exact recovery of the support of the true of coefficient
vector β. As mentioned before, as our non-zeroes are quite
small (of the order of 1/

√
L), one cannot get exponentially

small error probabilities for exact support recovery. Corre-
spondingly, it is essential to relax the stipulation of exact
support recovery and allow for a certain small fraction of
mistakes (both false alarms and failed detection). There have
been works by Reeves and Gastpar [33]–[35] that give lower
bounds on the sample size n for approximate sparsity recovery.
These works also provide results on orders of magnitude
of n for approximate recovery of sparse signals for certain
algorithms. However, to the best of our knowledge, there is
still a need in the sparse signal recovery literature to provide
precise relationships between sample size, mistake rates and
error probabilities for algorithms such as Lasso or OMP.

Section II describes our adaptive successive decoder in
full detail. Section III describes the computational resource
required for the algorithm. Section IV presents the tools for the
theoretical analysis of the algorithm, while section V presents
the theorem for reliability of the algorithm. Computational
illustrations are included in section VI. Section VII proves
results for the function gL of figure 2, required for the
demonstrating that one can indeed achieve rates up to capacity.
The appendix collects some auxiliary matters.

II. THE DECODER

The algorithm we analyze is a modification of the algorithm
described in subsection I-B. The main reason for the modifi-
cation is due to the difficulty in analyzing the statistics Zres

k, j ,
for j ∈ Jk and for steps k ≥ 2.

The distribution of the statistic Z1, j , used in the first step,
is easy, as will be seen below. This is because of the fact that
the random variables

{X j , j ∈ J } and Y

are jointly multivariate normal. However, this fails to hold for
the random variables,

{X j , j ∈ Jk} and Rk

used in forming Zres
k, j .

It is not hard to see why this joint Gaussianity fails. Recall
that Rk may be expressed as,

Rk = Y −
∑

j∈Deck−1

√
Pj X j .

Correspondingly, since the event Deck−1 is not independent of
the X j ’s, the quantities Rk , for k ≥ 2, are no longer normal
random vectors. It is for this reason the we introduce the
following two modifications.

A. First Modification: Using a Combined Statistic

We overcome the above difficulty in the following manner.
Recall that each

Rk = Y − F1 − · · · − Fk−1, (10)

is a sum of Y and −F1, . . . , −Fk−1. Let G1 = Y and
denote Gk , for k ≥ 2, as the part of −Fk−1 that is orthogonal
to the previous Gk’s. In other words, perform Gram-Schmidt
orthogonalization on the vectors Y, −F1, . . . , −Fk−1, to get
Gk′ , with k ′ = 1, . . . , k. Then, from (10),

Rk

‖Rk‖ =weight1
G1

‖G1‖ +weight2
G2

‖G2‖ + . . . + weightk
Gk

‖Gk‖ ,

for some weights, denoted by weightk′ = weightk′,k , for k ′ =
1, . . . , k. More specifically,

weightk′ = RT
k Gk′

‖Rk‖‖Gk′ ‖ ,

and,

weight21 + · · · + weight2k = 1.

Correspondingly, the statistic Zres
k, j = XT

j Rk/‖Rk‖, which we
want to use for k-th step detection, may be expressed as,

Zres
k, j = weight1 Z1, j + weight2 Z2, j + · · · + weightk−1 Zk, j ,

where,
Zk, j = X T

j Gk/‖Gk‖. (11)

Instead of using the statistic Zres
k, j , for k ≥ 2, we find it more

convenient to use statistics of the form,

Zcomb
k, j = λ1,k Z1, j + λ2,k Z2, j + · · · + λk,k Zk, j , (12)

where λk′,k , for k ′ = 1, . . . , k are positive weights satisfying,

k∑

k′=1

λ2
k′,k = 1.

For convenience, unless there is some ambiguity, we sup-
press the dependence on k and denote λk′,k as simply λk′ .
Essentially, we choose λ1 so that it is a deterministic proxy
for weight1 given above. Similarly, λk′ is a proxy for weightk′
for k ′ ≥ 2. The important modification we make, of replacing
the random weightk’s by proxy weights, enables us to give
an explicit characterization of the distribution of the statistic
Zcomb

k, j , which we use as a proxy for Zres
k, j for detection of

additional terms in successive iterations.

926 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 2, FEBRUARY 2014

We now describe the algorithm after incorporating the above
modification. For the time-being assume that for each k we
have a vector of deterministic weights,

(λk′,k : k ′ = 1, . . . , k),

satisfying
∑k

k′=1 λ2
k′ = 1, where recall that for convenience

we denote λk′,k as λk′ . Recall G1 = Y .
For step k = 1, do the following
• For j ∈ J , compute

Z1, j = XT
j G1/‖G1‖.

To provide consistency with the notation used below, we
also denote Z1, j as Zcomb

1, j .
• Update

dec1 = { j ∈ J : Zcomb
1, j ≥ τ }, (13)

which corresponds to the set of decoded terms for the
first step. Also let Dec1 = dec1. Update

F1 =
∑

j∈dec1

√
Pj X j .

This completes the actions of the first step. Next, perform the
following steps for k ≥ 2, with the number of steps k to be
at most a pre-define value m.

• Define Gk as the part of −Fk−1 orthogonal to
G1, . . . , Gk−1.

• For j ∈ Jk = J − Deck−1, calculate

Zk, j = XT
j Gk

‖Gk‖ (14)

• For j ∈ Jk , compute the combined statistic using the
above Zk, j and Zk′, j , 0 ≤ k ′ ≤ k − 1, given by,

Zcomb
k, j = λ1 Z1, j + λ2 Z2, j + · · · + λk Zk, j ,

where the weights λk′ = λk,k′ , which we specify later,
are positive and have sum of squares equal to 1.

• Update
deck = { j ∈ Jk : Zcomb

k, j ≥ τ }, (15)

which corresponds to the set of decoded terms for the k
th step. Also let Deck = Deck−1 ∪ deck, which is the set
of terms detected after k steps.

• This completes the k th step. Stop if either L terms have
been decoded, or if no terms are above threshold, or if
k = m. Otherwise increase k by 1 and repeat.

As mentioned earlier, part of what makes the above algo-
rithm work is our ability to assign deterministic weights
(λk,k′ : k ′ = 1, . . . , k), for each step k = 1, . . . , m. To be
able to do so, we need good control on the (weighted) sizes
of the set of decoded terms Deck after step k, for each k. In
particular, defining for each j , the quantity π j = Pj/P , we
define the size of the set Deck as sizek , where

sizek =
∑

j∈Deck

π j . (16)

Notice that sizek is increasing in k, and is a random quantity
which depends on the number of correct detections and false
alarms in each step. As we shall see, we need to provide

good upper and lower bounds for the size1, . . . , sizek−1 that
are satisfied with high probability, to be able to provide
deterministic weights of combination, λk′,k , for k ′ = 1, . . . , k,
for the kth step.

It turns out that the existing algorithm does not provide the
means to give good controls on the sizek’s. To be able to do
so, we need to further modify our algorithm.

B. The Second Modification: Pacing the Steps

As mentioned above, we need to get good controls on the
quantity sizek , for each k, where sizek is defined as above.
For this we modify the algorithm even further.

Assume that we have certain pre-specified values θk , for
k = 1, . . . , m. Here the θk’s, which are between 0 and 1, are
called the pacing parameters. Explicit expressions θk , which
are taken to be strictly increasing in k, will be specified later
on. The weights of combination,

(λk′,k : k ′ = 1, . . . , k),

for k = 1, . . . , m, will be functions of these values.
For each k, denote

threshk = { j : Zcomb
k, j ≥ τ }.

For the algorithm described in the previous subsection, deck ,
the set of decoded terms for the k th step, was taken to be
equal to threshk . We make the following modification:

For each k, instead of making deck to be equal to threshk ,
take deck to be a subset of threshk so that the total size of the
of the decoded set after k steps, given by sizek , is near θk . The
set deck is chosen by selecting terms in threshk , in decreasing
order of their Zcomb

k, j values, until sizek nearly equals θk .
In particular, given sizek−1, one continues to add terms in

deck , if possible, until

θk − 1/Lπ < sizek ≤ θk . (17)

Here 1/Lπ = max� π(�), is the maximum non-zero weights
over all sections. It is a small term of order 1/L for the power
allocations we consider.

Of course, the set of terms threshk might not be large
enough to arrange for deck satisfying (17). Nevertheless, it
is satisfied, provided

sizek−1 +
∑

j∈threshk

π j ≥ θk,

or equivalently,
∑

j∈Deck−1

π j +
∑

j∈J−Deck−1

π j 1{Zcomb
k, j ≥τ } ≥ θk . (18)

Here we use the fact that Jk = J − Deck−1.
Our analysis demonstrates that we can arrange for an

increasing sequence of θk , with θm near 1, such that condition
(18) is satisfied for k = 1, . . . , m, with high probability.
Correspondingly, sizek is near θk for each k with high prob-
ability. In particular, sizem , the weighted size of the decoded
set after the final step, is near θm , which is near 1.

We remark that in [8], an alternative technique for analyzing
the distributions of Zcomb

k, j , for j ∈ Jk , is pursued, which

JOSEPH AND BARRON: FAST SPARSE SUPERPOSITION CODES 927

does away with the above approach of pacing the steps. The
technique in [8] provides uniform bounds on the performance
for collection of random variables indexed by the vectors of
weights of combination. However, since the pacing approach
leads to cleaner analysis, we pursue it here.

III. COMPUTATIONAL RESOURCE

For the decoder described in section II, the vectors Gk can
be computed efficiently using the Gram-Schmidt procedure.
Further, as will be seen, the weights of combination are chosen
so that, for each k,

Zcomb
k, j =

√
1 − λ2

k,k Zcomb
k−1, j + λk,kZk, j .

This allows us to computed the statistic Zcomb
k, j easily from the

previous combined statistic. Correspondingly, for simplicity
we describe here the computational time of the algorithm in
subsection I-B, in which one works with the residuals and
accepts each term above threshold. Similar results hold for
the decoder in section II.

The inner products requires order nL M multiply and adds
each step, yielding a total computation of order nL Mm for m
steps. As we shall see, the ideal number of steps m according
to our bounds is of order log M .

When there is a stream of strings Y arriving in succession
at the decoder, it is natural to organize the computations in
a parallel and pipelined fashion as follows. One allocates m
signal processing chips, each configured nearly identically, to
do the inner products. One such chip does the inner products
with Y , a second chip does the inner products with the
residuals from the preceding received string, and so on, up
to chip m which is working on the final decoding step from
the string received several steps before. After an initial delay
of m received strings, all m chips are working simultaneously.

If each of the signal processing chips keeps a local copy of
the dictionary X , alleviating the challenge of numerous simul-
taneous memory calls, the total computational space (memory
positions) involved in the decoder is nL Mm, along with space
for L Mm multiplier-accumulators, to achieve constant order
computation time per received symbol. Naturally, there is the
alternative of increased computation time with less space;
indeed, decoding by serial computation would have runtime
of order nL Mm. Substituting L = nR/ log M and m of order
log M , we may reexpress nL Mm as n2 M . This is the total
computational resource required (either space or time) for the
sparse superposition decoder.

In the computational space complexity of n2 M , it is impor-
tant to note the dependence on the section size M . In our
present analysis, this M would be have to be made undesirably
large to achieve reliability if the rate R is pushed too close to
capacity. Put affirmatively, it is preferable to choose M to be of
a low order power of the codelength n, and note that the code
will be reliable when the rate is kept at least order 1/

√
log M

below the capacity. It is the constant order computation time
per received symbol, while maintaining a manageable amount
of computational space (of order n2 M), that is the reason for
us calling our decoder ‘fast’.

IV. ANALYSIS

Recall that we need to give controls on the random quantity
δ̂mis given by (3). Our analysis leads to controls on the
following weighted measures of correct detections and false
alarms for a step. Recall that π j = Pj /P , where recall that
Pj = P(�) for any j in section �. The π j sums to 1 across j
in sent, and sums to M−1 across j in other. Define in general

q̂k =
∑

j∈sent∩deck

π j , (19)

which provides a weighted measure for the number of correct
detections in step k, and

f̂k =
∑

j∈other∩deck

π j (20)

for the false alarms in step k. Bounds on δ̂mis can be obtained
from the quantities q̂k and f̂k as we now describe.

As mentioned in Subsection I-B, after the algorithm is
run for m steps there are two types of mistakes one
could make in a section, namely an error and an erasure.
Notice that,

∑

j∈sect ion �

(
1{ j ∈ sent∩Decc

m } + 1{ j ∈ other∩Decm }
)

≥ 21{error in section �} + 1{erasure in section �} (21)

To see this, consider the three possible cases. In the case when
the section � has neither an error or an erasure, the right side
of (21) would be zero. Next, when the section has an error,
the right side of (21) would be 2. The left side would also
be 2, with a contribution of 1 from the correct term (since it
is in sent∩Decc

m), and another 1 from the wrong term. Lastly,
if the section has an erasure, the right side would be 1, while
the left side of (21) would be at least 1. In the latter case, the
left side of (21) would be greater than 1 if there are multiple
terms in other that are selected.

Denote

δ̂wght =
(

1 −
m∑

k=1

q̂k

)

+
m∑

k=1

f̂k . (22)

An equivalent way of expressing δ̂wght is the sum of � from
1 to L of,

π(�)

∑

j∈sect ion �

(
1{ j ∈ sent∩Decc

m } + 1{ j ∈ other∩Decm }
)

,

where π j = π(�) for j in section �.
In the equal power allocation case, where π j = 1/L,

one has δ̂mis ≤ δ̂wght . This can be seen from (21), and the
expression of δ̂mis given by (3). For the power allocation (2)
that we consider, bounds on δ̂mis are obtained by multiplying
δ̂wght by the factor snr/(2C). To see this, notice that for a
given weighted fraction, the maximum possible un-weighted
fraction would be if we assume that all the failed detection or
false alarms came from the section with the smallest weight.
This would correspond to the section with weight π(L), where
it is seen that π(L) = 2C/(L snr). Accordingly, if δwght were

928 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 2, FEBRUARY 2014

an upper bound on δ̂wght that is satisfied with high probability,
we take

δmis = snr

2C δwght , (23)

so that δ̂mis ≤ δmis with high probability as well.
Next, we characterize, for k ≥ 1, the distribution of Zk, j ,

for j ∈ Jk . As we mentioned earlier, the distribution of Z1, j is
easy to characterize. Accordingly, we do this separately in the
next subsection. In subsection IV-B we provide the analysis
for the distribution of Zcomb

k, j , for k ≥ 2.

A. Analysis of the First Step

In Lemma 3 below we derive the distributional properties of
(Z1, j : j ∈ J). Lemma 4, in the next subsection, characterizes
the distribution of (Zk, j : j ∈ Jk) for steps k ≥ 2 .

Define
C j,R = n π j ν, (24)

where recall that ν = P/(P + σ 2). For the constant
power allocation case, π j equals 1/L. In this case C j,R =
(R0/R) 2 log M is the same for all j .

For the variable power allocation (2), we have

π j = e−2C(�−1)/L(1−e−2C/L)/(1−e−2C),

for each j in section �. Let

C̃ = (L/2)[1 − e−2C/L], (25)

which is essentially identical to C when L is large. Then for
j in section �, we have

C j,R = (C̃/R) e−2C(�−1)/L(2 log M). (26)

Note, in this expression, the multiplier of 2 log M is at least 1
for R ≤ C̃ and for small section indices �. It dips below 1 as
the section index grows.

We now are in a position to give the lemma for the
distribution of Z1, j , for j ∈ J . The lemma below shows
that each Z1, j is distributed as a shifted normal, where the
shift is approximately equal to

√
C j,R for any j in sent, and

is zero for j in other. Accordingly, for a particular section,
the maximum of the Z1, j , for j ∈ other, is seen to be
approximately

√
2 log M , since it is the maximum of M − 1

independent standard normal random variables. Consequently,
one would like

√
C j,R to be at least

√
2 log M for the correct

term in that section to be detected.
Lemma 3: For each j ∈ J , the statistic Z1, j can be

represented as
√

C j,R (Xn/
√

n)1{ j sent} + N1, j ,

where N1 = (N1, j : j ∈ J1) is multivariate normal
Normal(0,�1), with �1 = I − δ1δ

T
1/P , where δ1 = √

νβ.
Also,

X 2
n = ‖Y‖2

σ 2
Y

is a Chi-square n random variable that is independent of
N1 = (N1, j : j ∈ J). Here σY = √

P + σ 2 is the standard
deviation of each coordinate of Y .

Proof: Recall that the X j , for j in J , are independent
Normal(0, I) random vectors and that Y = ∑

j β j X j + ε,
where the sum of squares of the β j is equal to P .

The conditional distribution of each X j given Y may be
expressed as,

X j = β j Y/σ 2
Y + U j , (27)

where U j is a vector in R
N having a multivariate normal

distribution. Denote b = β/σY . It is seen that

U j ∼ Nn

(
0, (1 − b2

j)I
)

,

where b j is the j th coordinate of b.
Further, letting U = [U1 : . . . : UN], it follows from the

fact that the rows of [X : ε/σ] are i.i.d, that the rows of the
matrix U are i.i.d.

Further, for row i of U , the random variables Ui, j and Ui, j ′
have mean zero and expected product

1{ j= j ′} − b j b j ′.

In general, the covariance matrix of the i th row of U is given
by �1.

For any constant vector α �= 0, consider U T
j α/‖α‖. Its joint

normal distribution across terms j is the same for any such α.
Specifically, it is a normal Normal(0,�1), with mean zero and
the indicated covariances.

Likewise define N1, j = U T
j Y/‖Y‖. Conditional on Y ,

one has that jointly across j , these N1, j have the normal
Normal(0,�) distribution. Correspondingly, N1 = (N1, j :
j ∈ J) is independent of Y , and has a Normal(0,�1)
distribution unconditionally.

Where this gets us is revealed via the representation of the
inner product Z1, j = X T

j Y/‖Y‖, which using (27), is given
by,

Z1, j = β j
‖Y‖
σ 2

Y

+ N1, j .

The proof is completed by noticing that for j ∈ sent, one has√
C j,R = β j

√
n/σY .

B. Analysis of Steps k ≥ 2

We need the characterize the distribution of the statistic
Zcomb

k, j , j ∈ Jk , used in decoding additional terms for the kth
step.

The statistic Zcomb
k, j , j ∈ Jk , can be expressed more clearly

in the following manner. For each k ≥ 1, denote,

Zk = XT Gk

‖Gk‖ .

Further, notice that Zcomb
k, j is simply the j th element of the

vector

Zcomb
k = λk,1Z1 + λk,2Z2 + . . . , +λk,kZk .

We remind that for step k we are only interested in elements
j ∈ Jk , that is, those that were not decoded in previous steps.

Below we characterize the distribution of Zcomb
k conditioned

on the what occurred on previous steps in the algorithm. More
explicitly, we define Fk−1 as

Fk−1 = (G1, G2, . . . , Gk−1,Z1, . . . ,Zk−1), (28)

JOSEPH AND BARRON: FAST SPARSE SUPERPOSITION CODES 929

or the associated σ -field of random variables. This represents
the variables computed up to step k − 1. Notice that from the
knowledge of Zk′ , for k ′ = 1, ..., k − 1, one can compute
Zcomb

k′ , for k ′ < k. Correspondingly, the set of decoded
terms deck′ , till step k − 1, is completely specified from
knowledge of Fk−1.

Next, note that in Zcomb
k , only the vector Zk does not

belong to Fk−1. Correspondingly, the conditional distribution
of Zcomb

k given Fk−1, is described completely by finding the
distribution of Zk given Fk−1. Accordingly, we only need to
characterize the conditional distribution of Zk given Fk−1.

Initializing with the distribution of Z1 derived in Lemma 3,
we provide the conditional distributions

Zk,Jk = (Zk, j : j ∈ Jk),

for k = 2, . . . , n. As in the first step, we show that the
distribution of Zk,Jk can be expressed as the sum of a
mean vector and a multivariate normal noise vector Nk,Jk =
(Nk, j : j ∈ Jk). The algorithm will be arranged to stop long
before n, so we will only need these up to some much smaller
final k = m. Note that Jk is never empty because we decode at
most L, so there must always be at least (M−1)L remaining.

The following measure of correct detections in step,
adjusted for false alarms, plays an important role in character-
izing the distributions of the statistics involved in an iteration.
Denote

q̂ad j
k = q̂k

1 + f̂k/q̂k
, (29)

where q̂k and f̂k are given by (19) and (20).
In the lemma below we denote NormalJk (0,�) to be

multivariate normal distribution with dimension |Jk |, having
mean zero and covariance matrix �, where � is an |Jk|×|Jk |
dimensional matrix. Further, we denote βJk to be the sub-
vector of β consisting of terms with indices in Jk .

Lemma 4: For each k ≥ 2, the conditional distribution of
Zk, j , for j ∈ Jk , given Fk−1 has the representation

√
ŵk C j,R (Xdk /

√
n) 1{ j ∈ sent} + Nk, j . (30)

Recall that C j,R = nπ jν. Further, ŵk = ŝk − ŝk−1, which are
increments of a series with total

ŵ1 + ŵ2 + · · · + ŵk = ŝk = 1

1 − q̂ad j,tot
k−1 ν

,

where
q̂ad j,tot

k = q̂ad j
1 + · · · + q̂ad j

k . (31)

Here ŵ1 = ŝ1 = 1. The quantities q̂ad j
k is given by (29).

The conditional distribution PNk,Jk |Fk−1 is NormalJk (0,�k),
where the covariance �k has the representation

�k = I − δkδ
T
k /P, where δk = √

νk βJk .

Here νk = ŝkν.
Define σ 2

k = ŝk−1/ŝk . The Xdk term appearing in (30) is
given by

X 2
dk

= ‖Gk‖2

σ 2
k

.

Also, the distribution of X 2
dk

given Fk−1, is chi-square with
dk = n−k+1 degrees of freedom, and further, it is independent
of Nk,Jk .

The proof of the above lemma is considerably more
involved. It is given in Appendix A. From the above lemma
one gets that Zk, j is the sum of two terms - the ‘shift’ term
and the ‘noise’ term Nk, j . The lemma also provided that the
noise term is normal with a certain covariance matrix �k .

Notice that Lemma 4 applies to the case k = 1 as well,
with F0 defined as empty, since ŵk = ŝk = 1. The definition
of �1 using the above lemma is the same as that given in
Lemma 3. Also note that the conditional distribution of (Zk, j :
j ∈ Jk), as given in Lemma 4, depends on Fk−1 only through
the ‖G1‖, . . . , ‖Gk−1‖ and (Zk′, j : j ∈ Jk′) for k ′ < k.

In the next subsection, we demonstrate that Nk, j , for j ∈ Jk ,
are very close to being independent and identically distributed
(i.i.d.).

C. The Nearby Distribution

Recall that since the algorithm operates only on terms not
detected previously, for the k step we are only interested in
terms in Jk . The previous two lemmas specified conditional
distributions of Zk, j , for j ∈ Jk . However, for analysis
purposes we find it helpful to assign distributions to the Zk, j ,
for j ∈ J − Jk as well. In particular, conditional on Fk−1,
write

Zk, j =
√

ŵk C j,R

(Xdk√
n

)

1{ j∈sent} + Nk, j for j ∈ J .

Fill out of specification of the distribution assigned by P, via
a sequence of conditionals PNk |Fk−1 for Nk = (Nk, j : j ∈ J),
which is for all j in J , not just for j in Jk . For the variables
Nk,Jk that we actually use, the conditional distribution is that
of PNk,Jk |Fk−1 as specified in Lemmas 3 and 4. Whereas for the
Nk, j with j ∈ J − Jk , given Fk−1, we conveniently arrange
them to be independent standard normal. This definition is
contrary to the true conditional distribution of Zk, j for j ∈
J − Jk , given Fk−1. However, it is a simple extension of the
conditional distribution that shares the same marginalization
to the true distribution of (Nk, j : j ∈ Jk) given Fk−1.

Further a simpler approximating distribution Q is defined.
Define QNk |Fk−1 to be independent standard normal. Also,
like P, the measure Q makes the X 2

dk
appearing in Zk, j ,

Chi-square(n − k + 1) random variables independent of Nk ,
conditional on Fk−1.

In the following lemma we appeal to a sense of closeness of
the distribution P to Q, such that events exponentially unlikely
under Q remain exponentially unlikely under the governing
measure P.

Lemma 5: For any event A that is determined by the
random variables,

‖G1‖, . . . , ‖Gk‖ and (Zk′, j : j ∈ Jk′), for k ′ ≤ k, (32)

one has

P[A] ≤ Q[A]ekc0,

where c0 = (1/2) log(1 + P/σ 2).

930 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 2, FEBRUARY 2014

For ease of exposition we give the proof in Appendix B.
Notice that the set A is Fk measurable, since the random
variables that A depends on are Fk measurable.

D. Separation Analysis

Our analysis demonstrates that we can give good lower
bounds for q̂k , the weighted proportion of correct detection
in each step, and good upper bounds on f̂k , which is the
proportion of false alarms in each steps.

Denote the exception events

Ak = {q̂k < qk} and Bk = { f̂k > fk}.
Here the qk and fk are deterministic bounds for the proportion
of correct detections and false alarms respectively, for each k.
These will be specified in the subsequent subsection.

Assuming that we have got good controls on these quantities
up to step k − 1, we now describe our characterization of
Zcomb

k, j , for j ∈ Jk , used in detection for the kth step. Define
the exception sets

A1,k−1 = ∪k−1
k′=1 Ak′ and B1,k−1 = ∪k−1

k′=1 Bk′ .

The manner in which the quantities q̂1, . . . , q̂k and f̂1, . . . f̂k

arise in the distributional analysis of Lemma 4 is through the
sum

q̂ad j,tot
k = q̂ad j

1 + · · · + q̂ad j
k

of the adjusted values q̂ad j
k = q̂k/(1 + f̂k/q̂k). Outside of

A1,k−1 ∪ B1,k−1, one has

q̂ad j
k′ ≥ qad j

k′ for k ′ = 1, . . . , k − 1, (33)

where, for each k,

qad j
k = qk/(1 + fk/qk).

Recall that from Lemma 4 that,

ŵk = 1

1 − q̂ad j,tot
k−1 ν

− 1

1 − q̂ad j,tot
k−2 ν

.

From relation (33), one has ŵk′ ≥ wk′ , for k ′ = 1, . . . , k,
where w1 = 1, and for k > 1,

wk = 1

1 − qad j,tot
k−1 ν

− 1

1 − qad j,tot
k−2 ν

.

Here, for each k, we take

qad j,tot
k = qad j

1 + · · · + qad j
k . (34)

Using this wk we define the corresponding vector of weights
(λk′,k : k ′ = 1, . . . , k), used in forming the statistics Zcomb

k, j ,
as

λk′,k =
√

wk′

w1 + w2 + · · · + wk
.

Given that the algorithm has run for k − 1 steps, we now
proceed to describe how we characterize the distribution of
Zcomb

k, j for the kth step. Define the additional exception event

D1,k−1 = ∪k−1
k′=1 Dk′ , with Dk = {X 2

dk
/n ≤ 1−h},

where 0 < h < 1. Here the term X 2
dk

is as given in Lemma 4.
It follows a Chi-square distribution with dk = n−k+1 degrees
of freedom. Define

Ek−1 = A1,k−1 ∪ B1,k−1 ∪ D1,k−1.

Notice that we have for j ∈ sent that

Zk′, j =
√

ŵk′ C j,R (Xdk′ /
√

n) + Nk′ , j

and for j ∈ other, we have

Zk′, j = Nk′ , j ,

for k ′ = 1, . . . , k. Further, denote C j,R,h = C j,R(1−h). Then
on the set Ec

k−1 ∩ Dc
k , we have for k ′ = 1, . . . , k that

Zk′, j ≥ √
wk′

√
C j,R,h + Nk′ , j for j ∈ sent.

Recall that,

Zcomb
k, j = λ1 Z1, j + λ2 Z2, j + · · · + λk Zk, j ,

where for convenience we denote λk′,k as simply λk′ . Define
for each k and j ∈ J , the combination of the noise terms by

Ncomb
k, j = λ1 N1, j + λ2 N2, j + · · · + λk Nk, j .

From the above one sees that, for j ∈ other the Zcomb
k, j

equals Ncomb
k, j , and for j ∈ sent, on the set Ec

k−1 ∩ Dc
k , the

statistic Zcomb
k, j exceeds

[
λ1

√
w1 + · · ·+λk

√
wk
]√

C j,R,h + Ncomb
k, j ,

which is equal to
√

C j,R,h

1 − qad j,tot
k−1 ν

+ Ncomb
k, j .

Summarizing,

Zcomb
k, j = Ncomb

k, j for j ∈ other

and, on the set Ec
k−1 ∩ Dc

k ,

Zcomb
k, j ≥ shiftk, j + Ncomb

k, j , for j ∈ sent,

where

shiftk, j =
√

C j,R,h

1 − xk−1 ν
,

with x0 = 0 and xk−1 = qad j,tot
k−1 , for k ≥ 2. Since the xk’s are

increasing, the shiftk, j ’s increases with k. It is this increase in
the mean shifts that helps in additional detections.

For each j ∈ J , set Hk, j to be the event,

Hk, j = {
shiftk, j 1{ j ∈ sent} + Nk, j ≥ τ

}
. (35)

Notice that

Hk, j = {Zcomb
k, j ≥ τ } for j ∈ other. (36)

On the set Ec
k−1 ∩ Dc

k , defined above, one has

Hk, j ⊆ {Zcomb
k, j ≥ τ } for j ∈ sent. (37)

Using the above characterization of Zcomb
k, j we specify in the

next subsection the values for θk, fk and qk . Recall that
the quantity θk , which was defined is subsection II-B, gave
controls on sizek , the size of the decoded set Deck after the
k step.

JOSEPH AND BARRON: FAST SPARSE SUPERPOSITION CODES 931

E. Specification of fk , θk, and qk, for k = 1, . . . , m

Recall from subsection IV-C that under the Q measure that
Nk, j , for j ∈ J , are i.i.d. standard normal random variables.
Define the random variable

f̂ up
k =

∑

j∈other

π j 1Hk, j . (38)

Notice that f̂k ≤ f̂ up
k since

f̂k =
∑

j∈deck∩other

π j

≤
∑

j∈other

π j 1{Zcomb
k, j ≥τ }. (39)

The above inequality follows since deck is a subset of
threshk = { j : Zcomb

k, j ≥ τ } by construction. Further (39)

is equal to f̂ up
k using (36).

The expectation of f̂ up
k under the Q-measure is given by,

EQ

(
f̂ up
k

)
= (M−1)̄(τ),

where ̄(τ) is the upper tail probability of a standard normal
at τ . Here we use the fact that the Hk, j , for j ∈ other, are i.i.d
Bernoulli ̄(τ) under the Q-measure and that

∑
j∈other π j is

equal to (M − 1).
We assume that the threshold τ is of the form,

τ = √
2 log M + a, (40)

with a positive a specified in subsection VII-D. Define
f ∗ = (M − 1)̄(τ), which is the expectation of f̂ up

k from
above. One sees that

f ∗ ≤ exp
{− a

√
2 log M − (1/2)a2

}

(
√

2 log M + a)
√

2π
, (41)

using the form for the threshold τ in (40). We also use that
̄(x) ≤ φ(x)/x for positive x , with φ being the standard
normal density. We take fk = f to be a value greater than f ∗.
We express it in the form

f = ρ f ∗,

with a constant factor ρ > 1. This completes the specification
of the fk .

Next, we specify the θk used in pacing the steps. Denote
the random variable,

θ̂k =
∑

j sent

π j 1Hk, j . (42)

Likewise, define θ∗
k as the expectation of θ̂k under the Q

measure. Using (35), one has

θ∗
k =

∑

j sent

π j ̄(−μk, j),

where μk, j = shiftk, j − τ . Like before, we take θk to be a
value less than θ∗

k . More specifically, we take

θk = θ∗
k − η (43)

for a positive η.

This specification of θ∗
k , and the related θk , is a recursive

definition in the following way: Notice that θ∗
k equals the

function gL(x), given by (4), evaluated at xk−1 = qad j,tot
k−1 ,

with x0 = 0. We define the target detection rate for the k th
step, given by qk , as

qk = θk − θk−1 − 1/Lπ − f, (44)

with θ0 taken to zero. Here, 1/Lπ = max�=1,...,L π(�) is a
quantity of order 1/L. Thus the qk are specified from the θk

and f . Using the expression of xk−1 = qad j,tot
k−1 in (34), along

with (44), one gets that θ∗
k is a function of θ1, . . . , θk−1 and f .

For instance, in the constant power allocation case
C j,R,h = (R0(1 − h)/R) 2 log M , is the same for all j . This
makes shiftk, j the same for each j . Consequently, one has
θ∗

k = ̄(−μ(xk−1)), where μ(x) = √
1/(1 − xν)

√
C j,R,h −τ .

It obeys the recursion θ∗
k = gL(x) evaluated at xk−1 = qad j,tot

k−1 ,
with gL(x) = ̄(−μ(x)).

F. Building Up the Total Detection Rate

The previous section demonstrated the importance of the
function gL(x), given by (4). This function is defined on
[0, 1] and take values in the interval (0, 1). Recall from
subsection II-B, on pacing the steps, that the quantities θk are
closely related to the proportion of sections correctly detected
after k steps, if we ignore false alarm effects. Consequently,
to ensure sufficient correct detections one would like the θk to
increase with k to a value near 1. Through the recursive defin-
ition of θk , this amounts to ensuring that the function gL(x) is
greater than x for an interval [0, xr], with xr preferably near 1.
Definition: A function g(x) is said to be accumulative for
0 ≤ x ≤ xr with a positive gap, if

g(x) − x ≥ gap

for all 0 ≤ x ≤ xr . Moreover, the decoder is accumulative with
a given rate and power allocation if corresponding function
gL(x) satisfies this property for given xr and positive gap.

To detail the progression of the θk consider the following
lemma.

Lemma 6: Assume g(x) is accumulative on [0, xr] with
a positive gap, and η is chosen so that gap − η is positive.
Further, assume

f ≤ (gap − η)2/8 − 1/(2Lπ). (45)

Then, one can arrange for an m so that the θk , for
k = 1, . . . , m, defined by (43), are increasing and

θm ≥ xr + gap − η.

Moreover, the number of steps m is at most 2/(gap − η).
The proof of Lemma 6 is given in Appendix C. We now

proceed to describe how we demonstrate the reliability of the
algorithm using the quantities chosen above.

V. RELIABILITY OF THE DECODER

We are interested in demonstrating that the probability of
the event A1,m ∪ B1,m is small. This ensures that for each
step k, where k ranges from 1 to m, the proportion of correct

932 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 2, FEBRUARY 2014

detections q̂k is at least qk , and the proportion of false alarms
f̂k is at most fk = f . We do this by demonstrating that the
probability of the set

Em = A1,m ∪ B1,m ∪ D1,m

is exponentially small. The following lemma will be useful in
this regard. Recall that

A1,m = ∪m
k=1{q̂k < qk} and B1,m = ∪m

k=1{ f̂k > f }.
Lemma 7: Let θk, qk and f be as defined in

subsection IV-E. Denote

Ã1,m = ∪m
k=1{θ̂k < θk} and B̃1,m = ∪m

k=1{ f̂ up
k > f }.

Then,

Em ⊆ Ã1,m ∪ B̃1,m ∪ D1,m .

For ease of exposition we provide the proof of this lemma
in Appendix D. The lemma above described how we control
the probability of the exception set Em .

We demonstrate that the probability of Em is exponentially
small by showing that the probability of Ã1,m ∪ B̃1,m ∪ D1,m ,
which contains Em , is exponentially small. Also, notice that
outside the set Em , the weighted fraction of failed detection
and false alarms, denoted by δ̂wght in (22), is bounded by

(

1 −
m∑

k=1

qk

)

+ m f,

which, after recalling the definition of qk in (44), can also be
expressed as,

1 − θm + 2m f + m/Lπ . (46)

Now, assume that gL is accumulative on [0, xr] with a positive
gap. Then, from Lemma 6, for η < gap, and f > f ∗ satisfying
(45), one has that (46) is upper bounded by

δwght = (1 − xr) − (gap − η)/2, (47)

using the bounds on f , θm and m given in the lemma.
Consequently, δ̂mis the mistake rate after m steps, given by (3),
is bounded by δmis outside of Ã1,m ∪ B̃1,m ∪ D1,m , where,

δmis = snr

2C [(1 − xr) − (gap − η)/2], (48)

via (23). We then have the following theorem regarding the
reliability of the algorithm.

Theorem 8: Let the conditions of Lemma 6 hold, and let
δmis be as in (48). Then,

P(δ̂mis > δmis) ≤ me−2Lπη2+mc0 + me−Lπ f D(ρ)/ρ

+ me−(n−m+1)h2/2.

Here the quantities η and ρ are as defined in subsection IV-E,
and c0 is as given in Lemma 5. Also D(ρ) = ρ log ρ−(ρ−1).

Proof of Theorem 8: From Lemma 7, and the arguments
above, the event {δ̂mis > δmis } is contained in the event

Ã1,m ∪ B̃1,m ∪ D1,m .

Consequently, we need to control the probability of the above
three events under the P measure.

We first control the probability of the event D1,m , which is
the union of Chi-square events Dk = {X 2

dk
/n < 1 − h}. Now

the event Dk can be expressed as {X 2
dk

/dk < 1 − hk}, where
hk = (nh − k + 1)/(n − k + 1). Using a standard Chernoff
bound argument, one gets that

P(Dk) ≤ e−(n−k+1)h2
k/2.

The exponent in the above is at least (n − k + 1)h2/2 − kh.
Consequently, as k ≤ m, one gets, using a union bound that

P(D1,m) ≤ me−(n−m+1)h2/2+mh .

Next, lets focus on the event B̃1,m , which is the union of events
{ f̂ up

k > f }. Divide f̂ up
k , f , by M−1 to get p̂k, p respectively.

Consequently, B̃1,m is also the union of the events { p̂k > p},
for k = 1, . . . , m, where

p̂k = 1

M−1

∑

j∈other

π j 1Hk, j ,

and p = f/(M − 1), with f = ρ f ∗.
Recall, as previously discussed, for j in other, the event

Hk, j are i.i.d. Bernoulli(p∗) under the measure P, where
p∗ = f ∗/(M − 1). Consequently, from by Lemma 13 in the
Appendix E, the probability of the event { p̂k ≥ p} is less than
e−Lπ (M−1)D(p‖p∗). Therefore,

P(B̃1,m) ≤ me−Lπ (M−1)D(p‖p∗).

To handle the exponents (M−1)D(p‖p∗) at the small values
p and p∗, we use the Poisson lower bound on the Bernoulli
relative entropy, as shown in Appendix F. This produces the
lower bound (M−1)[p log p/p∗ + p∗ − p], which is equal to

f log f/ f ∗ + f ∗ − f.

We may write this as f ∗D(ρ), or equivalently f D(ρ)/ρ,
where the functions D(ρ) and D(ρ)/ρ = log ρ + 1 − 1/ρ
are increasing in ρ.

Lastly, we control the probability of the event Ã1,m , which
the is union of the events {θ̂k < θk}, where

θ̂k =
∑

j∈sent

π j Hk, j .

We first bound the probability under the Q measure. Recall that
under Q, the Hk, j , for j ∈ sent, are independent Bernoulli,
with the expectation of θ̂k being θ∗

k . Consequently, using
Lemma 13 in Appendix E, we have

Q(θ̂k < θk) ≤ e−Lπ D(θk‖θ∗
k).

Further, by the Pinsker-Csiszar-Kulback-Kemperman inequal-
ity, specialized to Bernoulli distributions, the expressions
D(θk‖θ∗

k) in the above exceeds 2(θk − θ∗
k)2, which is 2η2,

since θ∗
k − θk = η.

Correspondingly, one has

Q(Ã1,m) ≤ me−Lπ 2η2
.

Now, use the fact that the event Ã1,m is Fm measurable, along
with Lemma 5, to get that,

P(Ã1,m) ≤ me−Lπ 2η2+m c0 .

This completes the proof of the lemma.

JOSEPH AND BARRON: FAST SPARSE SUPERPOSITION CODES 933

Fig. 3. Plots demonstrating progression of our algorithm. (Plot on left) snr = 15. The weighted (unweighted) detection rate is 0.995 (0.985) for a failed
detection rate of 0.014 and the false alarm rate is 0.005. (Plot on right) snr = 1. The detection rate (both weighted and un-weighted) is 0.944 and the false
alarm and failed detection rates are 0.016 and 0.055 respectively. Here L = M = 216.

Fig. 4. Plots of achievable rates as a function of M for snr values of 15, 7 and 1. Section error rate is controlled to be between 9 and 10%. For the curve
using simulation runs the error probability of making more than 10% section mistakes is taken to be 10−3.

VI. COMPUTATIONAL ILLUSTRATIONS

We illustrate in two ways the performance of our algorithm.
First, for fixed values L, M, snr and rates below capacity we
evaluate detection rate as well as probability of exception set
pe using the theoretical bounds given in Theorem 8. Plots
demonstrating the progression of our algorithm are also shown.
These highlight the crucial role of the function gL in achieving
high reliability.

Figure 3 presents the results of computation using the
reliability bounds of Theorem 8 for fixed L and M and various
choices of snr and rates below capacity. The dots in these
figures denotes θk , for each k.

For illustrative purposes we take M = 216, L = M and
snr values of 1, 7 and 15, or, 0, 8.5, 11.8 dB respectively.
The probability of error pe is set to be near 10−3. For
each snr value the maximum rate, over a grid of values, for
which the error probability is less than pe is determined.
With snr = 1 (Fig. 3), this rate R is 0.3 bits which is
59% of capacity. When snr is 7 (Fig. 2) and 15 (Fig. 3),
these rates correspond to 49% and 42% of their corresponding
capacities.

For the above computations we chose power allocations of
the form

P(�) ∝ max{e−2γ l/L, cut},
with 0 ≤ γ ≤ C, and u > 0. Here the choices of a, u and γ
are made, by computational search, to minimize the resulting
sum of false alarms and failed detections, as per our bounds.
In the snr = 1 case, the optimum γ is 0, so we have constant
power allocation in this case. In the other two cases, there
is variable power across most of the sections. The role of a
positive u being to increase the relative power allocation for
sections with low weights.

Figure 4 gives plots of achievable rates as a function of M .
For each M , the points on the detailed envelope correspond to
the numerically evaluated maximum inner code rate for which
the section error is between 9 and 10%. Here we assume L to
be large, so that the θk and fk are replaced by the expected
values θ∗

k and f ∗, respectively. We also take h = 0. This gives
an idea about the best possible rates for a given snr and section
error rate.

For the simulation curve, L was fixed at 100 and for
given snr, M , and rate values, 104 runs of our algorithm

934 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 2, FEBRUARY 2014

were performed. The maximum rate over the grid of values
satisfying section error rate of less than 10% except in
10 replicates, (corresponding to an estimated pe of 10−3)
is shown in the plots. Interestingly, even for such small
values of L, the curve is is quite close to the detailed
envelope curve, showing that our theoretical bounds are quite
conservative.

VII. ACHIEVABLE RATES APPROACHING CAPACITY

We demonstrate analytically that rates R moderately close
to C are attainable by showing that the function gL(x) provid-
ing the updates for the fraction of correctly detected terms
is indeed accumulative for suitable xr and gap. Then the
reliability of the decoder can be established via Theorem 8.
In particular, the matter of normalization of the weights π(�)

is developed in subsection VII-A. An integral approximation
g(x) to the sum gL(x) is provided in subsection VII-B,
and in subsection VII-C we show that it is accumulative.
Subsection VII-D addresses the issue of control of parameters
that arise in specifying the code. In subsection VII-E, we give
the proof of Theorem 2.

A. Variable Power Allocations

As mentioned earlier, we consider power allocations P(�)

proportional to e−2C�/L . The function gL(x), given by (4),
may also be expressed as

gL(x) =
L∑

�=1

π(�) (μ(x, u� C ′/R)),

where π(�) = P(�)/P , and,

μ(x, u) = (
√

u/(1 − xν) − 1)
√

2 log M − a

and

u� = e−2C(�−1)/L and C ′ = C̃(1 − h),

with C̃ as in (25). Here we use the fact that C j,R , for the above
power allocation, is given by u� C̃/R if j is in section �, as
demonstrated in (26).

Further, notice that π(�) = u�/sum, with sum = ∑L
�=1 u�.

One sees that sum = Lν/(2C̃), with ν = P/(P + σ 2). Using
this one gets that

gL(x) = 2C
νL

L∑

�=1

u�
(
μ(x, u�C ′/R)

)
. (49)

B. Formulation and Evaluation of the Integral g(x)

Recognize that the sum in (49) corresponds closely to an
integral. In each interval �−1

L ≤ t < �
L for � from 1 to L, we

have e−2C �−1
L at least e−2Ct . Consequently, gL(x) is greater

than g(x) where

g(x) = 2C
ν

∫ 1

0
e−2Ct

(
μ(x, e−2CtC ′/R)

)
dt . (50)

The gL(x) and g(x) are increasing functions of x on [0, 1].

Let’s provide further characterization and evaluation of the
integral g(x). Let

zlow
x = μ(x, (1 − ν) C ′/R) and zmax

x = μ(x, C ′/R).

Further, let δa = a/
√

2 log M. For emphasis we write out that
zx = zlow

x takes the form

zx =
[√

(1 − ν)C ′/R√
1 − xν

− (1 + δa)

]
√

2 log M. (51)

Change the variable of integration in (50) from t to
u = e−2Ct . Observing that e−2C = 1 − ν, one sees that

g(x) = 1

ν

∫ 1

1−ν

(
μ(x, u C ′/R)

)
du.

Now since

(μ) =
∫

1{z≤μ} φ(z) dz,

it follows that

g(x) =
∫ ∫

1{
ucut≤u≤1

}1{
z≤μ(x,u C′/R)

} φ(z) dz du/ν. (52)

In (52), the inequality

z ≤ μ(x, u C ′/R)

is the same as
√

u ≥ √
uxR/C ′ (1 + (z + a)/

√
2 log M

)
,

provided zlow
x ≤ z ≤ zmax

x . Here ux = 1 − xν. Thereby,
for all z, the length of this interval of values of u can be
written as

[

1 − max

{

ux
R

C ′
(

1 + z+a√
2 log M

) 2

+, 1 − ν

}]

+
.

Thus g(x) is equal to,

1

ν

∫ [

1 − max

{

ux
R

C ′
(

1 + z+a√
2 log M

) 2

+, 1 − ν

}]

+
φ(z)dz.

(53)

Lemma 9: Derivative evaluation. The derivative g′(x) may
be expressed as

R

C ′

∫ zmax
x

zlow
x

(
1+δa + δz

)2
φ(z)dz. (54)

Further, if

R = C ′

[(1 + δa)2(1+r/ log M)] , (55)

with r ≥ r0, where

r0 = 1

2(1 + δa)2 , (56)

then the difference g(x) − x is a decreasing function of x .
Proof: The integrand in (53) is continuous and piecewise

differentiable in x , and its derivative is the integrand in (54).
Further, (54) is less than,

R

C ′

∫ ∞

−∞
(
1+δa + δz

)2
φ(z)dz = R

C ′
[
(1+δa)

2 + 1/(2 log M)
]
,

JOSEPH AND BARRON: FAST SPARSE SUPERPOSITION CODES 935

which is less than 1 for r ≥ r0. Consequently, g(x) − x is
decreasing as it has a negative derivative.

Corollary 10: A lower bound. The function g(x) is at least

glow(x)= 1

ν

∫ ∞

zlow
x

[
1−(R/C ′)ux

(
1+(z+a)/

√
2 log M

)2
]
φ(z)dz.

This glow(x) is equal to

(zx) +
[
x + δR

ux

ν

] [
1 − (zx)

]

− 2(1+δa)
R

C ′
ux

ν

φ(zx)√
2 log M

− R

C ′
ux

ν

zxφ(zx)

2 log M
. (57)

where

δR = r − r0

log M + r
.

Moreover, this glow(x) has derivative g′
low(x) given by

R

C ′

∫ ∞

zx

(
1+δa + δz

)2
φ(z)dz.

Proof: The integral expressions for glow(x) are the same
as for g(x) except that the upper end point of the integration
extends beyond zmax

x , where the integrand is negative. The
lower bound conclusion follows from this negativity of the
integrand above zmax

x . The evaluation of glow(x) is fairly
straightforward after using zφ(z) = −φ′(z) and z2φ(z) =
φ(z) − (zφ(z))′. Also use that (z) tends to 1, while φ(z)
and zφ(z) tend to 0 as z → ∞. This completes the proof of
Corollary 10.
Remark: What we gain with this lower bound is simplification
because the result depends on x only through zx = zlow

x .

C. Showing g(x) is Greater Than x

The preceding subsection established that gL(x) − x is at
least glow(x) − x . We now show that

hlow(x) = glow(x) − x,

is at least a positive value, which we denote as gap, on an
interval [0, xr], with xr suitably chosen.

Recall that zx = zlow
x , given by (51), is a strictly increasing

function of x , with values in the interval I0 = [z0, z1] for
0 ≤ x ≤ 1. For values z in I0, let x = x(z) be the choice for
which zx = z. With the rate R of the form (55), let xr be the
value of x for which zx is 0. One finds that xr satisfies,

1 − xr = 1

snr

[
r

log M

]

. (58)

We now show that hlow(x) is positive on [0, xr], for r at least
a certain value, which we call r1.

Lemma 11: Positivity of hlow(x) on [0, xr]. Let rate R be
of the form (55), with r > r1, where

r1 = r0/2 +
√

log M√
π(1 + δa)

. (59)

Then, for 0 ≤ x ≤ xr the difference hlow(x) is greater than
or equal to

gap = 1

snr

[
r − r1

log M

]

. (60)

Proof of Lemma 11: The function g(x) has lower bound
glow(x). By Corollary 10, glow(x) has derivative bounded by

∫ ∞

−∞

(
1+δa + δz

)2

(1 + δa)2(1 + r/ log M)
φ(z)dz = (1 + r0/ log M)

(1 + r/ log M)
,

which is less than 1 for r ≥ r0. Thus glow(x)−x is decreasing
as it has a negative derivative.

To complete the proof, evaluate glow(x) − x at the point
x = xr . The point xr is the choice where zx = 0. After using
(57), it is seen that the value glow(xr) − xr is equal to gap,
where gap is given by (60).

D. Choices of a and r That Control the Overall Rate Drop

Here we focus on the evaluation of a and r that optimize
our summary expressions for the rate drop, based on the lower
bounds on gL(x)− x . Recall that the rate of our inner code
is

R = C 1 − h

(1+δa)2(1 + r/ log M)
.

Now, for r > r1, the function gL(x) is accumulative on [0, xr],
with positive gap given by (60). Notice that r1, given by (59),
satisfies,

r1 ≤ 1/4 +
√

log M√
π

. (61)

Consequently, from Theorem 8, with high reliability, the
total fraction of mistakes δ̂mis is bounded by

δmis = snr

2C [(1 − xr) − (gap − η)/2] .

If the outer Reed-Solomon code has distance designed to be at
least δmis then any occurrences of a fraction of mistakes less
than δmis are corrected. The overall rate of the code is Rtotal,
which is at least (1 − δmis)R.

Sensible values of the parameters a and r can be obtained
by optimizing the above overall rate under a presumption of
small error probability, using simplifying approximations of
our expressions. Reference values (corresponding to large L)
are obtained by considering what the parameters become with
η = 0, f = f ∗, and h = 0.

Notice that a is related to f ∗ via the bound (41). Set a so
that

a
√

2 log M = log
[
1/
(

f ∗√2π
√

2 log M
)]

. (62)

We take f ∗ as gap2/8 as per Lemma 6. Consequently a will
depend on r via the expression of gap given by (60).

Next, using the expressions for 1 − xr and gap, along with
η = 0, yields a simplified approximate expression for the
mistake rate given by

δmis = r + r1

4C log M
.

Accordingly, the overall communication rate may be
expressed as,

Rtotal =
(

1− r + r1

4C log M

) C
(1+δa)2(1+r/ log M)

.

936 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 2, FEBRUARY 2014

As per these calculations (see [25] for details) we find it
appropriate to take r to be r∗, where

r∗ = r1 + 2/(1 + 1/C).

Also, the corresponding a is seen to be

a = (3/2) log(log(M))/
√

2 log(M) + ã,

where,

ã = 2 log
[
snr (1 + 1/C)/((π).25)

]

√
2 log(M)

.

Express Rtotal in the form C/(1 + drop). Then with the
above choices of r and a, and the bound on r1 given in (61),
one sees that drop can be approximated by

3 log log M + 4 log(ω1 snr) + 1/(4C) + 3.35

2 log M
+ 1 + 1/(2C)√

π log M
,

where ω1 = 1 + 1/C.
We remark that the above explicit expressions are given

to highlight the nature of dependence of the rate drop on
snr and M . These are quite conservative. For more accurate
numerical evaluation see section VI on computational illustra-
tions.

E. Definition of C∗ and Proof of Theorem 2

In the previous subsection we gave the value of r and a that
maximized, in an approximate sense, the outer code rate for
given snr and M values and for large L. This led to explicit
expressions for the maximal achievable outer code rate as a
function of snr and M . We define C∗ to be the inner code rate
corresponding to this maximum achievable outer code rate.
Thus,

C∗ = C
(1+δa)2 [1 + r∗/ log M] .

Similar to above, C∗ can be written a C/(1 + drop∗) where
drop∗ can be approximated by

3 log log M + 4 log(ω1snr) + 4/ω1 − 2

2 log M
+ 1√

π log M
,

with ω1 = 1 + 1/C. We now give a proof of our main result.
Proof of Theorem 2: Take r = r∗ + κ . Using

(1 + κ/ log M)(1 + r∗/ log M) ≥ (1 + r/ log M),

we find that for the rate R as in Theorem 2, gap is at least
(r − r1)/(snr log M) for x ≤ xr , with xr = r/(snr log M).

Take f ∗ = (1/8)(r∗ − r1)
2/(snr log M)2, so that a is the

same as given in the previous subsection. Now, we need to
select ρ > 1 and η > 0, so that

f = ρ f ∗ ≤ (gap − η)2/8 − 1/(2Lπ).

Take ω = (1 + 1/C)/2, so that r∗ = r1 + 1/ω. One sees
that we can satisfy the above requirement by taking η as
(1/2)κ/(snr log M) and ρ = (1 + κω/2)2 − εL

εL = (2ωsnr log M)2

Lπ
,

is of order (log M)2/L, and hence is negligible compared
to the first term in ρ. Since it has little effect on the error
exponent, for ease of exposition, we ignore this term. We also
assume that f = (gap − η)2/8, ignoring the 1/(2Lπ) term.

We select

h = κ

(2 log M)3/2 .

The fraction of mistakes,

δmis = snr

2C
[

r

snr log M
− (gap − η)/2

]

is calculated as in the previous subsection, except here we
have to account for the positive η. Substituting the expression
for gap and η gives the expression for δmis as in the theorem.

Next, let’s look at the error probability. The error probability
is given by

me−2Lπη2+mc0 + me−Lπ f D(ρ)/ρ + memhe−nh2/2.

Notice that nh2/2 is at least (Lπ log M)h2/(2C∗), where we
use that L ≥ Lπ and R ≤ C∗. Thus the above probability is
less than

κ1 exp{−Lπ min{2η2, f ∗D(ρ), h2 log M/(2C∗)}}
with

κ1 = 3m em max{c0,1/2},

where for the above we use h < 1.
Substituting, we see that 2η2 is (1/2)κ2/(snr log M)2 and

h2 log M/(2C∗) is

1

16C∗
κ2

(log M)2 .

Also, one sees that D(ρ) is at least 2(
√

ρ − 1)2/ρ. Thus the
term f ∗D(ρ) is at least

κ2

(4snr log M)2(1 + κω/2)
.

We bound from below the above quantity by considering two
cases viz. κ ≤ 2/ω and κ > 2/ω. For the first case we have
1 + κω/2 ≤ 2, so this quantity is bounded from below by
(1/2)κ2/(4snr log M)2. For the second case use κ/(1+κω/2)
is bounded from below by 1/ω, to get that this term is at least
(1/ω)κ/(4snr log M)2.

Now we bound from below the quantity min{2η2,
f ∗D(ρ), h2 log M/(2C∗)} appearing in the exponent. For κ ≤
2/ω this quantity is bounded from below by

κ3
κ2

(log M)2 ,

where

κ3 = min
{

1/(32snr2), 1/(16C∗)
}

.

For κ > 2/ω this is quantity is at least

min

{

κ3
κ2

(log M)2 , κ4
κ

log M

}

,

JOSEPH AND BARRON: FAST SPARSE SUPERPOSITION CODES 937

with

κ4 = 1

8(1 + 1/C)snr2 log M
.

Also notice that C∗ − R is at most C∗κ/ log M . Thus we
have that

min{2η2, f ∗D(ρ), h2 log M/(2C∗)}
is at least

min
{
κ3(�

∗)2, κ4�
∗} .

Further, recalling that Lπ = Lν/(2C), we get that
κ2 = ν/(2C), which is near ν/(2C).

Regarding the value of m, recall that m is at most
2/(gap − η). Using the above we get that m is at most
(2ωsnr) log M . Thus ignoring the 3m, term κ1 = κ1,M is
polynomial in M with power 2ωsnr max{c0, 1/2}.

Part II is essentially the same as the use of Reed-Solomon
codes in section VI of our companion paper [27].

In the proof of Proposition 1, we let ζi , for integer i , be
constants that do not depend on L, M or n.

Proof of Proposition 1: Recall Rtot = (1 − δmis)R. Using
the form of δmis and C∗ for Proposition 2, one sees that Rtot

may be expressed as,

Rtot =
(

1 − ζ1δM − ζ2
κ

log M

)

C. (63)

Notice that M needs to be at least exp{ζ3/�
2}, where

� = (C − Rtot)/C, for above to be satisfied. For a given
section size M , the size of κ would be larger for a larger
C−Rtot . Choose κ so that ζ2κ/ log M is at least ζ1δM , so that
by (63), one has,

� ≥ 2ζ2
κ

log M
. (64)

Now following the proof of Theorem 2, since the error
exponent is of the form const min{κ/ log M, (κ/ log M)2}, one
sees that it is of the form const �2 from (64).

VIII. DISCUSSION

This paper demonstrated that the sparse superposition cod-
ing scheme, with the adaptive successive decoder and outer
Reed-Solomon code, allows one to communicate at any rate
below capacity, with block error probability that is exponen-
tially small in L. It is shown in [8] that this exponent can be
improved by a factor of

√
log M from using a Bernstein bound

on the probability of the large deviation events analyzed here.
For fixed section size M , the power allocation (2) analyzed

in this paper, allows one to achieve any R that is at least a
drop of 1/

√
log M of C. In contrast, constant power allocation

allows us to achieve rates up to a threshold rate R0 =
0.5snr/(1 + snr), which is bounded by 1/2, but is near C for
small snr. In [8] and [25] the alternative power allocation (5)
is shown to allow for rates that is of order log log M/ log M
from capacity. Our experience shows that it is advantageous
to use different power allocation schemes depending on the
regime for snr. When snr is small, constant power allocation
works better. The power allocation with leveling (5) works

better for moderately large snr, whereas (2) is appropriate for
larger snr values.

One of the requirements of the algorithm, as seen in the
proof of Proposition 1, is that for fixed rate Rtot , the section
size M is needed to be exponential in 1/�2, using power
allocation (2). Here � is the rate drop from capacity. Similar
results hold for the other power allocations as well. However,
this was not the case for the optimal ML–decoder, as seen
in [27]. Consequently, it is still an open question whether
there are practical decoders for the sparse superposition coding
scheme which do not have this requirement on the dictionary
size.

APPENDIX A

PROOF OF LEMMA 4

For each k ≥ 2, express X as,

X = G1

‖G1‖Z
T
1 + · · · + Gk−1

‖Gk−1‖Z
T
k−1 + ξk Vk,

where ξk = [ξk,k : . . . : ξk,n] is an n × (n − k + 1)
orthonormal matrix, with columns ξk,i , for i = k, . . . , n,
being orthogonal to G1, . . . , Gk−1. There is flexibility in the
choice of the ξk,i ’s, the only requirement being that they
depend on only G1, . . . , Gk−1 and no other random quantities.
For convenience, we take these ξk,i ’s to come from the
Gram-Schmidt orthogonalization of G1, . . . , Gk−1 and the
columns of the identity matrix.

The matrix Vk , which is (n − k + 1) × N dimensional, is
also denoted as,

Vk = [Vk,1 : Vk,2 : . . . : Vk,N].
The columns Vk, j , where j = 1, . . . , N gives the coef-
ficients of the expansion of the column X j in the basis
ξk,k , ξk,k+1, . . . , ξk,n . We also denote the entries of Vk as
Vk,i, j , where i = k, . . . , n and j = 1, . . . , N .

We prove that conditional on Fk−1, the distribution of
(Vk,i, j : j ∈ Jk−1), for i = k, . . . , n, is i.i.d. Normal
Normal(0,�k−1). The proof is by induction.

The stated property is true initially, at k = 2, from Lemma
3. Recall that the rows of the matrix U in Lemma 3 are i.i.d.
Normal(0,�1). Correspondingly, since V2 = ξT

2 U , and since
the columns of ξ2 are orthonormal, and independent of U , one
gets that the rows of V2 are i.i.d Normal(0,�1) as well.

Presuming the stated conditional distribution property to be
true at k, we conduct analysis, from which its validity will
be demonstrated at k + 1. Along the way the conditional
distribution properties of Gk , Nk, j , and Zk, j are obtained
as consequences. As for ŵk and δk we first obtain them by
explicit recursions and then verify the stated form.

Denote as

Gcoef
k,i = −

∑

j∈deck−1

√
Pj Vk,i, j for i = k, . . . , n . (65)

Also denote as,

Gcoef
k = (Gcoef

k,k , Gcoef
k,k+1, . . . , Gcoef

k,n)T.

938 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 2, FEBRUARY 2014

The vector Gcoef
k gives the representation of Gk in the

basis consisting of columns vectors of ξk . In other words,
Gk = ξk Gcoef

k .
Notice that,

Zk, j = V T
k, j Gcoef

k /‖Gcoef
k ‖. (66)

Further, since Vk, j and Gcoef
k are jointly normal conditional

on Fk−1, one gets, through conditioning on Gcoef
k that,

Vk, j = bk−1, j Gcoef
k /σk + Uk, j .

Denote as Uk = [Uk,1 : Uk,2 : . . . : Uk,N], which is an
(n − k +1)× N dimensional matrix like Vk . The entries of Uk

are denoted as Uk,i, j , where i = k, . . . , n and j = 1, . . . , N .
The matrix Uk is independent of Gcoef

k , conditioned on Fk−1.
Further, from the representation (66), one gets that

Zk, j = bk−1, j ‖Gcoef
k ‖/σk + Nk, j , (67)

with,

Nk, j = U T
k, j Gcoef

k /‖Gcoe f
k ‖.

For the conditional distribution of Gcoef
k,i given Fk−1,

independence across i , conditional normality and conditional
mean 0 are properties inherited from the corresponding prop-
erties of the Vk,i, j . To obtain the conditional variance of Gcoef

k,i ,
given by (65), use the conditional covariance

�k−1 = I −δk−1δ
T
k−1

of (Vk,i, j : j ∈ Jk−1). The identity part contributes
∑

j∈deck−1
Pj which is (q̂k−1+ f̂k−1)P; whereas, the δk−1δ

T
k−1

part, using the presumed form of δk−1, contributes an
amount seen to equal νk−1[∑ j∈sent∩deck−1

Pj/P]2 P which
is νk−1q̂2

k−1 P . It follows that the conditional expected square

for Gcoef
k,i , for i = k, . . . , n is

σ 2
k = [q̂k−1 + f̂k−1 − q̂2

k−1 νk−1] P.

Conditional on Fk−1, the distribution of

‖Gcoe f
k ‖2 =

n∑

i=k

(Gcoef
k,i)2

is that of σ 2
k X 2

n−k+1, a multiple of a Chi-square with n−k +1
degrees of freedom.

Next we compute bk−1, j in (67), which is the value of

E[Vk,i, j Gcoef
k,i |Fk−1]/σk

for any of the coordinates i = k, . . . , n. Consider the product
Vk,i, j Gcoef

k,i in the numerator. Using the representation of

Gcoef
k,i in (65), one has E[Vk,i, j Gcoef

k,i |Fk−1] is

−
∑

j ′∈deck−1

√
Pj ′
[
1 j ′= j − δk−1, jδk−1, j ′

]
,

which simplifies to −√Pj
[
1 j∈deck−1

− νk−1q̂k−11 j sent
]
. So

for j in Jk = Jk−1 − deck−1, we have the simplification

bk−1, j = q̂k−1 νk−1β j

σk
. (68)

Also, for j, j ′ in Jk , the product takes the form

bk−1, j bk−1, j ′ = δk−1, jδk−1, j ′
q̂k−1νk−1

1 + f̂k−1/q̂k−1 − q̂k−1νk−1
.

Here the ratio simplifies to q̂ad j
k−1νk−1/(1 − q̂ad j

k−1νk−1).
Now determine the features of the joint normal distribution

of the

Uk,i, j = Vk,i, j − bk−1, j Gcoef
k,i /σk,

for j ∈ Jk , given Fk−1. Given Fk−1, the (Uk,i, j : j ∈
Jk) are i.i.d across choices of i , but there is covariance
across choices of j for fixed i . This conditional covariance
E[Uk,i, j Uk,i, j ′ |Fk−1], by the choice of bk−1, j , reduces to
E[Vk,i, j Vk,i, j ′ |Fk−1] − bk−1, j bk−1, j ′ which, for j ∈ Jk , is

1 j= j ′ − δk−1, j δk−1, j ′ − bk−1, j bk−1, j ′ .

That is, for each i , the (Uk,i, j : j ∈ Jk) have the joint
NormalJk (0,�k) distribution, conditional on Fk−1, where �k

again takes the form 1 j, j ′ − δk, jδk, j ′ where

δk, jδk, j ′ = δk−1, j δk−1, j ′

{

1 + q̂ad j
k−1 νk−1

1 − q̂ad j
k−1νk−1

}

,

for j, j ′ now restricted to Jk . The quantity in braces simplifies
to 1/(1−q̂ad j

k−1νk−1). Correspondingly, the recursive update rule
for νk is

νk = νk−1

1 − q̂ad j
k−1 νk−1

.

Consequently, the joint distribution for (Nk, j : j ∈ Jk)
is determined, conditional on Fk−1. It is also the normal
Normal(0,�k) distribution and (Nk, j : j ∈ Jk) is condi-
tionally independent of the coefficients of Gcoef

k , given Fk−1.
After all, the

Nk, j = U T
k, j Gcoef

k /‖Gcoef
k ‖

have this NormalJk (0,�k) distribution, conditional on Gcoef
k

and Fk−1, but since this distribution does not depend on Gcoef
k

we have the stated conditional independence.
This makes the conditional distribution of the Zk, j , given

Fk−1, as given in (67), a location mixture of normals
with distribution of the shift of location determined by the
Chi-square distribution of X 2

n−k+1 = ‖Gcoef
k ‖2/σ 2

k . Using the
form of bk−1, j , for j in Jk , the location shift bk−1, j Xn−k+1
may be written

√
ŵk C j,R

[Xn−k+1/
√

n
]

1 j sent ,

where

ŵk = n b2
k, j

C j,R
.

The numerator and denominator has dependence on j through
Pj , so canceling the Pj produces a value for ŵk . Indeed,
C j,R = (Pj /P)ν(L/R) log M equals n(Pj /P)ν and b2

k−1, j =
Pj q̂

ad j
k−1 ν2

k−1/[1 − q̂ad j
k−1νk−1]. So this ŵk may be expressed as

ŵk = νk−1

ν

q̂ad j
k−1 νk−1

1 − q̂ad j
k−1νk−1

,

JOSEPH AND BARRON: FAST SPARSE SUPERPOSITION CODES 939

which, using the update rule for νk−1, is seen to equal

ŵk = νk−1 − νk

ν
.

Further, repeatedly apply νk′/νk′−1 = 1/(1− q̂ad j
k′−1 νk′−1), for

k ′ from k to 2, each time substituting the required expression
on the right and simplifying to obtain

νk

νk−1
= 1 − (q̂ad j

1 + · · · + q̂ad j
k−2) ν

1 − (q̂ad j
1 + · · · + q̂ad j

k−2 + q̂ad j
k−1) ν

.

This yields νk = νŝk , which, when plugged into the expres-
sions for ŵk , establishes the form of ŵk as given in the lemma.

We need to prove that conditional on Fk that the rows
of Vk+1, for j ∈ Jk , are i.i.d. NormalJk (0,�k). Recall that
Vk+1 = ξT

k+1 X . Since the column span of ξk+1 is contained
in that of ξk , one may also write Vk+1 as ξT

k+1ξk Vk . Similar

to the representation Gk = ξk Gcoef
k , express the columns of

ξk+1 in terms of the columns of ξk as ξk+1 = ξkξ
coe f
k , where

ξ
coe f f
k is an (n − k + 1) × (n − k) dimensional matrix. Using

this representation one gets that Vk+1 = (ξ
coe f
k)TVk .

Notice that ξk is a function of Fk−1 and that ξk+1 is
a function of {Fk−1, Gk}. Correspondingly, ξ

coe f
k is also a

function of {Fk−1, Gk}. Further, because of the orthonormality
of ξk and ξk+1, one gets that the columns of ξ

coe f
k are also

orthonormal. Further, as Gk is orthonormal to ξk+1, one has
that Gcoef

k is orthogonal to the columns of ξ
coe f
k as well.

Accordingly, one has that Vk+1 = (ξ
coe f
k)TUk . Conse-

quently, using the independence of Uk and Gcoef
k , and the

above, one gets that conditional on {Fk−1, Gk}, for J ∈ Jk ,
the rows of Vk+1 are i.i.d. NormalJk (0,�k).

We need to prove that conditional on Fk , the distribution of
Vk+1 is as above. Recall that Fk is the set of functions, or more
precisely, the σ -field, of random variables {Fk−1, Gk,Zk}.
Equivalently, it the set functions of {Fk−1, Gk, Nk}. Con-
sequently, the claim follows from the conclusion of the
previous paragraph by noting that Vk+1 is independent of
Nk = (Gcoef

k)TUk , conditional on {Fk−1, Gk}, as Gcoef
k is

orthogonal to ξ
coe f f
k .

This completes the proof of the Lemma 4.

APPENDIX B

THE METHOD OF NEARBY MEASURES

Let b ∈ R
n , be such that ‖b‖2 = ν < 1. Further, let P be the

probability measure of a Normal(0,�) random variable, where
� = I − bbT , and let Q be the measure of a Normaln(0, I)
random variable. Then we have,

Lemma 12:

P[A] ≤ Q[A]ec0,

where c0 = −(1/2) log(1 − ν).
Proof: If p(z), q(z), denote the densities of the ran-

dom variables with measures P and Q respectively, then
maxz p(z)/q(z) equals 1/(1 − ν)1/2, which is also ec0 . From
the densities Normal(0, I −bbT) and Normal(0, I) this claim
can be established from noting that after an orthogonal trans-
formation these measures are only different in one variable,

which is either Normal(0, 1−ν) or Normal(0, 1), for which
the maximum ratio of the densities occurs at the origin and is
simply the ratio of the normalizing constants.

Correspondingly,

P(A) =
∫

A
p(z) dz

≤ ec0

∫

A
q(z) dz = Q(A)ec0 .

This completes the proof of the lemma.
Proof of Lemma 5: We are to show that for events A
determined by the random variables (32), the probability
P[A] is not more than Q[A]ekc0 . Write the probability as an
iterated expectation conditioning on Fk−1. That is, P[A] =
E
[
P[A|Fk−1]

]
. To determine membership in A, conditional

on Fk−1, we only need Nk,Jk = (Nk, j : j ∈ Jk) where Jk is
determined by Fk−1. Thus

P[A] = EP

[

PX 2
dk

,Nk,Jk |Fk−1

[
A]
]

,

where we use the subscript on the outer expectation to denote
that it is with respect to P and the subscripts on the inner con-
ditional probability to indicate the relevant variables. For this
inner probability switch to the nearby measure QXdk ,Nk,Jk |Fk−1 .
These conditional measures agree concerning the distribution
of the independent X 2

dk
, so what matters is the ratio of the

densities corresponding to PNk,Jk |Fk−1 and QNk,Jk |Fk−1 .
We claim that the ratio of these densities in bounded by ec0 .

To see this, recall that from Lemma 4 that PNk,Jk |Fk−1 is
NJk (0,�k), with �k = I − δkδ

T
k . Now

||δk||2 = νk

∑

j∈sent∩Jk

Pj /P

which is (1 − (q̂1 + · · · + q̂k−1))νk . Noting that νk = ŝkν and
ŝk(1 − (q̂1 + · · ·+ q̂k−1)) is at most 1, we get that ||δk||2 ≤ ν.

So with the switch of conditional distribution, we obtain a
bound with a multiplicative factor of ec0 . The bound on the
inner expectation is then a function of Fk−1, so the conclusion
follows by induction. This completes the proof of Lemma 5.

APPENDIX C

PROOF OF LEMMA 6

For k = 1, the θ1 = g(0) − η is at least gap − η. Consider
θk = gL(qad j,tot

k−1) − η, for k > 1. Notice that

qad j,tot
k−1 ≥

k−1∑

k′=1

qk′ − (k − 1) f,

using q/(1 + f/q) ≥ q − f . Now, from the definition of qk

in (44), one has

k−1∑

k′=1

qk′ = θk−1 − (k − 1)(f + 1/Lπ).

Consequently,

qad j,tot
k−1 ≥ θk−1 − (k − 1)(2 f + 1/Lπ). (69)

940 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 2, FEBRUARY 2014

Denote m as the first k for which qad j,tot
k−1 exceeds xr . For any

k < m, as qad j,tot
k−1 ≤ xr , using the fact that gL is accumulative

till xr , one gets that

θk ≥ qad j,tot
k−1 + gap − η.

Accordingly, using (69), one gets that

θk ≥ θk−1 − (k − 1)(2 f + 1/Lπ) + gap − η, (70)

or in other words, for k < m, one has

θk − θk−1 ≥ −m(2 f + 1/Lπ) + gap − η.

We want to arrange the difference θk − θk−1 to be at least a
positive quantity which we denote by �. Notice that this gives
m ≤ 1/�, since the θk’s are bounded by 1. Correspondingly,
we solve for � in,

� = −(1/�)(2 f + 1/Lπ) + gap − η,

and see that the solution is

� = (gap − η)

2

[

1 +
(

1 − 4
(2 f + 1/Lπ)

(gap − η)2

)1/2
]

, (71)

which is well defined since f satisfies (45). Also notice that
from (71) that � ≥ (gap − η)/2, making m ≤ 2/(gap − η).
Also θm = gL(qad j,tot

m−1)−η, which is at least gL(xr)−η since
gL is increasing. The latter quantity is at least xr + gap − η.

APPENDIX D

PROOF OF LEMMA 7

We prove the lemma by first showing that

A1,m ⊆ Ã1,m ∪ B1,m ∪ D1,m . (72)

Next, we prove that B1,m is contained in B̃1,m . This will prove
the lemma.

We start by showing (72). We first show that on the set

{θ̂k ≥ θk} ∩ Ec
k−1 ∩ Dc

k , (73)

condition (18), that is,
∑

j∈Deck−1

π j +
∑

j∈J−Deck−1

π j 1{Zcomb
k, j ≥τ } ≥ θk, (74)

is satisfied. Following the arguments of subsection II-B regard-
ing pacing the steps, this will ensure that the size of the
decoded set after k steps, that is sizek , is near θk , or more
precisely

θk − 1/Lπ < sizek ≤ θk, (75)

as given in (17).
Notice that the left side of (74) is at least

∑

j∈sent

π j 1{Zcomb
k, j ≥τ },

since the sum in (74) is over all terms in j , including those
in sent, and further, for each term j , the contribution to the
sum is at least π j 1{Zcomb

k, j ≥τ }.
Further, using the fact that

Hk, j ⊆ {Zcomb
k, j ≥ τ } on Ec

k−1 ∩ Dc
k

from (37), one gets that,
∑

j∈sent

π j 1{Zcomb
k, j ≥τ } ≥ θ̂k on Ec

k−1 ∩ Dc
k .

Correspondingly, on the set (73) the inequality (74), and
consequently the relation (75) also holds.

Next, for each k, denote

Ẽk = Ã1,k ∪ B1,k ∪ D1,k . (76)

We claim that for each k = 1, . . . , m, one has

Ẽc
k ⊆ Ac

1,k .

We prove the claim through induction on k. Notice that
the claim for k = m is precisely statement (72). Also, the
claim implies that Ẽc

k ⊆ Ec
k , for each k, where recall that

Ek = A1,k ∪ B1,k ∪ D1,k .
We first prove the claim for k = 1. We see that,

Ẽc
1 = {θ̂1 ≥ θ1} ∩ { f̂1 ≤ f } ∩ Dc

1.

Using the arguments above, we see that on {θ̂1 ≥ θ1}∩ Dc
1, the

relation θ1 −1/Lπ < size1 holds. Now, since size1 = q̂1 + f̂1,
one gets that

q̂1 ≥ θ1 − f̂1 − 1/Lπ on {θ̂1 ≥ θ1} ∩ Dc
1.

The right side of the aforementioned inequality is at least q1 on
Ẽc

1, using f̂1 ≤ f . Consequently, the claim is proved for k = 1.
Assume that the claim holds till k − 1, that is, assume that

Ẽc
k−1 ⊆ Ac

1,k−1. We now prove that Ẽc
k ⊆ Ac

1,k as well. Notice
that

Ẽc
k = {θ̂k ≥ θk} ∩ Ẽc

k−1 ∩ Dc
k ∩ { f̂k ≤ f },

which, using Ẽc
k−1 ⊆ Ec

k−1 from the induction hypothesis, one
gets that

θk − 1/Lπ < sizek on {θ̂k ≥ θk} ∩ Ẽc
k−1 ∩ Dc

k .

Accordingly,

θk − 1/Lπ < sizek ≤ θk on Ẽc
k .

Further, as Ẽc
k is contained in Ẽc

k−1, one gets that

θk−1 − 1/Lπ < sizek−1 ≤ θk−1 on Ẽc
k .

Consequently, combining the above, one has

sizek − sizek−1 = q̂k + f̂k

≥ θk − θk−1 − f − 1/Lπ on Ẽc
k .

Consequently, on Ẽc
k , we have q̂k ≥ qk , using the expression

for qk given in (44), and the fact that fk ≤ f on Ẽc
k .

Combining this with the fact that Ẽc
k is contained in Ac

1,k−1,
since Ẽc

k ⊆ Ẽc
k−1 and Ẽc

k−1 ⊆ Ac
1,k−1 from the induction

hypothesis, one gets that Ẽc
k ⊆ Ac

1,k .
This proves the induction hypothesis. In particular, it holds

for k = m, which, taking complements, proves the state-
ment (72).

Next, we show that B1,m ⊆ B̃1,m . This is straightforward
since recall that from subsection IV-E that one has f̂k ≤ f̂ up

k ,
for each k. Correspondingly, B1,m is contained in B̃1,m .

Consequently, from (72) and the fact that B1,m ⊆ B̃1,m , one
gets that Em is contained in Ã1,m ∪ B̃1,m ∪ D1,m . This proves
the lemma.

JOSEPH AND BARRON: FAST SPARSE SUPERPOSITION CODES 941

APPENDIX E

TAILS FOR WEIGHTED BERNOULLI SUMS

Lemma 13: Let W j , 1 ≤ j ≤ N be N independent
Bernoulli(r j) random variables. Furthermore, let α j , 1 ≤ j ≤
N be non-negative weights that sum to 1 and let Nα =
1/ max j α j . Then the weighted sum r̂ = ∑

j α j W j which has
mean given by r∗ = ∑

j α j r j , satisfies the following large
deviation inequalities. For any r with 0 < r < r∗,

P(r̂ < r) ≤ exp
{−Nα D(r‖r∗)

}

and for any r̃ with r∗ < r̃ < 1,

P(r̂ > r̃) ≤ exp
{−Nα D(r̃‖r∗)

}

where D(r‖r∗) denotes the relative entropy between Bernoulli
random variables of success parameters r and r∗.
Proof of Lemma 13: Let’s prove the first part. The proof of
the second part is similar.

Denote the event

A = {W :
∑

j

α j W j ≤ r}

with W denoting the N-vector of W j ’s. Proceeding as in
Csiszár [18] we have that

P (A) = exp{−D
(
PW |A‖PW

)}
≤ exp

{−
∑

j

D
(
PW j |A||PW j

)}

Here PW |A denotes the conditional distribution of the vector
W conditional on the event A and PW j |A denotes the associ-
ated marginal distribution of W j conditioned on A. Now

∑

j

D
(
PW j |A‖PW j

) ≥ Nα

∑

j

α j D
(
PW j |A‖PW j

)
.

Furthermore, the convexity of the relative entropy implies that

∑

j

α j D(PW j |A ‖ PW j) ≥ D

⎛

⎝
∑

j

α j PW j |A ‖
∑

j

α j PW j

⎞

⎠ .

The sums on the right denote α mixtures of distributions
PW j |A and PW j , respectively, which are distributions on {0, 1},
and hence these mixtures are also distributions on {0, 1}.
In particular,

∑
j α j PW j is the Bernoulli(r∗) distribution and∑

j α j PW j |A is the Bernoulli(re) distribution where

re = E
[∑

j

α j W j
∣
∣A] = E

[
r̂
∣
∣A].

But in the event A we have r̂ ≤ r so it follows that re ≤ r .
As r < r∗ this yields D(re ‖ r∗) ≥ D(r ‖ r∗). This completes
the proof of Lemma 13.

APPENDIX F

LOWER BOUNDS ON D

Lemma 14: For p ≥ p∗, the relative entropy between
Bernoulli(p) and Bernoulli(p∗) distributions has the succes-
sion of lower bounds

DBer (p‖p∗) ≥ DPoi (p‖p∗) ≥ 2
(√

p −√p∗)2 ≥ (p − p∗)2

2 p

where DPoi (p‖p∗) = p log p/p∗+ p∗− p is also recognizable
as the relative entropy between Poisson distributions of mean
p and p∗ respectively.

Proof: The Bernoulli relative entropy may be expressed
as the sum of two positive terms, one of which is p log p/p∗+
p∗ − p, and the other is the corresponding term with 1− p
and 1−p∗ in place of p and p∗, so this demonstrates the first
inequality. Now suppose p > p∗. Write p log p/p∗ + p∗ − p
as p∗F(s) where F(s) = 2s2 log s + 1 − s2 with s2 = p/p∗
which is at least 1. This function F and its first derivative
F ′(s) = 4s log s have value equal to 0 at s = 1, and its
second derivative F ′′(s) = 4 + 4 log s is at least 4 for s ≥ 1.
So by second order Taylor expansion F(s) ≥ 2(s − 1)2 for
s ≥ 1. Thus p log p/p∗ + p∗ − p is at least 2

(√
p − √

p∗)2.
Furthermore 2(s − 1)2 ≥ (s2 − 1)2/(2s2) as, taking the square
root of both sides, it is seen to be equivalent to 2(s − 1) ≥
s2 − 1, which, factoring out s − 1 from both sides, is seen
to hold for s ≥ 1. From this we have the final lower bound
(p − p∗)2/(2 p).

ACKNOWLEDGMENT

We thank Dan Spielman, Edmund Yeh, Mokshay Madi-
man and Imre Teletar for helpful conversations. We thank
David Smalling who completed a number of simulations of
earlier incarnations of the decoding algorithm for his Yale
applied math senior project in spring term of 2009 and Yale
statistics masters student Creighton Hauikulani who took the
simulations further in 2009 and 2010.

REFERENCES

[1] A. Abbe and A. R. Barron, “Polar codes for the AWGN,” in Proc. IEEE
ISIT, Aug. 2011, pp. 194–198.

[2] M. Akçakaya and V. Tarokh, “Shannon-theoretic limits on noisy com-
pressive sampling,” IEEE Trans. Inf. Theory, vol. 56, no. 1, pp. 492–504,
Jan. 2010.

[3] E. Arikan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE
Trans. Inf. Theory, vol. 55, no. 7, pp. 3051–3073, Jul. 2009.

[4] E. Arikan and E. Telatar, “On the rate of channel polarization,” in Proc.
IEEE ISIT, Apr. 2009, pp. 1493–1495.

[5] A. R. Barron, “Universal approximation bounds for superpositions
of a sigmoidal function,” IEEE Trans. Inf. Theory, vol. 39, no. 3,
pp. 930–945, May 1993.

[6] A. R. Barron and S. Cho, “High-rate sparse superposition codes
with iteratively optimal estimates,” in Proc. IEEE ISIT, Jul. 2012,
pp. 120–124.

[7] A. R. Barron, A. Cohen, W. Dahmen, and R. A. DeVore, “Approximation
and learning by greedy algorithms,” Ann. Statist., vol. 36, no. 1,
pp. 64–94, 2008.

[8] A. R. Barron and A. Joseph, “Toward fast reliable communication at
rates near capacity with Gaussian noise,” in Proc. IEEE ISIT, Jun. 2010,
pp. 315–319.

[9] A. R. Barron and A. Joseph, “Analysis of fast sparse superposition
codes,” in Proc. IEEE ISIT, Aug. 2011, pp. 1772–1776.

942 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 2, FEBRUARY 2014

[10] A. R. Barron and A. Joseph, “Sparse superposition codes are fast and
reliable at rates approaching capacity with Gaussian noise,” Dept. Sta-
tist., Yale Univ., New Haven, CT, USA, Tech. Rep., 2011.

[11] M. Bayati and A. Montanari, “The dynamics of message passing on
dense graphs, with applications to compressed sensing,” IEEE Trans.
Inf. Theory, vol. 57, no. 2, pp. 764–785, Feb. 2011.

[12] M. Bayati and A. Montanari, “The LASSO risk for Gaussian matrices,”
IEEE Trans. Inf. Theory, vol. 58, no. 4, pp. 1997–2017, Apr. 2012.

[13] C. Berrou, A. Glavieux, and P. Thitimajshima, “Near Shannon limit
error-correcting coding and decoding: Turbo-codes. 1,” in Proc. IEEE
ICC, vol. 2. May 1993, pp. 1064–1070.

[14] E. J. Candès and Y. Plan, “Near-ideal model selection by ł1 minimiza-
tion,” Ann. Statist., vol. 37, no. 5A, pp. 2145–2177, 2009.

[15] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition
by basis pursuit,” SIAM Rev., vol. 43, no. 1, pp. 129–159, 2001.

[16] T. Cover, “Broadcast channels,” IEEE Trans. Inf. Theory, vol. 18, no. 1,
pp. 2–14, Jan. 1972.

[17] T. M. Cover and J. A. Thomas, Elements of Information Theory, vol. 6.
New York, NY, USA: Wiley, 1991.

[18] I. Csiszár, “Sanov property, generalized I -projection and a conditional
limit theorem,” Ann. Probab., vol. 12, no. 3, pp. 768–793, 1984.

[19] A. K. Fletcher, V.K. Goyal, and S. Rangan, “A sparsity detection
framework for on-off random access channels,” in Proc. IEEE ISIT,
Jul. 2009, pp. 169–173.

[20] A. K. Fletcher and S. Rangan, “Orthogonal matching pursuit:
A Brownian motion analysis,” IEEE Trans. Signal Process., vol. 60,
no. 3, pp. 1010–1021, Mar. 2012.

[21] G. David Forney, “Concatenated codes,” DTIC, Fort Belvoir, VA, USA,
Tech. Rep., 1965.

[22] R. Gallager, “Low-density parity-check codes,” IRE Trans. Inf. Theory,
vol. 8, no. 1, pp. 21–28, Jan. 1962.

[23] C. Huang, G. H. L. Cheang, and A. R. Barron, “Risk of penalized
least squares, greedy selection and L1 penalization for flexible function
libraries,” Ph.D. dissertation, Dept. Statist., Yale Univ., New Haven, CT,
USA, Nov. 2008.

[24] L. Jones, “A simple lemma for optimization in a Hilbert space, with
application to projection pursuit and neural net training,” Ann. Statist.,
vol. 20, no. 1, pp. 608–613, Mar. 1992.

[25] A. Joseph, “Achieving information-theoretic limits with high-
dimensional regression,” Ph.D. dissertation, Yale Univ., New Haven,
CT, USA, Jun. 2012.

[26] A. Joseph, “Variable selection in high dimensions with random designs
and orthogonal matching pursuit,” J. Mach. Learn. Res., pp. 1771–1800,
2013.

[27] A. Joseph and A. R. Barron, “Least squares superposition cod-
ing of moderate dictionary size are reliable at rates up to channel
capacity,” IEEE Trans. Inf. Theory, vol. 58, no. 5, pp. 2541–2557,
May 2012.

[28] I. Kontoyiannis, S. Gitzenis, and K. R. Rad, “Superposition codes for
Gaussian vector quantization,” in Proc. IEEE Inf. Theory Workshop,
Jan. 2010, pp. 368–372.

[29] W. S. Lee, P. L. Bartlett, and R. C. Williamson, “Efficient agnostic
learning of neural networks with bounded fan-in,” IEEE Trans. Inf.
Theory, vol. 42, no. 6, pp. 2118–2132, Nov. 1996.

[30] S. G. Mallat and Z. Zhang, “Matching pursuits with time-
frequency dictionaries,” IEEE Trans. Signal Process., vol. 41, no. 12,
pp. 3397–3415, Dec. 1993.

[31] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Orthogonal matching
pursuit: Recursive function approximation with applications to wavelet
decomposition,” in Proc. Conf. Rec. 27th Asilomar Conf. Signals, Syst.
Comput., Nov. 1993, pp. 40–44.

[32] Y. Polyanskiy, H. V. Poor, and S. Verdú, “Channel coding rate in the
finite blocklength regime,” IEEE Trans. Inf. Theory, vol. 56, no. 5,
pp. 2307–2359, May 2010.

[33] G. Reeves and M. Gastpar, “Approximate sparsity pattern recovery:
Information-theoretic lower bounds,” IEEE Trans. Inf. Theory, vol. 59,
no. 6, pp. 3451–3465, Jun. 2013.

[34] G. Reeves and M. Gastpar, “Fundamental tradeoffs for sparsity pattern
recovery,” Inf. Transf. Manag., Jun. 2010.

[35] G. Reeves and M. Gastpar, “The sampling rate-distortion tradeoff for
sparsity pattern recovery in compressed sensing,” IEEE Trans. Inf.
Theory, vol. 58, no. 5, pp. 3065–3092, May 2012.

[36] C. E. Shannon, “A mathematical theory of communication,” ACM
SIGMOBILE Mobile Comput. Commun. Rev., vol. 5, no. 1, pp. 3–55,
2001.

[37] R. Tibshirani, “Regression shrinkage and selection via the lasso,”
J. R. Statist. Soc. Ser. B, Statist. Methodol., vol. 58, no. 1,
pp. 267–288, Jan. 1996.

[38] J. A. Tropp, “Greed is good: Algorithmic results for sparse approx-
imation,” IEEE Trans. Inf. Theory, vol. 50, no. 10, pp. 2231–2242,
Oct. 2004.

[39] J. A. Tropp, “Just relax: Convex programming methods for identifying
sparse signals in noise,” IEEE Trans. Inf. Theory, vol. 52, no. 3,
pp. 1030–1051, Mar. 2006.

[40] J. A. Tropp and A. C. Gilbert, “Signal recovery from random mea-
surements via orthogonal matching pursuit,” IEEE Trans. Inf. Theory,
vol. 53, no. 12, pp. 4655–4666, Dec. 2007.

[41] R. Venkataramanan, A. Joseph, and S. Tatikonda, “Gaussian rate-
distortion via sparse linear regression over compact dictionaries,”
in Proc. IEEE ISIT, Jul. 2012, pp. 368–372.

[42] R. Venkataramanan, T. Sarkar, and S. Tatikonda, “Lossy compression
via sparse linear regression: Computationally efficient encoding and
decoding,” Dec. 2012.

[43] M. J. Wainwright, “Information-theoretic limits on sparsity recovery
in the high-dimensional and noisy setting,” IEEE Trans. Inf. Theory,
vol. 55, no. 12, pp. 5728–5741, Dec. 2009.

[44] M. J. Wainwright, “Sharp thresholds for high-dimensional and noisy
sparsity recovery using �1-constrained quadratic programming (Lasso),”
IEEE Trans. Inf. Theory, vol. 55, no. 5, pp. 2183–2202, May 2009.

[45] C. H. Zhang, “Nearly unbiased variable selection under minimax con-
cave penalty,” Ann. Statist., vol. 38, no. 2, pp. 894–942, 2010.

[46] T. Zhang, Adaptive Forward-Backward Greedy Algorithm for Sparse
Learning with Linear Models. Lake Tahoe, NV, USA: NIPS, 2008.

[47] P. Zhao and B. Yu, “On model selection consistency of lasso,” J. Mach.
Learn. Res., vol. 7, pp. 2541–2563, Nov. 2006.

Antony Joseph, biography not available at the time of publication.

Andrew R. Barron, biography not available at the time of publication.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

